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Testing for Suspected Impairments and Dissociations in Single-Case
Studies in Neuropsychology: Evaluation of Alternatives Using Monte Carlo
Simulations and Revised Tests for Dissociations
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In neuropsychological single-case studies, a patient is compared with a small control sample. Methods
of testing for a deficit on Task X, or a significant difference between Tasks X and Y, either treat the
control sample statistics as parameters (using z and z,,) or use modified ¢ tests. Monte Carlo simulations
demonstrated that if z is used to test for a deficit, the Type I error rate is high for small control samples,
whereas control of the error rate is essentially perfect for a modified ¢ test. Simulations on tests for
differences revealed that error rates were very high for z;,. A new method of testing for a difference (the
revised standardized difference test) achieved good control of the error rate, even with very small sample
sizes. A computer program that implements this new test (and applies criteria to test for classical and

strong dissociations) is made available.
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In many single-case studies in neuropsychology, the perfor-
mance of a patient on a series of tasks is compared with that of a
control sample. By far the most common method of forming
inferences about the presence of a possible impairment in such
studies is to convert the patient’s score on a given task to a z score
based on the mean and standard deviation of the controls and then
refer this score to a table of the areas under the normal curve. Thus,
if a neuropsychologist has formed a directional hypothesis for the
patient’s score prior to testing (i.e., that the patient’s score will be
below the control sample mean), then a score that fell below
—1.645 would be considered statistically significant (p < .05) and
would be taken as an indication that the patient had an impairment
on the task in question.

One problem with this approach is that it treats the control
sample as if it were a population; that is, the mean and standard
deviation are used as if they were parameters rather than sample
statistics. In other areas of psychology, this is often not a problem
in practice because the normative or control sample is large and,
therefore, should provide sufficiently accurate estimates of the
parameters. However, the control samples in single-case studies in
cognitive neuropsychology typically are modest: N < 10 is not
unusual, and Ns < 20 are very common (Crawford & Howell,
1998). With samples of this size, it is not appropriate to treat the
mean and standard deviation as though they were parameters.

A solution to this problem is to use a method described by
Crawford and Howell (1998) that treats the control sample statis-
tics as sample statistics. Their approach uses a formula for a
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modified ¢ test given by Sokal and Rohlf (1995). This method uses
the ¢ distribution (with n — 1 df), rather than the standard normal
distribution, to estimate the abnormality of the patient’s score and
to test whether it is significantly lower than the scores of the
control sample. The practical effect of using z with a small control
sample is to exaggerate the rarity and/or abnormality of a patient’s
score and to inflate the Type I error rate (in this context, a Type I
error occurs when an individual who is drawn from the control
population is incorrectly classified as not being a member of this
population; i.e., he or she is incorrectly classified as exhibiting an
impairment). This occurs because the normal distribution has
thinner tails than do ¢ distributions. Intuitively, the less that is
known, the less extreme should be statements about abnormality
and/or rarity. The z-score method treats the variance of controls as
being known, when it is not, and consequently makes statements
that are too extreme (Crawford & Howell, 1998). The formula for
Crawford and Howell’s test is

X+ — X |
t=—F—,
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n

where X* is the patient’s score, X and S are the mean and standard
deviation, respectively, of scores in the control sample, and 7 is the
size of the control sample. The p value obtained when this test is
applied is used to test significance, but it also provides a point
estimate of the abnormality of the patient’s score; for example, if
the one-tailed p is .013, then one knows that the patient’s score is
significantly (p < .05) below the control mean and that it is
estimated that 1.3% of the control population would obtain a score
lower than the patient’s. As Crawford and Howell (1998) noted,
this point estimate of abnormality is a useful complement to the
significance test given that the use of an alpha of .05 is essentially
an arbitrary convention (albeit one that has, in general, served
science well).
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Study 1: Tests Aimed at Detecting an Impairment When a
Case Is Compared With a Control Sample

In the first study, we ran a Monte Carlo simulation to quantify
and compare control of the Type I error rate when the two
alternative methods of detecting an impairment are used to com-
pare individual control cases against control samples. The statis-
tically sophisticated reader may consider that running this simu-
lation is unnecessary because theory would predict that the use of
z will fail to control Type I errors, whereas the modified ¢ test will
achieve adequate control. However, we had two reasons for con-
ducting it. First, the use of z to detect an impairment in a patient is
very widespread (Crawford & Garthwaite, 2002; Crawford, Garth-
waite, & Gray, 2003), so clearly, many researchers are either
unaware or have chosen to ignore the issue of inflated Type I
errors. Quantifying the magnitude of this inflation may help to
raise awareness of the problem, and doing so using an empirical
method may be more convincing than appeal to theory alone.

Second, all readers will be familiar with the use of independent-
sample ¢ tests to test for a difference in population means in which
two samples are compared. In this standard situation, variance
estimates are obtained from two samples that are then pooled (or
alternatively, separate variance estimates are used when the vari-
ances differ). However, many readers will not be familiar with the
modified 7 test in which the concern need only (and can only) be
with the variance estimate of the control population. Under the null
hypothesis, the patient is an observation from a distribution with
the same mean and variance as the controls. Because, unlike a
standard ¢ test, the patient does not contribute to a pooled variance
estimate (nor contribute a separate variance estimate), readers may
appreciate reassurance that control of Type I errors is adequate in
this nonstandard use of a 7 test.

Method

The Monte Carlo simulation was run on a PC and implemented in
Borland Delphi (Version 4). The algorithm ran3.pas (Press, Flannery,
Teukolsky, & Vetterling, 1989) was used to generate uniform random
numbers (between zero and one), which were transformed by the polar
variant of the Box—Muller method (Box & Muller, 1958) to sample from
a normal distribution. The simulation was run with five different control
sample sizes: For each of these values, 1,000,000 samples of N + 1
observations were drawn from a normal distribution. The first N observa-
tions in each sample were taken as the control sample, and the N + 1th item
was taken as the individual control case. Crawford and Howell’s (1998)
test was then applied to these data, and ¢ values that were negative (i.e.,
when the control case was below the control sample) and exceeded the
one-tailed critical value for 7 on the appropriate degrees of freedom (n —
1) were recorded as Type I errors; z was also computed and the result
recorded as a Type I error if it exceeded the one-tailed critical value of
—1.645. One-tailed tests were used because, in the vast majority of cases,
the (directional) hypothesis tested by neuropsychologists is that their
patient’s score is below that of controls.

Results and Discussion

The results of the Monte Carlo simulation are presented in Table
1. It can be seen from Table 1 that, when the size of the control
sample is small, control of the Type I error rate is poor when z is
used to test for a significant difference between a case and controls.
For example, the error rate is 10.37% with a sample size of 5, more

Table 1

Results From a Monte Carlo Simulation Study of the Percentage
of Control Cases Classified as Exhibiting a Deficit (i.e.,
Percentage of Type I Errors) Using z and a Modified t Test
When the Specified Error Rate Is 5%

Percentage of Type I

errors
Control sample N z t z required”
5 10.37 5.01 —2.335
10 7.57 5.00 —1.923
20 6.25 5.00 —1.772
50 5.53 5.03 —1.693
100 5.28 4.98 —1.669

#Records the value of z required to maintain the Type I error rate at the
specified (5%) level.

than double the specified rate of 5%. Therefore, if z is used in a
single-case study with a control sample of 5, it is to be expected
that more than 10% of individuals from the control population
would be incorrectly identified as not having come from this
population (i.e., they would be considered to exhibit an impair-
ment). With large sample sizes, z values more closely approximate
t values so that the error rate is under satisfactory control. How-
ever, it will be appreciated that control sample sizes of this
magnitude are rare in single-case studies in neuropsychology.

In contrast to the inflated error rates when z is used, it can be
seen that there is immaculate control of the Type I error rate when
the modified 7 test is used; the error rates for all of the sample sizes
examined are all at, or very close to, the specified rate of 5% (the
magnitude of the differences from 5% is of the order expected
solely from Monte Carlo variation). Having verified empirically
that the Type I error rate is controlled when the modified ¢ test is
used, we can use the fact that the z score satisfies

n+ 1

L= (2)

to record the actual value of z that would be required to maintain
the Type I error rate at 5%. These values of z are presented in the
final column of Table 1. It can be seen that the values of z required
to maintain the Type I error rate at the specified level are markedly
greater than the nominal critical value of —1.645; for example,
with a control sample size of 5, a z of —2.335 would be required.
This example also highlights the extent to which z will tend to
provide an exaggerated estimate of the rarity of a patient’s score.
Suppose a patient obtained a z score of —2.335; using a table of the
areas under the normal curve, we would estimate that 0.98% of the
control population would obtain a lower score (i.e., the patient’s
score is estimated to be very rare), yet the unbiased estimate
provided by ¢ is that 5% of the population would be expected to
obtain a lower score.

Study 2: The Effects of Skew in the Control Population
on Type I Error Rates

An assumption underlying the use of z or Crawford and How-
ell’s (1998) test is that the controls have been drawn from a normal
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distribution. However, it is not uncommon for the scores of con-
trols on neuropsychological tests to depart from normality. In
Study 2 we examined the effects on the Type I error rate of
violating the assumption of normality. For a number of reasons,
the focus of this study was on the effects of negative skew. One
reason for concentrating on skewness is that, a priori, skew is
liable to have a greater effect on Type I errors than other forms of
departure from a normal distribution. This is because low-order
moments are important (the first-order moment is the mean, and
the second-order moment is the variance), and skewness is the
lowest order moment that does not correspond to a parameter of a
normal distribution. Also, empirical studies of error rates for
independent-sample ¢ tests confirm that skew is the most important
parameter (e.g., Boneau, 1960; see Howell, 2002, for a brief
review). In addition, it has been shown that the effect of skew is
particularly pronounced when combined with large imbalances in
sample sizes; as the present methods involve comparing an indi-
vidual with a sample, this underlines the need to study this issue.

We focused on negative skew because it is clear that, in practice,
the scores of controls are often negatively skewed. As Crawford,
Garthwaite, and Gray (2003) noted, “z has been used for inferential
purposes in numerous single-case studies when it is obvious from
the means and SDs of their control samples that the data are highly
negatively skewed (i.e., the SD tells us that, were the data normally
distributed, a substantial percentage of scores should lie above the
maximum obtainable score yet we know that none did)” (p. 367).

Negative skew is common in control data because the tasks used
often measure abilities that are largely within the competence of
most healthy individuals and thus yield ceiling or near-ceiling
levels of performance. For example, in a review of single-case
studies of the living versus nonliving distinction in object naming,
it was reported that the accuracy of naming in controls was 95% or
greater in the vast majority of these studies (Laws, Gale, Leeson,
& Crawford, in press).

It will be appreciated that when (as is less common) perfor-
mance is expressed as the number of errors on a task, then the
opposite situation to that described above will often occur; that is,
the distribution of scores for controls will be positively skewed.
However, by reflecting scores, a positively skewed distribution can
be converted into an equivalently negatively skewed distribution,
so results obtained in the present study are equally applicable to
scenarios in which the control scores are positively skewed.

Method

We ran simulations using an approach identical to that of Study 1 except
that instead of sampling from a normal distribution, we sampled observa-
tions from distributions with varying degrees of negative skew. We
achieved this by using two-piece normal distributions (Gibbons & Mylroie,
1973; Kimber, 1985); these distributions have also been termed joined
half-Gaussian or binormal distributions. In comparison to alternative
methods of modeling the effects of skewness, two-piece normal distribu-
tions have been shown to possess a number of desirable properties, includ-
ing their suitability when there is a requirement (as in the present study) to
draw small samples (Garvin & McClean, 1997).

Skewness is most commonly quantified using the statistic y;; this
statistic is obtained by dividing the third central moment of a distribution
by the cube of its standard deviation. We formed four distributions that
varied in their degree of skew, ranging from moderate (y; = —0.31) to
severe (y, = —0.70), very severe (y, = —0.93), and extreme (y, =
—0.99). These distributions were obtained by setting the standard deviation

of the normal distribution used to form the right-hand side of the two-piece
distribution to 1.0 and the standard deviation of the normal distribution
used for the left-hand side to values of 1.5, 3.0, 10.0, and 100.0, respec-
tively. The resultant two-piece distributions are illustrated in Figure 1. It
can be seen that the degrees of skew for the latter two of these distributions
are exceptionally large, to the extent that the gross appearance of the
distribution with extreme skew is that of a normal distribution in which all
of the right-hand side is absent.

One million samples of N + 1 pairs of observations were drawn from
each of the four skew distributions. As in Study 1, this was done for five
sample sizes: 5, 10, 20, 50, and 100. Also as in Study 1, Crawford and
Howell’s (1998) test and z were applied to the score of the N + 1th control
case, and the result was recorded as a Type I error if it exceeded the
respective one-tailed critical value.

Results and Discussion

The simulation results for z and for Crawford and Howell’s
(1998) test are presented in Table 2. It can be seen that when z is
used to test for an impairment, the control of the Type I error rate
is poor; the error rates range from a low of 6.20% (N = 100
combined with moderate skew) to a high of 13.39% (N = 5
combined with extreme skew). However, at the small control
sample sizes commonly used in single-case studies, the poor
control of the error rate mainly stems from the treatment of the
control sample statistics as population parameters. That is, al-
though the presence of skewness has further inflated the error rate
over that observed in Study 1, the increment is relatively modest.
For example, when sampling from a normal distribution with a
sample size of 5, the error rate was over twice the nominal rate of
5% (10.37%), and even the presence of extreme skew raised this
error rate to only 13.40%.

As noted, the effect of skew on ¢ tests has been examined in
previous simulation studies. However, in all of these prior studies,
the focus was on the use of 7 to test for a difference in population
means. In contrast, Crawford and Howell’s (1998) procedure tests
the hypothesis that an individual patient did not come from a
population of controls; under the null hypothesis, the individual is
an observation from a distribution with the same mean and vari-
ance as the controls (Crawford, Garthwaite, Howell, & Gray,
2004). The effects of skew have therefore not been previously
investigated in this nonstandard application of a ¢ test.

It can be seen from Table 2 that there is modest inflation of the
Type I error rate using Crawford and Howell’s (1998) test when
skew is moderate or not very severe (e.g., for a control sample size
of 10, the error rates are 6.04% for moderate and 7.14% for severe
skew). The Type I error rate rises as high as 8.27% when skew is
extreme. However, it is clear that the rate of increase in Type I
error rate becomes attenuated as the distributions become more
severely skewed; the increase in the degree of skew from very
severe to extreme is substantial, and yet the concomitant increase
in the Type I error rate is modest (e.g., with a control sample size
of 10, the error rate is 7.80% for very severe skew and 7.94% for
extreme skew). We reiterate that the degree of skew in these latter
two distributions is exceptionally large.

Although the inflation of the Type I error rate is not very acute,
even with very severe skew (i.e., the test is more robust than might
have been predicted), it remains the case that the error rate is not
under control. Therefore, some guidance should be offered for
researchers when it is suspected that control data are skew.
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(a) Moderate skew (7] =-0.31)

(c) Very severe skew (v, =-0.93)

Figure 1.

One potential alternative to Crawford and Howell’s (1998)
parametric test would be to use nonparametric tests (e.g., random-
ization tests). However, there are two limitations to this potential
solution. First, these methods are, by necessity, completely insen-
sitive to the degree to which a patient’s score is extreme and
therefore will have low power (e.g., a patient whose score on a task
was eight standard deviations below the control mean would be
treated identically to a patient whose score was two standard
deviations below the mean, provided that their rank order relative
to controls was the same). Power is inevitably low in single-case
studies because an individual rather than a sample is compared
with a control sample that is itself typically modest in size;
therefore, any treatment that imposes a further reduction in power

Table 2

321

(b) Severe skew (y,=-0.70)

(d) Extreme skew (7, =-0.99)

Graphical illustration of the four negatively skewed distributions used in Study 2.

should be avoided if at all possible (Crawford, Garthwaite, &
Gray, 2003). Second, the size of sample required before a re-
searcher has any possibility of rejecting the null hypothesis of no
difference between patient and controls is larger than is typical in
single-case studies. A minimum of 20 controls would be required
to reject the null hypothesis even when the alternative hypothesis
is directional (p < .05, one-tailed), and such an outcome would
occur only if the score of every control was higher than the
patient’s.

When the control data are skew, one possibility would be to
transform the scores of controls and the patient in an attempt to
normalize the control score distribution. For example, in the case
of moderate negative skew, the scores could be reflected and a

Simulation Results: Percentage of Type I Errors (i.e., Percentage of Control Cases Classified as
Exhibiting a Deficit) Using z and a Modified t Test for a Specified Error Rate of 5% When
Sampling From (Negatively) Skewed Distributions

Skew
Moderate Severe Very severe Extreme

(vi = =031 (vi = —0.70) (vi = —0.93) (vi = —0.99)

N z t z t z t z t
5 11.48 6.06 12.50 7.23 13.23 8.04 13.39 8.27
10 8.59 6.04 9.64 7.14 10.23 7.80 10.23 7.94
20 7.23 5.97 8.20 6.97 8.72 7.53 8.72 7.66
50 6.50 6.00 7.37 6.90 7.85 7.37 7.85 7.47
100 6.20 5.97 7.11 6.87 7.56 7.32 7.56 7.32
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logarithmic transformation applied (for further guidance, see How-
ell, 2002). Alternatively, however, even if Crawford and Howell’s
(1998) test is applied to untransformed scores, the researcher can
still have a high degree of confidence that the patient’s score did
not come from the control distribution if the result is highly
significant. That is, even with very severe skew, the observed error
rate for a specified rate of 5% never rose above 8.27%; thus, ¢
values that are markedly larger than the critical value would be
sufficient to warrant rejection of the null hypothesis. To study this
suggestion more formally, we reran the simulation (for Crawford
& Howell’s, 1998, test alone given its demonstrated superiority
over the use of z in both this study and Study 1) but substituted the
critical value of ¢ required for significance at the 2.5% level
(one-tailed) rather than at 5%. The Type I error rate was below 5%
for all sample sizes at all levels of y,, with the exception of sample
sizes of 5 and 10 when skew was extreme (i.e., y, = —0.99). Even
in these two latter cases, the error rates (5.21% and 5.18%, respec-
tively) were only marginally above 5%. For the other sample sizes
and vy, examined, the error rate ranged from 3.23% to 4.99%.
These results suggest that if the p value obtained from Crawford
and Howell’s test is below .025, then a researcher could be 95%
confident that the patient’s score did not come from the control
population even in the face of extreme skewness.

Study 3: Tests on the Difference Between a Patient’s
Performance on Two Tasks

Although the detection of suspected impairments is a fundamen-
tal feature of single-case studies, evidence of an impairment on a
given task usually becomes of theoretical interest only if it is
observed in the context of less impaired or normal performance on
other tasks. That is, much of the focus in single-case studies is on
establishing dissociations of function (Caramazza & McCloskey,
1988; Crawford, Garthwaite, & Gray, 2003; Ellis & Young, 1996;
Shallice, 1988).

In the typical definition of a dissociation, the requirement is that
a patient is “impaired” or shows a “deficit” on Task X, but is “not
impaired,” “normal,” or “within normal limits” on Task Y. For
example, Ellis and Young (1996) stated, “If patient X is impaired
on Task 1 but performs normally on Task 2, then we may claim to
have a dissociation between tasks” (p. 5). Shallice (1988) has
termed this form of dissociation a classical dissociation.

It has been argued that the typical definition of a classical
dissociation is insufficiently rigorous (Crawford, 2004; Crawford,
Garthwaite, & Gray, 2003) for two related reasons. First, one half
of the typical definition essentially involves an attempt to prove the
null hypothesis (we must demonstrate that a patient is not different
from the controls), whereas, as is well known, we can only fail to
reject it. This is particularly germane to single-case studies, in
which, as noted, the power to reject the null hypothesis is inevi-
tably low: An individual patient (rather than a group) is compared
with a control group, which itself is usually of very modest size
(Crawford, 2004; Crawford, Garthwaite, & Gray, 2003).

The second problem is that a patient’s score on the impaired task
could lie just below the critical value for defining impairment, and
the performance on the other test could lie just above it. That is, the
difference between the patient’s relative standing on the two tasks
of interest could be very trivial; in this situation, we would not

want to infer the presence of a dissociation (Crawford & Garth-
waite, 2002; Crawford, Garthwaite, & Gray, 2003).

Crawford, Garthwaite, and Gray (2003) have developed formal
criteria for a classical dissociation that, in addition to the standard
requirement of a deficit on Task X and normal performance on
Task Y, incorporated a requirement that the patient’s performance
on Task X should be significantly poorer than performance on
Task Y. This criterion not only deals with the problem of trivial
differences, but also provides a positive test for a dissociation
(thereby lessening reliance on what boils down to an attempt to
prove the null hypothesis of no deficit or impairment on Task Y).

Criteria for what Shallice (1988) termed a “strong” dissociation
were also developed. A strong dissociation refers to the case in
which a patient is impaired on both tasks but is more severely
impaired on one (i.e., he or she exhibits a differential deficit).
Crawford, Garthwaite, and Gray’s (2003) criteria for a strong
dissociation require that the patient has a significant deficit on Task
X and on Task Y and a significant difference between Tasks X and
Y. Note that previous definitions of a strong dissociation (e.g.,
Coltheart, 2001; Ellis & Young, 1996) also require a significant
difference between Tasks X and Y (although the method to be used
to test for this is rarely specified). Crawford, Garthwaite, and
Gray’s (2003) criteria differ from previous definitions in that these
also require such a difference for a classical dissociation (and fully
specify the methods used to determine whether all of the criteria
for either type of dissociation are met).

Given the importance of testing for a significant difference
between a patient’s performance on two (or more) tasks, there is
the need to select an appropriate inferential method for conducting
such a test. One candidate is the long-established Payne and Jones
(1957) method, in which the following formula is used:

Zx = Zy

w= o 3)
where Z, and Z,, are the patient’s scores on the two tasks expressed
as z scores (based on the means and standard deviations of the
controls), and r,,, is the correlation between the tasks in the control
sample (the denominator represents the standard deviation of the
difference in controls when scores are expressed as z scores). The
value of z,, is referred to a table of the areas under the normal
curve to determine whether there is a significant difference be-
tween the patient’s performance on the two tasks; for example, if
a two-tailed test is required, then the difference would be signifi-
cant (p < .05) if z,, exceeded 1.96.

A problem with the Payne and Jones (1957) formula is that, just
as was the case when z is used to infer the presence of a deficit on
a single task, it treats the control sample as if it were a population.
In an attempt to overcome this problem, Crawford, Howell, and
Garthwaite (1998) proposed a modified paired-sample ¢ test to
replace the Payne and Jones formula in single-case studies. Their
formula is

Zy— Zy

v \/(2 - 2rxy)<" . 1>’

where all terms have been previously defined.

4)
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The modified paired-sample ¢ test differs from a conventional
paired-sample ¢ test in three respects. First, a conventional paired
t test is used to test for a difference in means obtained from the
same sample—for example, to compare before and after scores on
a task or to compare scores on a task under two different experi-
mental conditions. In contrast, the modified ¢ test is used to test
whether the difference between scores on two tasks for an indi-
vidual is sufficiently large such that it is unlikely to have come
(p < .05) from the distribution of differences in the population of
controls.

Second, in the modified ¢ test, the scores on the two tasks are
standardized; the individual’s performance on Tasks X and Y is
expressed as z scores based on the mean and standard deviations of
the control sample. This is obviously never done when applying a
conventional paired ¢ test; the difference in means would neces-
sarily be zero. Expressing the patient’s score as a standard score is
normally required in neuropsychological single-case studies be-
cause researchers attempt to establish the presence of a dissocia-
tion between two tasks of different cognitive functions, and the
tasks normally have different means and standard deviations (in-
deed, the means and standard deviations are essentially arbitrary in
most cases). Third, the probability value for ¢ provides a point
estimate of the abnormality of the patient’s difference score (i.e.,
it quantifies the proportion of the control population that would
exhibit a difference more extreme than the patient’s).

In Study 3, we run a Monte Carlo simulation to test and compare
control of Type I errors when the Payne and Jones (1957) test and
Crawford et al.’s (1998) modified paired ¢ test are used to test for
a difference between an individual’s performance on two tasks.

Method

Simulations were run using the same uniform random number generator
as in Study 1. The Box—Muller transformation generates pairs of normally
distributed observations, and by further transforming the second of these
pairs, it is possible to generate observations from a bivariate normal
distribution with a specified correlation (e.g., see Kennedy & Gentle,
1980). One million samples of N + 1 pairs of observations were drawn
from each of four bivariate normal distributions in which the correlations
(p) were set at .0, .2, .5, and .8. As in Study 1, this was done for five sample
sizes: 5, 10, 20, 50, and 100.

The first N pairs of observations were taken as the control sample’s
scores on Tasks X and Y, and the N + 1th pair was taken as the scores of
the individual control case. Crawford et al.’s (1998) test was then applied
to these data, and ¢ values that exceeded the two-tailed critical value for ¢
on the appropriate degrees of freedom (n — 1) was recorded as a Type I

Table 3
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error. The Payne and Jones test (1957) was also applied to these same data,
and the result was recorded as a Type I error if z,, exceeded the two-tailed
critical value of —1.96.

Results and Discussion

The simulation results obtained when the Payne and Jones
(1957) formula was applied are presented in the first four columns
of Table 3. It can be seen that the error rates are very high when
the size of the control sample is modest (and are much higher than
the rates obtained when z is used to compare a patient’s score with
that of controls on a single task). For example, when the control
sample size is 5 and p = .8, the error rate is very inflated; that is,
more than 25% of the control cases were identified as exhibiting a
significant difference between Tasks X and Y. Indeed, it can be
seen that, with a sample size of 5, the error rate does not fall below
21% for any value of p. It can also be seen that, even with larger
sample sizes, the error rate is inflated; that is, when N = 20 and
p =.8, the error rate is still 8.59%.

The results of applying Crawford et al.’s (1998) test are pre-
sented in the next four columns of Table 3. It can be seen that the
control of the Type I error rate is substantially better than the rates
obtained using the Payne and Jones (1957) formula (z,,) and that,
with samples of 20 and above, the error rate is only marginally
above the specified rate. However, it can be seen that control of the
error rate is unsatisfactory with small sample sizes. Indeed, when
N =5, the error rate averaged over values of p is around twice the
specified rate, with a high of 12.3%. It can also be seen that, as is
the case for the Payne and Jones test, the Crawford et al. (1998)
test has the undesirable characteristic that error rates vary as a
function of the correlation between the tasks; error rates rise as the
correlation rises. This feature of both tests is unfortunate because,
as Shallice (1979) pointed out, much of the search for dissociations
is focused on tasks that are at least moderately and even highly
correlated in the general population (i.e., tasks for which there is a
prima facie case that they tap a unitary function and therefore may
not be dissociable).

In summary, it is clear that Crawford et al.’s (1998) test repre-
sents a considerable improvement over the Payne and Jones (1957)
formula; the error rates for the latter test were alarmingly high.
However, it is also apparent that the test statistic in Crawford et
al.’s test does not follow a ¢ distribution when the sample size is
small and that the result is an inflation of the Type I error rate. It
also follows that the point estimate of the abnormality of a pa-

Simulation Results: Percentage of Control Cases Exhibiting Significant Differences Between Tasks X and Y (i.e., Percentage of Type I
Errors) When Using Three Inferential Tests Under Different Values of N of the Control Sample and Correlations Between Tasks

Payne & Jones (1957) test (zp,)

Crawford et al.’s (1998) test (,,)

Unstandardized difference test (¢,,,,)

N 0 2 5 8 .0 2 .5 .8 .0 2 5 .8
5 21.02 22.05 23.78 25.70 9.18 9.91 10.97 12.31 5.00 5.01 5.01 5.04
10 11.57 11.94 12.58 13.18 6.55 6.82 7.31 7.75 5.01 4.98 5.04 5.03
20 791 8.05 8.30 8.59 5.66 5.77 6.00 6.23 4.99 4.99 5.01 5.03
50 6.09 6.11 6.21 6.28 5.27 5.26 5.36 5.43 5.03 4.96 5.01 5.00
100 5.53 5.55 5.59 5.60 5.12 5.15 5.18 5.19 5.00 5.02 5.00 4.97
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tient’s difference score is biased with small control sample sizes;
that is, the rarity of the patient’s difference is exaggerated.

Study 4: Revised Tests for Differences

The limitations of Crawford et al.’s (1998) test stem from the
fact that two “hidden” quantities in Equation 4 are still treated as
parameters rather than as sample statistics: The standard deviations
of the raw scores for controls on Tasks X and Y are used to convert
the patient’s raw scores on Tasks X and Y to z scores. There are
two potential solutions to this problem.

As noted, in most situations in which neuropsychologists wish
to test the difference between a patient’s performance on two tasks,
it is necessary to standardize the patient’s scores. However, there
are some scenarios in which this standardization is unnecessary,
such as when a patient’s performance on the same or parallel
version of a task is compared with that of controls under two
different experimental conditions. For example, a neuropsycholo-
gist might want to compare performance on the same task (or
parallel version thereof) under monocular versus binocular view-
ing or when stimuli are viewed in the left versus right visual field.
Similarly, the aim may be to compare a patient’s performance
when the same task is performed with the dominant versus non-
dominant hand or under single- versus dual-task conditions. In
these situations, it is possible to apply the modified 7 test, but with
the standardized scores replaced by unstandardized scores. The
resultant test statistic takes the following form:

(X* —X) — (Y* — Y)

5 2, n+1
(SX + Sy stsery) n

where X* and Y * are thf scores of the patient on Tasks X and Y,
respectively, and X and Y are the corresponding control means. The

(5)

tUD,,—l =

first bracketed term under the radical sign is the variance of the
difference for controls, and it is obtained from the variance of
Tasks X and Y in the controls (s and s2) and the covariance of X
and Y (sySyr,,) in controls; as was the case for the original
modified ¢ test, the patient’s score does not contribute to the
variance estimate. The test statistic in Equation 5 should follow a
t distribution on n — 1 df.

The potential solution outlined above is limited in its applica-
bility because, as noted, it is more common for neuropsychologists
to attempt to demonstrate dissociations between tasks of different
cognitive functions in which the two tasks also have radically
different means and standard deviations. In this more common
situation, it is necessary to standardize the patient’s score against
the control’s performance in order to conduct a meaningful test on
the difference between a patient’s performance on the two tasks.
Therefore, it would be very useful if a method could be found that
permits standardization of the patient’s scores while also main-
taining control of the Type I error rate. That is, we would like a test
statistic that will closely approximate a ¢ distribution when the
patient’s score has been standardized. To achieve this, we need a
method in which, unlike Crawford et al.’s (1998) test, none of the
control sample statistics are treated as parameters.

Starting with results for bivariate 7 distributions given by Sid-
diqui (1967), Garthwaite and Crawford (2004) used a computer
algebra package (Maple) to perform asymptotic expansions. They
obtained the statistic

X -x) (r*-y

Y= & > 6)
a n+ 1 2(1 — ) ’
( " ){(2‘2’)+ﬁ
(5+y)(1 =)

r(1+y)(1 — )
2(n — 1)2 2(n — 1)2 }
where all terms are as defined earlier except y, which is the critical
two-tailed value for  on n —1 df. They showed that the probability
Prob(yy > y) is approximately equal to Prob(z > y), where ¢ has a
standard 7 distribution on n — 1 df. This result can be used to test
whether the difference between the patient’s scores on Tasks X
and Y is sufficiently large such that the patient differs significantly
from controls. That is, if iy exceeds the selected two-tailed critical
value for t on n — 1 df, then the patient is significantly different
from controls. Hereafter, this test is referred to as the revised
standardized difference test (RSDT).

It is also desirable to obtain a precise probability for this test.
Moreover, this would also allow users to obtain a point estimate of
the abnormality of the difference observed for a patient. To obtain
a p value, we solve {y = y, which is a quadratic equation in y*.
Choosing the positive root gives

— b+ \b* — 4ac\"
yE\T ) (7)

where

a=0+r1—-=r),b=(0—-r{dn—1)+
40+ r)(n—1)+ 1 +r)(5+r)} and (8)

[X* -X Y- Y]z(n(n - 1)2)
c= —2 - . 9)

Sy Sy n+1

Then the p value equals Prob(r > y), where ¢ has a standard ¢
distribution on n — 1 df. The derivation of Equation 6 and
Equation 7 is long and technical. In addition, the formulas can
potentially be applied to test hypotheses other than those that are
the focus of this article; that is, they can be used in any situation
in which there is a need to test the difference between two
variables that are themselves distributed as ¢. Because of these
considerations, the derivation of the formulas are the subject of a
separate article (Garthwaite & Crawford, 2004).

In the present article, the aim is to (a) examine the control of the
Type I error rate when these revised tests are used for the specific
purpose of comparing an individual patient’s difference to the
differences in controls, (b) examine the effect of using results from
these tests in criteria for dissociations (see Study 5), and finally, (c)
provide worked examples of their use in single-case studies.

Method

To examine the Type I error rate for the unstandardized difference test
(Equation 5), we repeated the simulation procedure used for the Payne and
Jones (1957) test and Crawford et al.’s (1998) original modified paired ¢
test (see Study 3) using the same sample size and p but substituting the
unstandardized difference test for these latter tests. A similar procedure
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was followed for the RSDT (Equation 6) in that the same sample size and
p were used. However, in addition, control of the error rates was examined
for a larger range of specified error rates in order to examine in more
breadth the accuracy of the approximation given by Equation 6.

Results and Discussion

The simulation results for the unstandardized difference test
(Equation 5) are presented in the final four columns of Table 3. It
can be seen from Table 3 that control of the error rate is impec-
cable at all sample sizes, including the small sample sizes that
produced marked inflation of the error rate with the Payne and
Jones (1957) test and Crawford et al.’s (1998) test. For example,
the error rate is 5.04% for the unstandardized difference test when
N = 5and p = .8, compared with 25.7% and 12.31%, respectively,
for the latter tests.

The simulation results for the RSDT (Equation 6) are presented
in Table 4. Turning first to the results when the specified error rate
was 5% (i.e., the error rate used in all of the other simulations), it
can be seen from Table 4 that control of the error rate is good at
all sample sizes, including the small samples that produced marked
inflation of the error rate with the Payne and Jones (1957) test and
Crawford et al.’s (1998) test. The error rates ranged from 5.17%
to 5.59% for the RSDT when N = 5, compared with a range
of 21.02% to 25.7% for the Payne and Jones test and a range
of 9.18% to 12.31% for Crawford et al.’s. (1998) test. It can also
be seen that the error rate is under control at all values of p in the
table, unlike the latter tests for which the error rates became more
inflated as larger values of p were specified.

The differences in the pattern of results for the Payne and Jones
(1957) test, Crawford et al.”s (1998) test, and the RSDT can clearly
be appreciated by examining Figure 2. This figure displays the
Type I error rates for the three tests as a function of the control
sample size. For clarity, the results are limited to those in which
the population correlation between tasks (py,) was .5; the differ-
ences in control of the error rates would be even more extreme for
Pxy > .5 and less extreme for py, < .5.

As Table 4 shows, in the case of the RSDT, control of the error
rates was examined for a range of specified error, and it can be
seen that the observed error rates all cleave closely to the specified
error rates. For example, for N = 5, the observed rates for a
specified rate of 1% ranged from 0.97% to 1.12%. A similarly

Table 4
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Figure 2. Monte Carlo simulation results: Type I errors for three tests on
the difference between a patient’s scores on two tasks (results are for a py,
of .5). P&J = Payne & Jones test (Payne & Jones, 1957); CH&G =
Crawford, Howell, & Garthwaite test (Crawford, Howell, & Garthwaite,
1998); RSDT = revised standardized difference test.

close correspondence was obtained at the other extreme; that is, the
range of observed rates for a specified rate of 40% was
from 40.10% to 40.22% for N = 5. With larger sample sizes, the
correspondence is even closer. The accuracy of the approximation
will not hold as well for correlations that closely approach unity
(unlikely in practice) and error rates well below 1% (although
additional analysis showed that control was very good even at a
specified rate of 0.05%). Otherwise, it is the case that error rates
will be approximated very satisfactorily.

In conclusion, the present results, when taken together with
those from Study 3, indicate that the RSDT should replace previ-
ously available alternative methods of testing for a difference
between a patient’s performance on two tasks.

Simulation Results: Percentage of Control Cases Exhibiting Significant Differences Between Tasks X and Y (i.e., Percentage of Type 1
Errors) When Using the RSDT (tgp,) Under Different Values of N of the Control Sample, Correlations Between Tasks, and Specified

Error Rates

Specified error rate

1% 5% 10% 20% 40%
N .0 2 .5 .8 .0 2 .5 8 .0 2 .5 8 .0 2 5 8 .0 2 5 8
5 097 1.00 105 1.12 517 530 542 559 1025 1042 10.55 10.78 20.28 20.41 20.53 20.68 40.10 40.18 40.19 40.22
10 0.99 0.99 0.99 1.02 5.00 5.02 504 506 999 10.04 10.06 10.08 19.97 20.06 20.02 20.08 40.00 39.99 40.02 40.06
20 1.00 1.01 1.01 1.00 4.99 499 5.01 503 999 996 1001 10.04 20.01 1995 19.99 20.01 40.03 39.99 40.02 40.02
50 1.00 0.99 1.00 1.02 5.01 5.00 4.98 5.01 10.03 10.00 997 10.03 20.04 20.00 19.93 20.03 40.02 39.99 39.98 40.00
100 099 0.99 1.01 099 497 5.00 5.00 5.00 10.00 10.00 10.01 10.00 19.97 20.00 20.05 19.96 40.02 40.00 40.01 39.96

Note.

RSDT = revised standardized difference test.
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Study 5: Use of the RSDT in Setting Criteria
for Dissociations

As noted, Crawford, Garthwaite, and Gray (2003) proposed
formal criteria for dissociations for use in single-case studies.
Their criteria for classical and strong dissociations were based on
the pattern of results obtained from the application of three infer-
ential tests: two to test for the presence of deficits on Tasks X and
Y using Crawford and Howell’s (1998) test, and one on the
difference between Tasks X and Y using Crawford et al.’s (1998)
test.

Crawford, Garthwaite, and Gray (2003) ran a Monte Carlo
simulation to estimate the percentage of control cases that would
be incorrectly classified as exhibiting a dissociation when their
criteria were applied. The results were encouraging in that the
percentage of control cases classified as exhibiting a classical
dissociation was low (below 5%) and was even lower for strong
dissociations. However, in the present study we have shown that
the RSDT is superior to Crawford et al.’s (1998) original differ-
ence test in controlling Type I errors. Therefore, this suggests that
Crawford, Garthwaite, and Gray’s criteria should be modified so
that the test on the difference between a patient’s scores on Tasks
X and Y is provided by the RSDT rather than Crawford et al.’s
original test. The purpose of Study 5 was to rerun Crawford,
Garthwaite, and Gray’s simulation to estimate the percentage of
control cases that will be misclassified when the revised criteria are
applied. The revised criteria are set out formally in Table 5.
Although the focus of the present study is on evaluating the criteria
for single dissociations, the criteria for double dissociations (i.e.,
dissociations involving 2 patients with opposite patterns of perfor-
mance) stem naturally from these former criteria. Therefore, for
completeness, Table 5 also includes the revised criteria for double
dissociations.

Method

The simulation procedure was similar to that used in Study 3. That
is, 1,000,000 samples of N + 1 pairs of observations were drawn from each
of four bivariate normal distributions in which the correlations were
specified as .0, .2, .5, and .8. This was done for the five sample sizes used
in Study 3. The first N pairs of observations were taken as the control
sample’s scores on Tasks X and Y, and the N + 1th pair was taken as the
scores of the individual control case. Crawford and Howell’s (1998) test
was applied to the scores of the control case on Tasks X and Y (using a
one-tailed test), and the RSDT based on the statistic in Equation 6 was
applied to the standardized difference score of the control case (using a
two-tailed test).

The percentage of control cases that met the criteria for a classical
dissociation was recorded (i.e., a significant result on either Task X or Task
Y, but not both, and a significant result on the revised difference test). The
percentage of control cases that met the criteria for a strong dissociation
was also recorded (i.e., a significant result on Tasks X and Y and a
significant result on the revised difference test). Note that these classifica-
tions are mutually exclusive. The procedure followed in the present study
was the same as that in Crawford, Garthwaite, and Gray’s (2003) study
except that 1,000,000 samples were drawn for each sample size and p
(rather than 100,000), and crucially, the RSDT was substituted for Craw-
ford et al.’s (1998) original modified paired ¢ test.

Results and Discussion

The results of the simulation are presented in Table 6. It can be
seen from Table 6 that, in the case of a strong dissociation, for all

Table 5

Revised Criteria for Classical and Strong Dissociations
Obtained by Modifying Crawford, Garthwaite, and Gray’s
(2003) Original Criteria

Dissociation Criteria

—

Classical . Patient’s score on Task X significantly lower
than that of controls (p < .05, one-tailed) on
Crawford & Howell’s (1998) test; that is,
score meets the criterion for an impairment.

2. Patient’s score on Task Y not significantly
lower than that of controls (p > .05, one-
tailed) on Crawford & Howell’s test; that is,
score fails to meet criterion for an
impairment and is therefore considered to be
within normal limits.

3. Patient’s score on Task X significantly lower
(p < .05, two-tailed) than patient’s score on
Task Y with the use of the RSDT. The test
is two-tailed to allow for the fact that the
data are examined before deciding which
task is X and which is Y.

Strong (i.e., differential 1. Patient’s score on Task X significantly lower

deficit) than that of controls (p < .05, one-tailed) on
Crawford & Howell’s test; that is, score
meets the criterion for an impairment.

2. Patient’s score on Task Y is also
significantly lower than that of controls (p <
.05, one-tailed) on Crawford & Howell’s
test; that is, score meets the criterion for an
impairment.

3. Patient’s score on Task X significantly lower
(p < .05, two-tailed) than patient’s score on
Task Y with the use of the RSDT.

Classical double 1. Patient 1 meets the criterion for a deficit on

Task X and meets the criteria for a classical
dissociation between this task and Task Y.

2. Patient 2 meets the criterion for a deficit on
Task Y and meets the criteria for a classical
dissociation between this task and Task X.

Strong double 1. Patient 1 meets the criterion for a deficit on

Task X and meets the criteria for a classical
or strong dissociation between this task and
Task Y.

2. Patient 2 meets the criterion for a deficit on
Task Y and meets the criteria for a classical
or strong dissociation between this task and
Task X.

3. Only one of the above dissociations is
classical (otherwise we have a classical
double dissociation).

Note. RSDT = reversal standardized difference test.

of the values of the correlation and sample size that were exam-
ined, a very small number of control cases were incorrectly clas-
sified as having a strong dissociation (less than 0.22% for all
sample sizes and p and much smaller than this quantity in the
majority of cases). In addition, it can be seen that the percentage
showing a classical dissociation was comfortably below 5% (max-
imum = 2.51%) and much smaller than this in the majority of
cases. Therefore, the results indicate that when these criteria are
applied in single-case research, it would be unlikely that a member
of the control (i.e., healthy) population would be misclassified as
exhibiting either form of dissociation.

The percentage of controls exhibiting a classical dissociation,
although small, is necessarily higher than that for a strong disso-
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Table 6

Results From a Monte Carlo Simulation Study: Percentage of
Control Cases Incorrectly Classified as Exhibiting Strong and
Classical Dissociations When typ, Is Used to Test for
Differences Between Tasks X and Y Under Different Values of N
of the Control Sample and Correlations Between Tasks

Strong dissociation Classical dissociation

N .0 2 5 8 .0 2 5 8

5 0.01 002 007 022 232 203 1.64 1.12
10 0.00 0.01 0.03 012 241 2.06 1.56  0.98
20 0.00 000 0.01 0.07 2.48 2.06 1.50  0.90
50 0.00 0.00 0.01 0.04 251 2.06 1.49  0.84

100 000 0.00 000 004 249 210 1.48  0.84

ciation. This is because, for a strong dissociation, scores must be
extreme on both Tasks X and Y, and therefore, the score on one of
these two tasks must be very extreme to meet the criteria.

Comparison of the results for Crawford, Garthwaite, and Gray’s
(2003) original criteria and the revised criteria demonstrates that
the latter have reduced the probability of misclassifying a member
of the control population. The percentages for the revised criteria
are lower at all values of p and sample size but, as is to be expected
given the results of Studies 2 and 3, are particularly marked with
small sample sizes. The percentage of controls misclassified as
exhibiting a strong dissociation ranged from a low of 0.02% (when
p = .0) to a high of 0.37% (when p = .8) in Crawford, Garthwaite,
and Gray’s simulation for a sample size of 5. The corresponding
figures in the present study using the RSDT were 0.01%
and 0.22%.

The reduction in misclassification of controls was also evident
for a classical dissociation. In Crawford, Garthwaite, and Gray’s
(2003) simulation, the percentage of controls misclassified as
exhibiting a classical dissociation for a sample size of 5 ranged
from a low of 2.04% (when p = .8) to a high of 3.41% (when p =
.0). The corresponding figures in the present study using the RSDT
were 1.12% and 2.32%.

In summary, the present results clearly illustrate the conserva-
tism inherent in the sequence of tests for dissociations; that is,
application of these criteria will rarely misclassify individuals
drawn from the control population. Furthermore, the superior
results obtained in Study 4 for the RSDT over its alternatives
(Study 3) have carried over to the present study in which it was
incorporated into a revised set of criteria for dissociations. This
reinforces our recommendation that the RSDT should replace
previously available alternatives; that is, Crawford et al.’s (1998)
test and the Payne and Jones (1957) test in single-case research.

General Discussion

Worked Examples for the Revised Difference Tests and
Revised Criteria for Dissociations

Worked examples of both of the revised tests for differences are
provided next, although researchers need never perform the cal-
culations as a computer program is available to accompany this
article (see next section). To illustrate the use of the unstandard-
ized difference test (Equation 5), suppose that a neuropsychologist

examines the performance of a patient on a distance estimation
task under monocular versus binocular viewing. The patient’s
score in the monocular condition was 40 and 76 in the binocular
condition (high scores equal good performance). Suppose also
that 12 matched controls had been recruited and administered the
same task under the same two conditions; the mean score in
controls was 80 (SD = 14.0) under binocular conditions and 78
(SD = 15.0) under monocular conditions, and the correlation
between performance on the tasks in controls was .7.

(76 — 80) — (40 — 78)

t —
bt 12+1
(196 +225 — 2 X 14 X 15 X 0.70)| —,
34 34
= =2.899. (10)

J(127)(1.0833)  11.7296

The two-tailed probability for this ¢ value on 11 df is .014.
Therefore, there is a significant difference (p < .05) between the
patient and controls; that is, it is highly unlikely that the difference
between performance under binocular versus monocular viewing
observed for the patient was drawn from the distribution of dif-
ferences in the control population. The one-tailed p value (.007)
also provides researchers with a point estimate of the abnormality
of the patient’s difference; in this example, it is estimated that
only 0.7% of the control population would exhibit a difference of
this magnitude in favor of binocular viewing.

In deciding whether it is appropriate to compare a patient with
controls using the unstandardized difference test, researchers need
only pose the following question: “Would it be legitimate to use a
paired ¢ test to compare the performance of controls under the two
different conditions?” If the answer is yes, then it is equally
legitimate to use #,,, to test if the difference between performance
under condition Task X versus Task Y observed for a patient is
significantly different from the distribution of differences in
controls.

The RSDT provides a much more general method of testing for
differences between Tasks X and Y; that is, it can be used to
compare a patient’s performance on diverse tasks. To illustrate its
use, suppose that a researcher administered a theory of mind
(ToM; Baron-Cohen, Leslie, & Frith, 1985) task and a task of
executive ability (e.g., set-shifting) to a patient and wished to
determine whether his or her performance on these two tasks was
significantly different (i.e., the researcher wished to determine
whether the null hypothesis that the difference observed for the
patient was drawn from the population of control differences could
be rejected). Suppose also that 20 healthy controls matched to the
patient on basic demographic variables had been recruited. The
mean score for controls on the ToM task was 60 (SD = 7), and
the mean score on the executive task was 24 (SD = 4.8); the
correlation between the two tasks in controls was .68. Suppose
the patient’s raw scores on these two tasks were 33 and 15,
respectively.

In applying either of the formulas for RSDT (i.e., Equation 6 or
Equation 7), the first step is to convert the patient’s scores to z
scores; in this example, the patient’s z score on the ToM task is
—3.857, and the z score on the executive task is —1.875. When
using the Equation 6 formula, we have to enter the two-tailed
critical value for # on n — 1 df for our selected value of alpha. If
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we set alpha at the conventional 5% level, then the critical value
is 2.093. Entering these data into Equation 6, we have

(—3.857) — (— 1.875)
20 + 1 2(1 — .68
( 50 {(2—2><0.68)+W
(5 + 2.093%)(1 — .68?)
2(20 — 1)2
68(1 +2.093)(1 — .68?)
2(20 — 1) }

—1.982

1.0752  (9.3806)(0.5376)

19 722
N .68(5.3806)(0.5376)}

722

(1.05){(0.64) +

—1.982
a 1.05{0.64 + 0.056589 + 0.006985 + 0.002724}

- 1.982
J0.7416

—2.302. (11)

As y = —2.302 exceeds the critical value of £2.093, we conclude
that the patient’s performance on the ToM task is significantly
more impaired than performance on the executive task (at the 5%
level).

As noted, Equation 7 permits researchers to obtain a precise
probability for the difference between patient and controls and
thereby also provides a point estimate of the abnormality of the
patient’s difference. Entering the data from the current example
into Equation 7,

a=(1+0.68)(1 —0.68% =0.90317, (12)

b=(1—-0.68){4(20 — 1)+ 4(1 + 0.68)(20 — 1)
+ (1 +0.68)(5 + 0.68)} = 505.99, and (13)

20(20 — 1)2>

c= —2[(—3.857)— (- 1.875)]2< 2011

= —2701.19. (14)

and therefore,

B ( —505.99 + ,/505.99% — 4(0.90317)( — 2701.19))”2
B 2(0.90317)

=2.300. (15)

The two-tailed p value for a ¢ of 2.30 on 19 df is .033; therefore,
we come to the same conclusion as that reached when we use
Equation 6: The patient’s ToM performance is significantly more
impaired (p < .05) than her or his performance on the executive
task. To obtain a point estimate of the abnormality of the patient’s
difference, we use the one-tailed p value for ¢. The p value is .0165,
and therefore, we estimate that only 1.65% of the control popula-
tion would exhibit a discrepancy in favor of the executive task of
this magnitude and direction.

We can also use this example to illustrate the application of the
revised criteria for dissociations (see Table 5). Application of
Crawford and Howell’s (1998) test (Equation 1) reveals that the
patient is significantly different (one-tailed) from controls on the
ToM task, #19) = 3.76, p = .001, and on the executive task,
1(19) = 1.83, p = .042. The patient is therefore considered to have
an impairment on both tasks and does not meet the criteria for a
classical dissociation. However, the patient does meet the criteria
for a strong dissociation; performance on both tasks is impaired,
but the ToM deficit is significantly greater (i.e., the ToM deficit is
a differential deficit).

Finally, the RSDT provides a very flexible method of testing for
dissociations as its use need not be limited to cases in which
performance is quantified by simple test scores (such as number of
items correct). For example, a patient’s memory for temporal order
is typically assessed by computing the rank-order correlation be-
tween the order reported by a patient and the actual order of
presentation. Similarly, in estimation tasks, such as distance,
weight, or time estimation, performance is commonly assessed by
the slope of the regression line relating an individual’s estimates to
the actual distances, weights, or elapsed times. Crawford, Garth-
waite, Howell, and Venneri (2003) and Crawford and Garthwaite
(2004) have recently developed methods that allow single-case
researchers to test whether a patient is significantly different from
a control sample when performance is quantified by a parametric
or nonparametric correlation coefficient or slope.

These authors noted that Crawford et al.’s (1998) test could be
used to test whether there was a dissociation between constructs
measured by slopes or correlations or dissociations between such
constructs and constructs measured by conventional means. The
present results suggest that the RSDT should be used for this
purpose instead. For example, it could be used to test if a patient
exhibits a dissociation between temporal order memory for verbal
material and free recall of such material; details of the treatment of
patient and control data that are in the form of slopes or correla-
tions can be found in the aforementioned articles (Crawford &
Garthwaite, 2004; Crawford, Garthwaite, Howell, & Venneri,
2003).

Computer Program to Implement the Revised Difference
Tests and Revised Criteria for Dissociations

The calculations involved in applying the unstandardized dif-
ference test (Equation 5) or RSDT (Equation 7), and thereby also
obtaining a point estimate of the abnormality of the patient’s
difference, could be performed by hand or calculator. However,
the calculations for the RSDT are tedious and prone to human
error. For the foregoing reasons, we have implemented the statis-
tical methods in a computer program (dissocs.exe) for PCs.

The program prompts the user to select either the unstandard-
ized difference test or the RSDT. The data inputs required are the
means and standard deviations for Tasks X and Y and the corre-
lation between Tasks X and Y in controls, the size of the control
sample, and the patient’s scores on Tasks X and Y. The results of
applying the selected difference test are reported: namely, the ¢
value and its associated two-tailed probability and the point esti-
mate of the abnormality of the patient’s difference.

The program also applies the revised criteria for dissociations
presented in the present article. That is, it applies Crawford and
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Howell’s (1998) test to test for deficits on Tasks X and Y (point
estimates and confidence limits for the abnormality of the patient’s
scores are also reported), and uses these results together with the
results of the RSDT (or unstandardized difference test if the latter
has been selected) to establish whether the patient’s results fulfill
the criteria for a classical or strong dissociation. The results of
these analyses can be viewed on screen, printed, or saved to a file.
The program can be downloaded from the following web page
address: http://www.abdn.ac.uk/~psy086/dept/dissociations.htm.

Some Comments and Caveats on the Use of Single-Case
Methods

The revised inferential methods for differences presented in this
article are both modified ¢ tests. As is the case for Crawford and
Howell’s (1998) test, they assume that the control sample data are
normally distributed. Examining the robustness of these tests in the
face of skew is more complicated than was the case for the former
test as it is necessary to sample from skewed bivariate distributions
and a larger variety of scenarios needs to be covered (e.g., inves-
tigating robustness when Tasks X and Y are both skew, or only one
of X and Y, and studying effects of skew in opposite directions for
X and Y). However, we have conducted some provisional analysis
of this issue for the RSDT and obtained results that are as encour-
aging as those reported in Study 2 for Crawford and Howell’s test
(Garthwaite & Crawford, 2004). Nevertheless, the results from
applying these tests should be treated cautiously when the data
exhibit severe skew unless the resultant p value is well beyond .05
(i.e., <.025). It is important to note that the more commonly used
alternative methods, for example, the use of z,, or Crawford et al.’s
(1998) method to test for a difference between tasks, make exactly
the same assumption and will be equally compromised when this
assumption is violated.

The emphasis in the present article has been on evaluating the
performance of the inferential tests for deficits and dissociations
when single-case research is conducted with modestly sized con-
trol samples. To avoid any potential confusion, it should be noted
that the methods can be used with control samples of any size and
remain more valid than commonly used alternatives based on z
when the sample size is large; in this situation, the researcher is
still dealing with a sample not a population. Furthermore, although
the methods achieve good control of Type I errors with small
sample sizes, this does not mean that researchers should limit
themselves to recruiting small control samples; the present article
focuses on small samples simply because of the need to reflect the
reality of current practice in many single-case studies. Indeed, as
noted, statistical power is inevitably low in single-case studies
(significant results are obtained because effects are often large
enough to overcome this). Therefore, it makes sense to increase
power by recruiting a large sample of controls when this is
practical.

It should also be noted that very useful and elegant methods
have been devised for drawing inferences concerning an individual
patient’s performance on fully standardized neuropsychological
tests; that is, on tests that have been normed on very large,
representative samples of the population (e.g., Capitani, 1997;
Capitani & Laiacona, 2000; De Renzi, Faglioni, Grossi, & Nicheli,
1997; Willmes, 1985). When these methods are used in single-case
research, the patient is compared against normative values rather

than against controls. In such approaches, errors arising from
sampling from the control population are ignored; this is justifiable
because the samples are large enough for such errors to be
minimal.

Although these latter approaches have much to commend them,
they unfortunately can be used only in fairly circumscribed situ-
ations because (a) the questions posed in many single-case studies
cannot be fully addressed using existing standardized neuropsy-
chological tests, (b) new constructs are constantly emerging in
neuropsychology, and (c) the collection of large-scale normative
data is a time-consuming and arduous process (Crawford, 2004).
Therefore, there is a continued need for methods that can be used
when a patient is compared with a modestly sized control sample.

At the other extreme, some single-case studies do not refer the
patient’s performance to either a control sample or a large norma-
tive sample. That is, conclusions on the presence of deficits and
dissociations are based on intraindividual analysis. An example of
this approach comes from the aforementioned literature on cate-
gory specificity. It is quite common for conclusions of a dissoci-
ation between naming of living and nonliving things to be based on
a significant result from a chi-square test; that is, a patient is
administered an equal number of living and nonliving items and
the number correctly named in each category is compared (Laws,
in press).

However, aside from the fact that the independence assumption
for a chi-square test is violated in these circumstances, there are
further difficulties with this approach. For example, Laws et al. (in
press) studied Alzheimer’s disease patients who exhibited signif-
icant differences (on chi-square tests) between the number of
living and nonliving items named and found that many of these
raw differences were not unusual when standardized against con-
trol performance; that is, the intraindividual method yielded false-
positive indications of a dissociation. The opposite pattern was
also found; patients whose chi-square results were not significant
showed strong evidence of a dissociation when their naming was
referenced to control performance.

The focus of the present study has been on inferential methods
for single tests (when attempting to detect deficits) or pairs of tests
(when attempting to detect dissociations). However, it should be
acknowledged that findings obtained from comparing the patient to
a control sample are not interpreted in isolation. Rather, these
findings are interpreted in the context of results from a prior
assessment in which a broad characterization of the patient’s
strengths and weaknesses will have been achieved through the use
of fully or partially standardized tests.

Furthermore, many single-case studies use multiple measures of
the constructs under investigation (i.e., different but related Tasks
X, X,, etc., and Y, Y,, etc., to measure constructs X and Y). That
is, the patient is compared with controls over a series of tasks. This
is in keeping with the fact that researchers are ultimately interested
in dissociations between functions, not just in dissociations be-
tween specific pairs of indirect and imperfect measures of these
functions (Crawford, Garthwaite, Howell, & Venneri, 2003; Val-
lar, 2000). Thus, researchers seek converging evidence of a deficit
or dissociation (Vallar, 2000). The upshot of this is that the risk of
drawing incorrect conclusions will typically be less than that
associated with the results from a single inferential test (in the case
of a deficit) or single application of a set of criteria (in the case of
a dissociation).
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However, the integration of these multiple sources of informa-
tion is a complex and formidable task. It is fair to say that (a)
currently there is little consistency across studies in how this task
is approached and (b) existing attempts tend to be qualitative rather
than quantitative. The development of a quantitative system,
whereby the probabilities (e.g., of a dissociation) could be com-
bined or updated as different stages of a study are completed,
would make a very significant contribution to the discipline. The
nature of this problem is such that an approach based on Bayesian
rather than classical (i.e., frequentist) methods would be the obvi-
ous choice.

Finally, a central aim of the present study was to develop and
evaluate more rigorous criteria for dissociations than those used
previously. However, even if infallible criteria for identifying
dissociations were available, there remains the wider and thornier
issue of what dissociations allow researchers to conclude about the
functional architecture of human cognition. Although this is a large
topic, and one that lies beyond the scope of the present study, a few
comments are in order.

It is generally acknowledged that a single dissociation implies
that different cognitive functions underlie performance on the two
tasks in question, but that such dissociations are prone to task
difficulty artifacts. That is, a unitary cognitive function may con-
tribute to performance on both Tasks X and Y, but only Task X is
of sufficient difficulty to uncover an impairment of this function
(Crawford, Garthwaite, & Gray 2003; Vallar, 2000). The identifi-
cation of a double dissociation (i.e., patients who have opposite
patterns of spared and impaired performance) is generally consid-
ered to largely rule out such artifacts. For this reason, the double
dissociation is a central tool for the building and testing of theory
in neuropsychology. As Vallar (2000) noted, the double dissocia-
tion provides “the most effective paradigm for investigating the
modularity of the mental processes and their neural correlates” (p.
329). However, serious areas of debate remain (Dunn & Kirsner,
2003; Shallice, 1988). For example, Dunn and Kirsner (2003)
argued that (a) researchers can only specify the characteristics of
cognitive modules underlying a double dissociation if the cases
involved are pure cases and the tasks are process pure and (b) there
is no independent means of testing whether the former situation
holds. Thus, their pessimistic conclusion is that “dissociations may
tell us nothing more about mental functions other than that there
are two of them” (Dunn & Kirsner, 2003, p. 5).

Conclusion

The single-case approach in neuropsychology has made a sig-
nificant contribution to researchers’ understanding of the func-
tional architecture of human cognition. However, as Caramazza
and McCloskey (1988) noted, if advances in theory are to be
sustainable, they “must be based on unimpeachable methodolog-
ical foundations” (p. 519). The statistical treatment of single-case
study data is one area of methodology that has been relatively
neglected. In the present article, the evaluation of inferential tests
for comparing a patient to a control sample provides researchers
with simulation results to guide their choice of methods and
provides new methods that have significant advantages over the
existing alternatives.
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