
Testing for Missing-Gate Faults in Reversible Circuits

John P. Hayes1,2 Ilia Polian2 Bernd Becker2

1Advanced Computer Architecture Laboratory
University of Michigan

Ann Arbor, MI 48109-2122, USA
jhayes@eecs.umich.edu

2Albert-Ludwigs-University
Georges-K̈ohler-Allee 51

79110 Freiburg i. Br., Germany
{polian|becker}@informatik.uni-freiburg.de

Abstract

Logical reversibility occurs in low-power applications and is
an essential feature of quantum circuits. Of special interest
are reversible circuits constructed from a class of reversible
elements calledk-CNOT (controllable NOT) gates. We re-
view the characteristics ofk-CNOT circuits and observe that
traditional fault models like the stuck-at model may not accu-
rately represent their faulty behavior or test requirements. A
new fault model, the missing gate fault (MGF) model, is pro-
posed to better represent the physical failure modes of quan-
tum technologies. It is shown that MGFs are highly testable,
and that all MGFs in anN -gatek-CNOT circuit can be de-
tected with from one todN/2e test vectors. A design-for-test
(DFT) method to make an arbitrary circuit fully testable for
MGFs using a single test vector is described. Finally, we
present simulation results to determine (near) optimal test
sets and DFT configurations for some benchmark circuits.

Keywords: Reversible circuits, quantum circuits, fault
models, missing gate faults, design for test.

1 Introduction

Reversible circuits aren-input, n-output circuits in which
every input pattern maps to a unique output pattern, thus
enabling inputs to be determined from outputs. They are
of interest because of their applications in extremely low-
power circuit design [1, 2] and quantum computation [1].
In the latter case, reversibility is a necessary requirement
of all operations, and non-quantum or “classical” reversible
circuits form an important subclass of the quantum circuits.
Reversible circuits can be based on many different physi-
cal phenomena, which generally fall under the nanotechnol-
ogy heading. The testing of classical reversible circuits has
been considered previously with respect to conventional fault
models, in particular, the stuck-at model [3]. Patel et al. [4]
have shown that such circuits are generally much easier to
test than irreversible ones. For example, very few test vectors
are needed to cover all single stuck-at faults, and detection
of all single faults guarantees detection of all the correspond-
ing multiple faults. However, as we explain, the stuck-at and
other classical fault models are difficult to justify physically
in the quantum domain. Here we propose and investigate

a

b

c

d

a

b

c

d

Figure 1: A reversible benchmark circuithwb4 composed of
17k-CNOT gates [5]

a very different fault model called the missing-gate (MGF)
model, which is better suited to quantum technologies, and
may have non-quantum applications as well.

As in [4], we only consider circuits composed of re-
versible elements calledk-CNOT gates. Figure 1 shows an
example using standard notation. As usual, the input signals
are assumed to enter at the left side of the circuit. This fig-
ure consists of four horizontal lines denoting signal-carrying
wires, and 17 vertical lines denoting gate operations. A
generalk-CNOT hask + 1 inputs and outputs,k of which
are control nodesc1, c2, . . . , ck denoted by black dots, while
the remaining input-output pairt defines the target node de-
noted by a ring-sum. With classical binary signal values, a
k-CNOT implements the Boolean function

c1, c2, . . . , ck, t 7→ c1, c2, . . . , ck, (c1 · c2 · · · ck) ⊕ t (1)

implying that the outputt is inverted iff all the control in-
puts are 1. In quantum computations, ak-CNOT can per-
form the same operation on superimposed quantum states.
The leftmost gate in Figure 1 is a 1-CNOT gate, or simply
a CNOT, with controld and targetb; it realizes the function
d, b 7→ d, b⊕d. The sixth gate from the left is a 3-CNOT with
control nodesb, c, d and targeta. A 0-CNOT (not shown in
the figure) is just an ordinary NOT gate or inverter. In an
obvious way, we can associate a stuck-at-0 or a stuck-at-1
fault with each wire segment connected to the input and out-
put sides of any node in ak-CNOT. With these assumptions,
such traditional testing tasks as finding a complete, and pos-
sibly minimal, test set for stuck-at faults can be addressed.

As mentioned already, a variety of nanotechnologies are
being actively investigated for implementing quantum cir-
cuits [1]. Several of these use quantum states of (sub)atomic
particles—spin-up and spin-down, for instance—to repre-
sent information in the form of qubits (quantum bits). These



essentially static states are modified by dynamic electromag-
netic (EM) pulses that implement gate functions like CNOT.
For example, in trapped-ion technology, qubits are individ-
ual atoms whose electric charge states are altered by direct-
ing laser pulses of precise frequency and duration at them
under control of a (classical) computer. In contrast, con-
ventional IC technologies employ static gates and dynamic
information-carrying signals. Thus in the quantum case, the
“gates” appearing in circuit diagrams like Figure 1 often rep-
resent EM pulses, while the “wires” indicate the order in
which the gate operations are applied. This casts serious
doubt on the applicability of wire-oriented classical faults,
like stuck-at or bridging faults [3] to quantum or quantum-
like circuits. Furthermore, a qubit’s value takes the form con-
ventionally written in the vector notation

ψ = a0

[

1

0

]

+ a1

[

0

1

]

(2)

which denotes a superposition of logical 0 and 1. The co-
efficientsa0 anda1 in Equation (2) are complex numbers
(probability amplitudes), and so are continuous or analog
quantities. Quantum gate operations are represented math-
ematically by unitary matrices.

The question then arises: How should faults in quantum
circuits be represented? In view of the large number of phys-
ical implementation technologies now under consideration,
good fault models should be largely technology-independent
and computationally tractable. Previously suggested models
include unitary error matrices [6] and various physically mo-
tivated digital and analog models [7], most of which are sub-
stantially less tractable and scalable than the stuck-at model.

We can analyze quantum faults by making a few, very
general physical observations:

• Gate operations are pulse-like, localized and micro-
scopic in scale.

• Errors are caused by faults affecting the length, energy,
or direction (spatial alignment) of the pulses.

Dependence on short-range local interactions among qubits
tends to limit gate size, sok-CNOTs may be restricted to
small values ofk, such ask = 0, 1 and 2. Pulse energy is
proportional to frequency in the quantum domain, and cur-
rent flow squared in the classical domain. Experience with a
prototype quantum processor based on NMR (nuclear mag-
netic resonance) technology suggests that the specification
and implementation of the gate operations, in this case, hun-
dreds of RF pulses of precise length and frequency, was a
major design challenge requiring extensive computer simu-
lation as well as physical trial-and-error [8]. Table 1 lists
some fault types suggested by the foregoing observations.
HereGk denotes ak-(qu)bit gate operation, andIk is the
k-(qu)bit identity operation or “no-op”. While fault models
of this kind are necessarily speculative, they are technology-
independent in that they capture common features of known
technologies. Moreover, they can readily be augmented with
temporal and probabilistic attributes to capture sequential
and nondeterministic effects, if desired.

1

1

0 0 0 0 0

1

0

1 1 11

1

10 1

0 0 0
1 1 1

1

0

0

1

1

1 0

1

0
11

0

1
11

1
1

0

00

1

1 1 1 1 1

1 1 1 1 1

1

0

1 1

1

11

1

1

1

1

1

1

111

11
00011

1

1

0

1

1 1

0 1 1 1

11

1 00 0

1

1

Figure 2: Two tests that detect all MGFs inhwb4

1

1

0

1 1

1

1 0

1

0

0

1 1

0

1 1

(b)(a)

Figure 3: Single vs. multiple MGFs

Of particular interest, is themissing-gate fault(MGF)
model, defined as the complete removal of a gate operation,
or equivalently, replacement of the gate by a set of wires.
This implies that ak-(qu)bit gate’s matrixGk is replaced by
the corresponding identity matrixIk. For example, an MGF
affecting a CNOT causes the following functional change:







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






→







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






(3)

Note that ann-wire system implies a2n-dimensional vec-
tor space. Hence, the CNOT matrix in (3) transforms 4-
dimensional (column) vectors of the form[a00 a01 a10 a11]

T

to [a00 a01 a11 a10]
T . We will show in Section 2 that the

other fault models defined in Table 1 are covered by the MGF
model, so we will focus entirely on the latter.

The remainder of the paper is organized as follows. Sec-
tion 2 examines the basic testing properties of MGFs ink-
CNOT circuits. Bounds on the size of complete MGF test
sets are considered in Section 3, while Section 4 describes
a low-overhead DFT method to achieve the lower bound of
one test vector. Section 5 presents simulation experimentsto
determine optimal or near-optimal test sets and DFT config-
urations for benchmark circuits.

2 Testability

We begin by examining the basic testing requirements and
properties of MGFs ink-CNOT circuits containingn > k
wires andN gates. We assume that at most one gate can be



Fault type Abstract model Possible corresponding physical defect
Missing gate Gk → Ik Short, missing, misaligned or mistuned gate pulses
Repeated gate Gk → Gk ×Gk Long or duplicated gate pulses
Reduced gate Gk → Gk−1 Partially misaligned or mistuned gate pulses

Table 1: Some possible fault types in quantum-style circuits

faulty at a time, and that faulty signals are detected (mea-
sured) only at the circuit’s primary (rightmost) outputs. We
make no distinction between different types of input/output
lines such as non-functional “garbage” lines [1]. Unless oth-
erwise stated, a test for ak-CNOT will be assumed to have
the structurec1c2 . . . ckt with thet-node value on the right.

It follows immediately from the definition (1) of ak-
CNOT that input patternP produces the identical output pat-
tern P in all but the two cases whenc1c2 . . . ck = 11 . . . 1,
which perform the non-identity mapping

11 . . . 1t 7→ 11 . . . 1t′

Hence, to distinguish ak-CNOT from ak-wire identity func-
tion requires application of an input pattern of the form
111. . . 10 or 111. . . 11. To test a circuit for MGFs, it is neces-
sary and sufficient to apply one pattern of the form 111. . . 1t
to every gate. Note that the reversibility property ensuresthat
a signal change (error) occurring at any node must propagate
to the circuit’s primary outputs. Reversibility also guaran-
tees that all MGFs can be detected, so no redundant faults
can occur. The number of tests required to detect all MGFs
is obviously between one andN , the number of gates. For
example,hwb4 (Figure 1) has two tests{1110, 1011}, which
detect all MGFs; see Figure 2. It is easily verified that every
gate in this circuit has one of its required MGF tests applied
to it.

It is instructive to compare the testing requirements of
MGFs with those of other fault models. Stuck-at faults re-
quire two patterns to be applied to every gate; it is neces-
sary and sufficient for detection of all such faults that 0 and
1 be applied at least once to every line. For example, a
k-CNOT can be tested for all stuck-at faults by applying a
complementary pair of tests such as 010. . . 10 and 101. . . 01
to it. However, unlike the MGF test 111. . . 1t, these stuck-at
tests do not exercise the gate’s key inversion operation. In
fact, 010. . . 10, 101. . . 01 is a “passive” test set, which could
equally well serve to test a set ofk + 1 wires for stuck-at
faults.

Consider the other fault models appearing in Table 1. Ev-
eryk-CNOT operationGk is its own inverse, i.e.,Gk×Gk =
Ik, so the missing and repeated gate faults are essentially
equivalent. In the case of the reduced gate faultGk → Gk−1,
one c-node, say the topmost one, changes to a wire, so that
(1) becomes

c1, c2, . . . , ck, t 7→ c1, c2, . . . , ck, (c2 · c3 · · · ck) ⊕ t

Although an MGF test for the original gateGk is not always
a test for the reduced gateGk−1, it is worth noting thatGk−1

BB BB B B B B1 2 3 4 5 6 7 8

Figure 4: Circuit requiring a linear number of tests

dominatesGk in the usual testing sense [3]. Hence for many
test generation purposes, the MGF model covers the other
models of Table 1, as asserted earlier.

Dominance with respect to MGFs can be helpful during
test generation. Another useful property is independence,
where two gates are said to be independent if they cannot
be tested simultaneously. To illustrate, consider again the
circuit hwb4 in Figures 1 and 2 with the gates labeled 1
through 17 from left to right. Gate 6 is clearly dominated
by its neighbors, gates 5 and 7, since the c-nodes of gate 6
contain those of the other two gates. On the other hand, gates
6 and 9 are independent because an MGF test for both would
force gate 8, which lies between them, to invert the value of
wire d (lowermost in the figure), producing complementary
values on thed control nodes of gates 6 and 9. Hence these
gates have no test in common. Gates 6 and 9 are indepen-
dent implying that at least two tests are required byhwb4.
Consequently, the test set{1110, 1011} shown in Figure 2 is
optimal in size.

In [4], it is proven that a test set that detects all single
stuck-at faults in ak-CNOT circuit also detects all multi-
ple stuck-at faults. The example in Figure 3 demonstrates
that this property does not hold for MGFs. The test vector
110 (Figure 3(a)) detects the two possible single MGFs in
this circuit, but if both gates are missing, the values at the
circuit’s outputs are identical to the fault-free case. On the
other hand, the vector 100 (Figure 3b)) detects the multiple
MGF (both gates missing), but only one of the single MGFs.

3 Test Set Size

An arbitrary test set consisting of at least2n−1 + 1 vectors
is shown in [4] to detect all the stuck-at faults in ak-CNOT
circuit with n wires. Using similar reasoning, any test set of
size2n − 2n−kmax + 1 can be proven to detect all the MGF
faults, wherekmax is the maximum number of control nodes
of any CNOT gate in the circuit. Consider, for instance, a
k-CNOT gate, withk ≤ kmax. The MGF for this gate is



detected iff at least one of its vectors applies 1 to allk of its
control inputs. Due to reversibility, different vectors atthe
circuit’s inputs will result in different values on then wires
preceding the gate under consideration. Consequently,2n−k

out of 2n possible vectors detect the fault. At least one of
these2n−k vectors must be contained in a set of cardinality
2n − 2n−kmax + 1 > 2n − 2n−km .

Patel et al. [4] also give two upper bounds for the size of
a stuck-at test set. In the MGF case, we have the trivial up-
per bound ofN test vectors for anN -gate circuit. For two
consecutive gates in the circuit there is always a test vector
that detects the MGFs in both these gates, namely, the vec-
tor that justifies 1 values on alln wires between the gates,
ensuring that 1 is applied to all control inputs of both gates.
Taking this into consideration, the upper bound on test set
size becomesdN/2e.

Many reversible benchmark circuits, including an adder
design of an arbitrary width [9], turn out to be testable by
just two vectors. This suggests the question of whether there
are test sets of constant or logarithmic size for an arbitrary
circuit. Next we construct a circuit that requires a number of
tests that is linear in its number of gates, suggesting that the
above upper bound is tight.

Let l be an arbitrary number greater than 1. The circuit
in question hasn = dlog

2
le + 1 wires andl (n− 1)-CNOT

gatesB1 throughBl, with the target nodes on the lowermost
wire, andl− 1 inverters (0-CNOT gates) placed between the
gatesBi. Figure 4 shows the circuit forl = 8. In general,
an inverter is placed on the first (uppermost) wire after every
secondBi starting withB1; it is placed on wire 2 after every
fourthBi, starting withB2; on wire 3 after every eighthBi,
starting withB4 and, in general, on wirej on every2j thBi

starting withB2j−1 .
The circuit constructed in this way requiresl tests, be-

cause allBi’s arepairwise independent, meaning that no test
vector can detect the MGFs for bothBi andBj simultane-
ously,i 6= j. This is because to detect the MGF wrtBi (Bj),
the uppermostn − 1 wires precedingBi (Bj) must assume
the value 1. However, it can be seen from the construction
that the number of inverters between any two ofBi’s is odd
for at least one wire. Consequently, the all-1 vector cannot
be justified for more than one gate simultaneously. Overall,
the circuit hasN = 2l − 1 gates and requiresl = dN/2e
tests, which is exactly the upper bound derived above. So,
this upper bound is sharp for general reversible circuits.

While the lower bound for the number of tests required
to detect all stuck-at faults in ak-CNOT circuit is two, there
are circuits that can be tested for all MGFs with only one test
vector. In the next section, we show a way to transform an
arbitrary circuit into such a circuit.

4 Design for Testability

Next we demonstrate how, by adding one wire and several
1-CNOT gates, an arbitrary circuit can be made testable for
all MGFs with a single vector. The method starts with any
vector applied to the original circuit, and systematicallycon-
structs DFT logic which enables this test vector to detect all

MGFs. By conditionally inverting the values at gates that
correspond to undetected faults, all detection conditionscan
be met simultaneously.

Figure 5 shows the circuithwb4made testable for the pat-
tern 1011. The extra wire is denotedDFT . When 0 is ap-
plied to theDFT input, the circuit’s function is unchanged
(normal operation mode). When 1 is applied toDFT , some
of the circuit’s signals are inverted such that all the control
inputs of all the gates are set to 1 (test mode). Consider the
third gate from the left in the original circuit. Simulationof
the vector 1011 (which is shown in the lower part of Figure
2) results in a 0 being applied to its control input, thus violat-
ing the detection condition for the corresponding MGF. In-
serting a 1-CNOT gate inverts this value (while in test mode)
and ensures the testability of the MGF corresponding to this
gate; the same holds for four subsequent gates. However,
doing so leads to a violation of the detection condition for
the 3-CNOT gate that is eighth from the left in the origi-
nal circuit, requiring insertion of a 1-CNOT gate before that
gate. This process continues until the outputs of the circuit
are reached.

For an arbitrary circuit, an arbitrary vector is simulated
and a 1-CNOT gate is added before the first control node
from the left with a 0 value. Then the simulation is contin-
ued starting from the modified location; the leftmost control
input with 0 value is identified, and another 1-CNOT gate is
inserted. This is iterated until all the control nodes of allthe
gates have 1 values applied to them. Note that inserting the
1-CNOT gates may have impact on other gates in the circuit
as well; simulatinghwb4 once and inserting the 1-CNOT
gates at all control inputs with logic-0 values would not re-
sult in a correct solution. The values that differ from those
in the circuit without DFT logic are encircled in Figure 5.
Note that the DFT gates themselves have 1’s on their control
inputs, hence all MGFs associated by them are detected.

While the foregoing method works with any test vector,
it can be used to obtain a (unique) test vector that requires
the minimum number of extra 1-CNOT gates, and so is op-
timal with respect to DFT. This vector can be determined as
follows. The value applied to a wire is 1 when the number
of target inputs to the left of the leftmost control input on
that wire is zero or odd, and is 1 otherwise. Note that since
all the control inputs assume the 1 value, all the target nodes
invert the signals applied to them. For instance, 1011 is the
optimal vector forhwb4. If the vector were, say, 1010, then
a 1-CNOT gate would be required to ensure the detection
of the MGF corresponding to the leftmost gate. The solu-
tion for the rest of the circuit would remain the same, so the
insertion of the additional gate would have no benefit. The
same argument holds for all other wires, so 1011 (or, for an
arbitrary circuit, the vector calculated as outlined above) is
optimal.

5 Experimental Results

We have implemented fault simulation, automatic test pat-
tern generation (ATPG) and DFT synthesis for missing gate
faults. Table 2 summarizes the results obtained for the



01

10

1

1

1

DFT

0

1

0

1

1

1

1

1

0

1

1 1

1

1

0

1
1

0

1

0

1 1

1

10 1

1

1

01

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

0

1

1

1

1

Figure 5: DFT logic forhwb4 and vector 1011

benchmark circuits given in [5], and a few reversible adders
from [9]. The first three columns of the table give the cir-
cuit’s name, number of gatesN (which under the MGF
model is also the number of faults) and number of wiresn.

We applied 1,000 random patterns to each circuit. 100%
of faults are detected for all circuits (recall that MGFs can-
not be redundant). The column “Vecs” contains the index of
the last vector that detect a fault, and in the column “Req”,
the number of vectors that actually detect new faults is given.
For instance, if the first vector detects some faults, the sec-
ond vector detects no faults not detected by the first vector,
and the third vector detects all the remaining faults, then the
value of “Vecs” would be 3 and the value of “Req” would be
2.

Generally speaking, the gap between these two numbers
is quite large for most circuits. This suggest that, similarly
to classical circuits and stuck-at faults, some test patterns are
effective in detecting large numbers of faults, and others are
not. Consequently, deterministic ATPG can be expected to
reduce test set size significantly. Given that the circuits are
rather small, we were able to deploy ATPG algorithms that
are more powerful than the standard methods for stuck-at
faults that target one fault at a time.

The first approach we used is a greedy heuristic. It fault-
simulates all2n possible test vectors and picks one that de-
tects most faults. Then it determines for the remaining vec-
tors how many yet-undetected faults they detect, and the best
vector is selected. This process is iterated until no undetected
faults are left. The second approach is an exact branch-and-
bound algorithm. The sizes of test sets calculated by the
greedy and the branch-and-bound algorithms are given in the
columns “Gr.” and “B&B”, respectively. While the run times
of the greedy algorithm were reasonable for all the tested cir-
cuits, this was not the case for the exact algorithm. For a few
circuits, we could only prove that there is no complete test
set consisting ofV or fewer vectors; the highest known value
of V is quoted in the table.

It can be seen that deterministic ATPG indeed leads to
much more compact test sets. On the other hand, the quality
of the results from the greedy algorithm is quite high: for
most circuits, it determined optimal solutions. Overall, most
benchmark circuits can be tested by a few vectors if deter-
ministic ATPG is performed. Applying random vectors also
results in detection of all faults, but the number of needed
tests is much higher.

We also implemented the DFT synthesis procedure from
Section 4 that makes a circuit testable by one vector. The

number of additional 1-CNOT gates needed when the op-
timal vector is used is given in the penultimate column
“Gates” of Table 2. (The algorithm to compute the opti-
mal vector was introduced in Section 4). The last column
of the table marked “%QC”, is the overhead imposed by the
DFT logic in terms of thequantum costmetric defined for
k-CNOTs in [10, 11]. The quantum cost of a 0-CNOT (an
inverter) and a 1-CNOT is 1; it is 5 for a 2-CNOT; 13 for a
3-CNOT; 29 for a 4-CNOT; 61 for a 5-CNOT; 125 for a 6-
CNOT; and 253 for a 7-CNOT, which is the largest gate that
shows up in the benchmark circuits [5].

The fact that 1-CNOT gates are relatively inexpensive is
advantageous for our DFT design. For instance, the sheer
number of gates required for the circuithwb7tc is quite
high (more than 60% of gates in the circuit), but the actual
overhead is only 3.34%. Overall, the overhead ranges be-
tween 0% (for those circuits that can be tested by one test
vector without modification) and 16.67%. Such an overhead
appears to us to be reasonable. The results for the adders
from [9] are shown in Table 3. As in [9],addi stands for an
adder that adds two(i + 1)-bit numbers. It hasi + 2 aux-
iliary wires that are necessary in order to make the circuit
reversible, making a total of3i + 4 wires. It can be shown
that these adders can be completely tested by two vectors for
an arbitrary value ofi. Hence, we omit deterministic ATPG
results for the adder case. Similarly to the other benchmark
circuits, random pattern simulation fails to produce test sets
of size close to the optimum (which is 2). The DFT overhead
is around 8% for the adders.

6 Conclusions

We have examined the testing requirements of reversible cir-
cuits composed ofk-CNOT gates with respect to a new fault
model, the MGF model. MGFs are motivated by certain
technologies used in quantum computing. We have shown
that MGFs are highly testable with relatively few test vec-
tors. The number of tests can be reduced to one with a low-
cost DFT method. In the context of reversible circuits, MGFs
are comparable to stuck-at faults in computational complex-
ity. MGFs appear to be less useful for testing irreversible cir-
cuits where a gate may have fewer outputs than inputs, and
so cannot be replaced by a set of wires. However, MGFs may
have applications to design verification of both reversibleand
irreversible circuits, since omitting a needed gate is a notin-
frequent design error [12].



Circuit N n Random ATPG DFT cost
Vecs Req Gr. B&B Gates %QC

2of5d1 30 6 30 8 4 4 10 6.33
2of5d2 26 7 12 6 2 2 5 12.50
3 17tc 12 3 6 3 2 2 1 7.14
4 49tc1 24 4 3 3 3 3 7 11.67
5mod5tc 29 6 55 6 1 1 0 0.00
6symd2 40 10 16 5 2 2 10 13.89
9symd2 52 12 18 8 3 3 18 16.67
ham15tc1 162 15 188 17 7 > 2 47 1.84
ham3tc 11 3 2 2 2 2 1 11.11
ham7tc 38 7 12 6 4 4 5 5.95
hwb4tc 25 4 6 4 2 2 7 10.77
hwb5tc 66 5 23 12 5 5 38 10.80
hwb6tc 138 6 59 19 9 8 83 5.42
hwb7tc 305 7 115 32 15 > 4 190 3.34
mod5adders 33 6 18 5 3 3 8 6.40
mod5d1 18 5 5 3 1 1 0 0.00
mod5d2 19 5 4 3 1 1 0 0.00
rd32 12 4 2 2 2 2 1 8.33
rd53d1 26 7 9 5 2 2 3 2.14
rd53d2 28 8 8 6 2 2 5 11.36
rd53rcmg 44 7 83 8 4 3 19 7.60
rd73d2 40 10 16 5 3 3 11 14.47
rd84d1 58 15 8 5 3 3 14 12.50
xor5d1 14 5 5 3 1 1 0 0.00
add1 28 7 13 5 2 2 3 7.89
add2 42 10 7 5 2 2 5 8.06
add3 56 13 12 6 2 2 7 8.14
add4 70 16 7 7 2 2 9 8.18
add5 84 19 8 6 2 2 11 8.21

Table 2: Results for fault simulation, ATPG and DFT

Acknowledgment

John P. Hayes contributed to this work while visiting the Uni-
versity of Freiburg under an award from the Alexander von
Humboldt Foundation.

7 References
[1] M.A. Nielsen and I.L. Chuang.Quantum Computation and

Quantum Information. Cambridge Univ. Press, 2000.
[2] C. Bennett. Logical reversibility of computation.IBM J. Res.

and Develop., 17:525–532, 1973.
[3] M. Abramovici, M.A. Breuer, and A.D. Friedman.Digi-

tal Systems Testing and Testable Design. Computer Science
Press, 1990.

[4] K.N. Patel, J.P. Hayes, and I.L. Markov. Fault testing for re-
versible circuits. InVLSI Test Symp., pages 410–416, 2003.

[5] D. Maslov, G. Dueck, and N. Scott.Reversible Logic Synthe-
sis Benchmarks Page. http://www.cs.uvic.ca/˜dmaslov/, 2004.

[6] E. Knill, R. Laflamme, A. Ashikhmin, H. Barnum, L. Viola,
and W. H. Zurek. Introduction to quantum error correction.
Los Alamos Science, 27:188–221, 2002.

Circuit N n Random DFT cost
Vecs Req Gates %QC

add1 28 7 13 5 3 7.89
add2 42 10 7 5 5 8.06
add3 56 13 12 6 7 8.14
add4 70 16 7 7 9 8.18
add5 84 19 8 6 11 8.21
add6 98 22 13 7 13 8.23
add7 112 25 11 7 15 8.24
add8 126 28 9 8 17 8.25
add9 140 31 8 7 19 8.26
add10 154 34 7 7 21 8.27
add11 168 37 19 9 23 8.27
add12 182 40 18 8 25 8.28
add13 196 43 16 10 27 8.28
add14 210 46 8 8 29 8.29
add15 224 49 17 11 31 8.29
add16 238 52 17 10 33 8.29
add17 252 55 16 10 35 8.29
add18 266 58 14 9 37 8.30
add19 280 61 12 12 39 8.30
add20 294 64 28 12 41 8.30
add21 308 67 12 12 43 8.30
add22 322 70 16 11 45 8.30
add23 336 73 14 12 47 8.30
add24 350 76 14 13 49 8.31
add25 364 79 20 14 51 8.31
add26 378 82 20 12 53 8.31
add27 392 85 17 12 55 8.31
add28 406 88 26 14 57 8.31
add29 420 91 14 12 59 8.31
add30 434 94 11 11 61 8.31
add31 448 97 13 12 63 8.31
add32 462 100 25 16 65 8.31
add48 686 148 19 15 97 8.32
add64 910 196 13 13 129 8.32

Table 3: Results for fault simulation and DFT, adder designs
from [9]

[7] K.M. Obenland and A.M. Despain. Impact of errors on a
quantum computer architecture. Technical report, Univ. of
Southern California, 1996.

[8] L. Steffen, L.M.K. Vandersypen, and I.L. Chuang. Toward
quantum computation: a five-qubit quantum processor.IEEE
Micro, 21(2):24–34, 3 2001.

[9] V. Vedral, A. Barenco, and A. Ekert. Quantum networks
for elementary arithmetic operations.Physical Review A,
54(147), 1996.

[10] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo,
N. Margolus, P. Shor, T. Sleator, J.A.1 Smolin, and H. Wein-
furter. Elementary gates for quantum computation.Physical
Review A, 52(5):3457–3467, 11 1995.

[11] D. Maslov and G. Dueck. Improved quantum cost forn-bit
Toffoli gates.Electronic Letters, 39(25):1790–1791, 12 2003.

[12] H. Al-Asaad and J.P. Hayes. Logic design validation via sim-
ulation and automatic test pattern generation.Jour. of Elec-
tronic Testing: Theory and Applications, 16:575–589, 2000.


