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Abstract:   
This paper proposes tests for stochastic dominance in mobility based on the empirical 
likelihood ratio. Two views of mobility are considered, either based on measures of 
absolute mobility or on transition matrices. First-order and second-order dominance 
conditions in mobility are first derived, followed by the derivation of statistical inferences 
techniques to test a null hypothesis of non dominance against an alternative of mobility 
dominance. An empirical analysis, based on the US Panel Study of Income Dynamics 
(PSID), is performed by comparing four income mobility periods ranging from 1970 to 
1990. 
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1 Introduction
Two sources of income mobility are usually considered in the literature. The first

arises from a temporal reallocation of incomes across individuals, and the second comes
from changes in total income (Fields and Ok 1996). Ever since Prais (1955), a variety
of mobility measures have been proposed to capture the effect of these on the income
distribution. These include relatively elementary measures based on statistics such as the
coefficient of correlation between individuals at different dates (see for instance Atkinson,
Bourguignon, and Morrisson 1992, Peters 1992, Bjorklund and Jantti 1997, Chadwick
and Solon 2002, or Corak 2006) as well as more elaborate measures based on transition
matrices and other measures of dynamic processes.

Some of the studies have adopted a relative concept, treating mobility as a re-ranking
in which individuals change position (Shorrocks 1978a, Bartholomew 1996). Others have
treated mobility as an absolute concept in which any change in individuals’ incomes
from the initial situation is equivalent to greater mobility (Fields and Ok 1996; also see
D’Agostino and Dardanoni 2005 for a discussion). A further group of studies are based on
specific interpretations of mobility, notably reflecting its implications for social welfare.
Shorrocks (1978b) and Maasoumi and Zandvakili (1986), for instance, measure mobility
as the ratio of income inequality averaged over several years relative to mean inequal-
ity in each year; see also Chakravarty, Dutta, and Weymark (1985), Atkinson (1983),
Markandya (1984), Conlisk (1989) and Dardanoni (1993).

Though a number of studies have addressed the measurement of mobility, relatively
few have examined how and whether normatively robust comparisons of mobility can
be made across countries or time periods — see Atkinson (1983), Conlisk (1989), Dar-
danoni (1993), Mitra and Ok (1998), Benabou and Ok (2001), and Formby, Smith, and
Zheng (2003) for some of the more important exceptions. In addition, aside from Fields,
Leary, and Ok (2002) who explicitly integrate the cumulative density function to derive
conditions for stochastic dominance, and Formby, Smith, and Zheng (2004) who perform
comparisons between two vectors of mobility measures (using composite hypotheses),
most studies tend to focus on comparing estimates of mobility indices without imple-
menting explicit statistical testing procedures.

This paper tries to fill some of this gap by demonstrating the use of empirical likeli-
hood ratio procedures to test for the existence of stochastic dominance in mobility. Two
types of mobility measures are retained: absolute measures and those based on transition
matrices. These measures have the advantage of being relatively easy to reconcile with
tools such as the cumulative density function, a feature which is convenient for the ap-
plication of the empirical likelihood methods recently proposed by Davidson and Duclos
(2006).

The remainder of this paper is organized as follows. Section 2 presents mobility mea-
sures and a theoretical framework for their partial ranking. Here we expand on several

2



examples of the two types of measures retained as well as on conditions for stochastic
dominance in mobility. Section 3 describes methods of statistical inference for ranking
mobility based on empirical likelihood ratios and resampling procedures. Section 4 pro-
vides an illustration of the methods to robust comparisons of mobility across time in the
United States. The final section concludes.

2 Mobility measures and stochastic dominance
The concept of income mobility captures the extent to which the income distribution

changes over time across a given set of individuals. Let an initial distribution of income
be denoted by x = (x1, x2, . . . , xi, . . . , xn) ∈ Rn

+ where xi is the income of the i-th
individual in a population of size n. Let yi be the income of individual i at a later date
(or the income of a descendent of i if we were to think of intergenerational mobility),
such that a new income distribution y = (y1, y2, . . . , yi, . . . , yn) ∈ Rn

+ is generated by
the transformation process (x → y).

A mobility measure can be defined as a continuous function M : Rn
+ × Rn

+ → R. If
two other distributions x′ and y′ are characterized by the transformation process (x′ →
y′), we say that process (x → y) is more mobile than the process (x′ → y′) if M(x, y) ≥
M(x′, y′).

Several such measures of mobility exist. This papers considers two classes of them.
They reflect two sorts of mobility movements, to wit, structural (or growth) mobility and
exchange (or lateral) mobility. Structural mobility increases with a general fall or rise
in incomes, while exchange mobility captures changes in positions between individuals.1

Measures of absolute mobility fall into the first class, while transition matrices are part of
the second class.

2.1 Measures of absolute mobility
Fields and Ok (1996) propose measuring absolute income mobility using individual-
specific temporal distances between incomes. A generic measure they propose is defined
as:

Md (x, y) =

(
n∑

i=1

|xi − yi|α
)1/α

∀ x, y ∈ Rn
+, and α > 0. (1)

More generally, let ∆i = |xi − yi|, with i = 1, . . . , n. ∆i helps assess the contribu-
tion of individual i to total mobility. Consider a class of functions Md = Md(∆) =

1See Fields and Ok (1999) for a more detailed discussion.
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MD(∆1, . . . ,∆i, . . . ,∆n). We can draw on Willig (1981), Shorrocks (1983), and Fos-
ter and Shorrocks (1988) in the context of welfare measurement to establish conditions
for dominance in such types of mobility measures. First, analogous to the property of
monotonicity (let us refer to it as HA) of welfare functions (conferred by the Pareto
principle), we can postulate that a rise in ∆i must, ceteris paribus, entail an increase
in mobility. Second, we can postulate a symmetry assumption (HB) that imposes that
Md(∆) = Md(Γ∆), where Γ is a permutation matrix. This says that a re-ranking of the
mobility contributions of individuals leaves total mobility unchanged.

Let M+
d represent the class of mobility functions that satisfy assumptions HA and

HB. Let ∆ and ∆′ be two profiles of individual mobility contributions with cumulative
distribution functions (cdf) given by F (z) and G(z), respectively. Let QF (p) and QG(p)
be the corresponding quantile functions, given by the inverse of the cdf’s. By analogy with
the welfare dominance conditions shown inter alia in Duclos and Araar (2006), Theorem
1 shows conditions for first-order dominance in mobility.

Theorem 1 (First-order mobility dominance) The following conditions are equivalent:
(i) Md(∆) ≥ Md(∆

′) ∀ Md ∈ M+
d ,

(ii) F (z) ≤ G(z) ∀ z ∈ [0,+∞[,
(iii) QF (p) ≥ QG(p) ∀ p ∈ [0, 1].

Second-order dominance conditions are obtained when an assumption HC of Schur-
concavity of the function Md is added. Let M++

d then be the class of mobility functions
that are consistent with assumptions HA, HB and HC . Define F 2(z) and G2(z) as

F 2(z) =

∫ z

0
F (t)dt and G2(z) =

∫ z

0
G(t)dt. (2)

Also define the generalized Lorenz curves GLF (p) and GLG(p) as

GLF (p) =

∫ p

0
QF (q)dq and GLG(p) =

∫ p

0
QG(q)dq, (3)

with p ∈ [0, 1]. Theorem 2 shows conditions for second-order dominance in mobility.

Theorem 2 The following conditions are equivalent:
(i) Md(∆) ≥ Md(∆

′) ∀ Md ∈ M++
d ,

(ii) F 2(Z) ≤ G2(Z) ∀ Z ∈ [0,+∞[,
(iii) GLF (p) ≥ GLG(p) ∀ p ∈ [0, 1].

For the class of mobility functions proposed by Fields and Ok (1996), the Schur-
concavity assumption is verifiable for α ≤ 1. Mitra and Ok (1998), for their part, focus
on a class of Schur-convex functions by setting α ≥ 1. They develop an approach to
partial rankings in which (x → y) is more mobile than (x′ → y′) if:
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n∑
i=1

∆α
i (x, y) ≥

n∑
i=1

∆α
i (x

′, y′) ∀ α ≥ 1. (4)

Mitra and Ok (1998) then derive another, more easily testable, condition for a partial
ranking. Arranging ∆ and ∆′ in descending order j, (x → y) is more mobile than (x′ →
y′) if and only if:

s∑
j=1

∆j(x, y) ≥
s∑

j=1

∆j(x
′, y′) ∀ s = 1, . . . , n. (5)

This is an alternative approach to that of the generalized Lorenz dominance one in Theo-
rem 2, where the ∆i’s are arranged in increasing order. Here, we weigh the most mobile
individuals more heavily, which is compatible with the Schur-convexity assumption im-
plied by the choice of α ≥ 1. If we let α ≤ 1, we have Schur-concavity and an “egalitarian
mobility transfer” is desirable. In this case, the usual generalized Lorenz approach is pre-
ferred.

2.2 Measures based on transition matrices
2.2.1 The transition matrix

For simplicity, let income dynamics be described by a discrete Markov process with η
states. Let P = [Pkl] be a nonsingular (η × η) transition matrix (i.e. P d is strictly positive
for sufficiently large values of the integer d) such that there exists a vector of steady-state
probabilities π that uniquely solves the equation πτ = πτP (τ designates the transpose).
The element Pkl represents the probability that an individual initially in state k will end
up in state l.

Let us return to the process (x → y), where x = (x1, x2, . . . , xi, . . . , xn) and y =
(y1, y2, . . . , yi, . . . , yn). Assume that xi and yi are bounded above by the strictly positive
values x and y, respectively. Let Ωk be one of the η partitions of the interval [0, x],
representing a class of rank k, and Γl be one of the η partitions of the interval [0, y],
representing a class of rank l. Define pi as the probability associated with each pair

(xi, yi), such that
n∑

i=1
pi = 1. The expression for the conditional probability Pkl is given

by:

Pkl =
Pr ([xi ∈ Ωk] ∩ [yi ∈ Γl])

Pr (xi ∈ Ωk)
=

n∑
i=1

piI (xi ∈ Ωk, yi ∈ Γl)

n∑
i=1

piI (xi ∈ Ωk)

(6)
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where Pr stands for probability and I(·) is an indicator function taking the value one
when the argument is true and zero otherwise. We also observe the following marginal
probabilities:

πk =
n∑

i=1

piI (xi ∈ Ωk) and πl =
n∑

i=1

piI (yi ∈ Γl) . (7)

The vectors of these marginal probabilities are represented respectively by π (k) and
π (l), with π (k) = π (l) = π at the steady state.

2.2.2 Mobility and social welfare

The dominance conditions derived by Atkinson (1983) allow mobility to be ranked for a
class of welfare functions satisfying a certain set of properties. Let us consider the case of
two periods—specifically, a process (x → y). Let F (x, y) be the bivariate cdf and F (x)
and F (y) be the marginal cdf. A social welfare function defined over the two time periods
can be defined as

W =

∫ x

0

∫ y

0
U (x, y) dF (x, y) dxdy. (8)

Let G(x, y) represent the bivariate cdf of another process (x′ → y′). G(x) and G(y) are
the marginal cdf, and assume for now that F (x) = G(x) and F (y) = G(y).

If a mobility process is described by the transition matrix P , we have:

πτ (l) = πτ (k)P or πl =

η∑
k=1

Pklπk ∀ l = 1, . . . , η, (9)

where π(k) and π(l) are two (η × 1) vectors. Let xk and yl be incomes of rank k and l
respectively. Expected welfare in (8) becomes:

W =

η∑
k=1

η∑
l=1

U
(
xk, yl

)
Pklπk. (10)

A distribution F stochastically dominates a distribution G if the expected utility level
F generates is at least as high as that for G for all utility functions in some class of U . A
first-order class of U is made of the U functions for which Ux > 0, Uy > 0 and Uxy ≤ 0.
Atkinson (1983) shows that, for identical marginal distributions [i.e. F (x) = G(x) and
F (y) = G(y)], the process (x → y) first-order dominates the process (x′ → y′) if and
only if:
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F (xk, yl) ≤ G(xk, yl) ∀ k, l = 1, . . . , η. (11)

It is also possible to derive a second-order dominance condition that is weaker than
the above first-order condition. A distribution F second-order dominates a distribution G
if the expected utility level it generates is at least as high for all utility functions U such
that Ux > 0, Uy > 0, Uxy ≤ 0, Uxy < 0, Uxxy, Uxyy ≥ 0 and Uxxyy ≤ 0. This is
equivalent to

F 2
(
xk, yl

)
≤ G2

(
xk, yl

)
∀ k, l = 1, . . . , η (12)

where

F 2 (x, y) =

∫ x

0

∫ y

0
F (s, t) dtds and G2 (x, y) =

∫ x

0

∫ y

0
G (s, t) dtds. (13)

A difference between π (k) and π (l) would allow incorporation of structural (or
growth) mobility. Normalizing incomes such as to equalize the marginal distributions,
i.e. π (k) = π (l) = π, we can isolate pure mobility. This is what is done in the illustra-
tion below — see also Dardanoni (1993) Formby, Smith, and Zheng (2003) for alternative
approaches to this exercise.

3 Methods of statistical inference
The tests for dominance in mobility derived in this section extend the use of the empirical
likelihood ratio statistics developed in Davidson and Duclos (2006). They are based on an
intersection-union approach that makes it possible to test directly for strict dominance of
one distribution over another. For measures of absolute mobility, the dominance condition
pertains to a univariate distribution, and the Davidson and Duclos method is thus directly
applicable. A comparison of measures based on transition matrices requires an extension
to the two-dimensional case; this has been suggested and partly investigated by Batana
and Duclos (2008).

3.1 Inference with measures of absolute mobility
Let two distributions of individual mobility ∆ and ∆′ derive from the process (x → y)
and (x′ → y′). Also let the distributions of ∆ and ∆′ be denoted by F (Z) and G(Z),
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respectively, with sample analogues (with sample sizes equal to NF and NG respectively)
given by

F̂ (Z) =
1

NF

NF∑
s=1

I (∆s ≤ Z) and Ĝ(Z) =
1

NG

NG∑
h=1

I
(
∆′

h ≤ Z
)
. (14)

The problem of maximizing the unconstrained empirical likelihood function (ELF) is
as follows:

max
pFs ,pGh

NF∑
s=1

log pFs +

NG∑
h=1

log pGh subject to
NF∑
s=1

pFs = 1,

NG∑
h=1

pGh = 1, (15)

where pFs and pGh represent respectively the probabilities of ∆s and ∆′
h occurring. The

solution to this problem yields pFs = 1
NF

and pGh = 1
NG

, so that the maximized value of
the unconstrained likelihood is:

ÊLFUC = −NF logNF −NG logNG. (16)

Strict dominance in mobility of G by F , i.e. stochastic dominance in mobility of
(x′ → y′) by (x → y), implies that G(Z) > F (Z) for all Z. This condition is violated
if there exists a point Z for which G(Z) ≤ F (Z). To test the null hypothesis of non-
dominance of G by F , the natural null to be tested is therefore

H0 : G(Z) ≤ F (Z) for at least one Z (17)

against the alternative hypothesis

H0 : G(Z) > F (Z) for all Z. (18)

The condition of dominance of ∆′ by ∆ in the samples is met when F̂ (Z) ≤ Ĝ(Z) ∀ Z.
When that condition holds, the ELF maximization problem (15) can then be recast to
impose a non-dominance constraint. This constraint is given by:

NG∑
h=1

pGh I
(
∆′

h ≤ Z
)
≤

NF∑
s=1

pFs I (∆s ≤ Z) . (19)

for some Z. Maximization of (15) subject to (19) gives the constrained empirical likeli-
hood ÊLFC(Z), and leads to the following expressions:
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pGh =
I(∆′

h ≤ Z)

θ
+

[1− I(∆′
h ≤ Z)]

ϕ
, (20)

pFs =
I(∆s ≤ Z)

N − θ
+

[1− I(∆s ≤ Z)]

N − ϕ
, (21)

where:

θ =
N ×NG(Z)

NG(Z) +NF (Z)
and ϕ =

N ×MG(Z)

MG(Z) +MF (Z)
,

NG(Z) =

NG∑
h=1

I
(
∆′

h ≤ Z
)

and NF (Z) =

NF∑
s=1

I (∆s ≤ Z) ,

MG(Z) = NG −NG(Z), MF (Z) = NF −NF (Z), and N = NG +NF .

The statistic LR(Z) is given by the difference between the value of the unconstrained
maximum likelihood (ÊLFUC) and the value of the maximum likelihood (ÊLFC(Z))
constrained at Z. For values of Z for which we have in the samples that Ĝ(Z) ≤ F̂ (Z),
the constraint is not binding and, consequently, LR(Z) is nil. When Ĝ(Z) > F̂ (Z) for
some Z, the constraint becomes binding and (ÊLFC) is then less than (ÊLFUC), so that
LR(Z) assumes a strictly positive real value:

LR (Z) =

{
0 if Ĝ(Z) ≤ F̂ (Z)
> 0 otherwise

}
. (22)

LR(Z) is then given by:

LR (Z) = 2


N logN −NG logNG −NF logNF

+NG(Z) logNG(Z) +NF (Z) logNF (Z)
+MG(Z) logMG(Z) +MF (Z) logMF (Z)
− [NG(Z) +NF (Z)] log [NG(Z) +NF (Z)]
− [MG(Z) +MF (Z)] log [MG(Z) +MF (Z)]

 (23)

The final test statistic LR for testing non-dominance is obtained by minimizing LR(Z)
over all values of Z:

LR = min
Z

LR(Z) (24)
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One could use the methods of Davidson and Duclos (2006) to show that LR follows
asymptotically a χ2 distribution under the null of non-dominance. Finite sample refine-
ments can, however, be profitably obtained by bootstrapping the value of LR. This is
done by computing the statistics LRb(Z) and LRb for each of b = 1, ..., B (B is set
to 399 in the illustration below) bootstrap samples of both distributions simultaneously.
These bootstrap samples are generated with the probabilities given by (29), where

Z = argmin
Z

LR(Z). (25)

The p-value of the bootstrap test is then given by the proportion of the statistics LRb that
are greater than LR.

To test for second-order dominance, we consider condition (iii) from Theorem 2.
This is dominance in terms of generalized Lorenz curves. Unlike in the case of first-order
dominance, we here reject dominance of G by F if GLF (p) ≤ GLG(p) for some p. The
constraint (19) becomes:

NF∑
s=1

pFs ∆sI
(
∆s ≤ ẐF (p)

)
=

NG∑
h=1

pGh∆
′
hI
(
∆′

h ≤ ẐG(p)
)
, (26)

where ẐF (p) and ẐG(p) correspond to sample quantiles at percentile p. The Lagrangian,
L, is given by

L =
∑
s

log pFs +
∑
h

log pGh + λF

(
1−

∑
s

pFs

)
+ λG

(
1−

∑
h

pGh

)

− µ

[∑
s

pFs ∆sIs

(
ẐF (p)

)
−
∑
h

pGh∆
′
hIh

(
ẐG(p)

)]
, (27)

where λF , λG and µ ∈ R are the Lagrange multipliers. These equations cannot be solved
analytically. However, starting from the first-order conditions, we can derive numerical
procedures to find a solution. The solutions use

λF + λG = NF +NG = N (28)

pGh =
1

N − λF − µ∆′
hIh

(
ẐG(p)

) and pFs =
1

λF + µ∆sIs

(
ẐF (p)

) . (29)

and solve for λ̂F and µ̂:

(λ̂F , µ̂) = argmin
λF ,µ∈R

−
∑
s

log
[
λF + µ∆sIs

(
ẐF (p)

)]
−
∑
h

log
[
N − λF − µ∆′

hIh

(
ẐG(p)

)]
. (30)
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Once estimated, λ̂F and µ̂ allow calculation of the probabilities and the likelihood ra-
tio for each pair (ẐF (p), ẐG(p)). However, ẐF (p) and ẐG(p) are endogenous since both
depend respectively on pFs and pGh . Thus, from some initial pair (ẐF (p)

0, ẐG(p)
0), the

estimated probabilities are used to compute a new pair (ẐF (p)
1, ẐG(p)

1). The solution to
problem (30) is then iterated and new probabilities are re-estimated by using the expres-
sions in (29). The process is stopped at the i-th iteration when the differences between
(ẐF (p)

i−1, ẐG(p)
i−1) and (ẐF (p)

i, ẐG(p)
i) become numerically insignificant. Both the

generalized Lorenz and the Mitra and Ok (1998) approaches are considered for such a test
in the illustration below.

3.2 Inference with transition matrices

Consider a transition matrix P = [Pkl]. Consider also the expression
K∑
k=1

L∑
l=1

πkPkl. If

we replace Pkl and πk by their expressions from equations (6) and (7), we obtain:

K∑
k=1

L∑
l=1

πkPkl =

K∑
k=1

L∑
l=1

n∑
i=1

piI (xi ∈ Ωk, yi ∈ Γl) ∀ K,L = 1, 2, . . . , η. (31)

Denote Ωk = [Xk−1, Xk] and Γl = [Yl−1, Yl], with Ω1 = [0, X1], Ωη = [Xη−1, x],
Γ1 = [0, Y1] , and Γη = [Yη−1, y]. We set each Ωk and Γl to contain the same sample pro-
portions. Xk and Yl (k, l = 1, . . . , η) are then the η quantiles retained for each dimension.
Equation (31) can be rewritten as:

K∑
k=1

L∑
l=1

πkPkl =

n∑
i=1

piI (xi ≤ Xk, yi ≤ Yl) ∀ k, l = 1, 2, . . . , η. (32)

Let two cumulative bivariate densities, F and G, describe the two distributions of
(x → y) and (x′ → y′) respectively, with Ωk = [Xk−1, Xk] and Γl = [Yl−1, Yl] being
associated to F and Ω′

k =
[
X ′

k−1, X
′
k

]
and Γ′

l =
[
Y ′
l−1, Y

′
l

]
being associated to G. We

distinguish between 2 cases, depending on how the transition matrix is calculated.
The first case corresponds to the situation in which we are only concerned with pure,

or exchange, mobility (see Atkinson 1983 and Dardanoni 1993). Here, we impose the
steady-state and pure mobility assumptions that F̂ (X̂k) = F̂ (Ŷk) = Ĝ(X̂ ′

k) = Ĝ(Ŷ ′
k) =

πk and k = 1, ..., η, where the X̂’s and Ŷ ’s are the sample quantiles and the F̂ and Ĝ
are the empirical (or sample) distributions of F and G. In this first case, those sample
quantiles are determined from the joint distributions of x and y in both F̂ and Ĝ.

The second case integrates growth, as suggested by Formby, Smith, and Zheng (2003).
Here, the growth that is considered is that observed in the dynamics of each population
separately. The normalization imposed here is that the two distributions F and G have the
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same initial quantiles in the x dimension. The values of these quantiles are then fixed and
used to assess the degree of mobility in the y dimension. Here therefore, the equality that
is imposed is that F̂ (X̂k) = Ĝ(X̂ ′

k), with X̂k = Ŷk and X̂ ′
k = Ŷ ′

k for k = 1, ..., η. For
simplicity, we focus below on the first case; the extension to the second case will also be
briefly mentioned.

According to the Atkinson (1983) and Dardanoni (1993) mobility dominance criteria,
the constraint that F does not dominate G in the samples implies, for at least one pair
(k, l), that

NG∑
j=1

pGj I
(
x′j ≤ X̂ ′

k, y
′
j ≤ Ŷ ′

l

)
≤

NF∑
i=1

pFi I
(
xi ≤ X̂k, yi ≤ Ŷl

)
. (33)

X̂ ′
k and Ŷ ′

l are the sample quantiles (generated by the empirical distribution Ĝ) that cor-
respond to the same percentiles as the sample quantiles X̂k and Ŷl for the empirical distri-
bution F̂ . The testing strategy follows a similar procedure to that of the previous section.
The maximization results yield:

pGj (k, l) =
I
(
x′j ≤ X̂ ′

k, y
′
i ≤ Ŷ ′

l

)
θ

+

[
1− I

(
x′j ≤ X̂ ′

k, y
′
i ≤ Ŷ ′

l

)]
ϕ

, (34)

pFi (k, l) =
I
(
xi ≤ X̂k, yi ≤ Ŷl

)
N − θ

+

[
1− I

(
xi ≤ X̂k, yi ≤ Ŷl

)]
N − ϕ

, (35)

with

θ =
N ×NG(k, l)

NG(k, l) +NF (k, l)
, ϕ =

N ×MG(k, l)

MG(k, l) +MF (k, l)
,

NG(k, l) =

NG∑
j=1

I
(
x′j ≤ X̂ ′

k, y
′
j ≤ Ŷ ′

l

)
, NF (k, l) =

NF∑
i=1

I
(
xi ≤ X̂k, yi ≤ Ŷl

)
,

MG(k, l) = NG −NG(k, l), MF (k, l) = NF −NF (k, l) and N = NG +NF .

The likelihood ratio is again first obtained by considering the difference between the
unconstrained and the constrained empirical likelihood function for some fixed (k, l).
This equals
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LR (k, l) = 2


N logN −NG logNG −NF logNF

+NG(k, l) logNG(k, l) +NF (k, l) logNF (k, l)
+MG(k, l) logMG(k, l) +MF (k, l) logMF (k, l)
− [NG(k, l) +NF (k, l)] log [NG(k, l) +NF (k, l)]
− [MG(k, l) +MF (k, l)] log [MG(k, l) +MF (k, l)]

 . (36)

As above, the pairs (X̂k, ŶL) and (X̂ ′
k, Ŷ

′
L) are endogenous, making it necessary to per-

form several iterations. For each iteration, the constraint that F̂ (X̂k) = F̂ (Ŷk) = Ĝ(X̂ ′
k) =

Ĝ(Ŷ ′
k) = πk for k = 1, ..., η is imposed.
The test statistic LR is given by minimizing LR(k, l) over all possible values of

(k, l). The bootstrap p-value is obtained as above, by computing bootstrap LR statistics
on samples generated under the probabilities given by (34) and (35) at the value of (k, l)
that minimizes LR(k, l) in the initial samples. For the case of growth mobility, the above
remains the same except that the constraints imposed on the empirical quantiles is now
that F̂ (X̂k) = Ĝ(X̂ ′

k), X̂k = Ŷk, and X̂ ′
k = Ŷ ′

k for k = 1, ..., η.
To test for second-order mobility dominance, we use the following useful expression

(see Atkinson and Bourguignon 1982) for F 2 (x, y):

F 2 (x, y) =

∫ x

0

∫ y

0
(x− s)(y − t)F (s, t) dtds. (37)

The non-dominance constraint (33) then becomes:

NG∑
j=1

pGj (X̂
′
k − x′j)(Ŷ

′
l − y′j)I

(
x′j ≤ X̂ ′

k, y
′
j ≤ Ŷ ′

l

)

≤
NF∑
i=1

pFi (X̂k − xi)(Ŷl − yi)I
(
xi ≤ X̂k, yi ≤ Ŷl

)
. (38)

The rest of the procedure is analogous to the first-order procedure described above. The
solutions to this problem are computed numerically also using a similar procedure to that
for testing second-order absolute mobility dominance.

4 Empirical Illustration
Our data comes from the US PSID (Panel Study of Income Dynamics) surveys. The

analysis is restricted to those individuals aged 24 to 49 that are not self-employed. Four
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periods are used to compare temporal mobility in the US: 1970–75, 1975–80, 1980–85
and 1985–90. For instance, mobility in the 1970–75 period is assessed by comparing the
income status of our individuals in 1970 to their status in 1975. All incomes are evaluated
at 1990 prices.

4.1 Absolute mobility
Tests for first-order mobility dominance show overall an absence of dominance in mo-

bility across the four periods. For second-order dominance tests, both generalized Lorenz
and Mitra and Ok (1998) approaches are considered. Figure 1 shows four differences be-
tween the generalized Lorenz curves of distances (recall (3)). These curves illustrate four
possible dominance relationships, for dominance of the periods 1970-75 and 1980-85 by
the periods 1975-80 and 1985-90. All of the differences are positive in the sample. The
four curves in the figure intersect, a feature which thus excludes the presence of other
dominance relations.

Figure 1: Differences in the generalized Lorenz curves of the income distances
across time
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As to the Mitra and Ok (1998) approach (Figure 2), which cumulates distances from
the largest to the lowest, only the distribution for 1975–80 dominates in the sample all
others — the differences between the 1975–1980 curve and the three other curves being
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positive. The three other curves intersect excluding as above the existence of additional
dominance relations.

Statistical inference confirms most of these relations. In all of the following tables,
statistical inference can be made by comparing the reported p-values to conventional crit-
ical levels, which we implicitly set here to 5% level. The p-values that are shown are the
probability that the null hypothesis of non-dominance of G by F be wrongly rejected.
The rejection of this null (when the p-value is low) implies that F statistically dominates
G in mobility (F displays greater mobility).

Tables 1 and 2 show indeed that 5 relations out of the 7 previously identified are
significant at the conventional 5% level. The two remaining dominance relations do not
appear to be significant, as evidenced by their p-values that exceed 5%.

Figure 2: Differences between the curves implied by the Mitra and Ok (1998)
approach
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Table 1: Results of the statistical tests on differences in the generalized Lorenz
curves of the income distances across time

G is not dominated by F LR ratio p-value
1970–75 vs 1975–80 4.653 0.000**
1970–75 vs 1985–90 2.898 0.010∗
1980–85 vs 1975–80 3.362 0.025∗
1980–85 vs 1985–90 1.108 0.208

(*) and (**) denote that the statistics are significant at
5% and 1% levels respectively.

Table 2: Results of the statistical tests on differences in the curves of the Mitra
and Ok (1998) approach

G is not dominated by F LR ratio p-value
1970–75 vs 1975–80 1.089 0.163
1980–85 vs 1975–80 2.859 0.008**
1985–90 vs 1975–80 3.015 0.000**

(**) denotes that the statistics are significant at 1% level.
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4.2 Transition matrices
The transition matrices were estimated by grouping the population into five income classes,
as in Formby, Smith, and Zheng (2004). These income classes are defined by the vector
of quintiles x and y, for the first-period and the second-period income distributions re-
spectively.

For the first case (exchange mobility), we normalize the distributions by fixing F (x) =
F (y) = G(x) = G(y) = π = (0.2, 0.2, 0.2, 0.2, 0.2). The tests are then performed on

the matrix
[

K∑
k=1

L−1∑
l=1

0.2(Qkl − Pkl)

]
, excluding the element k = K and l = L which

are equal to zero by definition. In this first case, it proves impossible to find dominance
relations across periods.

For the second case, we only set F (x) = G(x) = π = (0.2, 0.2, 0.2, 0.2, 0.2). The
quantiles computed for the initial x period are used to define income classes for the second

y period. In this second case, the test is performed on the matrix
[

K∑
k=1

L−1∑
l=1

0.2(Qkl − Pkl)

]
since only the elements l = L, are equal to zero by definition. The appendices provide
further details for each of these two types of normalizations.

The estimated transition matrices within each of the three periods 1970-75, 1980-85
and 1985-90 are then estimated as:

P̂1970−75 =


0.480 0.297 0.118 0.075 0.032
0.190 0.369 0.254 0.125 0.061
0.079 0.190 0.308 0.301 0.118
0.021 0.057 0.186 0.401 0.423
0.014 0.021 0.075 0.165 0.598



P̂1980−85 =


0.554 0.271 0.100 0.061 0.014
0.210 0.415 0.248 0.092 0.043
0.145 0.216 0.314 0.238 0.120
0.049 0.090 0.183 0.316 0.330
0.049 0.061 0.067 0.189 0.619



P̂1985−90 =


0.449 0.278 0.138 0.078 0.057
0.169 0.363 0.322 0.138 0.077
0.081 0.120 0.265 0.321 0.140
0.041 0.062 0.148 0.389 0.418
0.034 0.029 0.054 0.163 0.663


Here two relations show dominance in the samples: both the periods 1975-80 and 1985-
90 dominate in the samples the 1980-85 period. However, the inference results (see Table
3) show that these dominance relations are not statistically significant.
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Table 3: First-order growth mobility dominance
G is not dominated by F LR ratio p-value

1980-85 vs 1975-80 0.409 0.376
1980-85 vs 1985-90 0.205 0.459

To test for second-order dominance, we maximize as above the empirical likelihood
without and with constraint (38), and normalizations of the quantiles also being carried
out in the same manner as above.

Table 4: Second-order mobility dominance
G is not dominated by F LR ratio p-value

Exchange mobility
1975-80 vs 1970-75 0.135 0.650
1975-80 vs 1985-90 0.023 0.808

Growth mobility
1970-75 vs 1985-90 0.499 0.501
1975-80 vs 1970-75 0.241 0.376
1975-80 vs 1985-90 1.364 0.330
1980-85 vs 1985-90 0.174 0.702

The sampling estimates suggest six potential dominance relations to be formally tested,
including 2 relations in the case of exchange mobility and 4 in the case of growth mobility.
As we see in Table 4, none of these dominance relations proves to be statistically signifi-
cant since all of the p-values are too high to reject the null of non-dominance. Statistical
significance is, however, obtained if the dominance relations are restricted by dropping
the last columns of the transition matrices. Two dominance relations — one for each
case — are then statistically significant at a 5% level (Table 5), with the 1985-90 period
dominating the period 1975-80 in both cases.

5 Conclusion
A number of mobility measures have been proposed in the literature. This paper

proposes procedures for testing for whether mobility is robustly greater in a distribution
A than in a distribution B over different possible classes of mobility measures. For this, it
draws on the frameworks for making partial orderings of mobility proposed by Atkinson
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Table 5: Second-order dominance (restricted to the first four quintiles of income)
G is not dominated by F Ratio LR p-value

Exchange mobility
1970-75 vs 1985-90 0.088 0.822
1975-80 vs 1970-75 0.135 0.120
1975-80 vs 1980-85 0.057 0.970
1975-80 vs 1985-90 1.900 0.010∗

Growth mobility
1970-75 vs 1985-90 0.744 0.506
1975-80 vs 1970-75 0.769 0.313
1975-80 vs 1985-90 2.080 0.036∗
1980-85 vs 1985-90 0.591 0.719

(*) denotes that the statistics are significant at 5% level.

(1983), Conlisk (1989), Dardanoni (1993), Mitra and Ok (1998), Formby, Smith, and
Zheng (2003) and others.

Following in the footsteps of Maasoumi and Trede (2001) and Formby, Smith, and
Zheng (2004), this paper proposes statistical tests for comparing mobility, with the dif-
ference being that the procedure relies here on nulls of non-dominance. Two types of
comparisons are made. The first is based on absolute mobility measures. The second uses
transition matrices. The tests are performed on the null hypothesis of non-dominance ver-
sus the alternative hypothesis of dominance. The analysis covers both first- and second-
order stochastic dominance.

Illustrations are performed from the US PSID data by comparing four five-year pe-
riods between 1970 and 1990. There are no first-order absolute mobility dominance re-
lationships across these periods because the sample dominance curves intersect. Two
approaches are taken to assess second-order dominance: the classical generalized Lorenz
approach and the Mitra and Ok (1998) approach. Our analysis identifies several domi-
nance relations in the samples, most of which end up being statistically significant. For
measures based on transition matrices, two first-order dominance relations (both in the
case of growth mobility) are observed in the sample, none of which being statistically sig-
nificant. Several second-order dominance relations exist in the samples, only two of which
being statistically significant. These results suggest that it may sometimes be difficult to
obtain rankings of distributions that are robust over wide classes of mobility indices, and
that it can also be important to perform statistical tests of such rankings since sample
rankings of mobility may not always be strong enough to infer population ones.
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6 Appendices

6.1 Appendix 1: Normalizing the data to consider exchange
mobility

Let XK and YK be the empirical quintiles from the distribution F , and X ′
K , and Y ′

K be the
ones from the distribution G, with K,L = 1, ..., 5. We wish to normalize the observations
(x′, y′) of G into (x̃, ỹ) so that their respective quintiles be given by XK and YK . To do
this, we can apply the formula:

x̃j = XK−1 + (x′j −X ′
K−1)

XK −XK−1

X ′
K −X ′

K−1

,∀ j = 1, ..., NG with X ′
K−1 < x′j ≤ X ′

K . (39)

We set X0 = X ′
0 = 0. The same procedure can be applied for estimating ỹj :

ỹj = YL−1 + (y′j − Y ′
L−1)

YL − YL−1

Y ′
L − Y ′

L−1

,∀ j = 1, ..., NG with Y ′
L−1 < y′j ≤ Y ′

L. (40)

Again, we set Y0 = Y ′
0 = 0. After these transformations, the new observations (x̃, ỹ)

drawn from G have the same quintiles as those obtained for F .

6.2 Appendix 2: Normalizing the data to consider growth mo-
bility

Here, only the initial income quintiles are considered, namely XK for F and X ′
K for G,

with K = 1, ..., 5. These quintiles are used for determining the final income classes. Let
the proportions of individuals in the final income classes be respectively given by PK and
P ′
K . We need to transform (x′, y′) into (x̃, ỹ) so that the initial income quintiles x̃ be equal

to XK . Moreover, this transformation should let the proportions P ′
K unchanged. We first

follow the procedure described in (39) for computing x̃j . The ỹj are then determined as
follows:

ỹj = XK−1 + (y′j −X ′
K−1)

XK −XK−1

X ′
K −X ′

K−1

,∀ j = 1, ..., NG with X ′
K−1 < y′j ≤ X ′

K . (41)
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