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Abstract We analyze use of a quasi-likelihood ratio (QLR) statistic for a mixture model to test the null

hypothesis of one regime versus the alternative of two regimes in a Markov regime-switching context.

This test exploits mixture properties implied by the regime-switching process but ignores certain implied

serial correlation properties. When formulated in the natural way, the setting is non-standard, involving

nuisance parameters on the boundary of the parameter space, nuisance parameters identified only under

the alternative, or approximations using derivatives higher than the second order. We exploit recent

advances by Andrews (2001) and contribute to the literature by extending the scope of mixture models,

obtaining asymptotic null distributions different from those in the literature. We further provide critical

values for popular models or bounds for tail probabilities useful in constructing conservative critical values

for regime-switching tests. We compare the size and power of our statistics to other useful tests for regime

switching via Monte Carlo and find relatively good performance. We apply our methods to re-examine the

classic cartel study of Porter (1983) and reaffirm Porter’s findings.
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1. Introduction

Models of regime-switching behavior play an important role in analyzing economic data. For example,

in industrial organization, Porter (1983) in a classic paper uses a two regime model to investigate cartel

behavior. In macroeconomics, Hamilton (1989) in another classic paper uses a two regime model to

investigate the properties of postwar U.S. real GNP.

Conducting inference about such processes is often a main goal. It is critical that such inferences be

properly drawn, as these can be used to argue the innocence or guilt of firms accused of antitrust violations

or to inform key economic policy decisions. Nevertheless, as Hamilton (1996), among others, has pointed

out, conducting proper inference in regime-switching models is particularly challenging. As we discuss in

detail later, this challenge arises due to the fact that when formulated in the natural way, testing the null

hypothesis that there is a single regime (versus the alternative of, say, two regimes) can involve a nuisance

parameter identified only under the alternative, as well as a parameter on the boundary of the parameter

space. Standard likelihood ratio (LR) tests (and related Lagrange multiplier or Wald tests) cannot be

conducted in the usual manner.

A main goal of this paper is therefore to develop straightforward methods that researchers can use to

draw large sample inferences, testing the null of one regime versus the alternative of two regimes in a

regime-switching model. Recent significant advances by Andrews (1999, 2001) play an important role in

attaining this goal. A further goal of this paper is to revisit the work of Porter (1983). This serves the dual

purpose of illustrating our methods in a classical setting and, as it turns out, affirming Porter’s original

inferences.

In the prior literature, attempts to test the number of regimes have proceeded by addressing certain

aspects of the problem. For example, Hansen (1992) considers this problem using Markov regime-switching

models, and obtains a lower bound for the limiting distribution of a standardized LR statistic. As will

be clear later, however, the null parameter space can be partitioned into two mutually exclusive subsets:

one with the boundary parameter problem and one without the boundary parameter problem. Hansen’s

bound considers the behavior of the LR statistic on only one of these two subsets. Garcia (1998) reviews

Hansen’s problem. As we see below, however, both subsets are indeed relevant, and due to the boundary

parameter problem, standard arguments cannot apply to the LR statistic.

As we discuss in Section 2, applying the LR statistic to testing one vs. two Markov regimes is challenging,

because the log-likelihood for the two-regime alternative does not factor in the usual way. This leads to

geometric growth of the population variance of the log-likelihood first derivative under the null, ruling out

application of standard central limit results. Moreover, the power of such a test turns out to be weaker

than in the standard case. Instead, we proceed by applying mixture models, ignoring certain time series

dependence properties implied by the regime-switching process. This yields a quasi-log-likelihood that does

factor in the usual way and whose analysis is much more tractable. The resulting quasi-likelihood ratio

(QLR) test is thus sensitive to the mixture aspect of the regime-switching process, delivering a test with

appealing power under the alternative.
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Mixture models are widely used for identically and independently distributed (i.i.d.) data. Testing

the number of mixture components also has problems similar to those encountered in testing Markov

regime switching, namely the boundary parameter problem and nuisance parameters present only under

the alternative. Much of the literature attempts to avoid these problems or must confront associated

difficulties in attempting to test the number of components. For example, Chesher (1984) and Lancaster

(1984) test for unobserved heterogeneity by testing the hypothesis of correct model specification, an indirect

method of testing the mixture hypothesis. Neyman and Scott’s (1966) C(α) statistic tests the mixture

hypothesis, motivated by the properties of the dispersion of the dependent variable of interest under the

null and alternative hypotheses relevant here, as well reviewed by Lindsay (1995). On the other hand,

Hartigan (1985), Ghosh and Sen (1985), Liu and Shao (2003), and references therein consider the LR

statistic for testing the number of components of a mixture model, and show that it converges weakly

to a functional of a continuous Gaussian process on a compact parameter space. As these authors show,

compactness plays a particularly important role in determining the null distribution of the LR statistic.

This is true here, too, and we devote particular attention to the crucial role played by the parameter space.

As we show, mixture models can give rise to variety of interesting behaviors. In particular, the model

considered by Porter (1983) doesn’t have a continuous Gaussian process as the limit of the LR statistic.

We study the mixture model in the Markov regime-switching context, and contribute to the literature

in several ways. First, we contribute not only by providing a way to exploit the associated QLR statistic

in such a way that the previously encountered difficulties can be avoided, but by doing so in a context that

explicitly allows the observable random variables to exhibit time-series dependence. To this end, we show

how the mixture model estimators behave when the data are generated by a β-mixing process that is a

Markov regime-switching process under the alternative. This yields the asymptotic null distribution for the

QLR statistic on a compact parameter space. Next, we extend the mixture literature by examining models

whose null weak limits are functionals of discontinuous Gaussian processes, as well as those models whose

limits are continuous Gaussian processes. We carefully examine these, providing examples and comparing

critical values obtained with and without account taken of the boundary parameter problem. As we show,

if boundary conditions are ignored, then critical values can be too conservative. Next, we demonstrate our

methods by using them to revisit Porter’s (1983) empirical study. Finally, we provide approximate null

distributions for popular models and a method for obtaining conservative bounds when approximations

are otherwise hard to obtain.

This paper is organized as follows. In Section 2, we assume that given data follow a Markov regime-

switching process, and we show that when a mixture model is applied to these data, we can obtain an

associated QLR statistic that can be used to test the number of regimes. Further, we discuss how to obtain

critical values or their conservative approximations. Section 3 provides results of Monte Carlo experiments

in which we compare the size and the power of our statistics with others in the literature. We revisit

Porter’s (1983) analysis in Section 4. Mathematical proofs are collected in the Appendix.
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Before proceeding, we introduce some useful mathematical notation. We let “⇒” denote “weakly con-

verges to,” and ‖ · ‖ and ‖ · ‖∞ are the Euclidean and the uniform norms respectively.

2. Markov Regime-Switching Processes and Mixture Models

We consider a specific framework designed to facilitate analysis of key aspects of the problem of interest,

using the following data generating process (DGP).

A1 : (i) The observable random variables {Xt ∈ Rd}n
t=1, d ∈ N, are generated as a sequence of strictly

stationary β-mixing random variables such that for some c > 0 and ρ ∈ [0, 1), the β-mixing coefficient, βτ ,

is at most cρτ .

(ii) The sequence of unobserved regime indicators, {St ∈ {1, 2}}n
t=1, is generated as a first-order Markov

process such that P (St = j|St−1 = i) = p∗ij with p∗ii ∈ [0, 1] (i, j = 1, 2).

(iii) The given {Xt} is a Markov regime-switching process (hidden Markov process). That is, for some

θ∗ := (θ∗0, θ
∗
1, θ

∗
2) ∈ Rr0+2,

Xt|Ft−1 ∼




F ( · |Xt−1; θ∗0, θ
∗
1), if St = 1,

F ( · |Xt−1; θ∗0, θ
∗
2), if St = 2,

where Ft−1 := σ(Xt−1, St) is the smallest σ-algebra generated by (Xt−1, St) := (X ′
t−1, · · ·X ′

1, St, · · · , S1);

r0 ∈ N; and the conditional cumulative distribution function (CDF ) of Xt|Ft−1, F ( · |Xt−1; θ∗0, θ
∗
j ), has a

probability density function (PDF ) f( · |Xt−1; θ∗0, θ
∗
j ) (j = 1, 2). Further, for (p∗11, p

∗
22) ∈ [0, 1) × [0, 1) \

{(0, 0)}, θ∗ is unique in Rr0+2.

The β-mixing condition is suitable for the Markov regime-switching process, as discussed by Davydov

(1973), Doukhan (1994), and Vidyasagar (2003). As well reviewed by Ephraim and Merhav (2002), the

popularity of this DGP extends far beyond economics. In economics, Porter (1983) examines the cartel

stability problem, assuming p∗11 = p∗21, as we discuss in Section 4. Hamilton (1989) considers the case in

which Xt|Ft−1 is a function of St−m, · · · , St (m ∈ N ∪ {0}) and Xt−1, so that the unobserved two state

process, {St}, induces a DGP for Xt|Ft−1 with 2m+1 unobserved states. In this paper, we restrict our

attention to the case m = 0 and focus strictly on testing for regime switching. Also, note that we cannot

assume that p∗11 = p∗22 = 0, because if so {St} becomes deterministically periodic, implying that {Xt} is

unconditionally heterogeneous, thus violating the stationarity assumption.

Many models for this DGP have been proposed. We consider the following model.

A2 : (i) A model for f( · |Xt−1; θ∗0, θ
∗
j ) is {f( · |Xt−1; θj) : θj := (θ0, θj) ∈ Θ̃}, where Θ̃ := Θ0 × Θ∗ ∈

Rr0+1; and Θ0 and Θ∗ are convex and compact sets in Rr0 and R respectively. Further, for each θj ∈ Θ̃,

f( · |Xt−1; θj) is a measurable PDF with CDF F ( · |Xt−1; θj) (j = 1, 2).

(ii) For every x ∈ Rd, f(x|Xt−1; · ) ∈ C(2)(Θ̃) (the set of twice continuously differentiable functions on Θ̃)

almost surely. (a.s.)
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For notational simplicity, we will abbreviate F (Xt|Xt−1; θj) and f(Xt|Xt−1; θj) as Ft(θj) and ft(θj) respec-

tively (j = 1, 2). Also, unless confusion will otherwise result, we omit the function argument placeholder,

so that as an example, ft( · ) is also denoted as ft.

Suppose that the researcher wishes to test whether there is only a single regime. Formally, relevant

hypotheses are: for an unknown θ∗,

H0: p∗11 = 1 and θ∗1 = θ∗; p∗22 = 1 and θ∗2 = θ∗; or θ∗1 = θ∗2 = θ∗;

H1: (p∗11, p
∗
22) ∈ [0, 1)× [0, 1) \ {(0, 0)} and θ∗1 6= θ∗2,

where θ∗ is defined in the following A3.

A3 : (θ∗0, θ∗) maximizes n−1E[
∑n

t=1
˜̀
t] uniquely in the interior of Θ̃, where for each θ1, ˜̀

t(θ1) := log(ft(θ1)).

Given the Assumptions A1 and A2(i), the log-likelihood function can be represented as

Ln(p11, p22, θ) := log

(
π′

[
n∏

t=1

PFt(θ)

]
ι

)
,

where for each t and θ ∈ Θ := Θ0 × Θ∗ × Θ∗, Ft(θ) is a 2 × 2 diagonal matrix with j-th diagonal

element ft(θj); P := [pij ] parameterizes the transition matrix of St (i, j = 1, 2); π := [π, 1 − π]′ with

π := (1− p22)/(2− p11 − p22); and ι is a 2× 1 vector of ones. Because the log-likelihood function cannot

be represented as a sum of individual log-likelihood functions, the LR statistic turns out to behave in

unappealing ways. Specifically, if p∗11 = 1 (or p∗22 = 1), then the associated null first-order derivative of the

log-likelihood function has a population variance growing geometrically as the sample size increases, and

the standard central limit theorem cannot be applied. Further, as implied in Section 2.3, the power of the

LR statistic is weaker than in the standard n1/2 case when θ∗1 = θ∗2 = θ∗. Because of these difficulties, we

take a different approach.

2.1. A Quasi-LR Statistic

We avoid these difficulties by focusing instead on the quasi -likelihood function for a mixture model.

As we show, this permits us to estimate key aspects of the Markov regime-switching process without

sacrificing much. Thus, consider the mixture model quasi-log-likelihood function defined as follows: for

each (π, θ) ∈ [0, 1]×Θ, let L∗n(π, θ) :=
∑n

t=1 `t(π, θ), where `t(π, θ) := log(πft(θ1) + (1− π)ft(θ2)).

This model captures the mixture aspect of the conditional PDF of Xt|σ(Xt−1) and the unconditional

PDF of St under the alternative. More precisely, the conditional PDF of Xt|σ(Xt−1) is ft(θ∗0, θ
∗
1)P (St =

1|σ(Xt−1)) + ft(θ∗0, θ
∗
2)P (St = 2|σ(Xt−1)), and the mixture weights, P (St = 1|σ(Xt−1)) and P (St =

2|σ(Xt−1)), are random variables with unconditional means, π∗ and 1 − π∗, respectively, where π∗ :=

(1− p∗22)/(2− p∗11 − p∗22). We replace these with an unknown parameter and estimate by maximizing the

quasi-log-likelihood function. This specification ignores the serial correlation in {St}, whereas the serial

correlation of Xt is captured by ft. Thus, we work with a model that ignores the serial correlation in the

unobserved state; Theorem 1 below shows this does not matter for testing the number of regimes.
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In particular, our QLR test is potentially powerful against any regime-switching process, even if St is

not a Markov process. Rather than testing for the specific serial correlation implied by regime switching,

we test for the mixture properties of Xt|σ(Xt−1) generated by St. Here we leave aside testing for this serial

correlation. (See Carrasco, Hu, and Ploberger (2004), who recently propose a test statistic of this sort.)

Despite the extensive analysis of mixture models for the case of i.i.d. data (see Hartigan (1985), Ghosh

and Sen (1985) Liu and Shao (2003) and references therein), mixture models have not often been used for

testing for regime switching. Our analysis thus not only contributes to the mixture model literature by

showing its utility for testing the number of regimes, but also contributes to both the Markov switching and

mixture model literature by demonstrating the utility of mixture models in testing the number of Markov

regimes in a β-mixing context. We also extend the scope of the mixture models by considering other

popular mixtures yielding regime-switching test statistics whose null limiting distributions are different

from those in the literature. We further contribute by providing formulae and algorithms that can be used

to calculate critical values and/or upper bounds for our test statistics that are useful in applications.

The almost sure limits of the estimators maximizing L∗n can be represented in terms of the coefficients of

the DGP both under the null and the alternative. For this, we assume the following regularity conditions.

A4 : For all (π, θ) ∈ [0, 1]×Θ, n−1E[
∑n

t=1 `t(π, θ)] exists and is finite.

A5 : (i) There exists a sequence of positive, strictly stationary, and ergodic random variables, {Mt}, such

that (a) E[Mt] < ∆ < ∞; (b) sup(π,θ)∈[0,1]×Θ ‖∇(π,θ)`t(π, θ)‖∞ ≤ Mt.

These assumptions are mild and enable us to apply the strong uniform law of large numbers (SULLN) to

the mixture model quasi-log-likelihood.

Theorem 1: (a) Given A1, A2 (i, ii), A3, A4, A5 (i), and H0, (π̂q
n, θ̂q

0,n, θ̂q
1,n, θ̂q

2,n) → {(π, θ∗0, θ1, θ2) ∈
[0, 1]×Θ : π = 1 and θ1 = θ∗; or θ1 = θ2 = θ∗; or π = 0 and θ2 = θ∗} a.s., and (θ̂n

0,n, θ̂n
1,n) → (θ∗0, θ∗) a.s.,

where (π̂q
n, θ̂q

0,n, θ̂q
1,n, θ̂q

2,n) is the (“unrestricted”) quasi-MLE (QMLE ) of the mixture model, and (θ̂n
0,n, θ̂n

1,n)

is the (“restricted”) QMLE imposing H0.1

(b) Given A1, A2 (i, ii), A3, A4, A5 (i), and H1, (π̂q
n, θ̂q

0,n, θ̂q
1,n, θ̂q

2,n) → (π∗, θ∗0, θ
∗
1, θ

∗
2) a.s.

Under the null, the QMLE is the MLE, and it converges to a set in Theorem 1(a). The conclusion of

Theorem 1(b) is crucial to the goal of this paper. As pointed out by Levine (1983), a correct model

specification for the conditional mean is important for consistent estimation of the conditional mean, but

correct specification of DGP dynamics is not necessary. Theorem 1 assumes that Xt|Ft−1 is correctly

specified, and ignores the dynamics induced by {St}. Levine’s (1983) point applies to the current context,

and from this, it follows that (θ̂q
0,n, θ̂q

1,n, θ̂q
2,n) → (θ∗0, θ

∗
1, θ

∗
2) a.s. We show additionally that the estimator

for the parameter π replacing the random weights, P (St = 1|σ(Xt−1)), is consistent for the unconditional

mean of the random weights. That is, π̂q
n converges to π∗ a.s. Thus, the mixture model is correctly specified

1The superscripts ‘q’ and ‘n’ are used to denote ‘quasi-MLE’ and ‘null-imposing MLE’ respectively.
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for both Xt|σ(Xt−1) and the unconditional mean of {St}, but misspecified in terms of the dynamics of

{St}.
Regime-switching tests can be based on the limits of the estimators. Note that π∗ = 1 if and only if

p∗11 = 1 (and π∗ = 0 if and only if p∗22 = 1), so that there are two regimes if and only if π∗ ∈ (0, 1).

We exploit this fact and test these hypotheses using the QLR statistic defined as the log-likelihood ratio

computed from the QMLEs under the null and the alternative. This modifies our prior hypotheses as

follows: for an unknown θ∗,

H ′
0 : π∗ = 1 and θ∗1 = θ∗; θ∗1 = θ∗2 = θ∗; or π∗ = 0 and θ∗2 = θ∗; versus H ′

1 : π∗ ∈ (0, 1) and θ∗1 6= θ∗2.

The null H ′
0 can be further partitioned: for an unknown θ∗, H ′

01 : π∗ = 1 and θ∗1 = θ∗; H ′
02 : θ∗1 = θ∗2 = θ∗;

or H ′
03 : π∗ = 0 and θ∗2 = θ∗. In this context, several standard assumptions are violated, summarized as

follows. First, if π∗ = 1 (resp. = 0), then θ∗2 (resp. θ∗1) is not identified, so that the Davies problem (1977,

1987) occurs: a “nuisance” parameter is present only under the alternative. At the same time, π∗ is on the

boundary of [0, 1], which also violates the standard condition yielding the chi-square limiting distribution

for the QLR statistic. Second, if θ∗1 = θ∗2, then π∗ is not identified. Hence, the nuisance parameter problem

again occurs, but the boundary parameter problem does not appear. The results of Andrews (2001) thus

play a key role in analyzing H ′
01 and H ′

03, but not H ′
02. To analyze H ′

02, it turns out that the standard

second-order derivative-based approximation to the QLR statistic has to be improved to approximations

using higher-order derivatives. We resolve these challenges under each hypothesis and combine the ensuing

results to derive the null limiting distribution of the QLR statistic.

2.2. Null Distribution of the QLR Statistic under H ′
01 and H ′

03

We first examine the QLR behavior under H ′
01 and H ′

03 with suitable regularity conditions.

A5 : (ii) There exists a sequence of positive, strictly stationary, and ergodic random variables, {Mt}, such

that (a) for some δ > 0, E[M1+δ
t ] < ∆ < ∞; (b) sup(π,θ)∈[0,1]×Θ ‖∇(π,θ)`t(π, θ)∇(π,θ)`t(π, θ)′‖∞ ≤ Mt; and

(c) sup(π,θ)∈[0,1]×Θ ‖∇2
(π,θ)`t(π, θ)‖∞ ≤ Mt.

A6 : (i) For each (π∗, θ∗0, θ
∗
1, θ

∗
2) with θ∗1 6= θ∗2, λmin(B(π∗, θ∗0, θ

∗
1, θ

∗
2)) ≥ 0 such that (a) if λmin(B(π∗, θ∗0, θ

∗
1,

θ∗2)) > 0, then λmax(B(π∗, θ∗0, θ
∗
1, θ

∗
2)) < ∞; or (b) if λmin(B(π∗, θ∗0, θ

∗
1, θ

∗
2)) = 0, then π∗ = 1 or 0, and

for each θ2 6= θ∗ and θ′2 6= θ∗, λmin(C(θ)(θ2, θ
′
2)) > 0 and λmax(C(θ)(θ2, θ

′
2)) < ∞, where for each (π, θ),

B(π, θ) = E[∇(π,θ)`t(π, θ)∇(π,θ)`t(π, θ)′]; for each (θ2, θ
′
2),

C(θ)(θ2, θ
′
2) :=


C

(θ)
11 (θ2, θ

′
2) C

(θ)
12 (θ′2)

C
(θ)
21 (θ2) C

(θ)
22


 :=


E[rt(θ2)rt(θ′2)]− 1 −E[rt(θ′2)r

(1)
t (θ∗)]

−E[rt(θ2)r
(1)
t (θ∗)] E[r(1)

t (θ∗)r
(1)
t (θ∗)′]


 ,

rt(θ2) := ft(θ∗0, θ2)/ft(θ∗0, θ∗), and r
(1)
t (θ2) := ∇θ1ft(θ∗0, θ2)/ft(θ∗0, θ∗); and λmax( · ) and λmin( · ) denote the

maximum and the minimum eigenvalues of a given matrix, respectively.
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These assumptions enable us to apply the CLT on the set of unidentified parameters. In particular, we

impose A6(i) to approximate the quasi-log-likelihood functions by quadratic functions. More precisely, al-

though n−1E[
∑

`t] is not uniquely maximized under H ′
01 and H ′

03 and therefore cannot be usefully approx-

imated by a quadratic function, A6(i) nevertheless ensures that for each θ2(6= θ∗), n−1E[
∑

`t(1, · , · , θ2)]

(or, for each θ1(6= θ∗), n−1E[
∑

`t(0, · , θ1, · )]) can be locally approximated by quadratic functions under

H ′
01 (or H ′

03), providing the necessary degree of identification through C(θ)(θ2, θ2). By A6(i), the null

model is identified for each θ2. The QLR scores have the following properties.

Lemma 1: (a) For each element in {(1, θ∗0, θ∗, θ2) ∈ [0, 1]×Θ : θ2 ∈ Θ∗ \ {θ∗}}, define

S1,n(θ2) :=

[
n−1

n∑

t=1

∇(π, θ1)`t(π, θ)∇(π, θ1)`t(π, θ)′
]−1 [

n−1/2
n∑

t=1

∇(π, θ1)`t(π, θ)

]
.

Given A1, A2 (i, ii), A3, A4, A5 (ii), A6 (i), and H ′
01, S1,n ⇒ S1 over Θ∗(ε) := {θ2 ∈ Θ∗ : |θ2 − θ∗| > ε}

for each ε > 0 such that for each θ2 ∈ Θ∗(ε), S1(θ2) ∼ N(0, C(θ)(θ2, θ2)−1), and for each θ2, θ′2 ∈ Θ∗(ε),

E[S1(θ2)S1(θ′2)] = C(θ)(θ2, θ2)−1C(θ)(θ2, θ
′
2)C

(θ)(θ′2, θ
′
2)
−1.

(b) Given the same assumptions as in Lemma 1 (a), G : Θ∗(ε) 7→ R is differentiable in the mean, where

for each θ2, θ
′
2, G(θ2) := Ω(θ)(θ2, θ2)1/2S [1:1]

1 (θ2) and Ω(θ)(θ2, θ
′
2) := C

(θ)
11 (θ2, θ

′
2)− C

(θ)
12 (θ2)[C

(θ)
22 ]−1C

(θ)
21 (θ′2).

Further, A[i:j] is a sub-vector containing the i-th through j-th elements of the vector A.2

We omit explicit analysis for H ′
03, as the same score as S1,n is obtained by symmetry.

The proof of Lemma 1 involves considering the joint behavior of a continuum of random variables. For

each θ2, we can use S1,n(θ2) to approximate the quasi-log-likelihood function by a quadratic function. Let

the associated quasi-log-likelihood function be defined as QLR1,n(θ2) := 2(L∗n(π̂q
n(θ2), θ̂

q
0,n(θ2), θ̂

q
1,n(θ2), θ2)−

L∗n(1, θ∗0, θ∗, θ2)), where (π̂q
n(θ2), θ̂

q
0,n(θ2), θ̂

q
1,n(θ2)) := arg max(π,θ1)∈[0,1]×Θ̃ L∗n(π, θ). Then, for given θ2,

QLR1,n(θ2) = S1,n(θ2)′C(θ)(θ2, θ2)S1,n(θ2) + op(1) under H ′
01, if we ignore the boundary parameter for the

moment. Theorem 1(a) shows that θ̂q
2,n does not converge to any particular value in Θ∗(ε). Thus, the limit

of S1,n needs to be derived instead. For this, the finite dimensional distributions of S1,n are first shown to

converge weakly to those of S1, and we show further that this distribution is tight. The desired results of

Lemma 1(a) then follow by theorem 7.1 of Billingsley (1999), and this yields the specified Gaussian process

as the limiting process of S1,n. Tightness is proved by relying on Doukhan, Massart and Rio (1995) and

Hansen (1996, 2004), who provide sufficient conditions for tightness in the β-mixing context. Next, we

show that the covariance function of G has a generalized second-order derivative. Differentiability in the

mean follows by Grenander (1981, theorem 1, ch. 2-2). Later, this yields a conservative rejection region.

There are several interesting aspects to Lemma 1. First, because the model is correctly specified under

the null, each score is a martingale difference sequence, and the information matrix equality holds. This

ensures that we can represent the covariance of S1 by C(θ)(θ, θ′). Note also that if θ2 = θ∗, then S1,n(θ2)

isn’t defined, as ∇πLn(π, θ∗) ≡ 0, so that [−n−1∇2
(π, θ1)L

∗
n(π, θ)]−1 isn’t necessarily defined uniformly

2We call a stochastic process, {G : Θ 7→ Rk, k ∈ N} ⊂ L2(Θ), differentiable in the mean on Θ, if there is a stochastic

process, {G′ : Θ 7→ Rk} ⊂ L2(Θ), such that for all θ ∈ Θ, lim‖h‖→0 E[[(G(θ + h)− G(θ))/‖h‖ − G′(θ)]2] = 0.
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on {(1, θ∗0, θ∗, θ2) ∈ [0, 1] × Θ : θ2 ∈ Θ∗ \ {θ∗}} or in n. It could even be negative definite near θ∗ for

some n, so that the usual approximation using the Hessian may behave quite badly. To prevent this,

we replace the conventional score with S1,n, exploiting the information matrix equality. Second, for each

θ2, S1(θ2)′C(θ)(θ2, θ2)S1(θ2) can be decomposed into G1(θ2)2 and other terms. As shown below, G1(θ2)2

forms the weak limit of the QLR statistic under H ′
01, but the boundary parameter condition needs to be

adjusted. Third, the distribution of G may be stationary or non-stationary. That is, E[G(θ2)G(θ2 + τ)]

can be a function of τ only or of both τ and θ2. This property depends on the DGP as well as the model.

Finally, as θ2 tends to θ∗, Ω(θ)(θ2, θ2) tends to zero, because Cθ
11(θ, θ) and Cθ

12(θ) converge to zero. This

raises a question about the existence of plim θ2→θ∗G(θ2). We investigate this after the QLR statistic is

examined under H ′
02. Also, note that for given θ2 and θ′2, Ω(θ)(θ2, θ

′
2) is the asymptotic covariance between

n−1/2
∑

(1− ft(θ̂n
0,n, θ2)/ft(θ̂n

0,n, θ̂n
1,n)) and n−1/2

∑
(1− ft(θ̂n

0,n, θ′2)/ft(θ̂n
0,n, θ̂n

1,n)).

The asymptotic distribution of the QLR statistic under H ′
01 can be derived by using Lemma 1.

Theorem 2: Given A1, A2 (i, ii), A3, A4, A5 (ii), A6 (i), and H ′
01, for each ε > 0, QLRn(ε) :=

maxθ2∈Θ∗(ε)(QLR1,n(θ2)−QLR2,n) ⇒ H(ε) := supθ2∈Θ∗(ε)(min[0, G(θ2)])2, where QLR2,n := 2(L∗n(1, θ̂n
0,n,

θ̂n
1,n, θ2)− L∗n(1, θ∗0, θ∗, θ2)), and θ2 in L∗n(1, θ̂n

0,n, θ̂n
1,n, θ2) is a placeholder whose value is irrelevant.

An advantage of the QLR statistic under H ′
01 is that its weak convergence limit exists under mild conditions.

Theorem 2 extends Ghosh and Sen’s (1985) result for i.i.d. data to the β-mixing time series context. To

interpret the QLR statistic, we note that the first piece, maxθ2∈Θ∗(ε) QLR1,n(θ2), tests a joint hypothesis:

there is a single regime and Xt|Ft−1 ∼ F ( · |Xt−1; (θ∗0, θ∗)), whereas QLR2,n tests the single hypothesis

Xt|Ft−1 ∼ F ( · |Xt−1; (θ∗0, θ∗)). Thus, the QLR statistic tests only the number of regimes, as desired.

The boundary parameter condition involves only the negative part of the score under H ′
01. The bound-

ary parameter associated with S1,n splits G into positive and negative pieces and discards the positive

piece, resulting in the appearance of the “min” operator in the conclusion of Theorem 2. Technical con-

siderations relevant to the boundary parameter problem trace from Chernoff (1954), Self and Liang (1987)

and Andrews (1999). As these results resolve the boundary parameter problem only for identified mod-

els, we can apply their conclusions only to QLR1,n(θ2) for given θ2. Andrews (2001) provides further

relevant theory for unidentified models with boundary parameter problems. We utilize his advances to

obtain Theorem 2. In particular, from the given approximations and the boundary parameter condition,

maxθ2∈Θ∗(ε) QLR1,n(θ2) ⇒ H(ε)+Z ′Z under H ′
01, where Z ′Z is identically the probability limit of QLR2,n,

following the chi-square distribution. Thus, QLRn(ε) weakly converges to H(ε) under H ′
01. We emphasize

that the convergence limit of maxθ2∈Θ∗(ε) QLR1,n(θ2) separates into two pieces, H(ε) and Z ′Z (depending

on whether the boundary parameter problem arises or not), and the probability limit of QLR2,n, which

is the identical random variable Z ′Z. As pointed out by one of the referees, the estimation error for pa-

rameters not on the boundary has the same limit as the estimation error obtainable when the boundary

parameters are known in advance.
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The nature of the parameter space Θ∗ fundamentally affects the probability law of H(ε). As pointed

out by Hartigan (1985) and Lindsay (1995), if we allow Θ∗ to be unbounded, then even the existence of

H(ε) is in question. Theorem 3 formally underscores the importance of assuming compact Θ∗.

Theorem 3: Given A1, A2 (i, ii), A3, A4, A5 (ii), A6 (i), and H ′
01, for all ε > 0, P (supθ2∈Θ∗(ε) |G(θ2)| <

∞) = 1.

We prove Theorem 3 using the fact in Lifshits (1995) that a Gaussian process is bounded with probability

one if and only if it has a finite oscillation a.s. when the given parameter space, Θ∗(ε), can be covered by a

finite number of open balls with radius measured by the semi-metric E[(G(θ2)−G(θ′2))
2] for θ2 6= θ′2 ∈ Θ∗(ε).

If Θ∗ is unbounded and the covariance between G(θ2) and G(θ′2) converges to 0 as |θ2 − θ′2| gets large,

then for given η ∈ (0, 1) and K ∈ R+, we can choose a set of parameters, say {θ2i}n(η,K)
i=1 , such that

P (sup
θ2∈{θ2i}n(η,K)

i=1

|G(θ2)| > K) > 1 − η. This implies that by letting K grow we can ensure that H(ε)

eventually diverges to infinity in probability. We avoid this by requiring Θ∗ to be bounded. In terms of

Hartigan (1985) and Lindsay (1995), therefore, our focus here should be understood as investigating how

to exploit the QLR statistic for a given compact parameter space. Our boundedness requirement is further

underscored by the warnings raised by Azäıs, Gassiat, and Mercadier (2006) against using an unbounded

parameter space. The Monte Carlo experiments for mixtures of exponentials in Mosler and Seidel (2001)

show the lack of convergence in distribution in this context.

Another interesting aspect of Theorem 3 is that the QLR statistic has a model-dependent null distri-

bution. As mentioned following Lemma 1, the null distribution of G depends on both the DGP and the

model. This situation has been recognized in the goodness-of-fit test literature by Darling (1955) and

Durbin (1973). Their insights apply here. Further, the parameter space, Θ∗, is another source of model

dependence for our QLR statistic. For example, if there are two parameter spaces, say Θ(1)
∗ and Θ(2)

∗ , such

that Θ(1)
∗ ⊂ Θ(2)

∗ , then P (sup
θ2∈Θ

(1)
∗ (ε)

(min[0, G(θ2)])2 > K) ≤ P (sup
θ2∈Θ

(2)
∗ (ε)

(min[0, G(θ2)])2 > K) and

P (sup
θ2∈Θ

(1)
∗ (ε)

(min[0, G(θ2)])2 = 0) ≥ P (sup
θ2∈Θ

(2)
∗ (ε)

(min[0, G(θ2)])2 = 0). Thus, for different parameter

spaces, different critical values will apply, and the point mass given to 0, the effect due to the boundary

parameter problem, can eventually disappear. We investigate this in the model exercises of Section 2.5.

2.3. Null Distribution of the QLR Statistic under H ′
02

2.3.1. Non-zero Second-Order Derivative Case. To examine the QLR statistic under H ′
02, we first in-

troduce relevant notation for our analysis. For given (π, θ2) ∈ (0, 1) × Θ∗, let (θ̃q
0,n(θ2), θ̃

q
1,n(θ2)) :=

arg maxθ1∈Θ̃ L∗n(π, θ), which satisfies the first-order conditions (FOCs), so that for each (π, θ2),

∇θ0L
∗
n(π, θ̃q

0,n(θ2), θ̃
q
1,n(θ2), θ2) =

∑ πf
(1,0)
t (θ̃q

0,n(θ2), θ̃
q
1,n(θ2)) + (1− π)f (1,0)

t (θ̃q
0,n(θ2), θ2)

πft(θ̃
q
0,n(θ2), θ̃

q
1,n(θ2)) + (1− π)ft(θ̃

q
0,n(θ2), θ2)

≡ 0,

∇θ1L
∗
n(π, θ̃q

0,n(θ2), θ̃
q
1,n(θ2), θ2) =

∑ (1− π)f (0,1)
t (θ̃q

0,n(θ2), θ̃
q
1,n(θ2))

πft(θ̃
q
0,n(θ2), θ̃

q
1,n(θ2)) + (1− π)ft(θ̃

q
0,n(θ2), θ2)

≡ 0,
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where f
(i,j)
t := ∇i

θ0
∇j

θ1
ft. Note that (θ̃q

0,n, θ̃q
1,n) should have been represented as a function of π, too, but

we omit this, as π will be taken as given under H ′
02. Each component in the expressions above can be

appropriately exploited for our further analysis. For each (π, θ2), we thus simplify by letting

ht(θ2) := f
(0,1)
t (θ̃q

0,n(θ2), θ2), kt(θ2) := f
(0,1)
t (θ̃q

0,n(θ2), θ̃
q
1,n(θ2)),

mt(π, θ2) := πf
(1,0)
t (θ̃q

0,n(θ2), θ̃
q
1,n(θ2)) + (1− π)f (1,0)

t (θ̃q
0,n(θ2), θ2),

gt(π, θ2) := 1/(πft(θ̃
q
0,n(θ2), θ̃

q
1,n(θ2)) + (1− π)ft(θ̃

q
0,n(θ2), θ2)),

and L̃n(π, θ2) := L∗n(π, θ̃q
0,n(θ2), θ̃

q
1,n(θ2), θ2). Then we can write:

M̃ (1)
n (π, θ2) := ∇θ0Ln(π, θ̃q

0,n(θ2), θ̃
q
1,n(θ2), θ2) =

∑
mt(π, θ2)gt(π, θ2) ≡ 0,

K̃(1)
n (π, θ2) := ∇θ1Ln(π, θ̃q

0,n(θ2), θ̃
q
1,n(θ2), θ2) = (1− π)

∑
kt(θ2)gt(π, θ2) ≡ 0.

In the expressions immediately above, the superscript (1) denotes the first-order derivative with respect to

θ2. Later, we use the superscript (2) to denote the second-order derivative with respect to θ2, etc. Thus,

L̃(1)
n (π, θ2) := ∇θ2L̃n(π, θ2) =

∑ (1− π)f (0,1)
t (θ̃q

0,n(θ2), θ2)

πft(θ̃
q
0,n(θ2), θ̃

q
1,n(θ2)) + (1− π)ft(θ̃

q
0,n(θ2), θ2)

,

implying that L̃
(1)
n (π, θ2) = (1 − π)

∑
ht(θ2)gt(π, θ2). We further let r̂

(i,j)
t := f

(i,j)
t (θ̂n

0,n, θ̂n
1,n)/ft(θ̂n

0,n, θ̂n
1,n)

and r̂
(1)
t := ∇θ1ft(θ̂n

0,n, θ̂n
1,n)/ft(θ̂n

0,n, θ̂n
1,n); and where no confusion arises, for a given function of (π, θ2), say

qt, qt(π, θ̂n
1,n) is abbreviated as q̂t. For example, gt(π, θ̂n

1,n) and ht(θ̂n
1,n) are denoted as ĝt and ĥt.

The QLR statistic can be represented using this notation under H ′
02. Note that for each π, we

have QLRn(π) := 2(L∗n(π, θ̂q
0,n(π), θ̂q

1,n(π), θ̂q
2,n(π))−L∗n(1, θ̂n

0,n, θ̂n
1,n, θ2)), where (θ̂q

0,n(π), θ̂q
1,n(π), θ̂q

2,n(π)) :=

maxθ L∗n(π, θ); this is identical to 2(L̃n(π, θ̂q
2,n(π)) − L̃n(π, θ̂n

1,n)), because (θ̃q
0,n(θ̂q

2,n(π)), θ̃q
1,n(θ̂q

2,n(π)),

θ̂q
2,n(π)) and (θ̃q

0,n(θ̂n
1,n), θ̃q

1,n(θ̂n
1,n)) satisfy the FOCs under the alternative and the null model assumptions

respectively, so that θ̂q
0,n(π) = θ̃q

0,n(θ̂q
2,n(π)), θ̂q

1,n(π) = θ̃q
1,n(θ̂q

2,n(π)), θ̂n
0,n = θ̃q

0,n(θ̂n
1,n) and θ̂n

1,n = θ̃q
1,n(θ̂n

1,n).

In addition to the identification problem, the QLR statistic exhibits another nonstandard property under

H ′
02. By the definitions of ht and kt, ĥt := ht(θ̂n

1,n) = k̂t := kt(θ̂n
1,n), implying that

L̃(1)
n (π, θ̂n

1,n) = (1− π)
∑

ĥtĝt = (1− π)
∑

k̂tĝt = K̃(1)
n (π, θ̂n

1,n) = 0.

That is, the first-order derivative is identically zero under H ′
02. The score given by the first-order derivative

cannot approximate the null distribution. Neymann and Scott (1966) and Lee and Chesher (1986) consider

similar problems in the context of the C(α) statistic and recommend approximating the log-likelihood

function using higher-order derivatives. Lindsay (1995) elaborates and shows this approach extends beyond

the models of Neymann and Scott (1966). We follow these insights. A little algebra gives that for each

(π, θ2),

L̃(2)
n (π, θ2) = (1− π)

∑
{h(1)

t (θ2)gt(π, θ2) + ht(θ2)g
(1)
t (π, θ2)},

M̃ (2)
n (π, θ2) =

∑
{m(1)

t (π, θ2)gt(π, θ2) + mt(π, θ2)g
(1)
t (π, θ2)} = 0,
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K̃(2)
n (π, θ2) = (1− π)

∑
{k(1)

t (θ2)gt(π, θ2) + kt(θ2)g
(1)
t (π, θ2)} = 0.

The last two equations hold because M̃
(1)
n (π, θ2) and K̃

(1)
n (π, θ2) are identically zero. Thus,

L̃(2)
n (π, θ̂n

1,n) = L̃(2)
n (π, θ̂n

1,n)− K̃(2)
n (π, θ̂n

1,n) = (1− π)
∑

(ĥ(1)
t − k̂

(1)
t )ĝt.

Note that this involves first computing ˆ̃
θ
(1)
i := θ̃

(1)
i (θ̂n

1,n) (i = 0, 1), and if these are plugged back into K̃
(2)
n

and M̃
(2)
n , then another set of identities is obtained. We can also compute L̃

(3)
n (π, θ̂n

1,n) in the same way.

Once again, ˆ̃
θ
(2)
i (i = 0, 1) appears; we iterate this process to obtain L̃

(4)
n (π, θ̂n

1,n). Then for each π,

L̃(3)
n (π, θ̂n

1,n) = (1− π)
∑

{(ĥ(2)
t − k̂

(2)
t )ĝt + 2(ĥ(1)

t − k̂
(1)
t )ĝ(1)

t },

L̃(4)
n (π, θ̂n

1,n) = (1− π)
∑

{(ĥ(3)
t − k̂

(3)
t )ĝt + 3(ĥ(2)

t − k̂
(2)
t )ĝ(1)

t + 3(ĥ(1)
t − k̂

(1)
t )ĝ(2)

t }.

The asymptotic behaviors of L̃
(2)
n (π, θ̂n

1,n) to L̃
(4)
n (π, θ̂n

1,n) are determined by each element on the right-hand

side (RHS). We now collect the regularity conditions that enable us to apply the law of large numbers

(LLN) and the central limit theorem (CLT) to each element.

A2 : (iii) For every x ∈ Rd, f(x|Xt−1; · ) ∈ C(4)(Θ̃) a.s.

A5 : (iii) There exists a sequence of positive, strictly stationary, and ergodic random variables, {Mt}, such

that (a) for some δ > 0, E[M1+δ
t ] < ∆ < ∞; (b) supθ1∈Θ̃ |∇i1ft(θ1)/ft(θ1)|4 ≤ Mt; (c) supθ1∈Θ̃ |∇i1∇i2ft(θ1)

/ft(θ1)|2 ≤ Mt; (d) supθ1∈Θ̃ |∇i1∇i2∇i3ft(θ1)/ft(θ1)|2 ≤ Mt; (e) supθ1∈Θ̃ |∇i1∇i2∇i3∇i4ft(θ1)/ft(θ1)| ≤
Mt, where i1, · · · , i4 ∈ {θ01, θ02, · · · , θ0r0 , θ1}.

A6 : (ii) For each (π∗, θ∗0, θ
∗
1, θ

∗
2) with θ∗1 = θ∗2 and π∗ ∈ (0, 1), λmin(C(2)) ≥ 0 such that if λmin(C(2)) > 0,

then λmax(C(2)) < ∞, where for k = 2, 3, · · · , r
(k)
t (θ∗) := (r(0,k)

t (θ∗), r
(1)
t (θ∗)′) and

C(k) := E[r(k)
t (θ∗)r

(k)
t (θ∗)′] :=


C

(k)
11 C

(k)
12

C
(k)
21 C

(θ)
22


 :=


 E[r(0,k)

t (θ∗)2] E[r(0,k)
t (θ∗)r

(1)
t (θ∗)]′

E[r(0,k)
t (θ∗)r

(1)
t (θ∗)] C

(θ)
22




whenever they exist.

We impose A6(ii) in order to approximate the quasi-log-likelihood function by a quartic function. Specifi-

cally, A6(ii) provides a condition relating the second-order and first-order derivatives under the alternative

and the null respectively. Using these, we can obtain the following asymptotic properties.

Lemma 2: Given A1, A2 (i, iii), A3, A4, A5 (ii, iii), A6 (ii), and H ′
02, for each π,

(a) L̃
(2)
n (π, θ̂n

1,n) = (1−π)
π

∑
r̂
(0,2)
t + op(n1/2);

(b) n−1/2L̃
(2)
n (π, θ̂n

1,n) ⇒ (1−π
π )G(2)

0 , where G
(2)
0 ∼ N(0,Ω(2)) and Ω(2) := C

(2)
11 − C

(2)′
12 [C(θ)

22 ]−1C
(2)
21 ;

(c) L̃
(3)
n (π, θ̂n

1,n) = Op(n1/2);

(d) n−1L̃
(4)
n (π, θ̂n

1,n) = −3(1−π
π )2Ω(2) + op(1).
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Lemma 2 is proved in the Appendix. The fact that L̃
(2)
n (π, θ̂n

1,n) = Op(n1/2) implies that the QLR statistic

can be non-degenerate even with the zero first-order derivative. Also, it is of interest that L̃
(4)
n (π, θ̂n

1,n) can

estimate the asymptotic variance of n−1/2L̃
(2)
n (π, θ̂n

1,n), as a result of the information matrix equality.

The asymptotic null distribution of the QLR statistic under H ′
02 can now be derived using Lemma 2.

Note that for each π and θ̄2 between θ2 and θ̂n
1,n,

L̃n(π, θ2) = L̃n(π, θ̂n
1,n) +

1
2!

L̃(2)
n (π, θ̂n

1,n)(θ2 − θ̂n
1,n)2 +

1
3!

L̃(3)
n (π, θ̂n

1,n)(θ2 − θ̂n
1,n)3 +

1
4!

L̃(4)
n (π, θ̄2)(θ2 − θ̂n

1,n)4

by the mean value theorem. Lemma 2 and theorem 3.9 of Billingsley (1999) imply that

(
n−1/2L̃(2)

n (π, θ̂n
1,n), n−3/4L̃(3)

n (π, θ̂n
1,n), n−1L̃(4)

n (π, θ̂n
1,n)

)
⇒

([
1− π

π

]
G

(2)
0 , 0,−3

[
1− π

π

]2

Ω(2)

)

for each π. Thus, given the differentiability and the moment conditions, for each π,

sup
θ2

2(L̃n(π, θ2)− L̃n(π, θ̂n
1,n)) ⇒ sup

ξ

[
1− π

π

]
G

(2)
0 ξ2 − 1

4

[
1− π

π

]2

Ω(2)ξ4,

where ξ captures the asymptotic behavior of n1/4(θ2 − θ̂n
1,n). From this, we obtain the following.

Theorem 4: Given A1, A2 (i, iii), A3, A4, A5 (ii, iii), A6 (ii), and H ′
02, for each π ∈ (0, 1),

(a) maxθ2 2(L̃n(π, θ2)− L̃n(π, θ̂n
1,n)) ⇒ max[0, G0]2, where G0 ∼ N(0, 1);

(b) for ε ∈ (0, 1/2), QLRn(ε) := maxπ∈[ε,1−ε] maxθ2 2(L̃n(π, θ2)− L̃n(π, θ̂n
1,n)) ⇒ max[0, G0]2.

There are a number of interesting aspects to Theorem 4. First, the proof of Theorem 4 is not too

different from the standard argument, but it involves a sign constraint. Note that the QLR statistic is

approximated mainly by the second and fourth-order derivatives, and ξ is raised to even powers, which

cannot be less than zero. This gives rise to the square of the half normal distribution as the asymptotic

null distribution, even without the boundary parameter condition. Second, the nuisance parameter, π, is

present only in scaling L̃
(2)
n (π, θ̂n

1,n) and L̃
(4)
n (π, θ̂n

1,n), so that the QLR statistic turns out to be nuisance

parameter free by the information matrix equality. This also implies that the asymptotic null distribution

of 2(L̃n( · , θ2) − L̃n( · , θ̂n
1,n)) is automatically tight, leading to Theorem 4(b). Third, n−1/2L̃

(3)
n (π, θ̂n

1,n)

doesn’t have to obey asymptotic normality for Theorem 4. It can be degenerate. What is required for

the result is that n−3/4L̃
(3)
n (π, θ̂n

1,n) = op(1). Fourth, the convergence rate of the estimator is different

from the standard n1/2 case. In this case, the convergence rate is n1/4, which is the same as for the C(α)

statistic of Neymann and Scott (1966) and Lindsay (1995). Thus, under H ′
02, the QLR test can have power

comparable to that of the C(α) test asymptotically. Also, in turn, the “general quadratic approximation”

of Lin and Shao (2003) cannot be applied to the likelihood ratio under H ′
02. Goffinet, Loisel and Laurent

(1992) report the same results as Lemma 4(a) in the case of a mixture of normals with unknown means but

known common variance. Our analysis provides a general theory that nests theirs as a special case. Fifth,

the given limiting random variable, G0, is the probability limit of G(θ2) as θ2 tends to θ∗. This feature

will be explained in further detail below. Sixth, the literature often reports the tendency of mixtures of

exponential family distributions to yield more stable simulation results than other distributions. This is

12



mainly because they are infinitely differentiable, so that the fourth-order differentiation condition holds

automatically. Simulation results can be unstable if the model is differentiable only up to the second-order.

Finally, many mixture models can be analyzed by the fourth-order approximation, although there are many

other popular mixtures that cannot be approximated using a fourth-order Taylor expansion.

2.3.2. Zero Second-Order Derivative Case. We often observe mixture models to have zero second-order

derivatives under the null, because the second-order derivative turns out to be a linear function of the

first-order derivatives: for each θ1 and for some non-zero (α′ β)′ ∈ Rr0+1,

f
(0,2)
t (θ1) = α′f (1,0)

t (θ1) + βf
(0,1)
t (θ1),

so that
∑

r̂
(0,2)
t = 0. The empirical example of Porter (1983) belongs to this case, so the quartic approxi-

mation of the previous section has to be improved. As will be clear later, the required approximation order

is of the eighth order.3 By further elaborating the prior derivatives, we have for i = 3, · · · , 8,

L̃(i)
n (π, θ̂n

1,n) = (1− π)
∑





(
ĥ

(i−1)
t − k̂

(i−1)
t

)
ĝt +

i−2∑

j=1


i− 1

j




(
ĥ

(i−j−1)
t − k̂

(i−j−1)
t

)
ĝ
(j)
t



 .

As before, each component in the RHS contributes to the asymptotic null distribution of the QLR statistic.

We provide suitable regularity conditions as follows.

A2 : (iv) For every x ∈ Rd, f(x|Xt−1; · ) ∈ C(8)(Θ̃) a.s.

A5 : (iv) There exists a sequence of positive, strictly stationary, and ergodic random variables, {Mt}, such

that for some δ > 0, E[M1+δ
t ] < ∆ < ∞; supθ1∈Θ̃ |∇i1 · · · ∇ikft(θ1)/ft(θ1)|4 ≤ Mt; supθ1∈Θ̃ |∇i1 · · ·∇i`

ft(θ1)/ft(θ1)|2 ≤ Mt; supθ1∈Θ̃ |∇8
θ1

ft(θ1)/ft(θ1)| ≤ Mt; supθ1∈Θ̃ |∇j1∇7
θ1

ft(θ1)/ft (θ1)| ≤ Mt; supθ1∈Θ̃

|∇j1∇j2∇6
θ1

ft(θ1)/ft (θ1)| ≤ Mt, where k = 1, 2, 3, 4; ` = 5, 6, 7; i1, · · · , i7 ∈ {θ01, θ02, · · · , θ0r0 , θ1}; and

j1, j2 ∈ {θ01, θ02, · · · , θ0r0}.

Assumptions A5(iii and iv) are not the most efficient possible moment conditions. For expositional pur-

poses, we provide simple assumptions that are stronger than is strictly necessary. Note that the second,

third, and fourth-order derivative conditions in A5(iv) are strengthened compared to A5(iii), and also that

the highest moment-order condition is of fourth order even if the eighth-order derivative is involved. This

contrasts sharply with the previous case. Recall that in the prior case, (ˆ̃θ(3)
0,n,

ˆ̃
θ
(3)
1,n) must first be computed

to obtain L̃
(4)
n (π, θ̂n

1,n). Here we don’t need to compute (ˆ̃θ(7)
0,n,

ˆ̃
θ
(7)
1,n) to compute L̃

(8)
n (π, θ̂n

1,n), only (ˆ̃θ(6)
0,n,

ˆ̃
θ
(6)
1,n).

This is mainly because ˆ̃
θ
(7)
1,n appears as a coefficient of

∑
r̂
(0,2)
t (which is zero), and ˆ̃

θ
(7)
0,n is not required to

compute L̃
(8)
n (π, θ̂n

1,n). Consequently, our regularity conditions do not require finite eighth-order moments

even if the eighth-order derivatives are involved.

Assumption A5(iv) and the next assumption enable us to apply the CLT.

3We are indebted to Robert Davies for guidance with this aspect of the problem.
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A6 : (iii) For each (π∗, θ∗0, θ
∗
1, θ

∗
2) with θ∗1 = θ∗2 and π∗ ∈ (0, 1), λmin(C(2)) ≥ 0 such that if λmin(C(2)) = 0,

then λmin(C(s)) > 0 and λmax(C(s)) < ∞, where

C(s) :=


C

(s)
11 C

(s)
12

C
(s)
21 C(3)


 :=


 E[st(θ∗)2] E[st(θ∗)r

(3)
t (θ∗)′]

E[st(θ∗)r
(3)
t (θ∗)] C(3)


 ,

and st(θ∗) := r
(0,4)
t (θ∗)− 6βr

(0,3)
t (θ∗)− 6α′r(1,2)

t (θ∗) + 6α′r(1,1)
t (θ∗)β + 3α′r(2,0)

t (θ∗)α.

We partition C
(s)
12 into [C(s)

3 , C
(s)′
1 ] := [E[st(θ∗)r

(3,0)
t (θ∗)], E[st(θ∗)r

(1)
t (θ∗)]′] for future reference. As given

below,
∑

ŝt is asymptotically equivalent to the fourth-order derivative, affecting the asymptotic distribution

of the QLR statistic. Thus we require both C(s) and C(3) to be positive definite. We now have

Lemma 3: Given A1, A2 (i, iv), A3, A4, A5 (ii, iv), A6 (iii), and H ′
02, for each π,

(a) L̃
(3)
n (π, θ̂n

1,n) = − (1−π)(1−2π)
π2

∑
r̂
(0,3)
t ;

(b) n−1/2L̃
(3)
n (π, θ̂n

1,n) ⇒ − (1−π)(1−2π)
π2 G

(3)
0 , where G

(3)
0 ∼ N(0, Ω(3)) and Ω(3) := C

(3)
11 − C

(3)
12 [C(θ)

22 ]−1C
(3)
21 ;

(c) L̃
(4)
n (π, θ̂n

1,n) = Op(n1/2);

(d) L̃
(5)
n (π, θ̂n

1,n) = Op(n1/2).

Lemma 3 holds for any π ∈ (0, 1). Nevertheless, care is needed. If π = 1/2, L̃
(3)
n (π, θ̂n

1,n) = 0, so that the

third-order derivative also turns out to be zero, implying that we need to differentiate one more time when

π = 1/2. Goffinet, Loisel and Laurent (1992) observe the same phenomenon when considering the mixture

of normals with unknown different means and an unknown common variance. Nevertheless, their analysis

is incorrect, as they approximate the log-likelihood function only to the fourth order when π = 1/2. We

suppose first that π 6= 1/2. In this case, the asymptotic variance of n−1/2L̃
(3)
n (π, θ̂n

1,n) can be estimated by

the sixth-order derivative.

Lemma 4: Given A1, A2 (i, iv), A3, A4, A5 (ii, iv), A6 (iii) and H ′
02, if π ∈ {x ∈ (0, 1) : x 6= 1/2}, then

(a) n−1L̃
(6)
n (π, θ̂n

1,n) = −10( (1−π)(1−2π)
π2 )2Ω(3) + op(1);

(b) maxθ2 2(Ln(π, θ2)− Ln(π, θ̂n
1,n)) ⇒ G2

0.

The proof of Lemma 4 is straightforward. Using Lemmas 3 and 4, we can approximate the likelihood

function as before. For each π and θ̄2 between θ2 and θ̂n
1,n, the mean value theorem gives

L̃n(π, θ2) = L̃n(π, θ̂n
1,n)+

1
3!

L̃(3)
n (π, θ̂n

1,n)(θ2 − θ̂n
1,n)3 +

1
4!

L̃(4)
n (π, θ̂n

1,n)(θ2 − θ̂n
1,n)4

+
1
5!

L̃(5)
n (π, θ̂n

1,n)(θ2 − θ̂n
1,n)5 +

1
6!

L̃(6)
n (π, θ̄2)(θ2 − θ̂n

1,n)6.

Applying theorem 3.9 of Billingsley (1999) and Lemma 6 ensures that for each π,

max
θ2

2(Ln(π, θ2)− Ln(π, θ̂n
1,n)) ⇒ sup

ξ
−1

3

[
(1− π)(1− 2π)

π2

]
G

(3)
0 ξ3 − 20

6!

[
(1− π)(1− 2π)

π2

]2

Ω(3)ξ6.

Solving for the RHS gives us [Ω(3)]−1[G(3)]2, which has the same distribution as G2
0. This explains why the

standard chi-square distribution is obtained here as the limiting distribution of the QLR statistic. Note
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that the information matrix equality holds here, and that the limiting distribution is nuisance parameter

free.

If π = 1/2, we examine derivatives up to eighth order. We have the following large sample properties.

Lemma 5: Given A1, A2 (i, iv), A3, A4, A5 (ii, iv), A6 (iii), and H ′
02, if π = 1/2, then

(a) L̃
(4)
n (π, θ̂n

1,n) =
∑

ŝt + op(n1/2);

(b) n−1/2L̃
(4)
n (π, θ̂n

1,n) ⇒ G
(s)
0 , where G

(s)
0 ∼ N(0, Ω(s)) and Ω(s) := C

(s)
11 − C

(s)′
1 [C(θ)

22 ]−1C
(s)
1 ;

(c) L̃
(6)
n (π, θ̂n

1,n) = Op(n1/2);

(d) L̃
(7)
n (π, θ̂n

1,n) = Op(n1/2);

(e) n−1L̃
(8)
n (π, θ̂n

1,n) = −35Ω(s) + op(1);

(f ) maxθ2 2(L̃n(π, θ2)− L̃n(π, θ̂n
1,n)) ⇒ max[0, G∗]2, where G∗ ∼ N(0, 1).

Note the sharp difference between the behavior of L̃
(6)
n (π, θ̂n

1,n) here and that in Lemma 4(a). The Op(n)

term in Lemma 4(a) turns out to have a zero coefficient given π = 1/2. The other aspects are the same as

before. Applying theorem 3.9 of Billingsley (1999) and Lemmas 5(a to e) leads to Lemma 5(f) by the same

argument as before. The sign condition applies here also, so that the square of the half-normal distribution

is obtained as the limiting distribution of maxθ2 2(L̃n(1/2, θ2) − L̃n(1/2, θ̂n
1,n)). The asymptotic variance

of the fourth-order derivative can be estimated by the eighth-order derivative, and the information matrix

equality follows from this.

The asymptotic distribution of the QLR statistic under H ′
02 follows as a corollary of Lemmas 4(b) and

5(f). By the Cramér-Wold device, theorem 3.9 of Billingsley (1999), and Lemmas 3 to 5, we have

max
(π,θ2)

2(L̃n(π, θ2)− L̃n(π, θ̂n
1,n)) ⇒ max[G2

0, max[0, G∗]2],

where cov(G0, G∗) = Ω(3,s)/[Ω(3)Ω(s)]1/2 and Ω(3,s) := C
(s)
3 − C

(s)
12 [C(θ)

22 ]−1C
(3)
1 . In applying theorem 3.9 of

Billingsley (1999), we exploit the fact that C(s) is positive definite to show the existence of the RHS.

Theorem 5: Given A1, A2 (i, iv), A3, A4, A5 (ii, iv), A6 (iii), and H ′
02, for each ε > 0, QLRn(ε) ⇒

max[G2
0,max[0, G∗]2].

Several items are noteworthy. First, there are only two limits, G0 and G∗ under H ′
02, implying that the

tightness trivially follows for the same reason as in Theorem 4. Second, as explained below, the limiting

random variable, G0, can be inferred from G by moving θ2 to θ∗, but G∗ cannot. Third, the rate of

convergence of the QLR statistic is n1/8 or n1/6 depending on whether π = 1/2 or not, so that the power of

the QLR statistic under H ′
02 is much weaker than the standard case where the rate of convergence is n1/2,

and also weaker than the non-zero second-order derivative case. This property is also expected even for the

standard LR statistic under the same hypothesis, because the mixture model is a special case of the HMM

specification. Finally, the analysis of Neyman and Scott’s (1966) C(α) statistic requires combining
∑

r̂
(0,3)
t

and
∑

ŝt. For our later Monte Carlo simulations, we use the C(α) statistic asymptotically equivalent to

the LR statistic under H ′
02.
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2.4. Null Distribution of the QLR Statistic under H ′
0

Given the null distribution of the QLR statistic under H ′
01 or H ′

02, we can test regime switching by

restricting our attention to a particular null hypothesis. As an example, we can compute QLR1,n(ε) or

QLR2,n(ε) for a given ε and apply the distribution appropriate to each test statistic. Indeed, the LR statistic

of Hartigan (1985) and Ghosh and Sen (1985) focuses on H ′
01, and the C(α) test in Neyman and Scott

(1966) focuses on H ′
02. It is, however, of general interest to obtain the asymptotic null distribution of the

QLR statistic when the null parameter space is unrestricted. We derive this asymptotic null distribution,

and implement Monte Carlo simulations below to compare it with other statistics.

The null asymptotic distribution can be given as the distribution of the maximum value of the random

variables given under each hypothesis. We elaborate further, however, because these random variables

are not independent: there exists a regular relationship between them. This requires a further regularity

condition.

A6 : (iv) For each (π∗, θ∗0, θ
∗
1, θ

∗
2), λmin(B(π∗, θ∗0, θ

∗
1, θ

∗
2)) ≥ 0 such that (a) if λmin(B(π∗, θ∗0, θ

∗
1, θ∗2)) > 0,

then λmax(B(π∗, θ∗0, θ
∗
1, θ

∗
2)) < ∞; or (b) if λmin(B(π∗, θ∗0, θ

∗
1, θ

∗
2)) = 0, then for each θ2 6= θ∗ and θ′2 6= θ∗,

λmin(C(u)(θ2, θ
′
2)) > 0 and λmax(C(u)(θ2, θ

′
2)) < ∞, where for each (θ2, θ

′
2), r

(u)
t (θ2) := [1−rt(θ2), r

(1)
t (θ2)′]′,

and

C(u)(θ2, θ
′
2) :=


 E[r(0,2)

t (θ∗)2] E[r(0,2)
t (θ∗)r

(u)
t (θ′2)

′]

E[r(u)
t (θ2)r

(0,2)
t (θ∗)] C(θ)(θ2, θ

′
2)


 .

(v) For each (π∗, θ∗0, θ
∗
1, θ

∗
2), λmin(B(π∗, θ∗0, θ

∗
1, θ

∗
2)) ≥ 0 such that (a) if λmin(B(π∗, θ∗0, θ

∗
1, θ∗2)) > 0, then

λmax(B(π∗, θ∗0, θ
∗
1, θ

∗
2)) < ∞; or (b) if λmin(B(π∗, θ∗0, θ

∗
1, θ

∗
2)) = 0, then for each θ2 6= θ∗ and θ′2 6= θ∗,

λmin(C(v)(θ2, θ
′
2)) > 0 and λmax(C(v)(θ2, θ

′
2)) < ∞, where for each (θ2, θ

′
2),

C(v)(θ2, θ
′
2) :=




E[st(θ∗)2] E[st(θ∗)r
(0,3)
t (θ∗)] E[st(θ∗)r

(u)
t (θ′2)]

E[r(0,3)
t (θ∗)st(θ∗)] E[r(0,3)

t (θ∗)2] E[r(0,3)
t (θ∗)r

(u)
t (θ′2)

′]

E[r(u)
t (θ2)st(θ∗)] E[r(u)

t (θ2)r
(0,3)
t (θ∗)] C(θ)(θ2, θ

′
2)


 .

A6(iv and v) ensure that the asymptotic joint distribution of the random variables obtained under H ′
01

and H ′
02 is well-defined and properly behaved.

Lemma 6: (a) Given A1, A2 (i, iii), A3, A4, A5 (ii, iii), A6 (iv), and H ′
0, plim θ2→θ∗G(θ2) = −G0, where

G0 is given in Theorem 4 (a).

(b) Given A1, A2 (i, iv), A3, A4, A5 (ii, iv), A6 (v), and H ′
0, plim θ2↑θ∗G(θ2) = G0 and plim θ2↓θ∗G(θ2) =

−G0, where G0 is given in Lemma 4 (b).

The null parameter restrictions enforced through ε in Theorems 2, 4, and 5 are eliminated here to let θ2

approach θ∗. We prove Lemma 6 by approximating the sample scores of G around θ∗. Lemma 6(a) implies

that the Gaussian process, G, is continuous at θ∗ in probability (that is, with probability approaching one),

when the second-order derivative isn’t zero. Otherwise, G is discontinuous at θ∗ in probability. Thus, the
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limiting distribution of the QLR statistic cannot be represented by a functional of a continuous Gaussian

process. Even G(θ∗) is not identified appropriately.

We make several remarks. First, if the second-order derivative isn’t zero, then G contains all the

information on the QLR statistic under H ′
0. Second, however, if the second-order derivative is zero, we

cannot neglect the event that max[0, G∗]2 ≥ supΘ∗\{θ∗}min[0,G(θ2)]2, but must consider this separately.

Third, Lemma 6(b) implies that supΘ∗\{θ∗}min[0,G(θ2)] ≥ G2
0, so that the G2

0 term in Theorem 5 can be

ignored in considering the asymptotic distribution under H ′
0. Thus, we have the following.

Theorem 6: (a) Given A1, A2 (i, iii), A3, A4, A5 (ii, iii), A6 (iv), and H ′
0, QLRn ⇒ supΘ∗ min[0, G(θ2)]2.

(b) Given A1, A2 (i, iv), A3, A4, A5 (ii, iv), A6 (v), and H ′
0, QLRn ⇒ max[max[0, G∗]2, supΘ∗\{θ∗}min[0,

G(θ2)]2].

By the definition of “sup,” supΘ∗\{θ∗}min[0,G(θ2)]2 = supΘ∗ min[0,G(θ2)]2. We nevertheless maintain this

notation to indicate that G is discontinuous at θ∗.

Theorem 6 extends the literature in several ways. Bickel and Chernoff (1993) and Lindsay (1995)

corroborate the claim in Hartigan (1985) that the (Q)LR statistics are not bounded in probability unless

the parameter space is bounded. Chernoff and Lander (1995) consider mixtures of binomials and derive

the limiting distribution of the LR statistics. Chen and Chen (2000) generalize the analysis of Chernoff

and Lander (1995) by considering general mixture models. But their generalization is restricted in the

sense that their regularity conditions do not allow for the presence of other nuisance parameters. Under

each regime, the conditional PDF has to have a single parameter. Dacunha-Castelle and Gassiat (1999)

allow for the presence of other nuisance parameters and derive the asymptotic null distribution using

the so-called “locally conic parameterizations.” Nevertheless, their locally conic parametrization does not

consider the case in which second-order derivatives are zero, so that their analysis cannot accommodate the

models considered by Theorem 6(b). In this respect, Theorem 6(b) extends the scope of mixture models by

showing that the asymptotic null distributions of (Q)LR statistics can be different from those previously

obtained. Specifically, the relevant Gaussian process can be discontinuous. We revisit the popular empirical

model considered by Porter (1983) below. His model requires Theorem 6(b) for its analysis.

2.5. Model Exercises

We consider two popular model specifications to explore the behaviors identified above. Suppose that

{Xt} is generated by the AR(1) process Xt = 0.5Xt−1 + ut, ut ∼ i.i.d. N(0, 1); and consider the following

mixtures of normals as alternatives: π·N(θ1+θ0Xt−1, 1)+(1−π)·N(θ2+θ0Xt−1, 1), where π ∈ [0, 1], θ1, θ2 ∈
Θ∗, and Θ∗ is taken in turn to be Θ∗ := [−1.0, 1.0], [−2.0, 2.0], [−3.0, 3.0], [−4.0, 4.0], [−5.0, 5.0], [0.0, 1.0],

[0.0, 2.0], [0.0, 3.0], [0.0, 4.0] or [0.0, 5.0]. The other parameters are not restricted. These choices for Θ∗

are considered to illustrate how different parameter spaces or the boundary parameter can affect the QLR

statistic. The last five choices for Θ∗ are motivated by the consideration that many econometric models have

structures similar to those considered by Porter (1983). The limiting behavior of the QLR statistics for these
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models is given as supθ2∈Θ∗(min[0, Ḡ(θ2)])2 by Theorem 6(a), where for each θ2 ∈ Θ∗, Ḡ(θ2) ∼ N(0, 1), and

for each θ2, θ
′
2 ∈ Θ∗, E[Ḡ(θ2)Ḡ(θ′2)] = (exp(θ2θ

′
2)− 1− θ2θ

′
2)/[(exp(θ2

2)− 1− θ2
2)

1/2(exp(θ′2
2)− 1− θ′2

2)1/2].

Further, consider a Gaussian process defined as G̃(θ2) :=
∑∞

`=2 θ`
2Y`/[`!(exp(θ2

2) − 1 − θ2
2)]

1/2 for each

θ2 and {Y`}∞`=1 ∼ i.i.d. N(0, 1); then Ḡ has the same covariance structure as G̃, and this implies that

their distributions are identical. Thus, simulating G̃ yields the critical values of the QLR statistic. We

approximate G̃(θ2) using
∑150

`=2 θ`
2Y`/[`!(exp(θ2

2) − 1 − θ2
2)]

1/2 and compute the maximum by grid search

with a grid distance of 0.01. Table 1 contains results for the various parameter spaces at the 5% level,

using 10,000 replications. As explained above, the critical value gets larger, and the point mass at zero gets

smaller, as the size of Θ∗ increases. Also, we compute the critical values when the boundary parameter

problem is neglected. That is, we compute K ′ such that P (supθ2∈Θ∗ G̃(θ2)2 > K ′) = 0.05 by simulation.

This is intended to examine how serious the boundary parameter problem can be. Table 1 shows that

Table 1. Critical Values for Various Parameter Spaces (5% nominal level)

DGP: Xt = 0.5Xt−1 + ut and ut ∼ i.i.d. N(0, 1)

Model: π ·N(θ1 + θ0Xt−1, 1) + (1− π) ·N(θ2 + θ0Xt−1, 1)

Θ∗ [−1.0, 1.0] [−2.0, 2.0] [−3.0, 3.0] [−4.0, 4.0] [−5.0, 5.0]

Critical values 4.01 4.92 5.67 6.26 6.76

Point mass at zero (in percent) 31.66 16.37 7.61 3.12 1.48

Critical values w/o boundary condition 5.33 6.28 7.06 7.62 8.19

Critical values given by Corollary 1 4.05 5.40 6.06 6.58 7.00

Θ∗ [0.0, 1.0] [0.0, 2.0] [0.0, 3.0] [0.0, 4.0] [0.0, 5.0]

Critical values 3.49 4.09 4.76 5.17 5.65

Point mass at zero (in percent) 40.44 30.12 19.64 12.73 9.00

Critical values w/o boundary condition 4.63 5.54 6.09 6.53 6.99

Critical values given by Corollary 1 2.53 4.05 4.73 5.23 5.85

Model: π ·N(θ1 + θ0Xt−1, σ
2) + (1− π) ·N(θ2 + θ0Xt−1, σ

2)

Θ∗ [−1.0, 1.0] [−2.0, 2.0] [−3.0, 3.0] [−4.0, 4.0] [−5.0, 5.0]

Critical values 5.01 5.61 6.35 6.54 7.06

Point mass at zero (in percent) 0.00 0.00 0.00 0.00 0.00

Critical values w/o boundary condition 5.30 6.23 7.16 7.59 8.15

Critical values given by Corollary 1 5.02 5.62 6.18 6.67 7.07

Θ∗ [0.0, 1.0] [0.0, 2.0] [0.0, 3.0] [0.0, 4.0] [0.0, 5.0]

Critical values 4.21 4.51 5.28 5.51 5.84

Point mass at zero (in percent) 17.05 10.93 8.06 5.44 3.17

Critical values w/o boundary condition 4.98 5.42 6.28 6.75 7.04

Critical values given by Corollary 1 3.94 4.65 5.11 5.53 5.88
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there is a tendency for the impact of the boundary parameter to increase as the size of the parameter space

increases. That is, the distance between the critical values and K ′ increases as Θ∗ becomes larger.

As another example, we consider the case in which the variance is unknown and must be estimated,

taking the same AR(1) process and the same Θ∗ as above. That is, the model for Xt|Ft−1 is π · N(θ1 +

θ0Xt−1, σ
2) + (1 − π) · N(θ2 + θ0Xt−1, σ

2). Accommodating the unknown variance modifies the limiting

distributions of the QLR statistics: now QLRn ⇒ max[(max[0, G∗])2, supθ2∈Θ∗\{θ∗}(min[0, Ġ(θ2)])2] by

Theorem 6(b), where for each θ2 ∈ Θ∗, Ġ(θ2) and G∗ ∼ N(0, 1). The processes Ġ and G∗ are the weak

limits derived under H ′
01 and H ′

02 respectively. In particular, G∗ must be derived using an eighth-order

Taylor expansion. Note that G∗, plim θ2↓0Ġ(θ2), and plim θ2↑0Ġ(θ2) are different. Further, for each θ2,

E[Ġ(θ2)G∗] = θ4
2/(exp(θ2

2)− 1− θ2
2 − θ4

2/2)1/2 and for each θ2, θ
′
2, E[Ġ(θ2)Ġ(θ′2)] = (exp(θ2θ

′
2)− 1− θ2θ

′
2 −

θ2
2θ
′
2
2/2)/[(exp(θ2

2)− 1− θ2
2 − θ4

2/2)1/2(exp(θ′2
2)− 1− θ′2

2 − θ′2
4/2)1/2]. The given Gaussian process Ġ has

the same distribution as G̈, which is defined as
∑∞

`=3 θ`
2Y`/[`!(exp(θ2

2)− 1− θ2
2 − θ4

2/2)]1/2 for each θ2, and

if G∗ = Y4 then E[Ġ(θ2)G∗] = E[G̈(θ2)G∗] for each θ2. Thus, we generate critical values by simulating

max[(max[Y4, 0])2, supθ2∈Θ∗\{θ∗}(min[0, G̈(θ2)])2]. Table 1 also contains the critical values for these models

with the same parameter spaces as before, and we observe similar behavior. An interesting feature of this

case is that the point mass at zero disappears when θ∗ is an interior point of Θ∗. This is mainly because

G̈ is an odd function at zero with probability one, as implied by Lemma 6(b).

2.6. Conservative Approximation of the Null Distribution

The properties of G are highly model-dependent and generally will not coincide with those of the above

examples. The exact behavior of G can be difficult to pin down, as pointed out by Davies (1977, 1987),

mainly because of the need to simultaneously consider a continuum of Gaussian random variables whose

covariance structures are not necessarily representable by a Markovian Gaussian probability law. For the

same reason, simulation methods based on a finite number of parameter elements can provide too rough a

lower bound for the QLR statistic, despite extensive simulation.

Our next result overcomes this difficulty by providing a large deviation inequality that gives a relatively

sharp lower bound on the tail distribution of the test statistic. These tail lower bounds are designed to yield

quick reference critical values rather than to define a precise critical region. We recommend referring to

other more precise critical values (when available) upon accepting the null hypothesis using our conservative

critical values.

First we consider the case in which the covariance of G is uniformly greater than that of another stationary

Gaussian process, say Bs. Then the desired tail lower bound is obtained from Bs.

Theorem 7: Given A1, A2 (i, iii), A3, A4, A5 (ii, iii), and A6 (iv) (or A1, A2 (i, iv), A3, A4, A5 (ii, iv),

and A6 (v)), if for all θ2, θ
′
2 ∈ {θ2 ∈ Θ∗ : |θ2 − θ′2| ≤ δ, ∃ δ > 0} we have E[Bs(θ2)Bs(θ′2)] ≤ E[G(θ2)G(θ′2)],

where Bs is a Gaussian process with mean 0 and cov(Bs(θ2),Bs(θ′2)) = 1 − |θ2 − θ′2|γ(1 + o(1)) for some

γ ∈ R, then under H ′
01,
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P

(
sup

θ2∈Θ∗\{θ∗}
(min[0,G(θ2)])2 > u2

)
≤ T1(u,Θ∗) := Hγ · λ(Θ∗) · u2/γ · (1− Φ(u))(1 + o(1)),

as u → ∞, where Φ( · ) is the standard normal CDF, Hγ := limθ2→∞Hγ([0, θ2])/θ2, Hγ([0, θ2]) :=

E[exp(maxθ2∈[0,θ2] BF (θ2))], λ is the Lebesgue measure of the argument set, and BF is a fractional Gaussian

process with mean −|θ2|γ , and cov(BF (θ2),BF (θ′2)) = |θ2|γ + |θ′2|γ − |θ2 − θ′2|γ on Θ∗.

A leading case occurs when γ = 2, in which case H2 is the Pickand constant, 1/
√

π. If a stationary Gaussian

process Bs defined on an arbitrary set Θi is such that cov(Bs(θ2),Bs(θ′2)) = 1− |θ2 − θ′2|γ(1 + o(1)), then

it has a well-known tail distribution for its extremum on the same set, which is given as T1(u,Θi). In

other words, |P (supθ2∈Θi
Bs(θ2) > u) − T1(u,Θi)| → 0, as u → ∞ (see Piterbarg (1996)). Further, if

the covariance function of Bs is uniformly bounded from above on Θi by that of G, then the distribution

of the extremum for G is uniformly bounded by T1( · , Θi) from above. That is, the Slepian inequality

(cf. Dudley (1999)) can link the distributions of the extremes for G and Bs in such a way that an upper

bound for the critical value of the test can be found for small values of the level of the test on Θi, because

P (supθ2∈Θi
G(θ2) ≥ u) = P (supθ2∈Θi

(min[0,G(θ2)])2 ≥ u2) for u > 0. We partition the relevant parameter

space of Θ∗ into small pieces, Θi, and gather these upper bounds using the Bonferroni inequality to deliver

the conservative tail critical values of the statistic on Θ∗ in Theorem 7. Tighter bounds can be obtained

using improvements to Bonferroni, but we content ourselves with this straightforward approach. It also

follows from Theorem 7 that the closer the covariance function of Bs is to that of G, the sharper the lower

bound is. When G is stationary, then Bs directly gives the tail critical value.

Another lower bound for the test statistic is available based on the number of up-crossings for a given

level of G (cf. Rice (1944, 1945)), which is also the source of Davies’s (1977) lower bound. Heuristically,

as the state level of G increases, the number of up-crossings decreases under suitable conditions. Thus,

investigating the number of up-crossings can reveal information on the extremum of G. Using the expected

number of up-crossings, we obtain another tail critical bound for the test as follows.

Theorem 8: Given A1, A2 (i, iii), A3, A4, A5 (ii, iii), A6 (iv) (or A1, A2 (i, iv), A3, A4, A5 (ii, iv),

A6 (v)) and H ′
01,

P

(
sup

θ2∈Θ∗\{θ∗}
(min[0,G(θ2)])2 > u2

)
≤ T2(u,Θ∗) := E[NG

u [θ, θ∗)] + E[NG
u (θ∗, θ]] + 2(1− Φ(u)),

as u → ∞, where θ := min{Θ∗}, θ := max{Θ∗} and NG
u [Θ] := #{θ2 ∈ Θ : G(θ2) = u,∃δ > 0,G(θ′2) >

u,∀θ′2 ∈ [θ2 − δ, θ2]}.

The expected number of up-crossings in Theorem 8 is given in Cramér and Leadbetter (1967, pp. 288–289)

as E[NG
u [Θ]] =

∫
Θ

∫∞
0 ypθ2(u, y)dydθ2, where pθ2(x, y) is the probability density function of (G(θ2),G′(θ2)),

and G′(θ2) is a (mean square) derivative of G(θ2) with respect to θ2, whose existence is proved in Lemma
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1. Davies (1977) elaborates this to obtain that E[NG
u [Θ]] = (2π)−1/2φ(u)

∫
Θ γ(θ2)dθ2, where γ(θ2) :=

var{G′(θ2)} and φ is the PDF of a standard normal.

We can combine these lower bounds. The lower bounds provided by Theorem 7 and 8 generally differ.

In such cases, using the higher lower bound delivers preferred performance. Further, Theorems 7 and 8

are derived under H ′
01. If G is continuous at θ∗, then the lower bounds in Theorems 7 and 8 are the lower

bound under H ′
0 by Lemma 6(a). Otherwise, this needs to be modified; a modified bound can be obtained

using the Bonferoni inequality.

Corollary 1: Given A1, A2 (i, iii), A3, A4, A5 (ii, iii), A6 (iv) (or A1, A2 (i, iv), A3, A4, A5 (ii, iv),

A6 (v)) and H ′
0, limn→∞ P (QLRn > u2) ≤ min[T1(u,Θ∗), T2(u,Θ∗)] + (1−Φ(u)) · 1{C}, as u →∞, where

1{C} is 0 or 1 whether G is continuous or not.

Corollary 1 follows because limn→∞ P (QLRn > u2) ≤ P (supθ∈Θ∗ min[0,G(θ)]2 > u2)+P (max[0, G∗]2 > u2)

and P (max[0, G∗]2 > u2) = 1− Φ(u) for u > 0.

Table 1 provides the bounds of Corollary 1 for the models in Section 2.5.4 These bounds are very close

to the critical values when the size of parameter space is moderate. If the parameter space is relatively

small, then conservative bounds are ensured by choosing a small significance level.

3. Monte Carlo Simulation

We compare the size and the power of the (Q)LR statistic with other statistics in this section. For the size

comparison, we use simulation environments corresponding to the examples of Section 2.5. That is, Xt is

generated as an AR(1) process such that Xt = 0.5Xt−1+ut, where ut ∼ i.i.d. N(0, 1); the model for Xt|Ft−1

is a mixture of normals with unknown variance, π ·N(θ1 + θ0Xt−1, σ
2)+(1−π) ·N(θ2 + θ0Xt−1, σ

2), where

θ1, θ2 ∈ [−2.0, 2.0]; and the restrictions for the other parameters are as before. For our power comparisons,

we consider the DGP with Xt = θ∗ ·1{St=1}−θ∗ ·1{St=2}+0.5Xt−1 +ut with P (St = 1|St−1 = 1) = P (St =

2|St−1 = 2) = π∗, where π∗ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and θ∗ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. Note that these DGPs

are Markov regime-switching processes, so that the QLR statistic ignores the serial correlation of {St}. We

also consider another group of DGPs, in which {St} is identically and independently distributed, so that

P (St = 1|St−1 = 1) = 1 − P (St = 2|St−1 = 2) = π∗, and the other conditions are the same as the first

group of DGPs. In this latter case, the QLR statistic is the LR statistic.

There are several statistics in the literature that can be used for the same purpose as the (Q)LR statistic.

The Bera and Jarque (BJ) statistic tests the normality assumption by jointly testing for skewness and

kurtosis. It can thus be used to test the number of regimes when the residuals follow the normal distribution,

as in our case. Because of its computational simplicity, the BJ statistic is widely used in applications. Its

formula is as follows:

BJn := n

(
S2

n

6
+

(Kn − 3)2

24

)
,

4The program code for this bound is provided at the following URL: http://www.vuw.ac.nz/staff/js-cho/mixtures.html or

***.
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Table 2. Test Statistics (levels in percent)

Number of replications: 3,000

DGP: Xt = 0.5Xt−1 + ut and ut ∼ i.i.d. N(0, 1)

Model for Xt|Ft−1: π ·N(θ1 + θ0Xt−1, σ
2) + (1− π) ·N(θ2 + θ0Xt−1, σ

2), θ1, θ2 ∈ [−2, 2]

Sample Size Nominal Levels (%) 10.00 7.50 5.00 2.50

BJn 6.06 4.83 3.66 2.56

50 C(α)n 6.03 4.40 3.06 1.40

(Q)LRn 13.53 10.56 7.90 4.20

BJn 7.06 5.96 4.73 3.40

100 C(α)n 7.60 5.46 3.86 1.90

(Q)LRn 11.60 9.16 6.73 3.20

BJn 8.23 6.53 5.23 3.76

200 C(α)n 8.16 5.96 3.96 2.46

(Q)LRn 10.00 7.50 5.30 2.43

BJn 8.73 6.66 4.50 2.63

500 C(α)n 8.33 5.73 3.73 1.80

(Q)LRn 10.20 7.53 5.43 2.33

Standard Errors 0.0054 0.0048 0.0039 0.0028

where Sn and Kn stand for the sample skewness and the sample kurtosis respectively of the prediction

residuals of the null (restricted) model. This is known to have the χ2
2 distribution under the null, asymptot-

ically. Neyman and Scott’s C(α) statistic can be also used to test regime switching. Essentially, it tests the

number of regimes by considering the dispersion of the empirical distribution; for more details, see Lindsay

(1995). The C(α) statistic hasn’t been formally examined in the literature for our model specifications, so

its limiting distribution must be obtained using third and fourth-order derivatives, following the analysis

in Section 2.3.2. We define C(α) as

C(α)n := n max

[
S2

n

6
, min

[
0,

Kn − 3√
24

]2
]

.

The C(α) statistic weakly converges to max[Z2
1 , min[0, Z2]2], where Z1 and Z2 are independent standard

normal random variables. Interestingly, the C(α) statistic uses Sn and Kn just as BJ does.

Table 2 contains results for the size comparison computed for 3,000 replications. All of the statistics

have good size. Nevertheless, the QLR statistic seems to be more stable than the others. Our power

comparisons are reported in Tables 3 and 4. Table 3 contains the results for serially correlated {St} with

P (St = 1) = 0.5. It compares the powers of test statistics at the 5% level. Given that P (St = 1) = 0.5, the

QLR statistic is most powerful for most cases. The presence of serial correlation in the Markov regime-

switching process enhances the appeal of the QLR statistic. Table 4 reports the case for i.i.d {St} with

P (St = 1) = π∗ for the same level of test. Given the symmetry of the mixtures, we do not consider the
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Table 3. Power of Test Statistics (in percent, 5% nominal level)

Number of observations: 500, Number of replications: 3,000

DGP: Xt = −θ∗ · 1{St=1} + θ∗ · 1{St=2} + 0.5Xt−1 + ut

P (St = 1|St−1 = 1) = P (St = 2|St−1 = 2) = π∗ and ut ∼ i.i.d. N(0, 1)

Model for Xt|Ft−1: π ·N(θ1 + θ0Xt−1, σ
2) + (1− π) ·N(θ2 + θ0Xt−1, σ

2), θ1, θ2 ∈ [−2, 2]

θ∗ 0.20 0.40 0.60 0.80 1.00

BJn 4.83 3.33 2.46 3.60 7.10

π∗ = 0.1 C(α)n 3.63 3.40 3.90 6.33† 12..80†

QLRn 5.76† 6.63† 7.06† 7.13 7.30

BJn 4.93† 3.73 2.60 7.90 30.93

π∗ = 0.3 C(α)n 4.26 3.23 4.63 12.23 42.93

QLRn 5.60 6.06† 9.50† 23.93† 62.16†

BJn 4.70 3.66 3.20 10.46 51.73

π∗ = 0.5 C(α)n 3.70 3.63 4.86 16.06 64.26

QLRn 6.03† 6.83† 11.33† 35.20† 85.10†

BJn 5.00 3.33 3.26 6.20 24.73

π∗ = 0.7 C(α)n 3.66 3.53 4.70 10.93 35.36

QLRn 6.16† 6.33† 9.46† 26.80† 68.83†

BJn 5.10† 3.93 4.20 4.40 4.83

π∗ = 0.9 C(α)n 3.93 3.73 4.70 4.20 4.76

QLRn 5.53 6.53† 8.13† 14.83† 29.26†

† indicates the most powerful test statistic when size distortion-adjusted critical values are applied.

cases in which π∗ is greater than 0.5. Here, the C(α) and BJ statistics are more powerful than the LR

statistic when θ∗ close to zero and π∗ is close to zero. Otherwise, the LR statistic is most powerful.

We do not report the results of other experiments due to space constraints, but our general experience is

that the overall performance of the (Q)LR statistic is better than that of the other statistics. In particular,

its performance is appealing when θ∗ is large and P (St = 1) is close to zero or one.

4. Empirical Application

In this section, we apply our results to the classic study by Porter (1983), who investigates cartel behavior

using the prices for railroad freight shipment of grain between Chicago and the Atlantic seaboard between

1880 and 1886. During this period, there was no Sherman act (1890) to deter firms from colluding. Porter’s

main interest was to see if prices were consistent with the theory of cartel pricing.

Porter (1983) exploits a regime-switching model. He begins with the following demand function:

log(Qd) = c1 + α log(P ) + β′Xd + U1,
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Table 4. Power of Test Statistics (in percent, 5% nominal level)

Number of observations: 500, Number of replications: 3,000

DGP: Xt = −θ∗ · 1{St=1} + θ∗ · 1{St=2} + 0.5Xt−1 + ut

P (St = 1|St−1 = 1) = 1− P (St = 2|St−1 = 2) = π∗ and ut ∼ i.i.d. N(0, 1)

Model for Xt|Ft−1: π ·N(θ1 + θ0Xt−1, σ
2) + (1− π) ·N(θ2 + θ0Xt−1, σ

2), θ1, θ2 ∈ [−2, 2]

θ∗ 0.20 0.40 0.60 0.80 1.00

BJn 4.26 6.36† 13.33 41.33 84.73

π∗ = 0.1 C(α)n 4.00† 4.70 13.46† 43.16† 85.93†

LRn 5.93 5.76 13.80 43.76 86.73

BJn 4.76† 4.60 8.93 26.70 73.96

π∗ = 0.3 C(α)n 3.80 4.33 11.13 30.50 71.06

LRn 4.93 7.53† 15.33† 49.73† 93.56†

BJn 4.83 4.00 3.36 11.40 52.20

π∗ = 0.5 C(α)n 4.00 4.23 5.50 18.20 64.70

LRn 6.40† 6.86† 10.60† 35.50† 84.86†

† indicates the most powerful test statistic when size distortion-adjusted critical values are applied.

where Q = Qd is the total quantity of grain shipped by rail measured in tonnage, P is the price level

of shipping measured in dollars per hundred pounds, c1 and α are unknown parameters to be estimated,

Xd contains Porter’s demand shifters, β is the vector of corresponding parameters, and U1 is a stochastic

disturbance. Next, Porter specifies a supply function of the form:

log(P ) =





c2 + γ log(Qs) + δ′Xs + U2, w.p. 1− π,

c2 + c3 + γ log(Qs) + δ′Xs + U2, w.p. π,

where π is an unknown probability, c2, c3, and γ are unknown parameters, Xs contains Porter’s supply

shifters, δ contains the corresponding parameters, and U2 is a stochastic disturbance such that


U1

U2


 ∼ N





0

0


 ,


σ2

11 σ12

σ21 σ2
22





 .

Green and Porter (1984) motivate the use of the two-regime supply function using the fact that a cartel is

not a stable organization, as each firm has an incentive to cheat on the agreement to increase its profits.

Consequently, the cartel needs a mechanism to prevent deviations. In particular, a two-regime process is

posited: if the market price is observed to be less than a reservation level for whatever reason, then all of

the firms cut their price for a given period, leading to a competitive equilibrium. After the given period,

the firms return to the cooperative equilibrium. If this strategy is adopted, then in fact no firm has any

incentive to deviate from the agreement. Nevertheless, prices and output will follow a two-regime process

as a result of demand shocks. See Green and Porter (1984) for further details.
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Table 5. Maximum Likelihood Estimationa

Porter (1983) Ellison (1994)

Coefficients Demand Curve Supply Curve Demand Curve Supply Curve

c1 0.909 7.677

(0.149) (1.882)

α –0.800 –1.802

(0.091) (1.287)

c2 –2.416 –4.764

(0.710) (1.863)

c3 0.545 0.637

(0.032) (0.104)

γ 0.090 0.306

(0.068) (0.178)

a: standard errors in parentheses.

Table 5 contains the estimation results given by Porter (1983) for the two-regime model (the alternative).

The corresponding hypotheses are H?
0 : c3 = 0 versus H?

1 : 0 < c3 < log( α
1+α). Unfortunately, the upper

bound for c3, log( α
1+α), is not defined for the estimated parameters, as the model specification requires

elastic demand, i.e., |α| > 1, but in fact we estimate α = −0.8. This difficulty is avoided by Ellison (1994),

who specified the same model but with serially correlated errors:5 U1t = ρU1t−1 + Vt, |ρ| < 1, and

V

U2


 ∼ N





0

0


 ,


σ2

11 σ12

σ21 σ2
22





 .

Thus, the model of Ellison (1994) is as follows:

log(Qd,t) = c1(1− ρ) + ρ log(Qd,t−1) + α log(Pt)− ρα log(Pt−1) + β′Xd,t − ρβ′Xd,t−1 + Vt,

log(Pt) =





c2 + γ log(Qs,t) + δ′Xs,t + U2,t, w.p. 1− π,

c2 + c3 + γ log(Qs,t) + δ′Xs,t + U2,t, w.p. π.

Ellison reports that the estimated demand elasticity is around −1.802, so that the railroad industry indeed

faced an elastic demand function between 1880 and 1886. Ellison estimates various other Markov regime-

switching models and obtains similar results. As shown above, however, specifying a mixture for the QLR

statistic is enough for a test of regime switching. With this specification, the limiting distribution of the

QLR statistic under H?
0 is obtained using Theorem 6(b) as follows:

QLRn ⇒ K := max


max[0, Y4], sup

$∈[0, ξ]

(
min

[
0,

∑∞
m=3

$m√
m!

Ym

(exp($2)− 1−$2 − 0.5$4)1/2

])2

 ,

5Cosslett and Lee (1985) also specify this model with serial correlation for the same data set.
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where Ym ∼ i.i.d.N(0, 1), $ := σ11c3√
2(σ2

11σ2
22−σ2

12)
1/2 and ξ := log( α

1+α) σ11√
2(σ2

11σ2
22−σ2

12)
1/2 . Note that this is

similar to one of the models considered in Section 2.5; the limiting distribution of the QLR statistic can be

computed by simulating K. For this, we set ξ to 5.00 to accommodate the estimation error for the upper

bound of $ around 3.625 estimated using the null model. Table 1 reports the critical value at the 5% level.

The corresponding critical value at the .1% level is 14.128. The computed QLR statistic value is 152.27,

quite far from these critical values. We thus reject the null hypothesis as Porter did and affirm Porter’s

original inference. As illustrated in this example, it is essential to specify an appropriate parameter space

for $ to ensure a valid testing procedure. Otherwise, even with a statistic value as large as 152.27, the

null hypothesis could be accepted for a moderately large parameter space.

5. Conclusion

We consider Markov regime-switching processes, and investigate the limiting distributions of statistics

for testing the null hypothesis of one regime versus the alternative of two regimes. We obtain a useful

test by specifying the multiple regime model as a mixture of the two PDFs of a Markov regime-switching

process. This specification ignores the serial correlation of the unobserved data switching process. Despite

this neglect, the quasi-maximum likelihood estimator is consistent and yields reliable testing procedures.

Under the null, one has a non-standard situation, in which one has an identification problem and a boundary

parameter problem or a log-likelihood function that cannot be approximated using second-order derivatives.

These conditions imply that the quasi-LR statistic based on the mixture model follows a non-standard

distribution.

We derive the asymptotic null distributions of the quasi-LR statistics for various mixture models not

previously examined in the mixture literature, and provide critical values of the QLR statistics for various

popular mixture models. Also, we suggest formulae to compute the tail upper critical values when the exact

critical values are difficult to compute. Although these methods do not produce precise critical values, they

may prove useful in practice. Further, we consider the size and power of several test statistics used to test

the number of regimes. Overall, the QLR statistic performs well as to size and power, and outperforms the

other standard statistics for a number of cases considered in our Monte Carlo simulations. Nevertheless,

the QLR statistic is not plausibly optimal; better performing statistics for the specific hidden Markov type

serial correlation may be found following the approach in Andrews and Ploberger (1994).

As an empirical application, we re-examine the cartel stability problem investigated by Porter (1983).

By comparing the model-specific critical value with the empirical QLR statistic value, we corroborate

Porter’s findings, as we reject the null hypothesis that there was a single equilibrium in the market for

railroad shipments between Chicago and the Atlantic seaboard between 1880 and 1886.

6. Appendix

First, we provide supplementary results used to prove the main claims.

Lemma A1: (a) Given A1, A2 (i, iii), A3, and A5 (i), sup(π,θ) |n−1
∑

`t(π, θ)− E[`t(π, θ)]| → 0 a.s.
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(b) Given A1, A2 (i, ii), A3, and A5 (i), sup(π,θ) ‖n−1
∑∇(π,θ)`t(π, θ)− E[∇(π,θ)`t(π, θ)]‖∞ → 0 a.s.

(c) Given A1, A2 (i, ii), A3, and A5 (ii), sup(π,θ) ‖n−1
∑∇2

(π,θ)`t(π, θ)− E[∇2
(π,θ)`t(π, θ)]‖∞ → 0 a.s.

Proof of Lemma A1: (a) First, note that `t is differentiable a.s. by Lemma A2(b) below, and for

some positive, stationary, and ergodic random variable, Mt, ‖∇(π,θ)`t(π, θ)‖∞ < Mt by A5(i), so that for

each (π, θ) and (π̃, θ̃), |`t(π, θ)− `t(π̃, θ̃)| ≤ Mt‖(π, θ′)′ − (π̃, θ̃′)′‖. This also implies that |n−1
∑

`t(π, θ)−
n−1

∑
`t(π̃, θ̃)| ≤ n−1

∑
Mt‖(π, θ′)′− (π̃, θ̃′)′‖. Further, we can apply the ergodic theorem to {n−1

∑
Mt},

so that for any ω ∈ F , P (F ) = 1, and ε > 0, there is an n∗(ω, ε) such that if n ≥ n∗(ω, ε), then

|n−1
∑

Mt − E[Mt]| ≤ ε, and this implies that n−1
∑

Mt ≤ E[Mt] + ε. For the same ε, we may let

δ := ε/(E[Mt] + ε); then n−1
∑

Mt‖(π, θ′)′ − (π̃, θ̃′)′‖ ≤ ε, whenever ‖(π, θ′)′ − (π̃, θ̃′)′‖ ≤ δ, because

n−1
∑

Mt‖(π, θ′)′ − (π̃, θ̃′)′‖ ≤ n−1
∑

Mtδ = n−1
∑

Mtε/(ε + E[Mt]) ≤ ε. That is, for any ω ∈ F ,

P (F ) = 1 and ε > 0, there is n∗(ω, ε) and δ such that if n ≥ n∗(ω, ε) and ‖(π, θ′)′ − (π̃, θ̃′)′‖ ≤ δ, then

|n−1
∑

`t(π, θ) − n−1
∑

`t(π̃, θ̃)| < ε, which means that {n−1
∑

`t}∞n∗(ω,ε) is equicontinuous. Thus, with

probability one, n−1
∑

`t converges to E[`t] uniformly on [0, 1]×Θ by Rudin (1976, p.168).

(b and c) We can apply Ranga Rao (1962) to each case. To save space, for each (π, θ) ∈ [0, 1] × Θ, let

qt := ∇(π,θ)`t(π, θ) (of (b)) or ∇2
(π,θ)`t(π, θ) (of (c)) respectively. Then, supπ,θ |qt(π, θ)| ≤ Mt by A5(i or

ii), and as Mt has a finite first moment, E[qt] is continuous on [0, 1] × Θ, and sup(π,θ) ‖n−1
∑

qt(π, θ) −
E[qt(π, θ)]‖∞ → 0 a.s., as n →∞ by Ranga Rao (1962). ¤

Lemma A2: (a) Suppose that (π̃, θ̃0, θ̃1, θ̃2) is a boundary element with π̃ = 0 and (θ̃0, θ̃1, θ̃2) an interior

element of Θ with θ̃1 6= θ̃2. Then, under A2 (i) and A3, for each θ1 ∈ Θ∗, the domain of `t( · , · , θ1, · )
includes a set P 0

1 ×Θ0
0×Θ0

2+, where for some ε > 0, P 0
1 := [0, ε], and Θ0

0 and Θ0
2+ are open cubes centered

at θ̃0 and θ̃2 respectively.

(b) Under A2 (ii), `t ∈ C(2)([0, 1]×Θ) a.s.

(c) Under A1, A2 (i, ii), A3, A4, A5 (ii), and A6 (i),
√

n[(θ̂n′
n,0, θ̂

n
n,1)− (θ∗′0 , θ∗)]′

A∼ N [0, [C(θ)
22 ]−1].

Proof of Lemma A2: (a) Since (θ̃0, θ̃2) is an interior element of Θ̃, there are open balls, B(θ̃0, ε0) ⊂ Θ0

and B(θ̃2, ε1) ⊂ Θ∗. Now, let ε := min[ε0/
√

2, ε1/
√

2]. Then the desired result follows by letting Θ0
0 :=

C(θ̃0, ε) and Θ0
2+ := C(θ̃2, ε), where C(θ)(θ, ε) is an open cube centered at θ with length 2ε.

(b) By the definition of ft, its composition with the log-function must be in C(2)([0, 1]×Θ) a.s.

(c) By the mean value theorem, the interiority of (θ∗0, θ∗), and the FOC for (θ̂n
0,n, θ̂n

1,n), [(θ̂n′
n,0, θ̂

n
n,1) −

(θ∗′0 , θ∗)]′ = [∇2
θ1L

∗
n(1, θ∗0, θ∗θ2)]−1[∇θ1L∗n(1, θ∗0, θ∗, θ2)] + op(1). The desired result follows by the LLN, the

CLT, the information matrix equality, and the definition of C
(θ)
22 . ¤

Remarks: 1. Assumption 22∗ of Andrews (2001) for the mixture is satisfied by Lemma A2.

2. In considering the open cubes of Lemma A2(a), we consider the locations of (π∗, θ∗0, θ
∗
1, θ

∗
2) generated

by the null hypotheses, so that Lemma A2(a) treats the null parameter space generated by H ′
01.

Proof of Theorem 1: (a) The given claim follows directly by the SULLN of Lemma A1(a).
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(b) To show the result, we prove that the unconditional population means of the FOCs are zeros at (π∗, θ∗).

Then this implies that (π̂q
n, θ̂q

n) → (π∗, θ∗) a.s. by Lemma A1(a) (cf. White (1994, theorem 4.6)).

For this, we first prove that E[1/(π∗ft(θ∗0, θ
∗
1) + (1− π∗)ft(θ∗0, θ

∗
2))] = 1, which is the common element

in the FOCs. For each (π, θ), E[1/(πft(θ1) + (1− π)ft(θ2))] =
∑2

k=1 E[1/(πft(θ1) + (1 − π)ft(θ2))|St =

k]P (St = k), P (St = 1) = π∗ and f(X1, · · · , Xt|St = 1) = π∗−1π∗′F1(θ∗)[
∏t−1

τ=1 P∗Fτ (θ∗)]P∗Ft(θ∗)[1 0]′,

where P∗ is P evaluated at p∗11 and p∗22. Note that E[[πft(θ1)+(1−π)ft(θ2)]−1|St = 1] =
∫

f(x1, · · · , xt|St

= 1)/[πft(θ1)+(1−π)ft(θ2)]dxt, and also
∫

f(x1, · · · , xt|St = 1)dxt−1 = π∗−1π∗′
∫

F1(θ∗)dx1[
∏t−1

τ=2 P∗ ∫
Fτ

(θ∗)dxτ ]P∗Ft(θ∗)[1, 0]′ = π∗−1π∗′I[
∏t−1

τ=2 P∗I]P∗Ft(θ∗)[1, 0]′ = ft(θ∗0, θ
∗
1), implying that E[1/(πft(θ1) +

(1 − π)ft(θ2))|St = 1] =
∫

ft(θ∗0, θ
∗
1)/(πft(θ1) + (1 − π)ft(θ2))dxt. In the same way, it follows that

E[1/(πft(θ1) + (1− π)ft(θ2))|St = 2] =
∫

ft(θ∗0, θ
∗
2)/(πft(θ1) + (1−π)ft(θ2))dxt, so that E[1/(πft(θ1) + (1

−π)ft(θ2))] =
∫

(π∗ft(θ∗0, θ
∗
1)+(1−π∗)ft(θ∗0, θ

∗
2))/(πft(θ1)+(1−π)ft(θ2))dxt. This shows that E[1/(πft(θ1)+

(1− π)ft(θ2))] = 1 when (π, θ) = (π∗, θ∗).

Second, we consider the expected value of each FOC. For θ0, E[∇θ0`t(π, θ)] = E[(π∇θ0ft(θ1) + (1 −
π)∇θ0ft(θ2))/(πft(θ1)+(1−π)ft(θ2))] =

∫
(π∇θ0ft(θ1)+(1−π)∇θ0ft(θ2))(π∗ft(θ∗0, θ

∗
1)+(1−π∗)ft(θ∗0, θ

∗
2))/

(πft(θ1)+(1−π)ft(θ2))dxt, where the last equality follows by the same reasoning as above. Thus, if (π, θ) =

(π∗, θ∗), then E[∇θ0`t(π, θ)] = π∗
∫ ∇θ0ft(θ∗0, θ

∗
1)dxt + (1− π∗)

∫ ∇θ0ft(θ∗0, θ
∗
2)dxt = π∗∇θ0

∫
ft(θ∗0, θ

∗
1)dxt +

(1−π∗)∇θ0

∫
ft(θ∗0, θ

∗
2)dxt = 0, where the second last equality holds by the Lebesgue dominated convergence

theorem (LDCT) and A5(ii); and the last equality follows by that
∫

ft(θ1)dxt =
∫

ft(θ2)dxt = 1 for each

θ1, θ2. Next, for θ1, if (π, θ) = (π∗, θ∗), E[∇θ1`t(π, θ)] = π∗
∫ ∇θ1ft(θ∗0, θ

∗
1)dxt = π∗∇θ1

∫
ft(θ∗0, θ

∗
1)dxt = 0

by the same argument as above. Similarly, E[∇θ2`t(π, θ)] = 0, if (π, θ) = (π∗, θ∗). Finally, E[∇π`t(π, θ)] =
∫

(ft(θ1)− ft(θ2))(π∗ft(θ∗0, θ
∗
1) + (1− π∗)ft(θ∗0, θ

∗
2))/(πft(θ1) + (1− π)ft(θ2))dxt. Thus, if (π, θ) = (π∗, θ∗),

then E[∇π`t(π, θ)] =
∫

(ft(θ1)− ft(θ2))dxt = 1− 1 = 0, implying the desired result by Lemma A1. ¤

Proof of Lemma 1: (a) We show Lemma 1(a) in two steps. First, we show that {n−1
∑∇(π,θ1)`t(1, θ∗0,

θ∗, · )∇(π,θ1)`t(1, θ∗0, θ∗, · )′} satisfies the SULLN. Second, we prove that {n−1/2
∑∇(π,θ1)`t(1, θ∗0, θ∗, · )}

weakly converges to S1. Then we can apply theorem 7.1 of Billingsley (1999) to obtain the desired result.

First, from the assumption that {Xt} is a geometric β-mixing process, for each θ2 ∈ Θ∗, {∇(π,θ1)`t(1, θ∗0,

θ∗, θ2)∇(π,θ1)`t(1, θ∗0, θ∗, θ2)′} is a strictly stationary β-mixing process with a mixing coefficient less than cρτ

and a finite 1+δ moment by A1 and A5(ii). Thus, for each θ2 ∈ Θ∗, n−1
∑∇(π,θ1)`t(1, θ∗0, θ∗, θ2)∇(π,θ1)`t(1,

θ∗0, θ∗, θ2)′ → C(θ)(θ2, θ2) a.s. by the ergodic theorem. Further, this holds uniformly on Θ∗(ε) by Lemma A1.

Second, for each θ2 ∈ Θ∗(ε), {n−1/2∇(π,θ1)L
∗
n(1, θ∗0, θ∗, θ2)} obeys the CLT given that {∇(π,θ1)`t(1, θ∗0, θ∗, θ2)}

has a β-mixing coefficient less than cρτ and a finite 2+ δ moment by A1 and A5(ii) respectively (Doukhan,

Massart, and Rio (DMR) (1995, theorem 1)). Thus, for each θ2 ∈ Θ∗(ε), n−1/2∇(π,θ1)L
∗
n(1, θ∗0, θ∗, θ2)

A∼
N(0, C(θ)(θ2, θ2)), where var(n−1/2∇(π,θ1)L

∗
n(1, θ∗0, θ∗, θ2)) = C(θ)(θ2, θ2). Further, applying the Cramér-

Wold device establishes the finite dimensional distributional convergence. Next, we apply DMR (1995,

theorem 1) to prove the tightness of {n−1/2
∑∇(π,θ1)L

∗
n(1, θ∗0, θ∗, · ) : Θ∗(ε) 7→ R2+r0}. First of all, from the

definition of∇(π,θ1)L
∗
n(1, θ∗0, θ∗, · ), ∇θ1L∗n(1, θ∗0, θ∗, · ) =

∑
rt(θ∗), which is not a function of θ2; thus, we can

ignore it in proving tightness, and pay attention to only {n−1/2∇πL∗n(1, θ∗0, θ∗, · ) = n−1/2
∑

(1 − rt( · ))}.
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We proceed in three steps. (i) Given A5(ii), let φ(x) := x1+δ/2 (x > 0); then for any s ∈ (0,∞),

E[supθ2∈Θ∗(ε) φ(s(1 − rt(θ2))2] = s1+δ/2E[supθ2∈Θ∗(ε)(1 − rt(θ2))2+δ] < s1+δ/2∆ < ∞. Further, if we let

φ∗(y) := supx≥0(xy − φ(x)), then φ∗(y) = δ∗y1+2/δ, where δ∗ := 2
2+δ − ( 2

2+δ )(2+δ)/δ. From this and

the geometric β-mixing condition, it follows that δ∗
∫ 1
0 (β−1(u))1+2/δdu < δ∗(| log(ρ)|)−(1+2/δ){| log(c)| ×

(| log(c)|)m∗ + Γ(m∗)} < ∞ by some algebra, where β−1(u) := inf{t : β(t) ≤ u}, Γ is the gamma function

and m∗ := min{2i : i ∈ N, i ≥ 1 + 2/δ}. This implies that
∫ 1
0 β−1(u)Q∗(u)2du < ∞ by lemma 2 of

DMR (1995), where Q∗ is the quantile function of supθ2∈Θ∗(ε) |1 − rt(θ2)|. (ii) It is trivial to show that
∑∞

k=1 βk ≤
∑∞

k=1 cρk = cρ/(1 − ρ) < ∞. (iii) Finally, from A5(ii) and given that ft ∈ C(2)(Θ∗) a.s. in

A2(ii), Lipschitz continuity holds a.s., thus E[|rt(θ2) − rt(θ′2)|] ≤ E[supθ2∈Θ∗(ε) |∇θ2rt(θ2)|2+δ]|θt − θ′2|2+δ,

implying that Ossiander’s L2+δ entropy is finite by Andrews (1994, theorem 5). From these facts and

theorem 1 of DMR (1995), {n−1/2
∑

(1 − rt( · )) : Θ∗(ε) 7→ R} must have a tight distribution, and so the

convergence limit of S1,n must be a Gaussian process with covariance structure the same as that of S1.

(b) To show this, we prove that the covariance function of S1 has a generalized second-order deriva-

tive. That is, for each θ2 ∈ Θ∗(ε), ∇θ2∇θ′2K(θ2, θ
′
2) := limh,h′→0(hh′)−1(K(θ2 + hιr, θ

′
2 + h′ιr) −K(θ2 +

hιr, θ
′
2) − K(θ2, θ

′
2 + h′ιr) + K(θ2, θ

′
2)) exists at θ2 = θ′2, where ιr is an r × 1 vector of ones, and

K(θ2, θ
′
2) = C(θ)(θ2, θ2)−1C(θ)(θ2, θ

′
2)C

(θ)(θ′2, θ
′
2)
−1 for each θ2, θ

′
2 ∈ Θ∗(ε). The claim then follows as a

corollary of Grenander (1981, theorem 1 of Chapter 2-2). Note that for each θ2 ∈ Θ∗(ε), C(θ)(θ2, θ2) is

positive definite by A6(i); thus, if C(θ)(θ2, θ
′
2) has a generalized second-order derivative, then K(θ2, θ

′
2)

must have a generalized second-order derivative. Further, C
(2)
22 is not a function of θ2. Thus, we can

restrict our attention only to the generalized second-order derivative of C
(θ)
11 (θ2, θ

′
2), and prove its exis-

tence. ∇θ2∇θ′2C
(θ)
11 (θ2, θ

′
2) = limh,h′→0 E[(hh′)−1(rt(θ2 +hιr, θ

′
2 +h′ιr)− rt(θ2 +hιr, θ

′
2)− rt(θ2, θ

′
2 +h′ιr)+

rt(θ2, θ
′
2))] = E[limh,h′→0(hh′)−1(rt(θ2 + hιr, θ

′
2 + h′ιr)− rt(θ2 + hιr, θ

′
2)− rt(θ2, θ

′
2 + h′ιr) + rt(θ2, θ

′
2))] =

E[limh→0 h−1(∇θ′2rt(θ2 +hι′r)−∇θ′2rt(θ2, θ
′
2))] = E[∇θ2∇θ′2rt(θ2, θ

′
2)], where the second equality follows by

the LDCT, A5(ii) and the second-order differentiability of A2(ii). The final term is well defined by the

moment condition in A5(ii). This completes the proof. ¤

Remarks: 1. Hansen (1996, 2004) considers various other econometric models applying DMR (1995) in a

time series context.

2. In Lemma 1(a), we estimate E[∇2
(π,θ1)`t(1, θ∗0, θ∗, · )] using n−1

∑∇(π,θ1)`t(1, θ∗0, θ∗, · ) · ∇(π,θ1)`t(1,

θ∗0, θ∗, · )′ to ensure a positive definite estimator.

Proof of Theorem 2: Note that QLRn(ε) = supθ2∈Θ∗(ε) QLR1,n(θ2)−QLR2,n. We examine the limiting

behavior of each element of the RHS.

First, note that QLR2,n := 2(L∗n(1, θ̂n
0,n, θ̂n

1,n, θ2)) − L∗n(1, θ∗0, θ∗, θ2)) and L∗n(1, θ0, θ1, θ2) =
∑ ˜̀

t(θ1).

Thus, by the mean value theorem, the interiority of (θ∗0, θ∗), and the FOC for (θ̂n
0,n, θ̂n

1,n), QLR2,n =

[∇θ1L∗n(1, θ∗0, θ∗, θ2)]′[∇2
θ1L

∗
n(1, θ∗0, θ∗θ2)]−1[∇θ1L∗n(1, θ∗0, θ∗, θ2)] + op(1).

Second, to prove the remaining claim, we verify the conditions (assumptions 2-5, 7 and 8) given in

theorem 2(b) of Andrews (2001). Now Lemma A2(a–b) verifies assumption 2; Lemma 1 and its proof
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verify assumption 3; Theorem 1, Lemma A2(a–b) and Lemma 1 verify assumption 4; assumption 5 is

satisfied given that 1 is a boundary element of [0, 1], thus {π − 1 : π ∈ [0, 1]} is locally equal to R−;

and assumption 7 and 8 trivially hold by A2(i). In particular, assumption 7(a) does not apply to our

problem, and assumptions 7(b) and 8 hold by the assumption on Θ̃ given in A2(i). From these, under H ′
01,

supθ2∈Θ∗(ε) QLR1,n(θ2) = supθ2∈Θ∗(ε) min[0, Ω(θ)(θ2, θ2)1/2S
[1:1]
1,n (θ2)]2 + [n−1/2∇θ1L∗n(π, θ)]′[n−1

∑∇θ1`t(π,

θ)∇θ1`t(π, θ)′]−1[n−1/2∇θ1L∗n(π, θ)](π,θ1)=(1,θ∗0 , θ∗)+op(1) using theorem 2(b) of Andrews (2001). Next, note

that for any θ2 ∈ Θ∗(ε), [n−1/2∇θ1L∗n(π, θ)]′[n−1
∑∇θ1`t(π, θ)∇θ1`t(π, θ)′]−1[n−1/2∇θ1L∗n(π, θ)] evaluated

at (1, θ∗0, θ∗, θ2) is identical to [n−1/2∇θ1L∗n(π, θ)]′[n−1
∑∇θ1`t(π, θ)∇θ1`t(π, θ)′]−1[n−1/2∇θ1L∗n(π, θ)] at

(π, θ∗0, θ∗, θ∗) for any π ∈ [0, 1]. Therefore, it follows that [n−1/2∇θ1L∗n(π, θ)]′[n−1
∑∇θ1`t(π, θ)∇θ1`t(π, θ)′

]−1[n−1/2∇θ1L∗n(π, θ)](π,θ1)=(1,θ∗0 , θ∗) = QLR2,n + op(1) by the information matrix equality.

Thus, by these two facts we have that QLRn(ε) = supθ2∈Θ∗(ε) min[0, Ω(θ)(θ2, θ2)1/2S
[1:1]
1,n (θ2)]2 + op(1) ⇒

supθ2∈Θ∗(ε) min[0,G(θ2)]2 under H ′
01, where the weak convergence follows by Lemma 1(a) and the contin-

uous mapping theorem. ¤

Remark: It’s straightforward that QLR2,n ⇒ Z ′Z by the standard argument, where Z ∼ N [0, Ir0+1].

Proof of Theorem 3: To show the result, we use the following definition and fact.

Definition: A semi-metric space, (Θ∗, d(θ2, θ
′
2)), is precompact if for all ε > 0, N(Θ∗, d; ε) < ∞, where

N(Θ∗, d; ε) is the smallest number of open balls with radius ε measured by d.

Fact (Lifshits, 1995, p. 65 ): Let {G : Θ∗ 7→ R} be a set of separable Gaussian random functions and

suppose that (Θ∗, d(θ2, θ
′
2)) is precompact for some d. Then P (supθ2∈Θ∗ |G(θ2)| < ∞) = 1 if and only if

α(G(θ2), Θ∗) < ∞ a.s., where α(G(θ2), Θ∗) := limδ→0 supθ2,θ′2∈Θ∗,d(θ2,θ′2)<δ |G(θ2)− G(θ′2)|.

By Lemma 1(b), G is continuous in probability on Θ1∗ := [θ, θ∗) and Θ2∗ := (θ∗, θ] so that α(G,Θ∗) equals 0

in probability. Further, Ossiander’s L2+δ entropy is finite as shown in the proof of Lemma 1(a). That is,
∫ 1
0 [log(N[ ](F , ‖ · ‖2+δ; ε))]1/2dε < ∞, where N[ ](F , ‖ · ‖2+δ; ε) is the bracketing number of functions on

Θi∗ with respect to ‖ · ‖2+δ (i = 1, 2). From the relationship that for any ε > 0, N(Θi∗, d2+δ; ε) ≤ N[ ](F , ‖ ·
‖2+δ; ε), we have

∫ 1
0 [log(N(Θi∗, d2+δ; ε))]1/2dε < ∞, where d2+δ is the metric corresponding to ‖ · ‖2+δ.

Thus, if for some ε1 > 0, N(Θi∗, d2+δ; ε1) = ∞, then for any ε < ε1, N(Θi∗, d2+δ; ε) = ∞, implying that
∫ 1
0 [log(N(Θi∗, d2+δ; ε))]1/2dε = ∞. This is a contradiction to the fact that

∫ 1
0 [log(N(Θi∗, d2+δ; ε))]1/2dε <

∞. Therefore, for any ε > 0, N(Θi∗, d2+δ; ε) < ∞ (i = 1, 2). That is, (Θ∗, d2+δ) is precompact. Hence, the

desired result follows by the above fact. ¤

We use the following supplementary lemmas to show the given main claims.

Lemma B1: Given A1, A2 (i, iii), A3, A4, A5 (ii, iii), A6 (ii), and H ′
02,

(a)
∑∇i1∇i2ft(θ̂n

0,n, θ̂n
1,n)/ft(θ̂n

0,n, θ̂n
1,n) = Op(n1/2);
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(b)
∑∇i1∇i2∇i3ft(θ̂n

0,n, θ̂n
1,n)/ft(θ̂n

0,n, θ̂n
1,n) = Op(n1/2), where i1, i2, i3 ∈ {θ01, · · · , θ0r, θ1}.

Proof of Lemma B1: (a and b) For notational simplicity, let qt(θ̂n
0,n, θ̂n

1,n) be the functions in (a) and

(b). By the mean value theorem,
∑

qt(θ̂n
0,n, θ̂n

1,n) =
∑

qt(θ∗0, θ∗) +
∑∇θ1qt(θ̄0, θ̄1)[(θ̂n′

n,0, θ̂
n
n,1) − (θ∗′0 , θ∗)]′

for some (θ̄0, θ̄1). Given A5(iii), we can apply the CLT in DMR (1995) to n−1/2
∑

qt(θ∗0, θ∗), because

E[qt(θ∗0, θ∗)] = 0. Also,
∑∇θ1qt(θ̄0, θ̄1) = Op(n) by the ergodic theorem and A5(iii). Lemma A2(c)

completes the proof. ¤

Lemma B2: Given A1, A2 (i, iii), A3, A4, A5 (ii, iii), A6 (ii), and H ′
02, for each π,

(a) (ˆ̃θ(1)′
0,n , π

ˆ̃
θ
(1)
1,n + (1− π))′ = Op(n−1/2);

(b) (ˆ̃θ(2)′
0,n , π

ˆ̃
θ
(2)
1,n)′ = −(1−π

π )[C(θ)
22 ]−1C

(2)
21 + op(1);

(c) (ˆ̃θ(3)′
0,n , π

ˆ̃
θ
(3)
1,n)′ = Op(1);

(d) further, for a sequence of random variables, {q̂t} say, if
∑

q̂tr̂
(1)
t = Op(n), then

∑
q̂tf̂tĝ

(1)
t = Op(n1/2);

(e) n−1/2
∑

r̂
(0,2)
t

A∼ N(0, Ω(2)).

Proof of Lemma B2: (a to c) First, for notational simplicity, for each π let

R̄c
n(π) :=


−R̄

(2,0)
n + R̄

(1,0)(1,0)
n −R̄

(1,1)
n + R̄

(1,0)(0,1)′
n

−R̄
(1,1)
n + R̄

(1,0)(0,1)
n −π−1R̄

(0,2)
n + R̄

(0,1)(0,1)
n


 ,

which converges to C
(θ)
22 a.s. by the SULLN, A5(iii), and Lemma A2(c), where R̄

(i,j)
n := n−1

∑
r̂
(i,j)
t

and R̄
(i,j)(k,l)
n := n−1

∑
r̂
(i,j)
t r̂

(k,l)′
t . Given this, we can solve for (ˆ̃θ(1)′

0,n ,
ˆ̃
θ
(1)
1,n) from M̃

(2)
n (π, θ̂n

1,n) = 0 and

K̃
(2)
n (π, θ̂n

1,n) = 0:

R̄c
n(π)




ˆ̃
θ
(1)
0,n

π
ˆ̃
θ
(1)
1,n


 =


(1− π)(R̄(1,1)

n − R̄
(1,0)(0,1)
n )

−(1− π)R̄(0,1)(0,1)
n


 .

From this, Lemma B2(a) follows by Lemma B1.

In a similar way, we can derive (ˆ̃θ(2)′
0,n ,

ˆ̃
θ
(2)
1,n) from M̃

(3)
n (π, θ̂n

1,n) = 0 and K̃
(3)
n (π, θ̂n

1,n) = 0. Then

R̄c
n(π)




ˆ̃
θ
(2)
0,n

π
ˆ̃
θ
(2)
1,n


=


 (π(ˆ̃θ(1)

1,n)2 + 1− π)(R̄(1,2)
n − R̄

(1,0)(0,2)
n )

−(3π(ˆ̃θ(1)
1,n)2 + 2(1− π)ˆ̃θ(1)

1,n + 1− π)R̄(0,1)(0,2)
n + (ˆ̃θ(1)

1,n)2R̄(0,3)
n




+Op(
ˆ̃
θ
(1)
0,n) + Op(π

ˆ̃
θ
(1)
1,n + (1− π)),

where Op(
ˆ̃
θ
(1)
0,n) and Op(π

ˆ̃
θ
(1)
1,n + (1 − π)) are Op(1) terms given in A5(iii), whose coefficients are ˆ̃

θ
(1)
0,n or

π
ˆ̃
θ
(1)
1,n + (1 − π). We have simplified our presentation for brevity. The RHS converges to −(1−π

π )C(2)
21 in

probability by Lemma B2(a), implying Lemma B2(b).

Finally, (ˆ̃θ(3)′
0,n ,

ˆ̃
θ
(3)
1,n) can be derived from M̃

(4)
n (π, θ̂n

1,n) = 0 and K̃
(4)
n (π, θ̂n

1,n) = 0 in the same way. Then,

R̄c
n(π)




ˆ̃
θ
(3)
0,n

π
ˆ̃
θ
(3)
1,n


=


 (1−π

π )(1−2π
π )(−R̄

(1,3)
n + R̄

(1,0)(0,3)
n )

−(1−π
π )3R̄(0,4)

n + 3(1−π
π )2R̄(0,2)(0,2)

n + (1−π
π )(1−2π

π )R̄(0,1)(0,3)
n




+Op(
ˆ̃
θ
(1)
0,n) + Op(π

ˆ̃
θ
(1)
1,n + (1− π)) + Op(1),
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where Op(1) is a finite collection of Op(1) terms given by A5(iii) and Lemmas B2(a and b). Applying the

SULLN leads to the desired result.

(d) Note that f̂tĝ
(1)
t = r̂

(1,0)
t

ˆ̃
θ
(1)
0,n + r̂

(0,1)
t (π ˆ̃

θ
(1)
1,n +(1−π)), so that the conclusion follows from Lemma B2(a).

(e) By the mean value theorem, n−1/2
∑

r̂
(0,2)
t = n−1/2

∑
r
(0,2)
t (θ∗0, θ∗)+n−1/2

∑∇θ1r
(0,2)
t (θ̄0, θ̄1)[(θ̂n′

n,0, θ̂
n
n,1)−

(θ∗′0 , θ∗)]′ for some (θ̄0, θ̄1). Given this, n−1
∑∇θ1r

(0,2)
t (θ̄0, θ̄1) converges to −C

(2)
12 a.s. by A5(iii), Lemma

A1(a), and the SULLN. Lemma A2(c), the CLT in DMR (1995), and A6(ii) complete the proof. ¤

Proof of Lemma 2: (a) The result follows by Lemma B2(a) and the fact that L̃
(2)
n (π, θ̂n

1,n) = (1−π)(1−
ˆ̃
θ
(1)
1,n)

∑
r̂
(0,2)
t .

(b) We can apply Lemmas B2(a, e) to n−1L̃
(2)
n (π, θ̂n

1,n).

(c) Note that L̃
(3)
n (π, θ̂n

1,n) = (1 − π){∑(ĥ(2)
t − k̂

(2)
t )ĝt + 2

∑
(ĥ(1)

t − k̂
(1)
t )ĝ(1)

t }. First,
∑

(ĥ(2)
t − k̂

(2)
t )ĝt =

2ˆ̃
θ
(1)′
0,n (1− ˆ̃

θ
(1)
1,n)

∑
r̂
(1,2)
t +(1− (ˆ̃θ(1)

1,n)2)
∑

r̂
(0,3)
t − ˆ̃

θ
(2)
1,n

∑
r̂
(0,2)
t by the definition of ĥt and k̂t, so that

∑
(ĥ(2)

t −
k̂

(2)
t )ĝt = Op(n1/2) by Lemmas B1 and B2(a, b). Second,

∑
(ĥ(1)

t − k̂
(1)
t )ĝ(1)

t = (1 − ˆ̃
θ
(1)
1,n)

∑
r̂
(0,2)
t ĝ

(1)
t ,

implying that
∑

(ĥ(1)
t − k̂

(1)
t )ĝ(1)

t = Op(n1/2) by Lemma B2(d). Thus, L̃
(3)
n (π, θ̂n

1,n) = Op(n1/2).

(d) Note that L̃
(4)
n (π, θ̂n

1,n) = (1−π)
∑{(ĥ(3)

t −k̂
(3)
t )ĝt+3(ĥ(2)

t −k̂
(2)
t )ĝ(1)

t +3(ĥ(1)
t −k̂

(1)
t )ĝ(2)

t }. We examine each

element on the RHS. First, note that
∑

(ĥ(3)
t − k̂

(3)
t )ĝt = (1− (ˆ̃θ(1)

1,n)3)
∑

r̂
(0,4)
t +3(1− ˆ̃

θ
(1)
1,n)ˆ̃θ(1)′

0,n

∑
r̂
(2,2)
t

ˆ̃
θ
(1)
0,n +

3(1 − (ˆ̃θ(1)
1,n)2)ˆ̃θ(1)′

0,n

∑
r̂
(1,3)
t − 3ˆ̃

θ
(2)
1,n

ˆ̃
θ
(1)
1,n

∑
r̂
(0,3)
t + 3(ˆ̃θ(1)′

0,n
ˆ̃
θ
(2)
1,n − ˆ̃

θ
(2)′
0,n (ˆ̃θ(1)

1,n − 1))
∑

r̂
(1,2)
t − ˆ̃

θ
(3)
1,n

∑
r̂
(0,2)
t . Given

this, it easily follows that
∑

(ĥ(3)
t − k̂

(3)
t )ĝt = op(n) by A5(iii) and Lemmas B2(a to c). Second,

∑
(ĥ(2)

t −
k̂

(2)
t )ĝ(1)

t = 2ˆ̃
θ
(1)′
0,n (1 − ˆ̃

θ
(1)
1,n)

∑
r̂
(1,2)
t ĝ

(1)
t + (1 − (ˆ̃θ(1)

1,n)2)
∑

r̂
(0,3)
t ĝ

(1)
t − ˆ̃

θ
(2)
1,n

∑
r̂
(0,2)
t ĝ

(1)
t after some algebra.

Thus,
∑

(ĥ(2)
t − k̂

(2)
t )ĝ(1)

t = Op(n1/2) by Lemma B2(d). Third, note that
∑

(ĥ(1)
t − k̂

(1)
t )ĝ(2)

t = −(1 −
ˆ̃
θ
(1)
1,n)

∑
r̂
(0,2)
t {(π(ˆ̃θ(1)

1,n)2 + 1− π)r̂(0,2)
t + ˆ̃

θ
(2)′
0,n r̂

(1,0)
t + π

ˆ̃
θ
(2)
1,nr̂

(0,1)
t }+ Op(n

ˆ̃
θ
(1)
0,n) + Op(n(π ˆ̃

θ
(1)
1,n + 1− π)), so that

∑
(ĥ(1)

t − k̂
(1)
t )ĝ(2)

t = −(1− π)π−2
∑

(r̂(0,2)
t )2 − ˆ̃

θ
(2)
1,n

∑
r̂
(0,2)
t r̂

(0,1)
t − π−1 ˆ̃

θ
(2)′
0,n

∑
r̂
(0,2)
t r̂

(1,0)
t + op(n) by Lemma

B2(a), implying that n−1
∑

(ĥ(1)
t − k̂

(1)
t )ĝ(2)

t = −(1− π)π−2Ω(2) +op(1) by Lemma B2(b) and the definition

of Ω(2). Finally, n−1L̃
(4)
n (π, θ̂n

1,n) = −3(1−π
π )2Ω(2) + op(1) by combing all these, as claimed. ¤

Proof of Theorem 4: (a) By Lemma 2 and A5(ii, iii), for each π,

sup
θ2

2(L̃n(π, θ2)− L̃n(π, θ̂n
1,n)) ⇒ sup

ξ

(
1− π

π

)
[Ω(2)]1/2G0ξ

2 − 1
4

(
1− π

π

)2

Ω(2)ξ4.

As ξ2 cannot be less than zero, the optimal solution for ξ has to depend on the value of G0. Suppose that

G0 ≥ 0. Then the maximum is attained when ξ2 = 2(1−π
π )[Ω(2)]−1/2G0, so that maxθ2 2(L̃n(π, θ2) −

L̃n(π, θ̂n
1,n)) ⇒ G2

0. If G0 < 0, the maximum is attained when ξ = 0, so that maxθ2 2(L̃n(π, θ2) −
L̃n(π, θ̂n

1,n)) ⇒ 0. Thus, maxθ2 2
∑

(L̃n(π, θ2)− L̃n(π, θ̂n
1,n)) ⇒ max[0, G0]2, as claimed.

(b) The conclusion follows from the proof of Theorem 4(a), and the fact that the limiting distribution does

not depend on π, as this coefficient function of [Ω(2)]1/2G0 and Ω(2) vanishes in the FOC. ¤

Lemma C1: Given A1, A2 (i, iv), A3, A4, A5 (ii, iv), A6 (iii), and H ′
02,

(a)
∑∇i1∇i2∇i3∇i4 f̂t/f̂t = Op(n1/2);

(b)
∑∇i1∇i2∇i3∇i4∇i5 f̂t/f̂t = Op(n1/2);
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(c)
∑∇i1∇i2∇i3∇i4∇i5∇i6 f̂t/f̂t = Op(n1/2);

(d)
∑∇j1∇6

θ1
f̂t/f̂t = Op(n1/2) and

∑∇7
θ1

f̂t/f̂t = Op(n1/2), where i1, · · · , i6 ∈ {θ01, · · · , θ0r, θ1} and

j1 ∈ {θ01, · · · , θ0r}.

Proofs of Lemma C1: (a to d) Let qt(θ̂n
0,n, θ̂n

1,n) be the functions of interests. By the mean value

theorem,
∑

qt(θ̂n
0,n, θ̂n

1,n) =
∑

qt(θ∗0, θ∗) +
∑∇θ1qt(θ̂m

n,0, θ̂
m
n,1)[(θ̂

n′
n,0, θ̂

n
n,1) − (θ∗′0 , θ∗)]′ for some (θ̂m

n,0, θ̂
m
n,1).

Given A5(ii, iv), we can apply the CLT in DMR (1995) to n−1/2
∑

qt(θ∗0, θ∗), because E[qt(θ∗0, θ∗)] = 0.

Also,
∑∇θ1qt(θ̂m

n,0, θ̂
m
n,1) = Op(n) by the SULLN and A5(iv). This completes the proof. ¤

Lemma C2: Given A1, A2 (i, iv), A3, A4, A5 (ii, iv), A6 (iii), and H ′
02, for each π,

(a) ˆ̃
θ
(1)
0,n = 0 and (π ˆ̃

θ
(1)
1,n + 1− π) = 0;

(b) (ˆ̃θ(2)′
0,n , π

ˆ̃
θ
(2)
1,n)′ = −(1−π

π )(α′, β)′ + Op(n−1/2);

(c) (ˆ̃θ(4)′
0,n , π

ˆ̃
θ
(4)
1,n)′ = Op(1);

(d) ĝ
(1)
t = 0 and m̂

(1)
t = 0;

(e) for a sequence of random variables, {q̂t} say, if
∑

q̂tr̂
(1)
t = Op(n), then

∑
q̂tf̂tĝ

(2)
t = Op(n1/2);

(f )
∑

m̂tĝ
(3)
t = Op(n1/2) and

∑
k̂tĝ

(3)
t = Op(n1/2);

(g)
∑

m̂tĝ
(4)
t = Op(n1/2) and

∑
k̂tĝ

(4)
t = Op(n1/2).

(h) n−1/2
∑

r̂
(0,3)
t

A∼ N(0, Ω(3)).

Proof of Lemma C2: (a and b) Let r̂
(0,2)
t = α′r̂(1,0)

t + βr̂
(0,1)
t , and iterate the proof of Lemma B2(a and

b respectively).

(c) If we rearrange M̃
(5)
n (π, θ̂n

1,n) = 0 and K̃
(5)
n (π, θ̂n

1,n) = 0, R̄c
n(π)(ˆ̃θ(4)′

0,n , π
ˆ̃
θ
(4)
1,n)′ equals




(1−π)(1−3π+3π2)
π3 (R̄(1,4)

n − R̄
(1,0)(0,4)
n )

(1−π
π )4R̄(0,5)

n + 2(1−π)2(7π−5)
π3 R̄

(0,3)(0,2)
n − (1−π)(1−3π+3π2)

π3 R̄
(0,1)(0,4)
n


 + 6


 − (

1−π
π

)2
R̄

(0,2)(1,2)
n(

1−π
π

)2
R̄

(0,1)(0,2)(0,2)
n


 + Op(1),

using Lemma C2(a), where R̄
(k,l)(i,j)(m,q)
n := n−1

∑
r̂
(k,l)
t r̂

(i,j)
t r̂

(m,q)
t and the remainder is the collection of

Op(1) terms given in A5(iv). The given terms are those having the highest moment or the highest-order

derivatives. Given this, it’s straightforward to obtain the desired result by A5(ii, iv) and the SULLN.

(d) This is obvious from the facts that ĝ
(1)
t = (π − 1)(ĥt − k̂t)(ĝt)2, m̂

(1)
t = (π ˆ̃

θ
(1)
1,n + 1 − π)f̂ (0,2)

t , ĥt = k̂t

and Lemma C2(a).

(e) From r̂
(0,2)
t = α′r̂(1,0)

t + βr̂
(0,1)
t and Lemma C2(a), f̂tĝ

(2)
t = −(1−π

π α + ˆ̃
θ
(2)
0,n)′r̂(1,0)

t − (1−π
π β + π

ˆ̃
θ
(2)
1,n)r̂(0,1)

t .

The given result follows by Lemma C2(b).

(f ) From Lemma C2(d), M̃
(4)
n (π, θ̂n

1,n) = 0 and K̃
(4)
n (π, θ̂n

1,n) = 0,
∑

m̂tĝ
(3)
t = −∑

m̂
(3)
t ĝt and

∑
k̂tĝ

(3)
t =

−∑
k̂

(3)
t ĝt − 3

∑
k̂

(1)
t ĝ

(2)
t are obtained. Given these,

∑
m̂

(3)
t ĝt,

∑
k̂

(3)
t ĝt, and

∑
k̂

(1)
t ĝ

(2)
t are Op(n1/2) by

Lemmas B2(c) and C2(a, b and e), implying the given conclusion.

(g) Lemma C2(d), M̃
(5)
n (π, θ̂n

1,n) = 0, and K̃
(5)
n (π, θ̂n

1,n) = 0 imply that
∑

m̂tĝ
(4)
t = −∑{m̂(4)

t ĝt+6m̂
(2)
t ĝ

(2)
t }

and
∑

k̂tĝ
(4)
t = −∑{k̂(4)

t ĝt+6k̂(2)
t ĝ

(2)
t +4k̂

(1)
t ĝ

(3)
t }. Further,

∑
m̂

(4)
t ĝt,

∑
m̂

(2)
t ĝ

(2)
t ,

∑
k̂

(4)
t ĝt and

∑
m̂

(2)
t ĝ

(2)
t

are Op(n1/2) by Lemmas B2(c) and C2(a to c and e). Finally,
∑

k̂
(1)
t ĝ

(3)
t = ˆ̃

θ
(1)
1,n

∑
(α′f̂ (1,0)

t + βf̂
(0,1)
t )ĝ(3)

t =
ˆ̃
θ
(1)
1,n

∑
(α′m̂tĝ

(3)
t + βk̂tĝ

(3)
t ). Thus,

∑
k̂

(1)
t ĝ

(3)
t = Op(n1/2) by Lemma C2(f).
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(h) We iterate the proof of Lemma B2(e). ¤

Proof of Lemma 3: (a) By Lemma C2(d), L̃
(3)
n (π, θ̂n

1,n) = (1− π)
∑

(ĥ(2)
t − k̂

(2)
t )ĝt = (1− π){2ˆ̃

θ
(1)′
0,n (1−

ˆ̃
θ
(1)
1,n)

∑
r̂
(1,2)
t +(1− (ˆ̃θ(1)

1,n)2)
∑

r̂
(0,3)
t }, where the last equality holds by the fact that

∑
r̂
(0,2)
t = 0. The given

result follows by Lemma C2(a).

(b) Apply Lemma C2(h) to
∑

r̂
(0,3)
t .

(c) Note that L̃
(4)
n (π, θ̂n

1,n) = (1− π)
∑{(ĥ(3)

t − k̂
(3)
t )ĝt + 3(ĥ(1)

t − k̂
(1)
t )ĝ(2)

t } by applying Lemma C2(d). We

already showed that
∑

(ĥ(3)
t − k̂

(3)
t )ĝt = Op(n1/2) in the proof of Lemma 2(d). Further,

∑
(ĥ(1)

t − k̂
(1)
t )ĝ(2)

t =

Op(n1/2) by Lemma C2(e). Thus, L̃
(4)
n (π, θ̂n

1,n) = Op(n1/2).

(d) Note that L̃
(5)
n (π, θ̂n

1,n) = (1− π)
∑{(ĥ(4)

t − k̂
(4)
t )ĝt + 6(ĥ(2)

t − k̂
(2)
t )ĝ(2)

t + 4(ĥ(1)
t − k̂

(1)
t )ĝ(3)

t } by Lemma

C2(d). We examine each element in the RHS. First, some algebra gives that
∑

(ĥ(4)
t − k̂

(4)
t )ĝt = −π−4(1−

2π)(1−2π+2π2)
∑

r̂
(0,5)
t −6π−2(1−π)2 ˆ̃

θ
(2)
1,n

∑
r̂
(0,4)
t +12ˆ̃

θ
(2)
0,nπ−1(1−0.5π−1)

∑
r̂
(1,3)
t −(3(ˆ̃θ(2)

1,n)2+4ˆ̃
θ
(3)
1,n(π−1−

1))
∑

r̂
(0,3)
t − 2π−1(3π

ˆ̃
θ
(2)
0,n

ˆ̃
θ
(2)
1,n − 2ˆ̃

θ
(3)
0,n)′

∑
r̂
(1,2)
t . Thus,

∑
(ĥ(4)

t − k̂
(4)
t )ĝt = Op(n1/2) by Lemmas B1(b) and

C2(a, b and c). Second, it’s trivial that
∑

(ĥ(2)
t − k̂

(2)
t )ĝ(2)

t +
∑

(ĥ(1)
t − k̂

(1)
t )ĝ(3)

t = Op(n1/2) by Lemma C2(e

and f). Therefore, L̃
(5)
n (π, θ̂n

1,n) = Op(n1/2), as desired. ¤

Proof of Lemma 4: (a) Note that L̃
(6)
n (π, θ̂n

1,n) = (1−π)
∑{(ĥ(5)

t − k̂
(5)
t )ĝt +10(ĥ(3)

t − k̂
(3)
t )ĝ(2)

t +10(ĥ(2)
t −

k̂
(2)
t )ĝ(3)

t +5(ĥ(1)
t − k̂

(1)
t )ĝ(4)

t } by Lemma C2(d). We examine each element in the RHS. First, using Lemma

C2(a),
∑

(ĥ(5)
t − k̂

(5)
t )ĝt = (1− 5π(1− π)(1− π − π2))π−5

∑
r̂
(0,6)
t + Op(n1/2), where the remainder is the

collection of Op(n1/2) terms in Lemma C1(a to d) multiplied by the Op(1) terms in Lemmas B2(c) and C2(a,

b and d). Thus,
∑

(ĥ(5)
t − k̂

(5)
t )ĝt = Op(n1/2) by Lemma C1(c). Second,

∑
(ĥ(3)

t − k̂
(3)
t )ĝ(2)

t = Op(n1/2)

by Lemma C2(e). Third,
∑

(ĥ(1)
t − k̂

(1)
t )ĝ(4)

t = π−1
∑

(α′m̂t + βk̂t)ĝ
(4)
t = Op(n1/2) by Lemma C2(g).

Finally,
∑

(ĥ(2)
t − k̂

(2)
t )ĝ(3)

t = (−1+2π)/(π2)
∑

f̂
(0,3)
t ĝ

(3)
t − ˆ̃

θ
(2)
1,n

∑
f̂

(0,2)
t ĝ

(3)
t = (−1+2π)/(π2)

∑
f̂

(0,3)
t ĝ

(3)
t +

op(n), where the last equality follows from the fact that
∑

f̂
(0,2)
t ĝ

(3)
t =

∑
(α′m̂t + βk̂t)ĝ

(3)
t = Op(n1/2)

by Lemma C2(f). Thus, we pay attention only to n−1
∑

f̂
(0,3)
t ĝ

(3)
t . Note that n−1

∑
f̂

(0,3)
t ĝ

(3)
t = (3(1 −

π)α ˆ̃
θ
(2)
1,n − ˆ̃

θ
(3)
0,n)′R̄(1,0)(0,3)

n + (3(1− π)β ˆ̃
θ
(2)
1,n − π

ˆ̃
θ
(3)
1,n)R̄(0,1)(0,3)

n + (1− π)(1− 2π)/(π2)R̄(0,3)(0,3)
n from the fact

that f̂tĝ
(3)
t = (3(1−π)α ˆ̃

θ
(2)
1,n− ˆ̃

θ
(3)
0,n)′r̂(1,0)

t +(3(1−π)β ˆ̃
θ
(2)
1,n−π

ˆ̃
θ
(3)
1,n)r̂(0,1)

t +(1−π
π )(1−2π

π )r̂(0,3)
t . Further, note that

∑
k̂tĝ

(3)
t = op(n) and

∑
m̂tĝ

(3)
t = op(n) by Lemma C2(f), so that (3(1− π)α ˆ̃

θ
(2)
1,n − ˆ̃

θ
(3)
0,n)′R̄(1,0)(1,0)

n + (3(1−
π)β ˆ̃

θ
(2)
1,n − π

ˆ̃
θ
(3)
1,n)R̄(0,1)(1,0)

n + (1− π)(1− 2π)/(π2)R̄(0,3)(1,0)
n = op(1) and (3(1 − π)α ˆ̃

θ
(2)
1,n − ˆ̃

θ
(3)
0,n)′R̄(1,0)(0,1)

n +

(3(1−π)β ˆ̃
θ
(2)
1,n−π

ˆ̃
θ
(3)
1,n)R̄(0,1)(0,1)

n +(1− π)(1− 2π)/(π2)R̄(0,3)(0,1)
n = op(1). Using these two equations, we can

solve for (3(1−π)α ˆ̃
θ
(2)
1,n− ˆ̃

θ
(3)
0,n) and (3(1−π)β ˆ̃

θ
(2)
1,n−π

ˆ̃
θ
(3)
1,n), and plug these back into n−1

∑
f̂

(0,3)
t ĝ

(3)
t . Then,

n−1
∑

f̂
(0,3)
t ĝ

(3)
t = −(1−π)( (1−2π)

π2 )2(R̄(0,3)(0,3)
n −R̄

(0,3)(1)
n R̄

(1)(1)−1

n R̄
(1)(0,3)
n )+op(1). Thus, n−1L̃

(6)
n (π, θ̂n

1,n) =

−10( (1−π)(1−2π)
π2 )2Ω(3) + op(1) by the SUULN, A5(iv), and the definition of Ω(3).

(b) We can iterate the proof of Theorem 4(a) using L̃
(3)
n (π, θ2) and L̃

(6)
n (π, θ2) instead of L̃

(2)
n (π, θ2) and

L̃
(4)
n (π, θ2). The absence of the sign condition leads to the desired conclusion. ¤

Lemma C3: Given A1, A2 (i, iv), A3, A4, A5 (ii, iv), A6 (iii), and H ′
02, if π = 1/2, then

(a) (ˆ̃θ(3)′
0,n , π

ˆ̃
θ
(3)
1,n)′ = 1.5(α′, β)′ + Op(n−1/2);
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(b) (ˆ̃θ(5)′
0,n , π

ˆ̃
θ
(5)
1,n)′ = Op(1);

(c) (ˆ̃θ(6)′
0,n , π

ˆ̃
θ
(6)
1,n)′ = Op(1);

(d) for a sequence of random variables, {q̂t} say, if
∑

q̂tr̂
(1)
t = Op(n), then

∑
q̂tf̂tĝ

(3)
t = Op(n1/2);

(e)
∑

m̂tĝ
(5)
t = Op(n1/2) and

∑
k̂tĝ

(5)
t = Op(n1/2);

(f ) 15
∑

k̂
(2)
t ĝ

(4)
t +

∑
k̂tĝ

(6)
t = Op(n1/2) and 15

∑
m̂

(2)
t ĝ

(4)
t +

∑
m̂tĝ

(6)
t = Op(n1/2).

Proof of Lemma C3: (a and d) By Lemma C2(a), it follows that f̂tĝ
(3)
t = (3(1−π)α− ˆ̃

θ
(3)
0,n)′r̂(1,0)

t +(3(1−
π)β − π

ˆ̃
θ
(3)
1,n)r̂(0,1)

t + (1−π
π )(1−2π

π )r̂(0,3)
t ; and the last term vanishes if π = 1/2. Further, applying Lemma

C2(f) leads to
∑

m̂tĝ
(3)
t = Op(n1/2) and

∑
k̂tĝ

(3)
t = Op(n1/2), so that (1.5β−0.5ˆ̃

θ
(3)
1,n)

∑
(r̂(0,1)

t )2 = Op(n1/2)

and (1.5α − ˆ̃
θ
(3)
0,n)′

∑
r̂
(1,0)
t r̂

(1,0)′
t = Op(n1/2). Given these,

∑
(r̂(0,1)

t )2 = Op(n) and
∑

r̂
(1,0)
t r̂

(1,0)′
t = Op(n)

by A5(iv), implying that (ˆ̃θ(3)′
0,n , π

ˆ̃
θ
(3)
1,n)′ = 1.5(α′, β)′ + Op(n−1/2). Lemma C3(d) follows.

(b and c) Rearranging M̃
(6)
n (π, θ̂n

1,n) = 0 and K̃
(6)
n (π, θ̂n

1,n) = 0; and M̃
(7)
n (π, θ̂n

1,n) = 0 and K̃
(7)
n (π, θ̂n

1,n) = 0

lead to

R̄c
n(π)




ˆ̃
θ
(5)
0,n

π
ˆ̃
θ
(5)
1,n


 =−


 0

R̄
(0,6)
n − 15R̄

(0,2)(0,4)
n + 30R̄(0,2)(0,2)(0,2)

n


 + Op(1),

and to R̄c
n(π)[ˆ̃θ(6)′

0,n , π
ˆ̃
θ
(6)
1,n]′ equaling


30R̄(1,0)(0,2)(0,4)

n + 90R̄
(1,2)(0,2)(0,2)
n − 90R̄(1,0)(0,2)(0,2)(0,2)

n + R̄
(1,6)
n − R̄

(1,0)(0,6)
n − 15R̄(1,4)(0,2)

n − 15R̄
(1,2)(0,4)
n

30R̄
(0,1)(0,2)(0,4)
n + 90R̄

(0,2)(0,2)(0,3)
n − 90R̄(0,1)(0,2)(0,2)(0,2)

n + R̄
(1,4)(0,2)
n − 15R̄

(1,2)(0,4)
n




plus an Op(1) term, where R̄
(k,l)(i,j)(m,q)(x,y)
n := n−1

∑
r̂
(k,l)
t r̂

(i,j)
t r̂

(m,q)
t r̂

(x,y)
t , and the remainders are the

collections of Op(1) terms in A5(iv) multiplied by other Op(1) terms in Lemmas C2(a, b, d) and C3(a).

It’s now straightforward to obtain the given result by applying the SULLN and A5(iv).

(e) Given Lemma C3(d), this is identical to the proof of Lemma C2(f).

(f ) From the facts that K̃
(7)
n (π, θ̂n

1,n) = 0 and M̃
(7)
n (π, θ̂n

1,n) = 0, it follows that
∑{15ĥ

(2)
t ĝ

(4)
t + ĥtĝ

(6)
t } =

−∑{ĥ(6)
t ĝt +15ĥ

(4)
t ĝ

(2)
t +20ĥ

(3)
t ĝ

(3)
t +6ĥ

(1)
t ĝ

(5)
t } and

∑{15m̂(2)
t ĝ

(4)
t + m̂tĝ

(6)
t } = −∑{m̂(6)

t ĝt +15m̂
(4)
t ĝ

(2)
t +

20m̂
(3)
t ĝ

(3)
t }. Expanding all the elements on each RHS shows that each RHS is a sum of Op(n1/2) terms,

verified by Lemmas B2(c and d), C2(a, b and d) and C3(a to e). ¤

Proof of Lemma 5: (a) Note that L̃
(4)
n (π, θ̂n

1,n) = (1−π)
∑{(ĥ(3)

t − k̂
(3)
t )ĝt +3(ĥ(1)

t − k̂
(1)
t )ĝ(2)

t } by Lemma

C2(d). Some algebra reveals that L̃
(4)
n (π, θ̂n

1,n) =
∑

r̂
(0,4)
t + 3(0.5ˆ̃

θ
(2)
1,n − β)

∑
r̂
(0,3)
t + 3(ˆ̃θ(2)

0,n − α)′
∑

r̂
(1,2)
t −

3(0.5α
ˆ̃
θ
(2)
1,n + β

ˆ̃
θ
(2)
0,n)′

∑
r̂
(1,1)
t − 3ˆ̃

θ
(2)′
0,n

∑
r̂
(2,0)
t α if π = 1/2. Thus, the desired result follows by Lemma C2(b)

and the definition of ŝt.

(b) We iterate the proof of Lemma B2(e).

(c) Let π = 1/2 in the proof of Lemma 4(a).

(d) Note that L̃
(7)
n (π, θ̂n

1,n) = (1− π)
∑{(ĥ(6)

t − k̂
(6)
t )ĝt + 15(ĥ(4)

t − k̂
(4)
t )ĝ(2)

t + 20(ĥ(3)
t − k̂

(3)
t )ĝ(3)

t + 15(ĥ(2)
t −

k̂
(2)
t )ĝ(4)

t + 6(ĥ(1) − k̂
(1)
t )ĝ(5)

t } by Lemma C2(d). First,
∑

(ĥ(6)
t − k̂

(6)
t )ĝt,

∑
(ĥ(4)

t − k̂
(4)
t )ĝ(2)

t and
∑

(ĥ(3)
t −

k̂
(3)
t )ĝ(3)

t are Op(n1/2) by Lemmas C2(a to c and e) and C3(a to d). Also,
∑

(ĥ(1) − k̂
(1)
t )ĝ(5)

t = Op(n1/2)

by Lemma C3(e), as (ĥ(1) − k̂
(1)
t ) = π−1(α′m̂t + βk̂t). Further, if π = 1/2, (ĥ(2)

t − k̂
(2)
t ) = − ˆ̃

θ
(2)
1,nf̂

(0,2)
t =

35



− ˆ̃
θ
(2)
1,nπ−1(α′m̂t + βk̂t), so that

∑
(ĥ(2)

t − k̂
(2)
t )ĝ(4)

t = Op(n1/2) by Lemma C2(g). All the elements in the

RHS are Op(n1/2), leading to the given claim.

(e) Note that L̃
(8)
n (π, θ̂n

1,n) = (1− π)
∑{(ĥ(7)

t − k̂
(7)
t )ĝt + 21(ĥ(5)

t − k̂
(5)
t )ĝ(2)

t + 35(ĥ(4)
t − k̂

(4)
t )ĝ(3)

t + 35(ĥ(3)
t −

k̂
(3)
t )ĝ(4)

t +21(ĥ(2)− k̂
(2)
t )ĝ(5)

t +7(ĥ(1)− k̂
(1)
t )ĝ(6)

t } by Lemma C2(d). Given this,
∑

(ĥ(7)
t − k̂

(7)
t )ĝt = op(n) and

∑
(ĥ(5)

t − k̂
(5)
t )ĝ(2)

t ,
∑

(ĥ(4)
t − k̂

(4)
t )ĝ(3)

t and
∑

(ĥ(2)
t − k̂

(2)
t )ĝ(5)

t are Op(n1/2) by the same reasoning as in the

proof of Lemma 5(c). Further,
∑

(ĥ(1)−k̂
(1)
t )ĝ(6)

t =
∑

2(α′m̂t+βk̂t)ĝ
(6)
t = −30

∑
(α′m̂(2)

t +βk̂
(2)
t )ĝ(4)

t +op(n)

by Lemma C3(f), implying that n−1L̃
(8)
n (π, θ̂n

1,n) = 35n−1
∑{(0.5[ĥ(3)

t −k̂
(3)
t ]−3[α′m̂(2)

t +βk̂
(2)
t ])ĝ(4)

t }+op(1).

By some algebra, (0.5[ĥ(3)
t − k̂

(3)
t ]− 3[α′m̂(2)

t + βk̂
(2)
t ])/f̂t = r̂

(0,4)
t + (1.5ˆ̃

θ
(2)
1,n− 3β)r̂(0,3)

t + 3(ˆ̃θ(2)
0,n−α)′r̂(1,2)

t −
3(β ˆ̃

θ
(2)
0,n +0.5α

ˆ̃
θ
(2)
1,n)′r̂(1,1)

t +(6β2−0.5ˆ̃
θ
(3)
1,n)r̂(0,2)

t −3α′r̂(2,0)
t

ˆ̃
θ
(2)
0,n and ĝ

(4)
t f̂t = −r̂

(0,4)
t −3ˆ̃

θ
(2)
1,nr̂

(0,3)
t −6ˆ̃

θ
(2)′
0,n r̂

(1,2)
t −

3ˆ̃
θ
(2)
1,n

ˆ̃
θ
(2)′
0,n r̂

(1,1)
t −3ˆ̃

θ
(2)′
0,n r̂

(2,0)
t

ˆ̃
θ
(2)
0,n− (1.5(ˆ̃θ(2)

1,n)2−2ˆ̃
θ
(3)
1,n)r̂(0,2)

t − ˆ̃
θ
(4)′
0,n r̂

(1,0)
t −0.5ˆ̃

θ
(4)
1,nr̂

(0,1)
t +1.5(ˆ̃θ(2)

1,nr̂
(0,1)
t +2r̂

(0,2)
t +

2ˆ̃
θ
(2)′
0,n r̂

(1,0)
t )2. By the definition of ŝt, it follows that n−1L̃

(8)
n (π, θ̂n

1,n) = −35(n−1
∑

ŝ2
t − ῡ′nR̄

(1)(1)
n ῡn)+op(1),

where ῡ′n := (ˆ̃θ(4)′
0,n , 0.5ˆ̃

θ
(4)
1,n)+(1.5(ˆ̃θ(2)

1,n)2−2ˆ̃
θ
(3)
1,n)(α′, β). Finally, from

∑
m̂tĝ

(4)
t = op(n) and

∑
k̂tĝ

(4)
t = op(n)

(which are given in Lemma C2(g)) we have ῡn = −[R̄(1)(1)
n ]−1n−1

∑
ŝtr̂

(1)
t +op(1). The desired result follows

by plugging this into n−1L̃
(8)
n (π, θ̂n

1,n) = −35(n−1
∑

ŝ2
t − ῡ′nR̄

(1)(1)
n ῡn) + op(1). This completes the proof.

(f ) We can iterate the proof of Theorem 4(a) by approximating the QLR statistic using L̃
(4)
n (π, θ2) and

L̃
(8)
n (π, θ2) instead of L̃

(2)
n (π, θ2) and L̃

(4)
n (π, θ2). ¤

Proof of Lemma 6: (a) To show this, we approximate n−1/2
∑∇π`t(1, θ̂n

0,n, θ̂n
1,n, · ) = n−1/2

∑
(1 −

ft(θ̂n
0,n, · )/ft(θ̂n

0,n, θ̂n
1,n)) around θ̂n

1,n, which forms the main argument of Lemma 1. It then follows that

n−1/2
∑

(1− ft(θ̂0
0,n, θ2)/ft(θ̂n

0,n, θ̂n
1,n)) = − 1

2n1/2

∑
r̂
(0,2)
t (θ2 − θ∗)2 + op(|θ2 − θ∗|2), because

∑
r̂
(0,1)
t ≡ 0 by

the FOC and (θ̂n
1,n − θ∗) = Op(n−1/2). Further, the asymptotic variance is 1

4Ω(2)(θ2 − θ∗)4 + o(|θ2 − θ∗|4),
implying that the standardized score is −n−1/2

∑
r̂
(0,2)
t /[Ω(2)]1/2 + op(|θ2 − θ∗|). The negative value of

the first component is asymptotically identical to the score used to derive Theorem 4. Hence, G(θ2) =

−G0 + op(|θ2 − θ∗|), as desired.

(b) As
∑

r̂
(0,2)
t = 0, we approximate the function of interest using the next order derivative, so that

n−1/2
∑

(1 − ft(θ̂0
0,n, θ2)/ft(θ̂n

0,n, θ̂n
1,n)) = − 1

3!n1/2

∑
r̂
(0,3)
t (θ2 − θ∗)3 + op(|θ2 − θ∗|3). This has asymptotic

variance 1
36Ω(3)(θ2 − θ∗)6 + o(|θ2 − θ∗|6), and its standardized score is −n−1/2

∑
r̂
(0,3)
t (θ2 − θ∗)3/[Ω(3)(θ2 −

θ∗)6]1/2 + op(|θ2 − θ∗|). Note that this equals −n−1/2
∑

r̂
(0,3)
t /[Ω(3)]1/2 + op(|θ2 − θ∗|) if θ2 ≥ θ∗ or

n−1/2
∑

r̂
(0,3)
t /[Ω(0, 3)]1/2 + op(|θ2 − θ∗|) otherwise. As before, n−1/2

∑
r̂
(0,3)
t /[Ω(3)]1/2 is asymptotically

equivalent to the score used for Lemma 4(b), but its sign depends whether θ2 approaches θ∗ from above

or below. This completes the proof. ¤

Proof of Theorem 6 (a and b): By the continuous mapping theorem, QLRn ⇒ max[max[0, G0]2, supΘ∗

min[0,G(θ2)]2] if (a) is considered; and QLRn ⇒ max[supΘ∗\{θ∗}min[0,G(θ2)]2, G2
0,max[0, G∗]2] if (b) is

considered. By Lemma 6, max[0, G0]2 ≤ supΘ∗\{θ∗}min[0,G(θ2)]2 in (a); and G2
0 ≤ supΘ∗\{θ∗} min[0,G(θ2)]2

in (b). The conclusions follow. ¤
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Proof of Theorem 7: We use the following facts to prove the result.6

Fact 1 : If Bs( · ) is a stationary stochastic process on [θ, θ] such that E[Bs(θ2)Bs(θ′2)] = 1− |θ2 − θ′2|γ(1 +

o(1)), then P (supθ2∈[θ,θ] Bs(θ2) > u) = Hγ(θ − θ)u2/γ(1 − Φ(u))(1 + o(1)) as u → ∞, where Hγ :=

limθ→∞Hγ(θ)/θ and Hγ(θ) := E[exp(maxθ2∈[0,θ] BF (θ2))].

Fact 2 (Slepian inequality): Let U( · ) and V( · ) be separable Gaussian stochastic processes on Θ∗. If

E[U(θ2)2] = E[V(θ2)2], E[U(θ2)] = E[V(θ2)] and E[U(θ2)U(θ′2)] ≤ E[V(θ2)V(θ′2)] for all θ2, θ
′
2 ∈ Θ∗, then

for all x ∈ R, P (supΘ∗ U(θ2) < x) ≤ P (supΘ∗ V(θ2) < x).

Given our assumptions, it easily follows that E[G(θ2)G(θ′2)] ≥ 1 − |θ2 − θ′2|γ(1 + o(1)), as |θ2 − θ′2| → 0,

and from this, P (sup[θ,θ] G(θ2) ≥ u) ≤ ∑u∗
i=1 P (supθ2∈Θi

G(θ2) ≥ u) ≤ ∑u∗
i=1 P (supθ2∈Θi

Bs(θ2) ≥ u) =

Hγ(
∑u∗

i=1(θ
i
2 − θi−1

2 ))u2/γ(1 − Φ(u))(1 + o(1)) = Hγ(θ − θ)u2/γ(1 − Φ(u))(1 + o(1)), as u → ∞, where u∗

is the number of sets, Θi, partitioning [θ = θ0
2, θ∗) ∪ (θ∗, θ = θu∗

2 ] such that E[Bs(θ2)Bs(θ′2)] = 1 − |θ2 −
θ′2|γ(1 + o(1)) for all θ2, θ

′
2 in Θi whose closure is [θi−1

2 , θi
2]. From the fact that θ and θ are bounded, u∗

must be finite. The first and the second inequalities are from the Bonferoni and the Slepian inequalities

respectively, and the first equality follows from Fact 1. Finally, for any u > 0, P (supΘ∗\{θ∗} G(θ2) ≥ u) =

P (supΘ∗\{θ∗}max[0,G(θ2)] ≥ u) = P (supΘ∗\{θ∗}(max[0,G(θ2)])2 ≥ u2) = P (supΘ∗\{θ∗}(min[0,G(θ2)])2 ≥
u2), where the last equality follows by the symmetry of the Gaussian process distribution, as desired. ¤

Proof of Theorem 8: Note that P (supθ2∈Θ∗\{θ∗} G(θ2) ≥ u) = P (|G0| ≥ u)+P (|G0| < u, supθ2∈Θ∗\{θ∗}
G(θ2) ≥ u). We can decompose the second element on the RHS as follows: P (|G0| < u, supθ2∈Θ∗\{θ∗} G(θ2) ≥
u) = P (|G0| < u,NG

u ((θ∗, θ]) + NG
u ([θ, θ∗)) ≥ 1) = P (NG

u ((θ∗, θ]) + NG
u ([θ, θ∗)) = 1) + P (NG

u ((θ∗, θ]) +

NG
u ([θ, θ∗)) ≥ 2)−P (|G0| ≥ u,NG

u ((θ∗, θ])+NG
u ([θ, θ∗)) ≥ 1). First, note that P (NG

u ((θ∗, θ])+NG
u ([θ, θ∗)) =

1) = E[NG
u ((θ∗, θ2])+NG

u ([θ, θ∗))]−
∑∞

k=2 k ·pk(u), where pk(u) = P (NG
u ((θ∗, θ] )+NG

u ([θ, θ∗)) = k). Next,

it follows trivially that P (NG
u ((θ∗, θ]) + NG

u ([θ, θ∗)) ≥ 2) − P (|G0| > u, NG
u ((θ∗, θ]) + NG

u ([θ, θ∗)) ≥ 1) <
∑∞

k=2 k · pk(u). Thus, combining these gives P (supθ2∈Θ∗\{θ∗} G(θ2) ≥ u) = P (|G0| ≥ u) + P (|G0| <

u, supθ2∈Θ∗\{θ∗} G(θ2) ≥ u) ≤ E[NG
u ((θ∗, θ2]) + NG

u ([θ, θ∗))]. Finally, P (supθ2∈Θ∗\{θ∗}(min [0,G(θ2)])2 ≥
u2) = P (supΘ∗\{θ∗} G(θ2) ≥ u), as in the proof of Theorem 7, and P (|G0| > u) = 2(1−Φ(u)), yielding the

desired result. ¤
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