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SUMMARY:

We develop an empirical likelihood approach to test independence of two univariate random 

variables X and Y versus the alternative that X and Y are strictly positive quadrant dependent 

(PQD). Establishing this type of ordering between X and Y is of interest in many applications, 

including finance, insurance, engineering, and other areas. Adopting the framework in Einmahl 

and McKeague (2003, Bernoulli), we create a distribution-free test statistic that integrates a 

localized empirical likelihood ratio test statistic with respect to the empirical joint distribution of X 
and Y. When compared to well known existing tests and distance-based tests we develop by using 

copula functions, simulation results show the EL testing procedure performs well in a variety of 

scenarios when X and Y are strictly PQD. We use three data sets for illustration and provide an 

online R resource practitioners can use to implement the methods in this article.
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1. Introduction

Positive quadrant dependence refers to the joint behavior of two random variables when they 

are likely to assume small (or large) values simultaneously. Specifically, let (X, Y) denote a 

continuous random vector with cumulative distribution function (cdf) H, and let F and G 
denote the marginal cdfs of X and Y, respectively. From Lehmann (1966), univariate random 

variables X and Y are positive quadrant dependent (PQD) if and only if

pr(X ≤ x, Y ≤ y) ≥ pr(X ≤ x)pr(Y ≤ y),  for all (x, y) ∈ ℝ2, (1)

or, equivalently, if and only if p r (X > x, Y > y) ≥ p r (X > x) p r (Y> y) for all (x, y) ∈ ℝ2. 

Note that positive quadrant dependence implies the correlation of X and Y is positive but 

that this relationship does not hold in reverse. In addition, if the inequality in (1) is replaced 

with an equality; i.e., if p r (X ≤ x, Y ≤ y) = p r (X ≤ x) p r (Y ≤ y), then X and Y are 
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independent. We say X and Y are “strictly PQD” when the inequality in (1) is strict for at 

least one (x, y) ∈ ℝ2.

Applications of positive quadrant dependence are replete in finance, insurance, engineering, 

and other areas. For example, if X and Y are the returns of two stocks in a portfolio, cautious 

investors might prefer X and Y to be independent rather than strictly PQD, as the probability 

of simultaneously large losses for two strictly PQD assets is larger than it would be under 

independence (Malevergne and Sornette, 2006). In engineering, if X and Y denote the 

lifetimes of two components, then incorrectly assuming X and Y are independent (when they 

are strictly PQD) would lead one to underestimate the system reliability in a series system 

and overestimate it in a parallel system (Lai and Xie, 2006). Therefore, having knowledge of 

this type of dependence structure can help to improve calculations needed for establishing 

maintenance schedules. Finally, in diagnostic screening, incorrectly assuming two 

biomarkers X and Y are independent (when they are strictly PQD) could underestimate the 

sensitivity of an assay when testing diseased individuals. This, in turn, would overestimate 

the number of false negative diagnoses and potentially compromise inference when 

estimating the probability of disease in a population (Hanson, Johnson, and Gardner, 2003).

In this article, motivated by the applications in the previous paragraph and elsewhere, we are 

interested in testing independence of X and Y versus the alternative that X and Y are strictly 

PQD; i.e., testing ℋ0 versus ℋ1 − ℋ0, where

ℋ0:H(x, y) = F(x)G(y),  for all (x, y) ∈ ℝ2

ℋ1:H(x, y) ≥ F(x)G(y),  for all (x, y) ∈ ℝ2 .

This testing problem has been considered before in the literature and there are well known 

procedures available for it. Kochar and Gupta (1987) proposed a class of tests for ℋ0 versus 

ℋ1 − ℋ0 based on U-statistics, for which Kendall’s one-sided rank test is a special case. 

Janic-Wróblewska, Kallenberg, and Ledwina (2004) extended the independence test in 

Kallenberg and Ledwina (1999) to the restricted PQD setting, embedding Spearman’s one-

sided rank test within a larger family of testing procedures. Güven and Kotz (2008) assumed 

a parametric model for H; specifically, that (X, Y) follows a generalized Farlie-Gumbel-

Morgenstern (FGM) distribution (Schucany, Parr, and Boyer, 1978). In this model, testing 

ℋ0 versus ℋ1 − ℋ0 reduces to testing the value of a “dependence parameter,” which is zero 

under independence. There is a larger literature on formulating goodness-of-fit tests for PQD 

through the use of copula functions; see, e.g., Scaillet (2005), Gijbels, Omelka, and Sznajder 

(2010), Gijbels and Sznajder (2013), and Ledwina and Wyłupek (2014).

Our primary goal in this article is to evaluate an empirical likelihood (EL) procedure for 

testing ℋ0 versus ℋ1 − ℋ0. EL methods were popularized by Owen (1988) and Owen 

(1990) to construct confidence regions for parameters in estimating equations. Einmahl and 

McKeague (2003) later developed a general framework for hypothesis testing using EL and 
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illustrated this technique with numerous one- and two-sample problems, including testing 

for symmetry, exponentiality, and the problem of testing whether X and Y are independent 

(versus the omnibus alternative that X and Y are not independent). More recently, EL testing 

has been applied to nonparametric problems in order-restricted inference, including testing 

for stochastic ordering (El Barmi and McKeague, 2013; Chang and McKeague, 2016) and 

uniform stochastic ordering (El Barmi and McKeague, 2016; El Barmi, 2017).

The advantages of EL–both for estimation and for hypothesis testing–are well documented 

in the statistics literature. In general, EL-based testing combines the flexibility of 

nonparametric methods with the efficiency of likelihood ratio-based inference. When 

applied to the PQD testing problem we consider, the EL approach is easy to implement and 

performs well under a variety of dependence structures. In Section 2, we develop the EL 

test, propose natural distance-based competitor tests formed from estimating copula 

functions, and provide implementation details. In Section 3, we summarize a simulation 

study that compares the EL test to the distance tests and existing approaches. In Section 4, 

we use three data sets to illustrate our methods. In Section 5, we offer a summary discussion 

and describe future research. Note that our R code available on GitHub (https://github.com/

cftang9/pqd) will reproduce all simulations and calculations in this article.

2. Testing procedures

2.1. Empirical likelihood formulation

Suppose Xi, Y i i = 1
n  is an independent and identically distributed (iid) sample from H and 

we wish to test ℋ0 versus ℋ1 − ℋ0 as defined in Section 1. Following Einmahl and 

McKeague (2003), the approach taken in this subsection translates the problem into testing a 

family of “local” hypotheses of the form ℋ0
x, y versus ℋ1

x, y − ℋ0
x, y, where 

ℋ0
x, y:H(x, y) = F(x)G(y), ℋ1

x, y:H(x, y) ≥ F(x)G(y), and (x, y) is fixed. The EL test then 

combines all local tests, forming one overall statistic to test ℋ0 versus ℋ1 − ℋ0.

We now describe how the localized test is performed for fixed (x, y). Our description is 

casual, and we relegate the more technical aspects to the supplementary materials. Let Θ0
x, y

denote the collection of all bivariate cdfs H where H(x, y) = F(x)G(y), and let Θ1
x, y denote 

the analogous collection where H(x, y) ≥ F(x)G(y). The localized empirical likelihood ratio 

at (x, y) is

ℛn(x, y) =
sup ℒ(H):H ∈ Θ0

x, y

sup ℒ(H):H ∈ Θ1
x, y ,

where ℒ H = ∏i = 1
n pi is the EL function (Owen, 2001) and where pi is the probability H

assigns to (xi, yi), for i = 1, 2,…,n. Because ℒ H = 0 when H is continuous, it suffices to 

consider only discrete distributions H with pi > 0 when maximizing ℒ H . For example, the 
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empirical cdf Hn(a, b) = n−1∑i = 1
n I Xi ≤ a, Y i ≤ b  assigns probability 1 / n to each (xi, yi) 

and maximizes ℒ H  over the collection of all bivariate cdfs.

Analogous to forming likelihood ratio statistics in a parametric framework, calculating 

ℛn(x, y) requires that we maximize the EL function ℒ H  over both Θ0
x, y and Θ1

x, y. To 

provide a casual description of how this is done, refer to Figure 1 which displays the four 

sets

A11 = ( − ∞, x] × ( − ∞, y]A12 = ( − ∞, x] × (y, ∞)

A21 = (x, ∞) × ( − ∞, y]A22 = (x, ∞) × (y, ∞)

along with an iid sample of n = 50 observations from H with marginals F and G. Define the 

true probabilities associated with these four sets to be, respectively,

ϕ11 = H(x, y)ϕ12 = F(x) − H(x, y)

ϕ21 = G(y) − H(x, y)ϕ22 = 1 − F(x) − G(y) + H x, y .

As shown in the supplementary materials, calculating ℛn(x, y), the ratio of the maximized 

EL functions, reduces to finding the maximum likelihood estimator (MLE) of the 

multinomial parameter ϕ = (ϕ11,ϕ12,ϕ21,ϕ22) in two ways: one subject to the restriction that 

H (x, y) = F (x)G (y) and one subject to the restriction that H (x, y) ≥ F (x)G (y).

Closed-form expressions for both sets of estimators are available. For example, under ℋ0
x, y, 

the MILF of ϕ11 = H (x, y) is ϕ11
(0) = Fn(x)Gn(y), where Fn(a) = n−1∑i = 1

n I Xi ≤ a  and 

Gn(b) = n−1∑i = 1
n I Y i ≤ b  are the marginal empirical cdfs. The remaining multinomial 

probabilities under ℋ0
x, y are estimated with ϕ12

(0) = Fn(x) 1 − Gn(y) , ϕ21
(0) = 1 − Fn(x) Gn(y), 

and ϕ22
(0) = 1 − Fn(x) 1 + Gn(y) . Under ℋ1

x, y, the estimators are ϕ11
(1) = max ϕ11, ϕ11

(0)
, 

ϕ12
(1) = min ϕ12, ϕ12

(0)
, ϕ21

(1) = min ϕ21, ϕ21
(0)

, and ϕ22
(1) = max ϕ22, ϕ22

(0)
, where ϕrs is 

unrestricted MLE of ϕrs, for r, s ∈ {1, 2}. For the simulated data shown in Figure 1, both sets 

of multinomial estimates are given in the figure caption. Step-by-step instructions for 

calculation are given in the supplementary materials.

With both sets of multinomial estimates, the localized empirical likelihood ratio statistic 

ℛn(x, y) can be written as
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ℛn(x, y) = ∏
r = 1

2
∏

s = 1

2 ϕrs
(0))

ϕrs
(1)

nϕrs
= I ϕ11 ≤ ϕ11

(0) + I ϕ11 > ϕ11
(0) ∏

r = 1

2
∏

s = 1

2 ϕrs
(0))

ϕrs

nϕrs
,

with small values of ℛn(x, y) leading to the rejection of ℋ0
x, y. The expression for ℛn(x, y)

makes sense intuitively. If the unrestricted MLE ϕ11 = Hn(x, y) is too small; i.e., less than 

ϕ11
(0) = Fn(x)Gn(y), then this would provide virtually no evidence against (local) 

independence; hence, ℛn(x, y) = 1 and ℋ0
x, y would not be rejected. It is only when 

ϕ11 > ϕ11
(0)

 does one potentially have any evidence against ℋ0
x, y. Of course, rejecting ℋ0

x, y

when ℛn(x, y) is small is equivalent to rejecting ℋ0
x, y when −2lnℛ

n(x, y) is large.

The EL test of ℋ0 versus ℋ1 − ℋ0 is subsequently formed by aggregating all of the local 

tests, which leads to the test statistic

ELn = ∫ℝ2 − 2lnℛn(x, y)dFn(x)dGn(y) = − 2
n2 ∑

i = 1

n
∑

j = 1

n
lnℛn Xi, Y j ,

with large values of ELn providing evidence against ℋ0. The asymptotic distribution of ELn 

under ℋ0 closely resembles the asymptotic distribution of the test statistic provided in 

Einmahl and McKeague (2003) for the “two-sided,”omnibus test for independence of X and 

Y. Specifically, under ℋ0,

ELn
d ∫[0, 1]2

[ξℬ(u, v) − uℬ(1, v) − vℬ(u, 1) +]2

u(1 − u)v(1 − v) dudv,

as n → ∞, where ℬ( ⋅ , ⋅ ) is a standard bivariate Brownian bridge; i.e., a mean-zero 

Gaussian process on [0,1]2 with covariance 

cov ℬ u1, v1 ,ℬ u2, v2 = min u1, u2 min v1, v2 − u1v1u2v2, and where a+ = max{a, 0} for 

a ∈ℝ. We provide a rigorous derivation of this asymptotic result in the supplementary 

materials.

2.2. Distance-based copula tests

There is a substantive literature on goodness-of-fit tests for PQD, that is, testing that X and 

Y are PQD versus the complementary alternative that X and Y are not PQD. Essentially, a 

goodness-of-fit test is a test of our ℋ1 versus ℋ2 − ℋ1, where ℋ2 places no dependence 

restriction on the joint cdf H and marginal cdfs F and G. Evidence for PQD is obtained when 

one does not reject ℋ1. Of course, not rejecting ℋ1 does not allow one to disentangle 

independence from X and Y being strictly PQD as is our goal herein.
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Most nonparametric approaches testing ℋ1 versus ℋ2 − ℋ1 frame the problem in terms of 

copula functions. From Sklar’s Theorem (Sklar, 1959), a copula C is a function such that C 

(F (x), G (y)) = H (x, y), for all (x, y) ∈ℝ 2, when F and G are continuous; i.e., C is a bona 

fide joint distribution on [0, 1]2 with uniform marginals. Recognizing Π (u, v) = u v as the 

independence copula, testing ℋ1 versus ℋ2 − ℋ1 is equivalent to testing C (u, v) ≥ u v for 

all (u, v) ∈ [0,1]2 versus C (u, v) < u v or some (u, v) ∈ [0,1]2. Using various copula 

estimators, Gijbels et al. (2010) formulated three distance-based statistics to test ℋ1 versus 

ℋ2 − ℋ1, generalizing the earlier work of Scaillet (2005). These statistics, which are based 

on Kolmogorov-Smirnov (KS), Cramér-von Mises (CvM), and Anderson-Darling (AD) 

distances, can be modified to accommodate testing ℋ0 versus ℋ1 − ℋ0 in our situation.

As in Gijbels et al. (2010), define the pseudo-observations Ui = nFn (Xi) / (n + 1) and, Vi = n 
Gn (Yi) / (n + 1), for i = 1, 2, …, n. Scaling the empirical cdfs by n / (n + 1) alleviates 

potential problems in estimation near the boundaries in [0, 1]2. Plotting the psuedo-

observations can be helpful. When ℋ0 is true, the (Ui, Vi) values should be approximately 

uniformly distributed over the unit square. A natural estimator of C is 

Cn(u, v) = n−1∑i = 1
n I Ui ≤ u, V i ≤ v , and distance-based tests can be formed by comparing 

the empirical estimator Cn (u, v) to the independence copula Π (u, v) = uv under a given 

distance. The KS, CvM, and AD distance statistics adapted to our testing problem are

KSn = n sup
(u, v) ∈ [0, 1]2

Cn(u, v) − uv +

CvMn = n∫[0, 1]2 Cn(u, v) − uv +
2dCn(u, v)

ADn = n∫0, 1 2
Cn(u, v) − uv +

2

u(1 − u)v(1 − v) dCn(u, v) .

Clearly, large values of any distance statistic are evidence for X and Y being strictly PQD. 

Note that both C vMn and A Dn are based on L2 distances, but A Dn gives more weight to 

those psuedo-observations residing near the boundaries of [0, 1]2. Asymptotic distributions 

of K Sn, C vMn, and A Dn and under ℋ0 are given in the supplementary materials.

2.3. Implementation

Because the finite-sample distributions of E Ln and the distance-based statistics do not 

depend on the marginal distributions F and G, it is ultimately unnecessary to rely on the 

asymptotic results in Sections 2.1 and 2.2 for implementation. In fact, we have found that 

using critical values from the asymptotic distributions leads to tests that are unduly anti-

conservative, especially with small to moderately sized samples. Therefore, we advocate 

using critical values from the corresponding finite-sample distributions which we determine 

as follows. For a given sample size n, we generate 10,000 observations from a bivariate 
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uniform distribution over the unit square, denoted by H =U [0, 1]2. We then calculate the 

value of each statistic (E L n, K S n, C vM n and A D n) for each of the 10,000 data sets and 

record the upper αth quantile from the empirical distributions. Each test rejects ℋ0 when its 

test statistic exceeds its corresponding quantile. For a user-specified sample size, our R code 

on GitHub will automate critical value calculations for the practitioner. This code can also 

be used to reproduce simulation results reported in the next section and quickly implement 

all tests with real data (see Section 4).

3. Simulation evidence

We compare the EL test and the distance-based copula tests in Section 2.2 to the tests in 

Kochar and Gupta (1987) and Janic-Wróblewska et al. (2004), which were referenced in 

Section 1 and are also nonparametric in nature. Kochar and Gupta (1987), hereafter 

abbreviated KG, proposed a class of U-statistics, Uk+1, which estimate 

π1k = ∫ℝ2Hk(x, y)dH(x, y), for any positive integer k. KG show the test of ℋ0 versus 

ℋ1 − ℋ0 reduces to testing π1k = (1 + k)−2 under independence versus π1k > (1 + k)−2 under 

strict PQD, so that a large value of Uk + 1 is evidence against ℋ0. Kendall’s (one-sided) rank 

statistic arises as a special member of this class when k = 1; for larger k, computation can 

become overwhelming when n is large (e.g., n = 100, etc.) as KG’s general U-statistic 

involves calculating 
n

k + 1  kernel functions. We therefore restrict attention to k = 1 in our 

comparison for computational reasons.

The approach taken in Janic-Wróblewska et al. (2004), hereafter abbreviated JKL, relies on 

the fact that X and Y are PQD if and only if co v{ s (F (X)), t (G (Y))} ≥ 0 for all 

nondecreasing functions s and t. JKL describe parametrically this collection of functions 

using a sequence of Legendre polynomials bj* j − 1
k , suitably projected and normalized, 

which then model the joint probability density function of (F (X), G (Y)) under PQD. After 

utilizing this reparameterization and estimating F and G with their respective empirical cdfs, 

JKL’s approach leads to a family of rank statistics. For example, when k = 1, the test statistic 

for ℋ0 versus ℋ1 − ℋ0 is V (1, 1) = n−1/2∑i = 1
n b1* Ri − 1/2 /n b1* Si − 1/2 /n , where 

b1*(u) = 3(2u − 1) and Ri and Si are the ranks of X1, X2, …, Xn and Y1, Y2, …, Yn, 

respectively. Interestingly, rejecting ℋ0 when V(1, 1) is large is identical to performing 

Spearman’s one-sided rank test. One can formulate test statistics using a larger number of 

polynomials (i.e., for larger k); however, the difficulty with computation and implementation 

also increases substantially. We restrict attention to the k = 1 version of JKL herein.

All of the test statistics described so far, including the Kendall and Spearman statistics, do 

not depend on the marginal distributions F and G. Therefore, to investigate small-sample 

properties, we use copulas to simulate data. We start by considering common copula 

families (i.e., Clayton, Frank, Gaussian, and Gumbel), which were also used by Gijbels et al. 

(2010) in their evaluations. The Clayton, Frank, and Gumbel copulas belong to the well 

known Archimedean class and are widely used to model data with varying degrees of right-

tail dependence. Each copula in this class is indexed by Kendall’s tau parameter T, which 

Tang et al. Page 7

Am Stat. Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



equals zero under independence and is larger than zero when X and Y are strictly PQD. The 

same feature holds for the Gaussian copula, which is indexed by the correlation parameter ρ. 

In what follows, we used finite-sample critical values for all tests calculated using the 

approach described in Section 2.3. All simulations are based on B = 10000 Monte Carlo data 

sets.

Table 1 displays the results when n = 100 and α = 0.05. The same tables for sample sizes n = 

50 and n = 200 are shown in the supplementary materials. All six tests generally perform at 

the nominal level when ℋ0 is true. In terms of power, we make the following general 

observations. First, although there is no test that is uniformly more powerful than its 

competitors under all scenarios, it is probably safe to say that KS is the least powerful 

overall. The remaining five tests are more comparable. For the heavier-tailed copulas, EL 

clearly performs best under the Clayton, whereas AD is generally preferred for the Gumbel, 

most notably when the PQD signal is weaker. On the other hand, for the more “well-

behaved” Frank and Gaussian copulas, the EL test closely rivals the Spearman and Kendall 

tests and is generally as powerful as or more powerful than the distance-based tests.

The four copula models used in Table 1 are commonly used in applications but do represent 

a similar dependence structure over the unit square. An anonymous referee has suggested we 

broaden the scope of our comparison to examine different types of dependence and 

distributions with heavier tails. In the supplementary materials, we describe and completely 

summarize the same comparison among the six tests using three additional models:

• the FGM and Cuadras-Augé (CA) copulas, motivated by theoretical 

characterizations of heavy-tailed distribution families in Weng and Zhang (2012), 

and

• a restricted bivariate t distribution family, motivated by the simulation designs in 

Vexler, Tsai, and Hutson (2014) and Vexler, Chen, and Hutson (2017).

The bivariate t distribution used in Vexler et al. (2014, 2017) does not satisfy PQD, but we 

prove in the supplementary materials a restricted version of this distribution (arising by 

considering only the first quadrant in ℝ2) does satisfy PQD.

Finally, our R programs on GitHub will reproduce the results in Table 1 and those in the 

supplementary materials. For example, running the n = 100 simulation in Table 1 took 

approximately 73 minutes on a computer with a 3.1GHz processor and 16GB of memory. 

This time increases substantially for larger n because sample-size specific critical values 

must be obtained first; for example, with n = 200, the same simulation takes slightly over 8 

hours.

4. Applications

We apply all tests in this article to three data applications. Table 2 summarizes the relevant 

results for each application; i.e., test statistics, critical values, and p-values. Figures 1–3 are 

used to show scatterplots of the data and psuedo-observations.
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4.1. Twins data

A natural application of the PQD testing problem is in twins studies. Ashenfelter and 

Krueger (1994) summarize an observational study examining hourly wages for n = 149 

identical twins in the United States, where each individual (within each twin pair) had 

different levels of education. Each twin pair in the study included individuals aged 18 years 

and older. The goal of this study was to evaluate the impact of education level on wages; 

restricting the study to identical twins allowed the investigators to mitigate the impact of 

lurking variables such as genetic differences and family background. We assess the bivariate 

relationship of wages in each twin pair. Let X and Y denote the hourly wage (measured in 

log US dollars) for each twin sibling, respectively. A scatterplot of the data (xi, yi), i = 1, 2, 

…,149, is given in Figure 1, along with the corresponding plot of psuedo-observations (ui, 

vi) as defined in Section 2.2 The psuedo-observations certainly appear to be incongruous 

with independence, as the (ui, vi) values tend to cluster about the main diagonal of the unit 

square. Not surprisingly, each of the six tests in Table 2 provides strong evidence in favor of 

strict PQD.

4.2. Education data

In 2018, high school teachers from eight states in the US participated in formal “walk out” 

protests, motivated largely by state governments’ continued cuts in spending for educational 

support. Perhaps interestingly, all states involved in the protests were “conservative leaning” 

or “battleground states” in the contentious 2016 and 2018 elections. Are the striking 

teachers’ demands justified? The authors of this article are reluctant to weigh in on this 

question; however, we can apply the tests in this article to a data set which partially 

addresses this issue. Using resources from the United States Census Bureau and the 

Department of Education, we constructed a data set on the high school graduation rate in 

2016 (X) and the average amount of state government spending per student during the 2015–

2016 academic year (Y, measured in log US dollars). Both variables were recorded on each 

state separately plus the District of Columbia (n = 51) and included only data from statewide 

public schools. The data and psuedo-observations appear in Figure 2. None of the tests (see 

Table 2) reject independence at the α = 0.05 level, although the EL, CvM, Kendall, and 

Spearman tests are borderline significant. Of course, this analysis does not answer the 

question posed initially, but it also does not significantly strengthen the argument for 

increased funding, at least if that argument is based on improving statewide graduation rates.

4.3. Stock data

We collected the closing prices of three stocks in the United States during 125 consecutive 

trading days between January 4, 2016 and June 30, 2016: Apple (APPL), Google (GOOGL), 

and Walmart (WMT). For each stock, the 125 closing prices are obviously not independent, 

but the first difference of the log prices; i.e., the n = 124 log returns, should be 

approximately independent. We checked this by using the Ljung-Box test (Ljung and Box, 

1978) for independence on the returns, which provided p-values of 0.577, 0.635, and 0.082, 

respectively. Because these companies are common investments in 401K retirement plans, 

we find it of interest to assess the pairwise dependence structure among these three 
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company’s returns. A brief discussion on assessing trivariate dependence as an extension is 

given in Section 5.

Table 2 (bottom) includes the test statistics and p-values for assessing independence of the 

returns versus strict PQD for each pair of stocks. Upon first glance at Figure 3, one might 

suspect that independence is reasonable between the Apple and Walmart returns; however, 5 

of the 6 tests reject it at the α = 0.05 level, including the EL test albeit barely. There is 

overwhelming evidence of strict PQD in the other pairs (Apple and Google; Google and 

Walmart). For investors concerned about diversification and reducing volatility, including all 

three stocks in the same portfolio might be an unwise decision.

5. Discussion

This article presents a new EL test for independence versus strict PQD by aggregating 

localized test statistics as espoused by Einmahl and McKeague (2003). Although the EL test 

is not uniformly more powerful than existing tests, our simulations show it emerges as being 

consistently competitive under a variety of scenarios. Our online resources are designed with 

reproducibility in mind and make it easy for practitioners to implement all tests in this 

article. The data sets in Section 4 are available with R code on GitHub along with 

instructions on how to analyze them.

We envision two useful extensions. First, as noted in Section 2.2, there is a healthy literature 

on testing X and Y are PQD versus the alternative that X and Y are not PQD; i.e., testing ℋ1
versus ℋ2 − ℋ1. Is it possible to generalize our EL approach for this problem? The answer 

is not immediately obvious. Following the same approach in Section 2.1, it is easy to create 

the EL statistic for ℋ1 versus ℋ2 − ℋ1; it is T n = n−1∑i = 1
n − 2lnℛn* Xi, Y i , where the 

localized statistic for rejecting ℋ1
x, y:H(x, y) ≥ F(x)G(y) is

ℛn*(x, y) = I ϕ11 ≥ ϕ11
(0) + I ϕ11 < ϕ11

(0) ∏
r = 1

2
∏

s = 1

2 ϕrs
(0)

ϕrs

nϕrs
.

However, as ℋ1 can be true in many ways, one needs to first find the least favorable 

configuration; i.e., the configuration of F and G in ℋ1 that maximizes the probability of 

Type I error. Our intuition strongly suggests independence of X and Y is, in fact, the least 

favorable configuration in ℋ1; however, we have not been able to prove this rigorously from 

within an EL framework. Most existing approaches to test ℋ1 versus ℋ2 − ℋ1 using copulas 

(see, e.g., Gijbels and Sznajder, 2013) often utilize the independence copula Π (u, v) = uv for 

critical value calculation but do not provide proof as to why this is justified.

Second, it should be possible to generalize the EL test in Section 2.1 to test for positive 

orthant dependence (POD) in higher dimensions, as described in Gijbels and Sznajder 

(2013) and elsewhere. For example, with three random variables X1, X2, and X3, positive 

orthant dependence would require both
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pr X1 ≤ x1, X2 ≤ x2, X3 ≤ x3 ≥ pr X1 ≤ x1 pr X2 ≤ x2 pr X3 ≤ x3

pr X1 > x1, X2 > x2, X3 > x3 ≥ pr X1 > x1 pr X2 > x2 pr X3 > x3

to hold for all x1, x2, x3 ∈ ℝ3. One approach to test for strict POD might involve calculating 

two aggregated EL statistics–one for testing independence versus each ordering above 

separately–and then combining these tests (e.g., by implementing a Bonferroni correction). 

Finding maximizers under independence is straightforward. Constrained optimization 

methods could be used to find restricted estimates under each ordering separately, but we do 

not believe these estimates will exist in closed form even for three random variables.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Localized test at (x, y). An iid sample of n = 50 is observed from the joint distribution H 

with marginals F and G. For these data, the MLE of ϕ subject to H (x, y) = F (x)G (y) is 

ϕ11
(0), ϕ12

(0), ϕ21
(0), ϕ22

(0) = (0.2052, 0.1748, 0.3348, 0.2852). The MLE of ϕ subject to H(x, y) ≥ 

F(x)G(y) is ϕ11
(1), ϕ12

(1), ϕ21
(1), ϕ22

(1) = (0.24, 0.14, 0.30, 0.32). These calculations are shown in the 

supplementary materials.
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Fig. 2. 
Twins data. Left: Scatterplot of hourly wages (in log US dollars) for n = 149 pairs of 

identical twins. Right: Scatterplot of psuedo-observations.
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Fig. 3. 
Education data. Left: Scatterplot of amount spent per student (in log US dollars) in 2015–

2016 versus high school graduation rate in 2016. Public school data are included from each 

state and the District of Columbia (n = 51). Right: Scatterplot of psuedo-observations.
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Fig. 4. 
Stock data. Top: Pairwise scatterplots of n = 124 log returns for Apple, Google, and Walmart 

during January 4, 2016 through June 30, 2016. Bottom: Scatterplot of psuedo-observations.
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Table 1

Simulation study. Estimated size and power of six tests when n = 100 and α = 0.05. All results are based on B 
= 10000 Monte Carlo data sets. For the Clayton, Gumbel, and Frank copulas, ℋ0 is true when T = 0. For the 

Gaussian copula, ℋ0 is true when ρ = 0. The margin of error in the size estimates, assuming a 99% confidence 

level, is approximately 0.006. The same tables for sample sizes n = 50 and n = 200 are shown in the 

supplementary materials.

Test T = 0 0.10 0.20 0.30 0.40

Clayton EL 0.052 0.457 0.923 0.999 1.000

KS 0.053 0.311 0.780 0.983 0.999

CvM 0.053 0.407 0.886 0.996 1.000

AD 0.050 0.366 0.877 0.996 1.000

Spearman 0.051 0.440 0.902 0.997 1.000

Kendall 0.049 0.432 0.898 0.997 1.000

Frank EL 0.049 0.426 0.902 0.998 1.000

KS 0.050 0.342 0.815 0.990 1.000

CvM 0.050 0.429 0.905 0.998 1.000

AD 0.049 0.314 0.817 0.992 1.000

Spearman 0.049 0.441 0.914 0.998 1.000

Kendall 0.048 0.435 0.913 0.998 1.000

Gumbel EL 0.049 0.446 0.902 0.997 1.000

KS 0.051 0.326 0.780 0.978 0.999

CvM 0.050 0.428 0.892 0.996 1.000

AD 0.050 0.506 0.919 0.997 1.000

Spearman 0.049 0.434 0.898 0.997 1.000

Kendall 0.049 0.432 0.896 0.997 1.000

Test ρ = 0 0.10 0.20 0.30 0.40

Gaussian EL 0.048 0.237 0.599 0.897 0.991

KS 0.054 0.189 0.445 0.740 0.937

CvM 0.051 0.234 0.571 0.875 0.986

AD 0.048 0.198 0.520 0.850 0.983

Spearman 0.049 0.245 0.605 0.897 0.991

Kendall 0.048 0.239 0.599 0.893 0.991
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Table 2

Data analysis. Test statistics, critical values, and p-values for the twins data (Section 4.1), education data 

(Section 4.2), and stock data (Section 4.3).

Test Test statistic Critical value p-value

Twins data EL 13.176 1.374 <0.001

KS 1.465 0.683 <0.001

CvM 0.756 0.067 <0.001

AD 23.476 3.163 <0.001

Spearman 0.559 0.135 <0.001

Kendall 0.421 0.091 <0.001

Education data EL 1.144 1.433 0.096

KS 0.470 0.672 0.330

CvM 0.083 0.091 0.068

AD 2.773 4.716 0.224

Spearman 0.215 0.235 0.068

Kendall 0.150 0.159 0.062

Test Test statistic Critical value p-value

Stock data APPL v GOOGL EL 8.253 1.403 <0.001

KS 1.018 0.679 <0.001

CvM 0.381 0.069 <0.001

AD 17.420 3.367 <0.001

Spearman 0.476 0.148 <0.001

Kendall 0.341 0.100 <0.001

APPL v WMT EL 1.410 1.403 0.049

KS 0.662 0.679 0.059

CvM 0.089 0.069 0.021

AD 3.801 3.367 0.032

Spearman 0.155 0.148 0.042

Kendall 0.112 0.100 0.031

GOOGL v WMT EL 4.266 1.403 <0.001

KS 1.028 0.679 <0.001

CvM 0.247 0.069 <0.001

AD 6.863 3.367 0.002

Spearman 0.336 0.148 <0.001

Kendall 0.236 0.100 <0.001
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