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Fig. 2. Maximum negative overshoot of M-bit binary word
autocorrelation function.

III. RESULTS

Equation (14) is plotted in Fig. 1 for several values of the word
length M. Each set of curves approaches a limiting curve for large
N in accordance with (I12) for a = 2. In addition, successive sets of
curves for progressively larger word lengths can be seen to approach
the limiting exponential 2-1 in accordance with (13).

It can be shown that, except for the single case N = M = 2, the
maximum negative overshoot of the word autocorrelation function
for any word lengthM is given by the value r(M) forN = M, as can
be seen in Fig. 1. For a = 2, this value is given by

3(m- 1)
2M(2M+ 1)-3(2M- 1)' NM. (16)

For large word length M, the limiting form of (16) is

ry(M) )- -3/2M. (17)
N=M---

Equations (I16) and (17) are plotted in Fig. 2 as a function M. As can
be seen, the largest overshoot occurs for M = 3 and for M > 4; the
asymptotic behavior of (16) closely follows the limiting expression
(17).

IV. CONCLUSIONS

In this correspondence, a closed-form expression has been obtained
for the autocorrelation function of successive M-bit digital words
taken from a single PN sequence of length L = 2N- 1. This function
Ry(l) specifies the correlation between words separated in time by
1 clock cycles. For any given values of I and M, this expression can
be used to find the value of N which will minimize the correlation
between words.

Alternatively, a word lengthM can be specified such that successive
words separated by 1 >M clock cycles will be correlated to less than
a specified amount.
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Testing for Single Intermittent Failures in Combinational Circuits
by Maximizing the Probability of Fault Detection

JACOB SAVIR

Abstract-Intermittent faults in combinational circuits may appear and
disappear randomly; hence, their detection requires many repeated applications
of test vectors. Since testing reduces the time available for computation, it is
necessary to efficiently minimize the time required for a test, while still
achieving a high degree of fault detection.

This paper presents an optimal random test procedure to detect intermittent
failures. The algorithm maximizes the probability of fault detection by opti-
mally choosing the input vector probabilities.

Index Terms-Error latency, intermittent fault detection, irredundant
circuit, maximum likelihood estimator, random testing.

I. INTRODUCTION

Many systems in the field today perform critical functions which
require extremely high availability (for example, computers in air-
planes, hospitals, etc.). One method of achieving this goal is by pe-
riodic testing of each subsystem, and whenever a fault is detected, that
faulty subsystem is repaired or replaced.

Intermittent failures (IF's) can be defined as failures that change
the normal function of a circuit during randomly occurring intervals
of time.

IS's may have a variety of causes: external effects such as tem-
perature, humidity, thermal vibration, mechanical vibration, power
fluctuation, pollution, or pressure may cause loose connections. Other
IF's may appear as hazards, races, etc.

Studies [1], [5] indicate that IF's have comprised over 30 percent
of predelivery failures and almost 90 percent of field failures in several
computer systems; therefore, an efficient way to detect IF's is re-
quired.

Numerous papers have been published in the literature regarding
models and testing procedures for detecting IF's. Continuous-time
models have been used by Breuer [2], Spillman [22], and Su [11],
while discrete-time models have been used by Kamal [6], [7], Koren
[ 10], and Savir [ 15]- [20]. The testing strategies can be categorized
as either deterministic or probabilistic in nature. Kamal [6], [7] and
Koren [10] describe properties of deterministic test procedures, while
Savir [15]-[20] describes random test procedures for detecting
IF's.
When dealing with random testing, it is useful to distinguish be-

tween time-variant random testing and time-invariant random
testing [ 16]. Time-invariant random testing refers to testing for which
input vectors are applied with a cofistant probability distribution
during the entire test procedure, while time-variant random testing
refers to a strategy which allows the probability distribution to change
as the test proceeds. Only time-invariant random testing will be
considered in this paper.

This paper presents an optimal algorithm to detect IF's in combi-
national circuits. It is optimal in the sense that the algorithm sug-
gested maximizes the probability of fault detection. Optimal detection
is achieved by applying input vectors according to an optimal prob-
ability distribution. It is shown that the set of input vectors used for
optimal detection of the IF's is not necessarily a minimal solid fault
detection experiment for the corresponding permanent faults.
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Section II presents the basic definitions and assumptions related
to optimal testing. In Section III, the optimal intermittent fault de-
tection experiment is developed. Section IV presents the algorithm
and provides a few examples and Section V concludes with a brief
summary.

II. BASiC DEFINITIONS AND ASSUMPTIONS

In this paper, we consider only stationary intermittent failures,
meaning that the same fault will physically change the circuit in the
same way each time it appears. When a certain malfunction occurs
in the circuit, we say that a certain intermittent fault is present in it
(we assume that the circuit is fault free with respect to permanent
faults). When an IF is present in the circuit, it can be active at some
times, and inactive at other times. We say that an IF is active at a
certain time if it changes the function of the circuit at that time
(justified by Assumption 3 to follow).

Definition 1: An IFfi, when active, partitions the set of all possible
input vectors into two disjoint subsets. The elements of the affected
subset AFi of input vectors yield an incorrect output under the in-
fluence of the fault. Elements of the unaffected subset UAFi yield
the correct output.

Definition 2: The error probability [21 ] ai of a faultfi is the con-
ditional probability of an incorrect output under the application of
a randomly chosen input vector, given that faultf, is active.

ai = Prfinput vector E AFi). (1)

Definition 3: The error latency [211 ELi of an IFfi is the number
of input vectors applied to a digital circuit whilefi is present until the
first incorrect output due tofg is observed.

In practice, the testing of a combinational circuit will be done by
a fast clocked machine where one test will be applied per each clock
cycle. As suggested in Definition 3, we can measure the error latency
by the number of clock cycles elapsed until the first error is observed
rather than by the time elapsed. Hence, the error latency is a discrete
random variable taking on values in the set of positive integers.

The following are assumed to hold for the circuit under test.
Assumption 1: The faults are well behaved, namely, during an

application of an input vector, the circuit behaves as if it is fault free
or else a certain intermittent fault is active [2].

Assumption 2: The application of input vectors is random and in-
dependent of the activity times of the IF's [15].

Assumption 3: The circuit is irredundant, namely, if the IF's were
solid, every single fault would be detectable.

Assumption 4: Only one out of m possible IF's may be present in
the circuit. The set of possible faults F = tfi,f2, fmj is assumed
to be known to the test designer.
Assumption 5: The fault parameters are known or estimated (see

the Appendix), namely,

a) Pr tfi is present circuit is faulty)
Wi > 0, i = 1, 2, ,m (2)

where

m

E wi= 1.
i=1

(3)

III. THE OPTIMAL INTERMITTENT FAULT DETECTION
EXPERIMENT

Definition 4: An optimal assignment ofinput probabilities is an
input probability distribution which maximizes the probability of fault
detection, with the constraint that no more than n input vectors are
applied.

Clearly, the optimal assignment of input probabilities is not unique
because different tests from the same affected subset might be used
to detect a certain fault. For example, in the case of only one fault with
AF = ltl, t2j, all the distributions of the form Pr It } = u, Pr It2j = 1
- u, 0 < u < 1 are valid optimal assignments. In these cases, we agree
to use either u = 0 or u = I for the optimal distribution. As implied
in Definition 4, the optimal assignment will, in general, depend on
n.

Definition 5: A set S c u m1 IAFi is called a generating set if it
contains at least one element from each affected subset.

Definition 6: An IF detection experiment for F is a finite string of
n tests which are all members of a generating set S. The length n of
this string is called the length of the experiment.

Generating sets and IF detection experiments are usually not
unique. In general, different experiments yield different detection
probabilities. Note that the shortest string formed using all members
of any generating set is a permanent-fault detection experiment of
F. Such a string formed from the smallest possible generating set
(smallest cardinality) is the minimal permanent-fault detection ex-
periment for F.

In principle, any generating set can be used to generate an IF de-
tection experiment because every such set covers all faults under
consideration. However, there is a substantial difference in the testing
quality achieved for various generating sets. The following definition
describes those generating sets which will be used in designing the
optimal experiment.

Definition 7: An optimal generating set S* is a generating set for
which an optimal assignment of probabilities exists which assigns zero
probability to every test not in S*.

Because every IF detection experiment must have finite length,
there is no guarantee that at the end of any experiment, a definite
conclusion regarding the state of the circuit (faulty or fault free) could
be drawn. When enough consecutive correct outputs are observed,
it is necessary to stop and decide with a certain confidence that the
circuit is fault free. Such a stopping decision rule should be based on
the confidence that the circuit possesses no IF's, which is a mono-
tonically increasing function of the number of consecutive correct
outputs that are observed. The testing quality and hence the decision
rule for stopping the experiment, is based on the escape probability
defined below.

Definition 8: The escape probability P, of a fault set F is the con-
ditional probability that the fault (which is a member of F) will go
undetected during an application of n randomly selected input vectors,
given that the circuit is faulty [ 16].

In order to carry out the optimization procedure, we need an ex-
pression for the cumulative distribution function (cdf) of the error
latency FEL for the case of detection of single faults from a fault set
F.

FEL(n) = Pr {EL < nIcircuit is faulty[.
wi is called the probability ofpresence

b) Pr {tfi is active in any clock cycle Ifi is present)
=pi>O, i= 1,2, ,m. (4)

pi is called the probability of activity [16].
Note that the probabilities of activity do not form a probability

distribution. In fact, the following inequality holds:
m

0< , Pi < m
i= I

where the equality sign holds for the case of solid faults.

(5)
In [ 16], the cdf of the error latency of a specific faultfj is derived to
be

FELj(n) = Pr fELj < nlfj is present) = 1 - (1 - bj)n (6)
where

bj = aj - pj. (7)
Hence,

,m

FEL (n) = E Pr $ELj . n Ifj is present)
j=1

- Pr tfj is presentIcircuit is faulty} (8)
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m

FEL (n) = E Wj - FELj (n).
j=1

Using (6) and (9), we obtain
m

FEL(n) = 1 - E_ Wj- (1 -bj)n = 1 - Ps.
j=l

(9)

(10)

The problem can now be specified in more exact terms: we are looking
for an optimal assignment that maximizes FEL(n) (or equivalently
minimizes P,) for a given n.
Lemma 1: In a combinational circuit with F = tfl,f2i and conjoint

affected subsets AF1 and AF2, an optimal generating set is the one
consisting of a single test t e AF1 n AF2.

Proof: See [17].
Lemma 1 indicates what would be an optimal generating set in the

most general case. The members of the optimal generating set should
be selected out of the minimal intersections of the affected subsets
generated by Procedure 1.

Procedure 1:
Step 1: Create all intersections between AFi and AFj for all i .

j, and add them to the collection of the original sets tAFI, AF2,
AFm ). If all intersections are empty, stop-those sets are the minimal
intersections. Otherwise, mark all original sets which have nonempty
intersections with at least one other set.

Step 2: Delete all the marked sets. If two or more intersections are
identical, delete all but one copy of that intersection.

Step 3: Rename the remaining sets jAFI, AF2, -) and go to Step
1.

Fig. 1 shows an example of generating the minimal intersec-
tions.

Let q be the number of minimal intersections generated by Pro-
cedure 1, and denote them by IT1, T2. , Tq . An optimal generating
set will be

S* = Iti, t2, *,tql; ti E Ti, i = 1, 2, *** q. (I11)

Note that at most there exists one minimal intersection for each two
affected subsets; hence, the following inequality holds:

1S*1 = q <(m)= m(m- 1) (12)

Fig. 1. Set of minimal intersections: |AF1 r) AF2, AF1 n AF3, AF2 n
AF3, AF41.

m

Ps = E wj ( p1-P ejxtr)n
j= I

under the constraints

xj > 0 for allj= 1, 2, , q

(16)

and

(17)L xj = 1.
1=1

Lemma 2: The escape probability is a convex function of the
probability assignment to the input vectors.

Proof: Let n > 1 (for n = 1, the optimal assignment is always
on the boundary, and therefore is not an interesting case). We have
to show that

Ps [/X1 + (1 - )X2] < 3PA(xO) + (1 - )Ps(x2) for all

xI, X2e jxlxj > 0, Xi = I
i=lI

such that xl $ x2, 0 <O < 1. (18)
The testing information embedded in the optimal generating set

can be summed up in the testing matrix E. The testing matrix is de-
fined to have m rows corresponding to the m possible faults and q
columns corresponding to the members of the optimal generating set.
The entries eij are obtained by

if tj is a test for faultf,
otherwise.

Let xj be the probability assignment to the test tj, namely,

xj = Pr {input vector = t1j.

Since all tests not in S* are given zero probability, we have

X= 1.
j= I

The error probabilities can be calculated from E:

ai= Pr {input vector e AFiI = eij x = ei * Xtr (13)
J=1

where

e= (ei1, ei2, , eiq), (14)

x = (xI, X2, , xq), (15)

and xtr denotes x-transposed.
Notice that, in general, Z1=ai 2 1, with the equality holding only

when the affected subsets are disjoint. The optimal assignment of
input probabilities can be obtained by minimizing the following
function:

Statement (18) can be proved by simply showing that each term in
(16) is a convex function of x. For this purpose, we use the in-
equality

(k lilt k li/s

(Eaiz= < (E aiz
i=l i=l

0 < t < s (19)

where
k

zi 2 0, ai > 0, aai = 1.
i=lI

Let

Qj = Wj (I -pj ej X,r)n.
Thus,

I [fQj(xI) + (1 - 1)Qj(x2)]I/n > f3(1 -pjejxl')

+ (1 -,B3)(i1-p1e1xxj2') =W-fQj[1fx1 + (1- f)x2 II/I. Q.E.D.

The problem of minimizing (16) under the constraints described
in (17) is equivalent to that of minimizing the function

z* = ,Wj(l -pjejXtr)n + AuO ( xj- 1
j=I

+ . j(yj2-xj) (20)
ud =

under the constraint
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xj =1 andy] - x. = 0 for allj = 1 2, ,q.J=1~~~~~~~
Note that since the function z* is a sum of Ps and linear terms in x,
the stationary solution of z* is also the global minimum.
The optimization procedure can be carried out by defining two sets

of indices So and S1 where the members of So are those indices k of
tests tk E S* for which Xk = 0, and the members of Si are those for-
which Xk > 0. The following procedure describes the algorithm of
deriving the optimal assignment of input probabilities.

Procedure 2:
Step 1: Let S0= and let SI = 1, 2,, q.
Step 2: Calculate xj, j & SI by solving
m

- nwjpjeji(l-pjejxtr)n-l + oO= o, i E SI, n > 1
j=l

E x1=l. (21)
je Si

Step 3: If xj < 0, transfer the index j from SI to So. Go to Step
2.

Step 4: If xj > 0 for all je SI, then the current probability as-
signment is the optimal one.
The solution to (21) requires proper numerical methods [3].

A. Detection ofIntermittent Faults which have Disjoint
Affected Subsets

This is the case where the testing matrix E is square and diagonal.
For this simple case, it is possible to analyze the behavior of the op-
timal solution. In this case, the solution to (21) is given by

1Xi=1. I
E (1/Pk)- I

keS 1
E 1/Pk(Wkpk)"(n-i)ke Si

je Si. (22)

In most practical circuits, the length of the experiment will be quite
large. Note that 1 s of testing time with a 100 ns/instruction machine
is equivalent to n = 107. Since testing for permanent faults in a real
size circuit takes at least few seconds of computer time, it is evident
that testing for intermittent faults will take at least as much (in order
to achieve a reasonable escape probability). Thus, for most practical
applications, the actual optimal assignment of input vector proba-
bilities will be very close to the asymptotic one derived below.

Definition 9: The effective probability ofactivity Pef is defined to
be

Pef= 1 (23)
m

E I/pj
j=lI

Lemma 3: The effective probability of activity lies in the region
(0, 1/m] and satisfies

Pf < min (Pk)-
k

Proof: See [17].

Lemma 4: If the affected subsets are disjoint, then as the length
of the experiment becomes large, the optimal assignment of input
vector probabilities approaches a limit distribution which is inde-
pendent of wj for all j = 1, 2, , m and is given by

Pej
lim xj = f j= 1,2, ,m.
n---o-oo Pi

(24)

Proof: The proof follows directly from Procedure 2 and (22).
Q.E.D.

Letting n be arbitrarily large, an asymptotic expression for the cdf
of the error latency is obtained:

FOL (n)_1 p(1ePef (25)

The escape probability achieved under optimal probability as-
signment for the affected subsets asymptotically approaches

Pr lescapelcircuit is faulty)

=1-FEPT(N) 1 (1P)N (26)L
Pef

Hence, the least upper bound (lub) to the experiment len.th needed
to gain an escape probability of P, is given by

N ln (Pef - Ps) (27)

An important conclusion of the above treatment is that the optimal
generating set is not necessarily the generating set used to form a
minimal permanent fault detection experiment for F (see Example
1). In general, if a test set designed to detect permanent faults. is used
to detect intermittent faults, it will result in a poor testing quality
unless this test set happens to also be an optimal generating set.

IV. THE ALGORITHM

Assuming that the test designer has the following data at hand: F,
lwi:i = 1,2, , ml,1pi:i = 1, 2, , ml, and Ps, he can design the
optimal IF detection experiment according to the following steps.

Procedure 3:
Step 1: Find the optimal generating set S*, the optimal assignment

XOPT, and the lub of the experiment length Ns by jointly solving (16)
with Procedure 2.

Step 2: Set counter to N = 1.
Step 3: Apply input vectors from S* generated by the optimal as-

signment xOPT. If an output error is observed, go to Step 6; otherwise,
continue.

Step 4: IfN = Ns, go to Step 7; otherwise, continue.
Step 5: Increase counter to N + 1. Go to Step 3.
Step 6: Conclude circuit is faulty and stop.
Step 7: Conclude circuit is fault free and stop.
Example 1: The following testing matrix has been derived for a

combinational circuit having three possible faults:

tl t2 t3

I=f2 0 1
E= f2 0 1 1.

f3 I I 0

The fault parameters are given:
Wi = 1/3;
Pi = p;

i= 1,2,3
i= 1,2,3.

The optimal generating set, and a generating set which constitutes
a minimal permanent-fault detection experiment for F, are, respec-
tively,

S* = jt], t2, t3}

and

Sm = ftl, t21-

The optimal assignment of input probabilities is (1/3, 1/3, 1/3), which
gives

FEL,S*(n) = 1 - - 2p)n
On the other hand, FEL,Sm(n) is maximized by the distribution (1/2,
1/2, 0), giving

FEL,Sm(n) = 1 -42(1 + (1-p)nJ.
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TABLE I
GAIN IN TEST QUALITY VERSUS EXPERIMENT LENGTH FOR

EXAMPLE I

n 10 20 50 100
Gain 2 7 240 87 X 103

H

TABLE 11
THE OPTIMAL ASSIGNMENT FOR INPUT VECTOR 7 AS A FUNCTION

OF THE EXPERIMENT LENGTH IN EXAMPLE 2

n 6 11 21 51 101 501
x 0.487 0.529 0.550 0.563 0.567 0.570

Fig. 2. Example 2.

The gain in test quality achieved by using S* over Sm (the ratio of
the two escape probabilities which result from the two generating sets)
for p = l/2 and various values of n is shown in Table I.
The gain increases very fast, asymptotically approaching 2/3

(9/8) n.
This example emphasizes the importance of using an optimal

generating set rather than some other arbitrary generating set in the
detection procedure.
Example 2: Consider the combinational circuit of Fig. 2 with the

intermittent stuck-at-faults (we denote byf/0 faultf stuck-at 0 and
byf/I faultf stuck-at 1).

F = ty2/O; y4/O; y4/1 .

Pr $input vector = 7) = x

Pr linput vector = 14$ = 1 - x.

Procedure 2 yields the following optimal assignment:

1/3 + 1/4)1 (3/4)1/n-VI

The asymptotic optimal assignment is (4h; 3/7). Table II shows the
optimal assignment as a function of the experiment length.

Notice that the optimal assignment for n = 501 is only 0.1 percent
different from the asymptotic value. From (16), we find that the lub
of the experiment length needed to achieve an escape probability of
Ps= 2.6 X 10-4 is N, = 50.

Denote V. SUMMARY AND CONCLUSIONS

fi = YJO;f2 = y4/0;f3 = Y44/I.

The following fault parameters are given:

wi= -; i = 1,2,3

1 1 1
P1 = ;P2 =;p3- 3

The affected subsets ofF can be obtained by using the Boolean dif-
ference technique [26]:

Y2.- = 1 which implies AF1 = $7, 141.
bY2

In the same way, we obtain

y4--= 1=I AF2= 7, 15$
by4

Y4 *- 1= I AF3 = 16, 14$.

Here, the tests are represented in decimal notation. For instance, 7
< > Y = 0, Y2 = Y 3 = Y4 = 1. Applying Procedure 1 yields the unique
optimal generating set

S* = $7, 14}.

The corresponding testing matrix is

7 14

fi [1 11
E = f2 I 0

f3 10
Let the optimal assignment be

The assumption of single faults is a first-order approximation to
the situation for real circuits. T-his assumption is often used by authors
because it makes the mathematics tractable and leads to satisfactory
results.
The optimal solution is achieved in two steps. In the first step, the

optimal generating set is found. This optimal generating set depends
on the circuit structure and fault set. In the second step, the optimal
distribution for the members of the optimal generating set is calcu-
lated. The optimal distribution depends on the optimal generating
set and fault parameters.
The proposed algorithm for the optimal detection procedure is

relatively easy to implement and provides the shortest experiment for
achieving a given test quality. No calculation is necessary during the
running time of the test procedure, therefore reducing the cost of the
testing process.

APPENDIX
ESTIMATION OF THE FAULT PARAMETERS

The estimation of the fault parameters is based on experience with
circuits of the same kind. Formally speaking, we assume that a record
of previous faults was kept containing the following information.

1) Out of n* failures of the circuit in a given period of time, fault
fi was present ni times, i = 1,2, , m and

m

E ni =n*.
i=l

(28)

2) When the faultf1 was present, i = 1, 2, , m out of a time
period of Ti, it was active a total period of ri.

These two statistics can be obtained by testing a standby circuit
for a long period of time and then using the data obtained for all other
circuits. Certainly, we implicitly assume that the fault mechanism
is ergodic from a statistical point of view.
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When trying to estimate any sort of parameters, the estimation
procedure should be the "best" in some sense; thus, the "maximum
likelihood estimator" procedure is used to estimate the fault pa-
rameters [14].

Maximum Likelihood Estimation of the Probabilities of
Presence

Let Ni be the random variable describing the number of times fault
fi was present out of a total of n* observations. The observed value
of N1 will be denoted by ni. The set of random variables tN,, ..., Nm
have a joint multinomial distribution. The likelihood function is

L(wl, ,w) PrIN,=nl, ,Nm = nmj

= (,.t1, nft w .nW W.Wn (29)
In order to find the maximum likelihood estimator (MLE), we have
to maximize L, which requires maximizing the function

L* = * ).WI W22 .
m

nl,n2, , nm

m
+M(Wi-1) (30)

where M is the Lagrange multiplier.
')L = n* ). ni .w n'22 wn- 1

(3wi ni, n2, n,n
.Wns-l . Wn¢+1 . *Wnm + M = ; i= 1, 2,--, m (31)

m
=_Ewi I 0.= °(32),DM i= I

The MLE of wi, wZ' is found by solving the following equations:
niL--L+M0=; i=1,2,5,m (33)
Wi

m
Ew=1. (34)

The solution to (33) and (34) is given by

wi = ni; =12 m (35)
n*

Notice that this estimator is also unbiased. The random variable N1
is of the binomial type with probability of success wi. Hence,

E Nl I= EINiN = Wi. (36)

Maximum Likelihood Estimation of the Probabilities of
Activity

Let the clock period be A. Assuming that A is small, the periods
T1 and ri are approximately integer multiplies of A. We therefore
denote

Ti = Ai * A; i= 1,2, , m (37)

Ti = Bi iA; i= 1,2, ,m (38)

where Bi is an integer random variable having a binomial distribution
with probability of success pi. Let the observed value of Bi be /3g. The
likelihood function will be, therefore,

Li = Pr Bi== Oil i(g) p3i'* (1-p,)Ai43i; i = 1,2,, m.

(39)

(n n* \) n*!
ni n?. sn- ni !ni! n-!

The MLE of pi, Ai is achieved by equating the derivative of Li with
respect to pi to zero for all i, i = 1, 2, ,m. Hence,

dLi (A1X) [/3s . pAi . (1-~pi)Ai-i - (Ai - 3i)
dp, /3,O -i

.(1 - pj)Aijijl . pi] = 0; i = 1, 2, ,m. (40)

The solution to (40) is

Pi=A- i = 1, 2, -, m.Pi A-'
I

Writing (41) in terms of T7 and Tr yields
Pi = T- i = 1 , 2,-, m.

Ti
Here, also, the estimator Ai is unbiased:

F I
[Ai Ai

(41)

(42)

(43)
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