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ABSTRACT

This paper is concerned with tests for serial correlation in time series and in the errors of
regression models. In particular, the nonstandard problem of testing for white noise against
ARMAC(1,1) alternatives is considered. Sup Lagrange multiplier (LM) and exponential average LM
tests are introduced and are shown to be asymptotically admissible for ARMA(1,1) alternatives.
In addition, they are shown to be consistent against all (weakly stationary strong mixing) non-
white noise alternatives. Simulation results compare the tests to several tests in the literature.

These results show that the Exp—LM,, test has very good all-around power properties.



1. INTRODUCTION

This paper considers tests of serial correlation that are designed for autoregressive moving
average (ARMA) models of order (1,1) under the alternative hypothesis. It is natural to consider
tests of this sort, because ARMA(1,1) models are known to provide parsimonious representations
of a broad class of stationary time series. The most popular existing tests, such as the Durbin
and Watson (1950) and Box and Pierce (1970) tests are designed for the less flexible AR(1) (and
MA(1)) model and for the less parsimonious AR(p) model respectively.

Testing for serial correlation in an ARMA(1,1) model is a non-standard testing problem, be-
cause the ARMA(1,1) model reduces to a white noise model whenever the AR and MA coefficients
are equal. In consequence, the testing problem is one in which a nuisance parameter is present
only under the alternative hypothesis. Problems of this sort have been considered by Davies (1977,
1987), Hansen (1991), and Andrews and Ploberger (1993, 1994). The standard likelihood ratio
(LR) statistic does not possess its usual chi-square asymptotic distribution or its usual asymp-
totic optimality properties (of the sort established by Wald (1943)) in such cases. Nevertheless,
Andrews and Ploberger (1993) show that the standard LR test and an asymptotically equivalent
“sup” Lagrange multiplier (LM) test do possess an asymptotic admissibility property. In addi-
tion, Andrews and Ploberger (1994) derive a class of tests, denoted average exponential tests,
that possess certain asymptotic optimality properties for testing problems of the sort discussed
above.

The results of Andrews and Ploberger (1993, 1994) are general results that impose‘ “high-level”
assumptions. In this paper, we first show that these results apply to the problem of testing for
serial correlation in ARMA(1,1) models. We provide explicit expressions for the average expo-
nential and sup LM test statistics for the problem at hand. We then show that the corresponding
tests have the attractive feature of being consistent against all forms of serial correlation. In con-
sequence, the average exponential tests possess asymptotic optimality properties for a parametric
class of alternatives and the robustness property of consistency against all (weakly stationary

strong mixing) alternatives. This robustness feature is not shared by the Durbin-Watson and



Box-Pierce tests. Third, we compare by simulation the tests discussed above. These include the
average exponential, the sup LM, the Durbin~Watson, the Box-Pierce, and several point optimal
invariant (POI) tests. The POI tests have been introduced recently by Rahman and King (1992).
The Exp-LM,, test is found to have very good all-around power properties.

We note that the LM procedure for order selection of ARMA models, which has been con-
sidered by Poskitt and Tremayne (1980) and Pétscher (1983, 1985), reduces to just a two-sided
Durbin-Watson test in the case of testing an ARMA(0,0) model against an ARMA(1,1) model as
is considered here. Hence, the simulation results referred to above cover such LM tests. We also
note that the sup LM test is asymptotically equivalent (under the null and local alternatives) to
the sup LR test, which has been analyzed by Hannan (1982), also see Veres (1987). The sup LR
test is not considered in the simulation experiment.

All limits below are taken as 7' — oo unless specified otherwise.

2. TESTS OF SERIAL CORRELATION FOR ARMA(1,1) PROCESSES

2.1. Definition of Model and Test Statistics
The model we consider here is the ARMA(1,1) model:

(21) Yy=(r+B)Yio1+& — 7y for t=2,3,..,

where {Y; : t = 1,...,,T} are observed random variables (rv’s) and {&; : t = 1,2,...} are
unobserved innovations. The parameter space for 7 is II and for § is B. Throughout the paper,
we assume II and B are such that the absolute value of the autoregressive coefficient = + 3 is
bounded below one, II is closed, and B contains a neighborhood of zero. The former condition
rules out unit root and explosive behavior of {¥; : t =1,2, ... }.

We are interested in testing the null hypothesis of white noise against the alternative of serial

correlation of {Y; : t =1, 2, ...}. These hypotheses are given by

(22) Ho : =0 and Hy : B#0.



Note that when A = 0, the model (2.1) reduces to ¥; = & and the parameter 7 is no longer
present. In consequence, the above testing problem is non-standard.
Under the following assumption, we derive the standard LR, sup LM, and the average expo-

nential tests.

AssUMPTION 1: {e; : t = 1,2,..} is a sequence of iid N(0, 0%) rv’s for some 0® > 0 and

Y]-_-Sl.

Assumption 1 is used to generate the test statistics of interest, but we consider the asymptotic
properties of these tests below under a much more general specification of the distribution of the
innovations. The assumption on Y; is made for simplicity. With some added complexity, we could
assume {Y; : t = 1,2, ...} is part of a doubly infinite sequence of stationary rv’s that satisfy
(2.1)forallt=..0,1, ...

The standard LR statistic equals minus two times the logarithm of the likelihood ratio. Be-
cause the parameter 7 only appears in the denominator of the ratio, the unrestricted maximum
of the likelihood function with respect to this parameter can be performed after the ratio has
been computed for a given 7. That is, let LRr(7) denote the standard LR statistic for testing Ho
versus H; when 7 is known under the alternative to equal =. Then, the standard LR test statistic
is sup e LR7(m).

As shown in Andrews and Ploberger (1994, Proof of Theorem A-1), an asymptotically equiv-

alent test statistic (under the null and local alternatives) is given by
(2.3) sup LMp(r),
x€ll

where for the present testing problem

2
_(LyT t-2_ iy . _ 2)/54
o4 LMg(r) = (Wzmy,z'.:ow Y,_,_l) (1-72)/5%,
6% = y5TL,(Y,-Y7)?% and Yr =3I,V
(Note that the term by(7) = TiZ27'Y;_;_1, which appears in the definition of LMz (), can be

computed recursively via the recursion by(r) = Y; and by(7) = Vi1 + wby(m) for t =3...,T. In

consequence, LMr(7) can be computed using a single do loop.)



By verifying the conditions of Theorem 1 of Andrews and Ploberger (1993), we find that the
sup LM test satisfies the following asymptotic admissibility property. Let Power (¢r, 8, 7)

denote the power of the test o7 when the true parameters are § and 7.

ProposITION 1: Let {é7 : T > 1} be a sequence of asymptotically level a sup LM tests.
Under Assumption 1, given any sequence of asymptotically level a tests {¢r : T > 1} and any
probability distribution J(-) on Il whose support is II, there exists a constant r, j < oo such that

or all r > r, j we have
v‘l

Th?ti/ [Power((,oT, rv/1-72/\/T, 7) 4 Power(¢r, —rv/ 1-12/VT, 7r)] dJ(r)
< %‘/ [Power(fT, rv/1-x2/VT, ©) + Power(ér, —ry/1-12/VT, 7r)] dJ(r).

CoMMENT: The result of Proposition 1 concerns the asymptotic local power of the sup LM test
since it considers parameter values § that are proportional to 1/ VT. Proposition 1 shows that
the sup LM test beats any given test in terms of weighted average power against alternatives that
are local to, but sufficiently distant from, the null. The weighting is over positive and negative g3

values and is with respect to an arbitrary function J(-) on II.

Next, we discuss the average exponential tests that are introduced in Andrews and Ploberger
(1994). These tests are asymptotically optimal in the sense that they minimize weighted average
power for specific weight functions. The weight functions for the parameter S are mean zero
normal densities with variances proportional to a scalar ¢ > 0. For small ¢, most weight is placed
on alternatives that are close to the null. For large ¢, weight is distributed more uniformly across
B values. The weight function J for the parameter 7 is chosen by the investigator. For the
simulation results of this paper, we take it to be uniform on II

For each ¢ € (0, o0), the average exponential LM test statistic is given by
(2.5) Exp-LMur = (14 ¢)"1/? / exp (§ 1 LMz(x)) dJ(x),

where LM (x) is as defined above and J(-) is a probability measure on II, such as the uniform

measure.



The limiting average exponential LM test statistics (after suitable normalization, see Andrews

and Ploberger (1994)) as ¢ — 0 and ¢ — oo are given by

Exp—LMyr = /LMT(w)dJ(r) and
®9 Exp-LM,r =In / exp (L LM7(r)) dJ(r).

Under Assumption 1, Theorem 2 of Andrews and Ploberger (1994) can be applied to yield
the following asymptotic local power optimality property for the Exp—LM.7 test. Let {7 denote
a test based on the test statistic Exp~LM,r. Let ¢(8, w) denote the density at the point 5 of a

mean zero variance w normal rv.

PROPOSITION 2: Under Assumption 1, for any 0 < ¢ < oo and any sequence of asymptotically level
a tests {or : T > 1}, the sequence of asymptotically level o ezxponential LM tests {{cr : T > 1}

satisfies

E// Power(¢r, B/VT, 7)¢(8, ¢/(1-72))dBdJ(r)
< Jim [ [ Power(éa, BIVE, m)o(6, c/(1-x")dpdi (x).

2.2. Asymptotic Null Distribution of the Test Statistics
We establish the asymptotic null distribution of the test statistics introduced above using the

following assumption.

ASSUMPTION 2: Therv’s {Y; : t = 1,2, ...} satisfy E(Y;| Fi—1) = O a.s. Vt > 1, E(Y?|Fi-1) = o2
a.s. Vi 2 1, and sup;y, E|Y;|** < 0o for some § > 0, where F; denotes the o-field generated by

Yy, ..., Vi

The asymptotic null distributions of the test statistics are established by showing that the
sequence of stochastic processes {LM7(-) : T > 1} indexed by m € II converges weakly to
a stochastic process G(-) and then applying the continuous mapping theorem. Let = denote
weak convergence of a sequence of stochastic processes. (We define weak convergence using the

uniform metric on the appropriate space of functions on II, as in Pollard (1990).) Let 4, denote



convergence in distribution of a sequence of rv’s. Let {Z; : i > 1} be a sequence of iid N(0,1)
rv’s. Define
o 2
(2.7) G(r)=(1-7? (Z w‘z;) for 7 € II.
=0
THEOREM 1: Under Assumption 2,
(a) LMz1(-)=G("),
(b) supyen LMz(r) < supren G(r),
(c
(d

) Exp-LM.7 -5 (14 ¢)~1/2 [ exp (%T%G(r)) dJ(n) forall 0<c< oo,
) Exp—LMor -4 J G(x)dJ(x), and
(e) Exp—LMoog —2» In [ exp (3G(r)) dJ(x).

COMMENT: The martingale difference condition in Assumption 2 is not essential for the results
of Theorem 1 to hold. What is essential is that (i) EY; = 0 V¢t > 1, (ii) EY2 =02 > 0Vt > 1,
(iii) EY,Y; = 0 Vs < t, (iv) EY,Y}Y,Y, = 0Vs <t < u < v unless s = t and u = v, and (v)
ﬁE;’;Q}QEE;gw"}Q_;_l satisfies a CLT. Assumption 2 implies conditions (i)-(v). An alternative
to Assumption 2, which avoids the martingale difference assumption, is to assume conditions (i)-
(iv) hold and {Y; : t > 1} is strong mixing (defined below) with strong mixing numbers that
satisfy 2_‘1?":0(1(]')(""2)/" < oo and sup;>; E|Yi|* < oo for some x > 4. The CLT of condition (v)

holds under these conditions by Corollary 1 of Herrndorf (1984).

Asymptotic critical values for the test statistics in Theorem 1 can be simulated quite easily
by truncating the series £2,7'Z; at a large value T'R. Table 1 provides such values for the sup
LM, Exp-L My, and Exp—-LM,, tests for the parameter space Il = {0, £.01, ..., .79, £.80}. The

critical values in Table 1 are based on TR = 50 and 40,000 repetitions.

2.8. Consistency Properties
In this section we show that the sup LM and average exponential LM test statistics are
consistent against all deviations from the null hypothesis of white noise within a class of weakly

stationary strong mixing sequences of rv’s. This property illustrates the robust power properties



of the tests. It is not shared by other common tests such as the Durbin-Watson and Box- Pierce
tests.

We first state several definitions. The sequence of rv’s {Y; : t > 1} is said to be weakly
stationary if EY;Y;—; does not depend on ¢ for all ¢ > 1 and ¢ > 0. The sequence {Y; : t > 1} is

said to be strong mizing if

a(m) = sup sup |P(ANB) - P(A)P(B)] - 0 as m — oo,
21 AeFt  BeFS,,

-—00

where F , and F2,, are the o- fields generated by ..., Y;_;, ¥; and Yi4m, Yi4m41, ... respec-
tively. A sequence of rv’s {Wr : T > 1} is said to converge in probability to infinity (denoted
Wr £ 00) if P(Wr > M) — 1V¥M < .

For the consistency results, we assume:

AssuMPTION 3: {Y; : t > 1} is a mean zero weakly stationary strong mizing sequence of random
variables with EY2 = 02 > 0 Vt > 1 whose strong mizing numbers {a(j) : j > 1} satisfy

Ef?;]a(j)s/(“'s) < oo and for which sup,»; E|Y;|**? < oo for some § > 0.

THEOREM 2: Suppose {Y; : t > 1} satisfies Assumption 3. Also, in parts (b) and (c) below,
suppose v; # 0 for some i > 1, where v; = EY;Y;—;. Then,
(a) supren |LMr(n)/T — (E20myi41)*(1 - 72)/0%| = 0,

(b) sup,en LMr(7) 2, oo provided 11 is an infinite set, and

(¢) Exp—LM.r £+ 00 V0 < ¢ < oo provided the support of J(-) is an infinite set.

CoMMENTS: 1. Theorem 2(b) and (c) show that the sup LM and average exponential LM tests
are consistent against processes that have some autocovariance not equal to zero.
2. For a result analogous to Theorem 2(b) for the sup LR test, see Potscher and Srinivasan

(1994, pp. 37-38).



3. TESTS OF SERIAL CORRELATION FOR REGRESSION ERRORS

In this section, we show that the tests introduced above can be used to test whether regression
errors are serially correlated. The tests are constructed using residuals rather than the errors
themselves. Provided that the regressors are exogenous (defined below), the resultant sup LM
and average exponential LM test statistics have the same asymptotic distribution as when the
actual errors are used to construct the statistics. In consequence, the asymptotic critical values
given in Section 2 above are applicable.

The model we consider is given by
31) Wy=g(Xy, A)+Y; for t=1,..,T,

where {Y; : t < T} are unobserved errors, {X; : t < T} are observed regressor p-vectors,
{W; : t < T} are observed dependent variables, A is an unknown parameter, and g(-,-) is a
known function. We consider two cases concerning the properties of the regression function. In
the first case, the regression function may be non-linear, but must be non-trending. In the second
case, the regression function is linear, but may be deterministically trending. In either case, we

assume we have a consistent estimator A of Ao that is used to define the residuals
(32) Vi=W,—g(X, A) for t=1,..,T.

Under the null hypothesis of no serial correlation we impose one or other of the following two

assumptions depending upon the nature of the regression function.

AssUMPTION 3: (i) Assumption 2 holds with F; equal to the o-field generated by (X1, X2, ...)
and (Y3, ..., Y2).

(i) g(Xi, A) is twice differentiable in X as., supy; EllZ9(Xe, Ao < oo, and
SUP;>1 E|l3&59(Xe, V|3 < o for some € > 0, and

(i) TVA(X = Xo) = 0.



ASSUMPTION 4: (i) Assumption 2 holds with F; equal to the o-field generated by (X1, X2, .. )
and (Y1, ..., Y1)

(i) ¢(Xe, A)= X{AVt > 1, and

(iii) For some sequence {Ar : T > 1} of non-stochastic p x p diagonal matrices, AT('): -2)

= Op(1), sup;cr E|AT' X || = 0, and [A7];; = 00 Vi < p.

Part (i) of Assumptions 3 and 4 requires exogeneity of {X; : t > 1} in the strong sense
that the conditional mean of ¥; is zero given past values of ¥; and past and future values of X;.
This assumption rules out dynamic regression models that include lagged values of the dependent
variable.

The least squares estimator of A typically satisfies the consistency and rate of convergence
results required in part (iii) of Assumptions 3 and 4.

¥ X, = (1, t, 2), then Ar = Diag(TV/?, T%?, T5%7?) in Assumption 4(iii) and
sup;cr E[|AT' Xi||* — 0 as required.

The following result justifies the use of the sup LM and average exponential LM tests when

constructed using residuals.

THEOREM 3: Under Assumption 3 or 4, the results of Theorem 1 still hold when LMr(x) is

constructed using the residuals {Y; : t < T} defined in (3.2) rather than the rv’s {Y; : t < T}.

4. MONTE CARLO POWER COMPARISONS

In this section, we compare the finite sample power of the tests introduced above with several
tests in the literature. The latter include one- and two-sided versions of the Durbin-Watson
(DW) test, two versions of the Box—Pierce (BP) test, and three point optimal invariance (POI)
tests introduced recently by Rahman and King (1992). The DW tests have some asymptotic
optimality properties for AR(1) and MA(1) alternatives. The BP tests have some asymptotic
optimality properties for higher order AR processes and are often used in practice to detect

serial correlation beyond the first order. The POI tests have optimal power against particular
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ARMAC(1,1) alternatives and have been suggested as being suitable for testing against a variety
of ARMA(1,1) alternatives.

Since our interest here is in tests with good all-around power properties, we consider a variety
of different alternatives. We consider AR(1), MA(1), AR(6), AR(12), and ARMA(1,1) models.
We are interested in (i) the sensitivity of the power of the Exp~L M, tests to ¢ € [0, oo}, (ii) power
comparisons between the Exp—LM, tests and the Sup-LM test, and (iii) power comparisons
between the former tests and the DW, BP, and POI tests.

The model we consider is the location model with serially correlated errors:
(41) Wi=A+Yifort=1,..,T,

where the sample size T is equal to 100. The models used for the errors Y; are:

AR(1) : Vi=pYic1+&, p=.2,3,-2,-.3;
MA(1) : Yy =&t + g4y, 6=.2,.3, -2, -.3;
AR(6) : V; = pE;legth_j +&, p=.15,.2;
AR(12) : Y, = pE}ill:-i—;—iK_j ‘e, p=.1,.2
(4.2) AR(6)t : Y; = p2f=1(—1)5+lz-gi}’t_j +e, p=.3, 4
AR(12)£ : Y, = pZ12 (-1 B20Y, i+, p= 3, .4
ARMA(1,1) : Yy = pYio1 + et + dee-1,(p, 4) = (2, .1), (4, =.1), (.6, —.3),
(.8, =.6), (~.2, .6), (.4, .8), (-.6, 1.0), (—.8, 1.6), (.2, —.5),
(4, -.7), (.6, -1.2), (-.2, —-.1), (—4,.1), (—.6, .4), (-.8, .6).
The innovations ¢, are distributed iid N(0,1). The AR(1), MA(1), and ARMA(1,1) models are
simulated with a stationary start-up using the method described in Ansley (1979) and Rahman
and King (1992). The AR(6), AR(12), AR(6)+, and AR(12)+ models are simulated with an
approximately stationary start-up by taking the last 100 rv’s from a simulated sequence of 300
rv’s that is started-up by taking the 6 or 12 pre-sample Y; rv’s to be zeroes.
The models above are chosen because they include a wide variety of patterns of serial correla-
tion with both positive and negative serial correlations present. For each model considered, one

or more of the tests considered has some asymptotic optimality properties. The parameter values
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were chosen so that the tests had power in the range (.5, .9) in most cases. The parameter values
for the ARMA(1,1) model correspond (roughly) to points on diagonal lines above and below the
main diagonal in the (p, ¢) parameter space. The main diagonal constitutes the null hypothesis
for this model.

The average exponential tests considered have ¢ = 0, 1, and oo and II = {-.80, -.79, ..., .79,
.80}. Results for tests with ¢ = 1/3 and ¢ = 3 were also computed, but they are not reported here,
because their power lies between that of the ¢ = 0, 1, and oo tests. The parameter space II above
is chosen as a compromise between a smaller finite set, which has computational advantages, and
a larger finite set, which has broader consistency properties.

The DW statistic is defined by

(43) DW = ST, (W, — W,_1)?/SL, W2, where

. Wi = W, - Wr and Wr = 5L, W,.
Three tests based on DW are considered. DW2 denotes the two-sided DW test that rejects Hg
when |DW-2| is sufficiently large. DW+ denotes the one-sided DW test that is designed for
positive serial correlation. It rejects Hy when DW is sufficiently small. DW+ is the test that is
usually referred to in the literature as ‘the Durbin-Watson test’. DW-— denotes the one-sided
DW test that is designed for negative serial correlation. It rejects Hp if DW is sufficiently large.

Two BP tests are considered — one based on six sample autocorrelations and the other on

twelve. The two test statistics are defined by

BP6 = T(T+2)%8.r;/(T—j) and

(44) BP12 = T(T42)%1?

12173/ (T—j) , where

Ti= 2?=j+1Wth—J'/ 2?:1/"‘7:2 .
The tests based on BP6 and BP12 reject when the corresponding statistics are sufficiently large.
Three POI tests are considered. Each is designed to direct power at a particular ARMA(1,1)
parameter vector (pg, o). Following Rahman and King’s (1992) suggestion, we consider the three
vectors (po, o) = (.5, 0), (0, .5), and (.5, .5). Let Q(po, ¢o) denote the T x T covariance matrix

of W = (W, ..., Wr) when W ~ ARMA(1,1) with parameters (po, ¢o). Let G bea T X T
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matrix such that Q(po, ¢o) = GG'. Let Wy be the t-th residual from the transformed model
G-'W = G112+ G-'Y, where Y = (Y3, ..., Yr) and 1 = (1, ..., 1)’ € RT.

Given (po, ¢o), the POI test statistic is defined by
s POI(po, o) = W*W*/W'W , where
o W = (W, ..., Wr) and W* = (W}, ..., W3).
See Rahman and King (1992) for an algorithm for computing POI(pg, ¢¢). The POI(pg, ¢o) test
rejects Ho if the POI(po, ¢o) statistic is sufficiently small.

Table 2 presents the power of each of the tests described above for the AR(1), MA(1), AR(6),
AR(12), AR(6)%, and AR(12)+ models. Table 3 does likewise for the ARMA(1,1) models. In
each case, size-corrected power is presented. The finite-sample critical values required to compute
size-corrected power were calculated by simulation using 25,000 repetitions. The power results
were calculated by simulation using 5,000 repetitions. The N(0,1) rv’s were simulated using the
RAN1 and GASDEYV algorithms in Press, Flannery, Teukolsky, and Vetterling (1986).

Tables 2 and 3 show that the power of the Exp—L M, test is always monotone in ¢. Depending
upon the model, it may be monotone increasing or monotone decreasing. The difference in power
of the tests for ¢ = 0 and ¢ = oo is quite small in most cases. In only six cases out of a total
of thirty-one is the difference greater than .03. Furthermore, in each of the six cases where the
difference is greater than .03, power is increasing in ¢, so that ¢ = oo is the best test. Hence, we
conclude that (i) the choice of ¢ is not critical for most models and (ii) the choice of ¢ = oo is
preferable because it is the best choice for those models in which power is most sensitive to c.

Tables 2 and 3 show that Sup~LM has higher power than Exp-L M, in only six out of thirty-
one cases, whereas the reverse is true in twenty-two cases. For those cases where Sup—LM beats
Exp-LM,, the average difference in power is .02, whereas for the cases where Exp-L M, beats
Sup-LM, the average difference in power is .04. Thus, we conclude that Exp—LM, has higher
all-around power than Sup-LM by a small, but significant, margin.

Next, we compare the power of the Exp—L M, test to the DW, BP, and POI tests. The DW+,
POI(.5, 0), POI(0, .5), and POI(.5, .5) tests all have no power against alternatives that exhibit

negative first-order serial correlation. Hence, none of these tests is a good all-around test. On the
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other hand, each of these tests has higher power than Exp—LM,, for all of the other cases except
the AR(6) and AR(12) cases. The DW— test has no power against alternatives that exhibit
positive first-order serial correlation. Hence, it too is not a good all-around test.

The DW2, BP6, and BP12 tests have nondegenerate power against each of the alternatives
considered. The Exp—LM,, test dominates the BP6 test which, in turn, domiantes the BP12 test
(for the given alternatives and the sample size 100). The superiority of Exp-LM, over BP6 and
BP12 is substantial. Averaged over the thirty-one cases, its power is greater than that of the
latter two tests by .15 and .24 respectively.

The Exp-LM,, and DW?2 tests are the best all-around tests. DW2 is better in the AR(1) and
MA(1) models with positive coefficients. The two tests are equal for these models with negative
coefficients. The Exp—L M, test is better than the DW2 test for the AR(6), AR(12), AR(6)+, and
AR(12)% models. Averaged over the sixteen cases in Table 2, Exp—L M, has higher power than
DW?2 by .03. For the ARMA(1,1) models, the ordering between Exp—LM,, and DW2 depends
on the parameters. Averaged over all fifteen parameter vectors considered in Table 3, Exp—LM,,
has higher power than DW by .04. Based on the above results, we conclude that Exp-L M, and

DW2 are the best all-around tests with Exp—LM,, being preferable by a slight margin.

5. CONCLUSION
This paper establishes the asymptotic null distribution and asymptotic admissibility for
ARMAC(1,1) alternatives of a class of exponential average LM tests and the sup LM test. The pa-
per also shows that these tests are consistent against all non-white noise alternatives. Simulation
results suggest that the Exp—L M, test is the best of these tests and that it performs very well

relative to existing tests in an all-around sense.



14
APPENDIX OF PROOFS

PROOF OF PROPOSITION 1: It suffices to verify Assumptions 1-7 of Andrews and
Ploberger (1993), denoted Assumptions AP1-AP7. Theorem 1 of Andrews and Ploberger (1993)
then gives the results of Proposition 1.

Under Assumption 1, the likelihood function is given by
(A1) fr(8, )= (270®) T exp (- 35 BT (Y: - BZiT5n Yeminn)?)

where 8 = (B3, 0?)'. Assumption AP1(a) holds, since fr(fo, 7) does not depend on 7, where
6o = (0, 0?)’. Assumption AP1(b) holds because B contains a neighborhood of zero. Assumption
AP1(c) holds because fr(@, v) is infinitely differentiable in 8 for all 3 € B, = € II, and o2 > 0.
Assumption AP3 (i.e., 8 - 6, under 6) holds by the law of large numbers, because 9 =
(0, 22T . ¥?)" and {¥; : t > 1} are iid N(0, 0?) under fo. Assumption AP4 holds by the
definition of II. Assumption AP6 holds by the definition of J(-). Assumption AP7 holds with
A(ALT AL) Y2 = Il_,rl/2 = V172, since Tor = [Z(fo, 7))12 = 0 as shown below.

It remains to show Assumptions AP1(d), (e), and (f), AP2, and AP5. Take By = V/T. Then

(using notation from Andrews and Ploberger (1993)),
—B1'Dtr(6, 7)B7!
[ PLERAYen? R (Y- AR i)

=24
X E,'=0 Wth—i-—l

(A2) =
& 5L, (Y, - i3 Yomin) LInT y2- L
\ X Ef;gw‘}"t_,-_l
Let
(A‘3) I(g, 7r) = Tlim E{_BEI.DzeT(H, W)B}l] — 1-72 o?(1-72)
) il ik

Assumption AP1(d) requires — By D%r(6, 7)B5' £ I(@, 7) uniformly over 7 € II and over
6 in some neighborhood @y of 3. By Theorem 1 of Andrews (1992), uniform convergence

is implied by pointwise convergence, stochastic equicontinuity (i.e., Ye > 0 36 > 0 such that
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Bm oo P(8UP|\(5, x,)— (83, m2)l|<6 |GT (81, T1) = G1(b, m2)| > é) < ¢ where Gr(6,7)
= —B7'D%7(0, 7)B;' — I(8,7)), and total boundedness of ©g x II. Pointwise convergence
in probability for each (6, ) € ©¢ x II is implied by pointwise convergence in mean square, which
is straightforward, but tedious, to establish. For brevity, the proof is omitted. Since the norm-
ing is by 7-! (rather than 7-1/2), it is also straightforward, but tedious, to establish stochastic
equicontinuity by applying Markov’s inequality and standard manipulations. Again, the proof is
omitted for brevity. Total boundedness of ©¢ x II holds by definition of @ and II. This completes
the proof of Assumption AP1(d).

It is apparent that Z(@, ) is uniformly continuous in (6, 7) over @ X II. Hence, Assumption

AP3 holds. In addition,
. . . . 1 1
(A.4) ;161%'1 Amin(Z (6o, 7)) = ;161}'1 min {-1—_-;5, 274'} >0,

since |7| is bounded below one. In consequence, Assumption AP1(f) holds.

Assumption AP2 requires sup,cp ||'0\(7r) — o]l -2, 0 under 6o, where

o B ([ [FER (B Yei)!] T FSE YR Y

(A.5) O(w)= = 2

5*(r) FL, (Y - BmZiinYinin )

Again, by Theorem 1 of Andrews (1992), it suffices to show pointwise convergence for each = € I

and stochastic equicontinuity of 5(7r) — 0. These results are straightforward, but tedious, to

establish given that {¥; : t > 1} areiid N(0, 02). For brevity, the proofs are omitted.
Assumption AP5 requires that B;IDZT(GO, -) converges weakly to a Gaussian process G(p, -)

(as processes indexed by = € II), where G(6q, ) satisfies EG(6o, 7)G(6o, 7) = Z(6y, 7) and

G(o, 7) has continuous sample paths (as functions of ) almost surely. Since B! Dfr(6o, 7)

= ﬁfo:l}QEf;gni}’g-;_l, the desired result is a special case of Theorem 1(a) with G(6,, 7) =

G(r)/o?. The proof of Theorem 1(a) is given below. O
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PROOF OF PROPOSITION 2: Proposition 2 follows from Theorem 2 of Andrews and
Ploberger (1994) provided Assumptions 1-3 and 5 of the latter paper can be verified. These
assumptions are the same as Assumptions 1-3 and 5 in Andrews and Ploberger (1993) (except

for minor and insignificant differences), which have just been verified. D

PROOF OF THEOREM 1: First we establish part (a). Define

(A6) vp(m)= 71?222}’,2:;3”*}3-;-1 and v(r) = 022X 7' Z;.

It suffices to show that vp(-) = v(-) and 8% = .52 (¥; - Y'1)? -2 02, because the continuous
mapping theorem (e.g., see Pollard (1984, p. 70)) then yields part(a). By Thm. 10.2 of Pollard
(1990), vr(+) = v(-) if (i) 7 is totally bounded, (ii) the finite dimensional distributions of vr(-)
converge to those of v(-), and (iii) {vr(-) : T > 1} is stochastically equicontinuous (i.e., Ve > 0
36 > 0 such that EET-»ooP(SUPm_M]gs lvr(m1) — vr(m2)| > €) < €)). Condition (i) holds since
is a subset of [-1, 1].

To establish condition (ii), we use the Cramer-Wold device and a martingale difference
sequence (MDS) central limit theorem (CLT). In particular, we use the MDS CLT of Thm.
3.1 of Hall and Hyde (1980). For simplicity, we just show that vr(m) 4, N(0, o*/(1-72))
and limr_,o Cov(vr(m), vr(m2)) = Cov(v(m), v(mz)). The CLT result for arbitrary linear
combinations of (v7(m1), ..., vr(mp)) is established analogously. Let Wry = YiEiZ2Y i1 /VT.
E(Wr¢|F:—1) = 0 by Assumption 2. Hall and Hyde’s condition (3.21) holds because F; does not

depend on T'. The other two conditions of their Corollary 3.1 are:
(A7) Ve >0, ST E(WE1(|Wri| > €)|Fi—1) = 0 and
(A8) ZLE(WH|Fi1) 5 o*/(1-n%).
To establish (A.7), let LHST denote the left-hand side of (A.7). Then,
P(LHSr > n) < E(LAST)/n < 2, E\Wrd***[(e°n)

(A9) = TS BRI Y i P (%)

IN

T~ sup E|Yi|**(1/(1 - |7())/(¢n) — 0.
t>1
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The condition in (A.8) follows from

EWh|Fims) = § (B8 Yiina)
o
T
; o 2\ 2
E (§5L, (S0 ¥ieinn)? - 0?5i23n%))

=

2T, 2iir¥ o ot /(1-x?), and

. . - . 2
= B (Sl Soimimin i (Vi Yinjor - 0210 = 1))

J=
(A10) = &rL 2L, rir it rinink nt E(Y,mio1Yemjo1 — 0?1(i = 5))

1=0

X(Ysp-1Ysmt—1 — 021(k = £))

IA

4 T i 2k 2 232
%Etﬂxﬁlrmxi‘_’__ow SUP¢>q E(Y? -0?)

— 0,

where the last equality holds because the summands on the left-hand side of the equality are zero
unless t—i~1 = t—j—1 = s—k—1 = s—¢-1, i.e., unless { = 7, k = ¢, and t—i = s—k. Thus, Hall and
Hyde’s MDS CLT applies.

Next, we note that
(A.11) Cov(¥(my), ¥(m3)) = o* L2, wins.
In addition, we have

JIim Cov(vr(m), vr(nz)) = lim 35T, ST, NI2Rstri e EY,YiY, i Yimics
(A.12) = lim }EL S2nmEYIYE

1=

= Cov(v(m), v(m2)),

where the second equality holds because EY,Y;Y,_;j_1Y;—i—1 = 0 unless s = ¢ and ¢ = j. This
completes the proof of (ii).
We now establish the stochastic equicontinuity condition (iii). Let vy(w) = 7‘;23;_.21/,
X E?;OW"Y,_;_I. We have
Esup|vp(r) - v3(r)| = Esup | =T, 5%, 1YY,y
mell

(A.13) zell
< ﬁzf=22?~gt-1”: i‘g EY}? -0,
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where 7, = sup{|r| : 7 € II} < 1. In consequence, it suffices to establish stochastic equicontinu-

ity of {¥5(-) : T > 1}. Let a; = 7%. Given ¢ > 0, we have

P( sup |vp(m)—vi(ms)| > €)

[r1 —m2|<8
= P(I S“PI<6|2¢—0(7"1 7’2)\/—2{ 2YiYeoio1| > €)
my -T2
2
(A.14) < ¢2E  sup (2520(”1 ) Y R 1)
|m1—m2|<8 \/_: \/_
iy @ 2
<e? sp mp 0T e o i
[m1—m2|<6
ot (ni - 7i)?
= ———— sup IR, 12
£3(1 - n2) |n—xf;<s =0 g ’

where the first inequality uses Chebyshev’s inequality and the second uses the Cauchy-Schwarz
inequality. We note that an alternative method of establishing condition (iii) is to use Lemma
A.1 of Bierens and Ploberger (1994).

Stochastic equicontinuity now follows if we can show that given £ > 0, 3§ > 0 such that
|Ty — T3] < & implies B (w} — 73)%/a; < €. Given £ > 0, we can take J so large that
50 (7l — 75)2/a; < €/2 (since |m| and |7y| are bounded away from one). Next, we have

2L (m = 7i)2/a; = B ((m1/7.)" = (m2/m0)f)? < J(my/7u — mo/T.)? < €/2, where the last in-
equality holds provided |m; —7,| < 6 and 6 < (¢72/(2J))'/2. This completes the proof of stochastic
equicontinuity.

Next, we show 52 - ¢2. We have }_’; -2, 0, since E?; = 0?/T — 0. In addition,

2

(A15) E (32, (¥7 - 09)" = 421, 5L, E(Y, - 0)(Y - 0?) = 5L, E(Y2 - 0%) - 0,

where the second equality holds because E(Y?|F;—1) = o¢? a.s. implies that E((Y? - ¢?)
x (Y2 — 0?)|Fi-1) = 0 Vs < t. These results combine to yield 2 -2 o2, which concludes
the proof of part (a).

Parts (b)-(e) follow from part (a) and the continuous mapping theorem. O
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PROOF OF THEOREM 2: First we prove part (a). Define

(A.16) Ar(r) = Br(r) - Cr(r), Br(r) = TET__2E,_07I’ Y:Yioi-1,
Cr(r) = $EL B2, W ¥i¥i i, and B(r) = E2gipisn.

The left-hand side (lhs) of part (a) equals
(A.17) sup |A%(x)(1-n?)/5% — B¥(r)(1-n?)/a%).
x€ll

Below we show that
(i) EsupC3(r)—0,
x€ll

(ii) E(Br(r)— EBr(r))?—0 Vrell
(A.18) (iii) {Br(-)— EBr(-) : T > 1} is stochastically equicontinuous on II,

(iv) sup|EBr(r)— B(r)| — 0, and

w€ell

(v) 82 5 o2

Parts (ii) and (iii) combine to yield sup,¢p |Br(7) — EBr(r)| -2, 0 by Theorem 1 of Andrews

(1992). This result and parts (i), (iv), and (v) combine to establish part (a) of the Theorem.

To show (i), we write the lhs of (i) as

ES“PT1 DT TR ER T 1Y, Yi-ic1 Y Yoo

(A19) < HET 3T T2, 7is2, _ mlsup EYE
m>1

Sl =g—

2
< A (SRent)? () sup EY;z — 0,

where 7, = sup{|r| : 7 € II}.

To show (ii), we write the lhs of (ii) as

7182l 223—02 =0T WJE(Yth—z—l — EYiYii1)(YsYoojo1 — EYY—J—I)

A
‘;3,|.o
"x
=3

BN
h
I
o

Y
E AN

00’

wm

VE
"C’
_f‘!
5
S

+

on

Q
—~~

E
-

o~

L

|

—

i

»

Len]
—
p—

On

e

-

+
°!

(A.20)

IN

mr'—;E Y o(max{t-i-1-s, 0})¥/(4+0) y £, i,
2<sLtLT

where the first inequality holds by a standard strong mixing inequality, see Hall and Hyde (1980,

Cor. A.2, p. 278), and the second inequality holds for all positive integers I since a(m) < 1.
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The second summand on the rhs of (A.20) can be made arbitrarily small by taking I sufficiently
large. Given I, the first summand on the rhs of (A.20) can be made arbitrarily small by taking
T sufficiently large, since 1/7 times the double sum over s and t is bounded over T' > 1 for each
fixed i. This establishes (ii).

Part (iii) is established in exactly the same way as the stochastic equicontinuity condition (iii)
of the proof of Theorem 1. Part (iv) holds, because EBr(r) = B(r)(T-1)/T.

Part (v) holds using the strong mixing assumption via standard arguments.

Parts (b) and (c) of Theorem 2 follow from part (a) because the function h(r) = ER 7'y, has
only a finite number of zeros if 4; # 0 for some i. This follows because the function h(r) for =
complex and |7| < 1 is analytic and analytical functions are either identically zero or have finite

numbers of zeros, e.g., see Ahlfors (1966, p. 127). O

PROOF OF THEOREM 3: Let LMr(r), Pr(r), and 3 denote LMy(r), vr(r), and 32,
respectively, when the latter are constructed using the residuals {)7} : t < T}. It suffices to show

that
(A.21) sup |LMg(n) = LMy(x)| 20
mell
under Hp and Assumptions 3 or 4. The latter follows from
~ P 22 g p
(A.22) sup |pr(m)—vr(7)]— 0 and @ - — 0.
n€ll
Let g; = g(X¢, Ao) and §; = g(Xy, A). Then,

(A.23) Prin) = vr(x)

= ;}T=E?=2Ef;é7ri[(gt - ’g\t)Yt—i—l + Yt(gt-i-l - ?t—i—l) + (gt - ?t)(gt—i—x - ?z—i—l)]-

As above, uniform convergence in probability of r(7) — vr(r) to zero is implied by pointwise
convergence for all 7 € IT and stochastic equicontinuity, using Theorem 1 of Andrews (1992).

Pointwise convergence is obtained under Assumption 3, by taking a two-term Taylor expansion

of g(X;, Ap) about X
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Iyl-z Tiz2ni(g - gt)Yt—-i—ll
= | 4ot 23 (02 Fr9(Xes do)¥emit + 30 Xo) 5ima(Xe 2 (A= X0)Yici1 ]|
N7 40X - | T4 ETL, Zi28m B 9(Xe, Ao)Yimica|
755w 9( Xy, '\)” |Yimizals

(A.24)

IA

+ T4 (0-20)|24 2L, Tl 2ne W22

A-Aoll<e

where A} is a rv that lies between Ao and X o= sup{|r] : = € I}, and the inequality holds
with probability that goes to one. The first summand on the rhs of (A.24) is 0,(1) because
TV 4(:{— Ao) = 0,(1) and the term involving E7_, has mean zero and variance that goes to zero as
T — 00. The second summand is op(1) because T/ YA=Xo) = 0p(1) and the term involving ¥,
has mean bounded away from infinity over 7 > 1 and, hence, is O,(1) by Markov’s inequality.
The proof that the second and third summands of (A.23) are 0,(1) V7 € II is analogous.

Stochastic equicontinuity of {Ur(-) — vr(-) : T > 1} under Assumption 3 is established
by combining the stochastic equicontinuity argument given in the proof of Theorem 1 with the
argument given immediately above. For brevity, the details are omitted.

Pointwise convergence of Ur(7) — vp(7) to zero is obtained under Assumption 4 as follows:

The first summand of (A.23) is
(A.25) \/_th_22::(2),,. (9t — 'g\t)Yt—i-ll = I(\/-EtT Tisam Yt—i—IXtAEI) Ar(do - X)l .

The rhs of (A.25) is 0,(1) because Ar(X - Ag) = Op(1) and the expression in parentheses has
mean zero and variance that converges to zero as T — oo using Assumption 4(iii). The second
and third summands of (A.23) are 0,(1) by analogous arguments. Stochastic equicontinuity is
established under Assumption 4 in the same manner as under Assumption 3.

The proof that §2 - 32 -2, 0 under Assumption 3 or 4 is similar to the proofs given above.

For brevity, it is omitted. O
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TABLE 1

Asymptotic Critical Values

Test Statistic 10% 5% 1%

Sup-LM, 7 € [-.8, .8] 4.62 6.01 9.09
Exp-LMo, 7 €[-.8,.8] 241  3.34 5.62

Exp-LMo,7€[-.8,.8)] 142 197 336

23
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TABLE 3

2 4 .6 8 |[-2{-4|-6]|-8] .2 4 6 |-2|-4|-6|-8

d1§-1|-3]-6] .6 81016 |-5]|~-7}-12|-1{ .1 4 .6
Exp-LM, 76| .80 | .86 | 69| .89 | .82 | .52 | .69 | .75 | .68 | .40 | .82 | .86 | .66 | .79
Exp-LM; 751 .80 | .86 | .71 | .90 | .84} 55| .71 | .75 | .69 | .41 | .81 | .86 | .66 | .81
Exp-LM 74| .79 | .86 | .73 .91 | .86 |.57].721.75| .69 | .40 | .81 | .85 | .66 | .81
Sup-LM 69| .75 .84 | .71 | .88 | .84 .54 | .73 | .68 | .63 | .34 | .76 | .82 | .64 | .82
DW2 82| .84} 87| .65|.90| .80} .50 .57 .71 .60} .33 |.81 | .84 | .57 | .68
DW+ 88| .90|.92{.73| 95| .87 | .62 .00 § .00} .00 | .00 | .00 .00].00] .00
DW- .00 |.00].00].00}.00f.00|.00|.67|.82]|.73| .46 | .89 | .91 | .69 | .77
BPé6 52| .60 | .71 | .58 .69 | .61} .39 | .59 .47 | 43| .25 | .56 | .65 | .46 | .70
BP12 421 49| .62 | .51 | 54| 46| .29 | .52 | .35 .32 | .20 | .46 | .55 | .38 | .63
POI(.5,0) 87| .88 | .91 | .71 | .94 | .86 | .59 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00
POI(0,.5) 81 |.77| .76 | .47 | .99 99| .92 | .00 | .00 [ .00 | .00 | .00 | .00 | .00 | .00
POI(.5,.5) 83|.79|.77|.50| .99 | .99 .93 | .00 .00 .00} .00 .00} .00 (.00]j .00

25
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