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Addresses issues related to partial measurement in variance using a tutorial approach based on the
LISREL confirmatory factor analytic model. Specifically, we demonstrate procedures for (a) using
"sensitivity analyses" to establish stable and substantively well-fitting baseline models, (b) determin-
ing partially invariant measurement parameters, and (c) testing for the invariance of factor covari-

ance and mean structures, given partial measurement invariance. We also show, explicitly, the trans-
formation of parameters from an all-^fto an all-y model specification, for purposes of testing mean

structures. These procedures are illustrated with multidimensional self-concept data from low (« =
248) and high (n = 582) academically tracked high school adolescents.

An important assumption in testing for mean differences is

that the measurement (Drasgow & Kanfer, 1985; Labouvie,

1980; Rock, Werts, & Haugher, 1978) and the structure (Bejar,

1980; Labouvie, 1980; Rock etal., 1978) of the underlying con-

struct are equivalent across groups. One methodological strat-

egy used in testing for this equivalence is the analysis of covari-

ance structures using the LISREL confirmatory factor analytic

(CFA) model (Joreskog, 1971). Although a number of empirical

investigations and didactic expositions have used this method-

ology in testing assumptions of factorial invariance for multiple

and single parameters, the analyses have been somewhat incom-

plete. In particular, researchers have not considered the possi-

bility of partial measurement invariance.

The primary purpose of this article is to demonstrate the ap-

plication of CFA in testing for, and with, partial measurement

invariance. Specifically, we illustrate (a) testing, independently,

for the invariance of factor loading (i.e., measurement) parame-

ters, (b) testing for the invariance of factor variance-covariance

(i.e., structural) parameters, given partially invariant factor

loadings, and (c) testing for the invariance of factor mean struc-

tures.1 Invariance testing across groups, however, assumes well-

fitting single-group models; the problem here is to know when

to stop fitting the model. A secondary aim of this article, then,

is to demonstrate "sensitivity analyses" that can be used to es-

tablish stable and substantively meaningful baseline models.

Factorial Invariance

Questions of factorial invariance focus on the correspon-

dence of factors across different groups in the same study, in

separate studies, or in subgroups of the same sample (cf. Alwin

& Jackson, 1981). The process centers around two issues: mea-

surement invariance and structural invariance. The measure-

ment issue concerns the invariance of regression intercepts, fac-

tor loadings (regression slopes), and error/uniqueness vari-

ances. The structural issue addresses the invariance of factor

mean and factor variance-covariance structures.

Although there are a number of ad hoc methods for compar-

ing factors across independent samples, these procedures were

developed primarily for testing the invariance of factors derived

from exploratory factor analyses (EFA; see Marsh and Hocevar

[1985] and Reynolds and Harding [1983] for reviews). However,

Alwin and Jackson (1981) argued that "issues of factorial in-

variance are not adequately addressed using exploratory factor

analysis" (p. 250). A methodologically more sophisticated ap-

proach is the CFA method originally proposed by Joreskog

(1971) and now commercially available to researchers through

LISREL VI (Joreskog & Sorbom, 1985) and SPSSX (SPSS Inc.,

1986).2 (For a discussion of the advantages of CFA over EFA,

and details regarding application, see Long [1983], Marsh and

Hocevar [1985], and Wolfle [1981].)

LISREL Approach to Testing for Factorial Invariance

As a prerequisite to testing for factorial invariance, it is con-

venient to consider a baseline model that is estimated separately

for each group. This model represents the most parsimonious,

yet substantively most meaningful and best fitting, model to the

data. Because the x2 goodness-of-fit value and its corresponding

degrees of freedom are additive, the sum of the x2s reflects how
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1 In this particular demonstration, we do not test for the invariance

of error/uniquenesses. However, the assumption of noninvariant mea-

surement error can also be tested on the basis of partial measurement

invariance, as we describe in this article.
2 Other computer programs available for this procedure include EQS

(Bentler, 1985) and COSAN (McDonald, 1978,1980) for use with inter-

val data and USCOMP (Muthen, 1987) for use with categorical data.
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well the underlying factor structure fits the data across groups.

A nonsignificant x2 (or a reasonable fit as indicated by some

alternate index of fit) is justification that the baseline models fit

the observed data.

However, because measuring instruments are often group

specific in the way they operate, baseline models are not ex-

pected to be identical across groups. For example, whereas the

baseline model for one group might include correlated mea-

surement errors, secondary factor loadings,3 or both, this may

not be so for a second group. A priori knowledge of such group

differences, as will be illustrated later, is critical to the conduct

of invariance-testing procedures. Although the bulk of the liter-

ature suggests that the number of factors must be equivalent

across groups before further tests of invariance can be con-

ducted, this is only a logical starting point, not a necessary con-

dition; only the comparable parameters within the same factor

need to be equated (Werts, Rock, Linn, & Joreskog, 1976).

Because the estimation of baseline models involves no be-

tween-groups constraints, the data may be analyzed separately

for each group. In testing for invariance, however, constraints

are imposed on particular parameters, and thus the data from

all groups must be analyzed simultaneously to obtain efficient

estimates (Joreskog & Sorbom, 1985), with the pattern of fixed

and free parameters remaining consistent with that specified in

the baseline model for each group.

Tests of factorial invariance, then, can involve both measure-

ment and structural components of a model. In LISREL VI nota-

tion, this means that the factor (lambda, A), error (theta, 6),

and latent factor variance-covariance (phi, *) matrices are of

primary interest. If, however, the invariance testing includes

factor means, then the regression intercept (nu, v) and mean

(gamma, r) vectors are also of interest. More specifically, A is a

matrix of coefficients regressed from latent factors to observed

variables; 6 is the variance-covariance matrix of error/unique-

nesses; and v is a vector of constant intercept terms. These ma-

trices make up the measurement aspect of the model. $ is the

factor variance-covariance matrix, and T is a vector of mean

estimates. These matrices constitute the structural part of the

model. (For a more extensive, yet clear, description of LISREL

notation, see Long [1983], Maruyama and McGarvey [1980],

and Wolfle [1981].)

Within the Joreskog tradition, tests of factorial invariance

begin with an overall test of the equality of covariance struc-

tures across groups (i.e., H0: Zi = 2z = • • • 2c, where G is

the number of groups). Failure to reject the null hypothesis is

interpreted as evidence of invariance across groups; except for

mean structures, the groups can be treated as one. Rejection of

this hypothesis, however, leads to testing a series of increasingly

restrictive hypotheses in order to identify the source of non-

equivalence. These hypotheses relate to the invariance of (a) the

factor loading pattern (i.e.,H0: A, = A2 = • • • A0), (b)the error/

uniquenesses (i.e., H0: Q, = 62 = • • • 6G), and (c) the factor

variances and covariances (i.e., Ha: *i = *2 = • • • *c). The

tenability of Hypothesis a is a logical prerequisite to the testing

of Hypotheses b and c. Recently, however, the importance and

rational underlying the omnibus test of equal Ss has been ques-

tioned. For a more extensive discussion of this issue, see Byrne

(in press).

The procedures for testing the invariance hypotheses are

identical to those used in model fitting; that is, a model in which

certain parameters are constrained to be equal across groups

is compared with a less restrictive model in which these same

parameters are free to take on any value. For example, the hy-

pothesis of an invariant pattern of factor loadings (A) can be

tested by constraining all corresponding lambda parameters to

be equal across groups and then comparing this model with one

in which the number of factors and the pattern of loadings are

invariant but not constrained to be equal (i.e., the summed x2s

across groups, as mentioned earlier). If the difference in x2

(A%2) is not significant,4 the hypothesis of an invariant pattern

of loadings is considered tenable. Because the testing for invari-

ant mean structures is more complex, we leave this discussion

until later in the article, where a detailed description of the pro-

cedure accompanies our example.

In testing for the invariance of factor measurement and vari-

ance-covariance structures, modeling with the mean-related

parameters does not impose restrictions on the observed vari-

able means; only the analysis of covariance structures is of inter-

est. In testing for the invariance of factor means, on the other

hand, the modeling involves restrictions on the observed vari-

able means, and therefore the analysis is based on both the Co-

variance and mean structures.5 For the purposes of this article,

we distinguish between these two phases of invariance testing

procedures, both in our summary of the literature and in our

application of CFA procedures.

Summary of Literature6

Testing for Invariance of Factor Covariance Structures

Factorial invariance has been empirically tested across

groups categorized according to socioeconomic status (McGaw

& Joreskog, 1971), race (Wolfle, 1985; Wolfie & Robertshaw,

1983), gender (Marsh, 1985; Marsh, Smith, & Barnes, 1985),

educational program (Hanna, 1984), and school type (Lomax,

1985). Additionally, the procedure has been presented didacti-

cally with data representing different grade levels (Alwin &

Jackson, 1981; Marsh AHocevar, 1985), reading abilities (Ever-

itt, 1984), race (Alwin & Jackson, 1981; Rock etal., 1978), and

socioeconomic strata (Alwin & Jackson, 1981).

Our review of these studies, in addition to examples pre-

sented in the LISREL VI manual, revealed two important find-

ings. First, we found no evidence of tests to determine partial

measurement invariance. That is, given findings of a noninvari-

ant A, *, or 0 matrix, no follow-up procedure was imple-

mented or even suggested for pinpointing the source of inequal-

ity within the offending matrix. Second, despite findings of a

3 Secondary loadings are measurement loadings on more than one

factor.
4 The difference in x2 (Ax2) for competing models is itself x2 distrib-

uted, with degrees of freedom equal to the corresponding difference in

degrees of freedom, and indicates whether the reestimated model repre-

sents a statistically significant improvement in fit.

* For simplicity, we hereinafter refer to these analyses as tests for the

invariance of (or differences in) mean structures.

' Our review included studies in which the analyses (a) were based on

continuous variables, (b) focused primarily on examination of the A,

6, and * matrices, and (c) followed procedures as outlined in the LISREL

VI manual.
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noninvariant A matrix, a few researchers continued to test for

the invariance of the * or 6 matrices.

parameters from an all-AT to an all- Y model, and (d) testing for

differences in latent factor means, given partial measurement

Testing for Differences in Factor Mean Structures

We found only two published empirical studies that used Lis-

REL CFA procedures to test for differences in latent mean struc-

tures (Lomax, 1985; McGaw & Joreskog, 1971). Several didac-

tic papers, however, have been written on the topic; these papers

have included examples that tested across treatment groups

(Sorbom, 1982), school settings (Sorbom, 1974), educational

programs over time (Hanna & Lei, 1985), and race (Alwin &

Jackson, 1981;Everitt, 1984; Rock etal., 1978).

In reviewing these papers, and examples in the LISREL man-

ual, we again found no evidence of tests to determine partial

measurement invariance. Furthermore, researchers were con-

sistent in holding entire measurement matrices (A, 0) invariant

while testing for latent mean differences. Indeed, we are aware

of only one study (Muthen & Christoffersson, 1981) that has

tested for latent mean differences using partial measurement

invariance. That study, however, focused on the invariance of

sets of dichotomous test items and, thus, is only indirectly re-

lated to our review.

Our review of methodological procedures for testing the in-

variance of latent factor and latent mean structures led us to

two important conclusions. First, there seems to have been an

unfortunate oversight regarding the appropriateness of using

the LISREL procedure in testing for partial measurement invari-

ance; the literature is void of any such examples. Consequently,

we believe that readers are left with the impression that, given

a noninvariant pattern of factor loadings, further testing of in-

variance and the testing for differences in factor mean scores

are unwarranted. This conclusion, however, is unfounded when

the model specification includes multiple indicators of a con-

struct and at least one measure (other than the one that is fixed

to 1.00 for identification purposes) is invariant (Muthen &

Christoffersson, 1981).

Second, consistent with Bender's (1980) observations almost

a decade ago, there is still a paucity of studies that have tested

for differences in latent means. It seems evident that an explicit

demonstration of the LISREL procedure might be a welcomed

addition to the literature. Although, admittedly, there are a

number of didactic papers that have outlined this procedure,

the presentations assume a fairly high level of statistical sophis-

tication on the part of the reader. For example, we are aware of

no paper that explicitly demonstrates how to transform param-

eters from an all-A'to an all-y model. Although the CFA proce-

dure for testing the factorial invariance of covariance structures

is equally valid using either the LISREL all-JTor the LISREL all- Y

specification, the latter must be used in testing for differences

in mean structures (see Everitt, 1984); current didactic papers

assume the specification of an all-!' model. We believe that a

paper designed to walk the reader through each step of these

procedures would make an important contribution to the liter-

ature and, perhaps, make the procedure accessible to a wider

range of potential users.

We address these limitations by demonstrating procedures

for (a) identifying individual noninvariant measurement pa-

rameters, (b) testing for the invariance of structural parameters,

given partial measurement invariance, (c) respecifying LISREL

Application of LISREL Approach to Tests of Invariance

Data Base

The data derive from a previously published study (Byrne &

Shavelson, 1986) and represent multiple self-ratings for each of

general self-concept (SC), academic SC, English SC, and mathe-

matics SC for low (« = 248) and high (n = 582) academically

tracked students in Grades 11 and 12. These data represent re-

sponses to the Self Description Questionnaire (SDQ) III (Marsh

& O'Neill, 1984), the Affective Perception Inventory (API;

Scares & Scares, 1979), the Self-Esteem Scale (SES; Rosenberg,

1965), and the Self-Concept of Ability Scale (SCA; Brookover,

1962). (For a description of the instruments, and a summary of

their psychometric properties, see Byrne and Shavelson [1986];

for a discussion of substantive issues, see Byrne [1988].) Mea-

surements of each SC facet, and a summary of the descriptive

statistics for the data, are detailed in the Appendix.

Hypothesized Model

The CFA model in this study hypothesizes a priori that (a)

SC responses can be explained by four factors: general SC, aca-

demic SC, English SC, and mathematics SC; (b) each subscale

measure has a nonzero loading on the SC factor that it is de-

signed to measure (i.e., target loading) and has a zero loading

on all other factors (i.e., nontarget loadings); (c) the four SC

factors, consistent with the theory (see, e.g., Byrne & Shavelson,

1986), are correlated; and (d) error/uniqueness terms for each

of the measures are uncorrelated. Table 1 summarizes the pat-

tern of parameters estimated for the factor loadings (lambda A';

AJ, factor variance-covariance (phi; *), and error variance-

covariance (theta delta; Qs) matrices. The Xs, ^s, and 9s repre-

sent the parameters to be estimated; the zeros and ones were

fixed a priori. For purposes of identification, the first of each

congeneric set of SC measures was fixed to 1.0 (see, e.g., Long,

1983); each nontarget loading was fixed to 0.0.

Analysis of Data

Analyses were conducted in three stages. First, data for each

track were examined separately to establish baseline models.

Second, the invariance of SC measurements and structure

across track was tested. Finally, latent mean track differences

were tested, with equality constraints placed on only those mea-

sures known to be invariant across groups.

Although covariance structure analysis has traditionally re-

lied on the x2 likelihood ratio test as a criterion for assessing

the extent to which a proposed model fits the observed data, its

sensitivity to sample size, as well as to various model assump-

tions (i.e., linearity, multinormality, additrvity), is well known

(see, e.g., Bentler & Bonett, 1980; Fornell, 1983; Joreskog,

1982;Marsh&Hocevar, 1985; Muthen & Kaplan, 1985). As an

alternative to x2, other goodness-of-fit indices have been pro-

posed, albeit their adequacy as criteria of fit has been widely

debated in the literature (for a review, see Marsh, Balla, & Mc-

Donald, 1988). Overall, researchers have been urged not to
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Table 1

Pattern oflJSREL Parameters for Model Fitting

SDQCSC

APIGSC

SESOSC

SDQASC

SCAASC

SDQESC

APIESC

SCAESC

SDQMSC

APIMSC

SCAMSC

A,

GSC]

ASC

ESC *

MSCJ

SDQGSC

APIGSC

SESGSC

SDQASC

SCAASC

SDQESC

APIESC

SCAESC

SDQMSC

APIMSC

SCAMSC

64

1 0 0 0

X21 0 0 0

X,, 0 0 0

0 1 0 0

0 X52 0 0

0 0 1 0

0 0 X73 0

0 0 X,3 0

0 0 0 1

0 0 0 X104

_0 0 0 X,,,4_

0,1
021 022

031 032 033

041 042 043 044

a,, o o o o o o o o o o

0 « 2 2 0 0 0 0 0 0 0 0 0

0 0 J33 0 0 0 0 0 0 0 0

0 0 0 S,. 0 0 0 0 0 0 0

0 0 0 0 853 0 0 0 0 0 0

0 0 0 0 0 JM 0 0 0 0 0

0 0 0 0 0 0 {,, 0 0 0 0

0 0 0 0 0 0 0 588 0 0 0

0 0 0 0 0 0 0 0 « » 0 0

0 0 0 0 0 0 0 0 0 S.oio 0

0 0 0 0 0 0 0 0 0 0 ' «,,ii

Note. Ax = factor loading matrix; 9 = factor variance-covariance matrix; 65 = error variance-covariance matrix; J, — jj4 - SC factors ({, =

general SC; & = academic SC; £3 = English SC; £, = mathematics SC). GSC = general SC: ASC = academic SC; ESC = English SC; MSC =

mathematics SC; SDQGSC - Self Description Questionnaire (SDQ)—General Self subscale; APIGSC = Affective Perception Inventory (API)—Self-

Concept subscale; SESOSC = Self-Esteem Scale; SDQASC = SDQ Academic SC subscale; SCAASC = Self-Concept of Ability Scale (SCA); SDQESC =
SDQ Verbal SC subscale; APIESC = API English Perceptions subscale; SCAESC = SCA Form B (SC of English ability); SDQMSC = SDQ Mathematics

SC subscale; APIMSC = API Mathematics Perceptions subscale; SCAMSC = SCA Form C (SC of mathematics ability).

judge model fit solely on the basis of x2 values (Bentler & Bo-

nett, 1980;J6reskog&S6rbom, 1985; Marsh etal., 1988) or on

alternative fit indices (Kaplan, 1988; Sobel & Bohrnstedt,

1985); rather, assessments should be based on multiple criteria,

including "substantive, theoretical and conceptual considera-

tions" (Joreskog, 1971, p. 421).

Assessment of overall model fit in the present example was

based on statistical as well as practical criteria. Statistical indi-

ces of fit included the x2 likelihood ratio test, the \
2
/dfralio, and

the goodness-of-fit index (GFI) and root-mean-square residual

(RMR) provided by LISREL; practical indices included the

Bentler and Bonett (1980) normed index (BBI) and the Tucker

and Lewis (1973) nonnormed index (TLI).7 Selection of these

indices was based on their widespread use and their usefulness

in comparing samples of unequal size (see Marsh et al., 1988).

Such popularity notwithstanding, we urge readers to be circum-

spect in their interpretation of the BBI and TLI because both

indices derive from comparison with a null model (see Sobel &

Bohrnstedt, 1985). Furthermore, only the TLI has been shown

to be relatively independent of sample size (Marsh et al., 1988).

To identify sources of misfit within a specified model, a more

detailed evaluation of fit was obtained by inspecting the nor-

malized residuals and modification indices (Mis) provided by

LISREL.8 Additionally, we conducted a sensitivity analysis in or-

der to investigate, under alternative specifications, changes in

the estimates of important parameters. Finally, we relied

heavily on our knowledge of substantive and theoretical re-

search in SC in making final judgments of the adequacy of a

particular model in representing the data.

Model Fit

As is shown in Table 2, the fit of our hypothesized model was

poor from a statistical perspective (low track, xin = 160.54; high

track, xis = 401.09) and only marginally acceptable from a

practical perspective (low track BBI = .89, TLI = .87; high

track: BBI = .92, TLI = .89); this model was therefore rejected.

7 The GFI indicates the relative amount of variances and covariances

jointly explained by the model; it ranges from zero to 1.00, with a value

close to 1.00 indicating a good fit The RMR indicates the average dis-

crepancy between elements in the observed and predicted covariance

matrices; it ranges from zero to 1.00, with a value less than .05 being of

little practical importance (Sorbom & Joreskog, 1982). Interpretations

based on the BBI and TLI indicate the percentage of covariance ex-

plained by the hypothesized model; a value less than .90 usually means

that the model can be improved substantially (Bentler &. Bonett, 1980).

* An MI may be computed for each constrained parameter and indi-

cates the expected decrease in x2 if the parameter were to be relaxed;

the decrease, however, may actually be higher.
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Table 2

Steps in Fitting Baseline Model

Competing models Ax2 Adf BBI TLI

Low track

0.
1.
2.
3.
4.
5.
6.

Null model
Basic four-factor model with 0,0, = 0

0.0,7 free
010,7

010.7

0!a7

085 free

085, 0H.S free
08S, 0i, .5 free, X7i free
085, 011,5, 0» free, X7I free

1429.60
160.54
122.24
97.95
71.38
54.80
49.10

55
38
37
36
35
34
33

— —
— —

38.30" 1
24.29" 1
26.57" 1
16.58" 1
5.70* 1

25.99
4.22
3.30
2.72
2.04
1.61
1.49

—.89
.91
.93
.95
.96
.97

—.87
.91
.93
.96
.98
.98

High track

0.
1.
2.
3.
4.
5.
6.

Null model
Basic four-factor model with 0,0; = 0

»85

085

085

#85

085

free
,0,,,5 free

,0i 1,5, 0,0,7 free
,0i 1,5, 0,0,7 free,

, 011,5, 010,7, 0|l,8

A^free
free, \ti free

4784.85
401.09
277.67
192.50
153.91
126.86
105.60

55
38
37
36
35
34
33

— —
123.42" 1
85.17** 1
38.59" 1
27.05** 1
21.26" 1

87.00
10.56
7.50
5.35
4.40
3.73
3.20

—.92
.94
.96
.97
.97
.98

—
.89
.92
.95
.96
.97
.97

Note. BBI = Bentler and Bonett (1980) normed index; TU = Tucker and Lewis (1973) nonnormed index. Dashes indicate not applicable.
*p<.05. "/x.OOl.

Because it was important to establish a well-fitting baseline

model for each track separately before testing for factorial in-

variance, we proceeded in an exploratory fashion to specify a

series of alternative models.

Following Sorbom and Joreskog's (1982) example, we fo-

cused on the Mis for each specified model and relaxed, one at a

time, only those parameters for which it made sense substan-

tively to do so.' For example, previous research with psycholog-

ical constructs in general (see e.g., Huba, Wingard, & Bentler,

1981; Joreskog, 1982; Newcomb, Huba, & Bentler, 1986; Sor-

bom & Joreskog, 1982; Tanaka & Huba, 1984), and SC

constructs in particular (see e.g., Byrne & Schneider, 1988;

Byrne & Shavelson, 1986; Byrne & Shavelson, 1987), has dem-

onstrated that in order to obtain a well-fitting model, it is often

necessary to allow for correlated errors; such parameter speci-

fications are justified because, typically, they represent nonran-

dom measurement error due to method effects such as item for-

mat associated with subscales of the same measuring instru-

ment. Thus, in fitting our hypothesized four-factor model, we

expected, and encountered, similar findings. The highest Mis

for each track represented an error covariance between the

Mathematics/English Perceptions (flioj) subscales of the API

(low track, MI = 32.89; high track, MI = 35.49) and between

the English/academic SC (085; low track, MI = 21.29; high

track, MI = 107.71) and mathematics/academic SC (0n,5; low

track, MI = 23.83; high track, MI = 74.70) subscales of the

SCA. As is shown in Table 2, each error covariance, when re-

laxed, resulted in a statistically significant difference in x2 for

each track. Furthermore, we found a substantial drop in x2

when the SDQ Verbal SC (SDQESC; X7,) subscale for the low

track (A%? - 16.58; MI = 9.11) and the API English Perceptions

subscale (APIESC; \6,) for the high track (Ax? = 27.05; MI =

23.95) were free to load on general SC. These parameters repre-

sented secondary loadings, indicating that the two measures of

English SC were also tapping perceptions of general SC, a fine"

ing that is consistent with previous work in this area.

We considered Model 6 (in Table 2) to be the most plausible

baseline model for each track. Although the formal statistical

tests of model fit were less than optimal (we address this issue

later) for both the low track (xl3 = 49.10; GFI = .94; RMR =

.03) and the high track (xis = 105.50; GFI = .89; RMR = .03),

the subjective criteria indicated a theoretically and substan-

tively reasonable representation of the data for both tracks (low

track: BBI = .97, TLI = .98; high track: BBI = .98, TLI = .97).

This judgment was supported by five additional considerations.

First, the data (see the Appendix) approximated a multivariate

normal distribution (see Muthen & Kaplan, 1985). Second, all

primary factor loading, error variance, and variance-covari-

ance parameters, and their standard errors, were reasonable and

statistically significant (see Joreskog & Sorbom, 1985). Third,

the secondary factor loading of APIESC and SDQESC on general

SC was substantial for both the low track (A7, = -.33, SE = .09)

and the high track (A^ = .17, SE = .03), respectively. Fourth,

the assessment instruments, as indicated by the coefficient of

determination, performed exceptionally well in measuring the

latent SC variables for each track (low track = .998; high

track = .996). Finally, the correlated error estimates (a) did not

significantly alter the measurement parameter estimates (see

Bagozzi, 1983), (b) did not significantly alter the structural pa-

rameter estimates (see Fornell, 1983), (c) were significantly

different from zero (see Joreskog, 1982),'° (d) were considered

reasonable because they represented nonrandom error intro-

duced by a particular measurement method (see Gerbing & An-

derson, 1984; Sorbom, 1982), and given the size of their load-

ings, (e) would have an important biasing effect on the other

9 Although, technically, an MI greater than 3.84 is statistically sig-

nificant (a = .05), we relaxed only parameters that were greater than
5.00 (see Joreskog & Sorbom, 1985).

10 The hypothesis that »K, 0,,,,, 010.7, and 9,u for the high track and

*s5, 0ii,s, 0io,7, and fa for the low track were equal to zero yielded

AX4 = 274.08 and AX* = 97.61 for high and low tracks, respectively.
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parameters of interest if constrained to zero (Joreskog, 1983;

see also Alwin & Jackson, 1980).

Given the psychological nature of our sample data, we re-

mained cognizant of two important factors in our determina-

tion of baseline models: (a) In the social sciences, hypothesized

models must be considered only as approximations to reality

rather than as exact statements of truth (Anderson & Gerbing,

1988; Cudeck & Browne, 1983; Joreskog, 1982); and (b) the

sensitivity of x2 to sample size is substantially more pronounced

for hypothesized target models than for true target models

(Marsh et al., 1988). Thus, we directed our efforts toward find-

ing a substantively reasonable approximation to the data and

relied more heavily on the practical significance of our findings,

and on our own knowledge of the empirical and theoretical

work in the area of SC, than on more formal statistical criteria.

Nonetheless, we do not want to leave readers with the impres-

sion that statistical criteria are unimportant. Indeed, they pro-

vide a vital clue to sources of model misfit. Thus, we now turn

to this issue but limit our discussion to the problematic fit of

the high-track baseline model only." An examination of the

Mis for this model revealed 10 to be greater than 5.00 (highest

MI = 15.64); only 2, if relaxed, represented substantively mean-

ingful parameters (041, MI = 8.93; 91(u, MI - 8.23). In an at-

tempt to explain the misfit in these data, we continued fitting

the model beyond our selected baseline model. Several addi-

tional modifications yielded a statistically better fitting model

(xL = 47.96; BBI = .99; TLI = .99) that included three second-

ary loadings and four correlated error/uniquenesses among

subscales of the same instrument.

Such post hoc model fitting has been severely criticized in the

literature (see, e.g., Browne, 1982; Cliff, 1983; Fornell, 1983;

MacCallum, 1986). However, we argue, as have others (e.g.,

Hubaetal., 1981; Joreskog, 1982;Tanaka&Huba, 1984), that

as long as the researcher is fully cognizant of the exploratory

nature of his or her analyses, the process can be substantively

meaningful. We prefer to think of the post hoc process as a sen-

sitivity analysis whereby practical, as well as statistical, signifi-

cances are taken into account. For example, if the estimates of

major parameters undergo no appreciable change when minor

parameters are added to the model, this is an indication that

the initially hypothesized model is empirically robust; the more

fitted model therefore represents a minor improvement to an

already adequate model, and the additional parameters should

be deleted from the model. If, on the other hand, the major pa-

rameters undergo substantial alteration, the exclusion of the

post hoc parameters may lead to biased estimates (Alwin &

Jackson, 1980; Joreskog, 1983); the minor parameters should

therefore be retained in the model.

This suggestion, however, is intended only to serve as a gen-

eral guide to post hoc model fitting. Clearly, decisions regarding

the inclusion or exclusion of parameters must involve the

weighing of many additional factors. For example, although the

error covariances included in our baseline models affected nei-

ther the measurement nor the structural parameters, their abso-

lute values were substantially significant. For this reason, we

considered it important to include these parameters in the base-

line model for each track.

One method of estimating the practical significance of post

hoc parameters is to correlate major parameters (the Xs and 4>s)

in the baseline model with those in the best-fitting post hoc

model. Coefficients close to 1.00 support the stability of the ini-

tial model and thus the triviality of the minor parameters in the

post hoc model. In contrast, coefficients that are not close to

1.00 (say, <.90) are an indication that the major parameters

were adversely affected and thus support the inclusion of the

post hoc parameters in the final baseline model.

We subsequently rejected the statistically better fitting model

for the high track in favor of the more parsimonious model de-

scribed in Table 2 (Model 6), on the basis of several considera-

tions. First, the additional secondary factor loadings, although

statistically significant, were relatively minor (mean X = .06).

Second, the additional correlated error/uniquenesses, although

statistically significant, were relatively minor (mean 0 = .04).

Finally, the estimated factor loadings and factor variance-co-

variances in the baseline model correlated .995 and .992, re-

spectively, with those in the final model, thereby substantiating

the stability of the baseline model estimates for the high track.

Thus, although the fit for the high track was not statistically

optimal, we agree with Cudeck and Browne (1983) that it is

sometimes necessary "to sacrifice a little goodness of fit in order

to gain interpretabih'ty. Clearly, a decision of this nature in-

volves human judgement" (p. 165).

We caution the reader again, however, that this final model

was derived from a series of exploratory analyses. Because of

capitalization on chance factors, therefore, there is the risk of

inflated fit values resulting in possible Type I or Type II errors;

caution should be exercised in making substantive interpre-

tations at this point.

Testing Invariance of Factor Structures

The simultaneous estimation of parameters for both tracks

was based on the covariance, rather than on the correlation, ma-

trices (see Joreskog & Sorbom, 1985).12 And, as was noted ear-

lier, the secondary loading in the A matrix, and the correlated

errors in the 6 matrix as specified in the baseline model for

each group, remained unconstrained throughout the invari-

ance-testing procedures.

Measurement parameters. Because the initial hypothesis of

equivalent covariance matrices was rejected, we proceeded,

first, to test for the equivalence of SC measurements. These re-

sults are presented in Table 3.

The simultaneous four-factor solution for each group yielded

a substantively reasonable fit to the data (BBI = .98; TLI = .99).

Although these results suggest that for both tracks the data were

fairly weU described by general SC, academic SC, English SC,

and mathematics SC, they do not necessarily imply that the ac-

tual factor loadings are the same across track. Thus, the hypoth-

esis of an invariant pattern of factor loadings was tested by con-

straining all lambda parameters (except X71 and X61)
13 to be

" The seemingly better fit for the low track can likely be attributed

to the smaller sample size.
12 Because the model is scale-free, use of the correlation matrix is

quite acceptable for single-group analyses; with multiple-group analy-

ses, however, the covariance matrix must be used. The reader is advised

that if start values were included in the initial input, they will likely

need to be increased in order to make them compatible with covariance

rather than correlation values.
13 Because it was already known that the loadings of X7I and Xj,

differed across track, the entire lambda matrix was not held invariant.
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Table 3

Simultaneous Tests of Invariance for Self-Concept Measurements

Competing models df Ax2 tulf

,.
2.

3.
4.
5.
6.
7.
8.
9.

10.

Four SC factors invariant
Model 1 with major loadings on each SC factor invariant1

Model 1 with major loadings on CSC invariant
Model 1 with major loadings on GSC and ASC invariant

Model 1 with major loadings on GSC, ASC, and ESC invariant
Model 1 with major loadings on GSC, ASC, and MSC invariant

Model 4 with APIESC invariant
Model 4 with SCAESC invariant

Model 4 with APIMSC invariant

Model 4 with SCAMSC invariant

154.60

180.42

154.76

162.01

171.61

171.19
163.30
166.24

169.50
162.06

66
73
68
69
71
71
70
70
70
70

_

25.82***

0.16
7.41

17.01**
16.59**

1.29

4.23*

7.49**
0.05

_

7
2
3
5
5
1
1
1
1

Note. SC - self-concept; GSC = general SC; ASC = academic SC; ESC = English SC; MSC = mathematics SC; APIESC = API English Perceptions

subscale; SCAESC = SCA R>rm B (SC of English ability); APIMSC = API Mathematics Perceptions subscale; SCAMSC = Form C (SC of mathematics
ability). Dashes indicate not applicable.

* All lambda parameters invariant except A?] and A<u.
*p<.05. **p<.01. ***p<.001.

equal and then comparing this model (Model 2) with Model 1,

in which the number of factors and the pattern of loadings were

held invariant across track but not constrained to be equal (see

Table 3). The difference in x2 was significant (Ax? = 25.82, p <

.001); therefore, the hypothesis of an invariant pattern of factor

loadings was untenable.

Because we were interested in pinpointing differences in the

measurement parameters between low and high tracks, we pro-

ceeded next to test, independently, the invariance of each set of

lambda parameters for each SC facet. For example, in examin-

ing the measurement of general SC, we held X2t and X3l invari-

ant across track.14 Given the tenability of this hypothesized

model, we next tested the equality of measurements for aca-

demic SC by holding X2,, X31, and X52 invariant Likewise, we

tested the invariance of measurements for both English SC and

mathematics SC. In these last two cases, the hypothesis of in-

variance was rejected. To determine if any of the specific mea-

surements of English and mathematics SC were invariant, we

subsequently tested the equality of each of these lambdas indi-

vidually, while concomitantly holding X21, X31, and X52 invari-

ant. The results demonstrated that the measurements of En-

glish SC by the SCA (X83) and of mathematics SC by the API

(Xio,<) were inconsistent across track.15

Admittedly, the sequential testing of models in the explora-

tion of partial measurement invariance is problematic. Indeed,

given the nonindependence of the tests, it is possible that an

alternative series of tests might lead to quite different results.

Although we believe that our sequential model-fitting proce-

dures were substantively reasonable, verification must come

from cross-validated studies.

Structural parameters. In testing for the equality of SC struc-

ture across tracks, we first constrained the entire * matrix to

be invariant; this hypothesis was found untenable (Axfo =

47.91, p< .001). We therefore proceeded to test, independently,

the equivalence of each parameter in the $ matrix; at all times,

only those measures known to be consistent in their measure-

ments across track were held invariant (i.e., X21, X3,, X52, X73,

XM 4). One variance (<t>M) parameter and two covariance (fat,

(tia) parameters were found to be noninvariant."

Testing for Differences in Factor Mean Structures

To test for the invariance of mean structures, the use of LIS-

REL required several transformations to our original input (see

Table 1). These transformed matrices are presented in Table 4

with the parameter specifications illustrated for each track.

First, the model was restructured into an all-Kspecification.

As such, the factor loading (A*), factor variance-covariance

(*), and error variance-covariance (Q,) matrices became the

AX) * and 6, matrices, respectively; the £s (the latent factors)

were treated as 175 in the LISREL sense. Second, the program was

"tricked" into estimating the latent means by the creation of a

dummy variable (i.e., an extra variable, DUMMY was added to

the variable list, making a total of 12 input variables, not 11).

The dummy variable was given a fixed-A' specification equal to

1.00 (i.e., its value was constrained equal to a value of 1.00).

Third, to accommodate the dummy variable, a row of zeros

(one for each variable) was added to the last row of the input

matrix (which in our study was a correlation matrix), and the

value of 1.00 was added to the series of standard deviations (i.e.,

the standard deviation value representing the dummy variable).

Fourth, since the analysis of structured means must be based on

the moment, rather than on the covariance matrix, the observed

mean values were added to the data input; a value of 1.00 was

added for the dummy variable because its value was fixed. Fifth,

the A and * matrices were modified to accommodate the

dummy variable as follows: (a) an extra column of free Xs was

14 The parameter X,, operated as a reference indicator and was there-

fore fixed to 1.0; likewise, with the first lambda parameter in each set

of factor measures.
15 We also tested for invariance using the more complex model for

the high track. With three minor exceptions, the results replicated our

findings for the more parsimonious model. One factor covariance pa-

rameter (0j,; general/English SC) became marginally nonsignificant at

the .05 level. Conversely, one factor loading parameter (X52; SCAASC)

and one factor variance parameter (^, L ; general SC) became marginally

significant at the .05 level.
16 Owing to limitations of space, these results are not reported here

but are available from the first author upon request.
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Table 4

Pattern O/LISREL Parameters for Testing the Invariance of Mean Structures

Low track High track

SDQOSC

APIGSC

SESGSC

SDQASC

SCAASC

SDQESC

AP1ESC

SCAESC

SDQMSC

AP1MSC

SCAMSC

GSC

ASC

ESC

MSC

. DUMMY  .

SDQOSC

APIGSC

SESGSC

SDQASC

SCAASC

SDQESC

AP1ESC

SCAESC

SDQMSC

APIMSC

SCAMSC

GSC

ASC

ESC

MSC

DUMMY

Ar

*

1  0

X2,  0

X3,  0

0  1

0  X52

0  0

ATI  0
0  0

0  0

0  0

J)  0

f,l
f2l  fj2

fa.  fa

f4!  fc

0  0

r«n
0  t-a

0  0  «S5

0  0  0  *«

0  0  0  0  e!5

>,  0 0 0 0 0  t
№

0 0 0 0 0  0
0  0  0  0  t

e
,  0

0 0 0 0 0  <M
0 0 0 0 0  0
0 0  0  0  <I1S  0

c
c

r  t
c
1

0  0  X,5  1

0  0  X2S

0  0  X3S

0  0  X«

0  0  X55

i  0  X65

X,3  0  X7S

"•S3  Q  "85

0  1  X,5

0  X,04  X,os

0  X,u  X,15J

f»
f43  f«

0 0 0

TT
0  cn

0  0  «„

«I07  0  0  <10|0

0 0 0 0  <,,,,

1 0 0 0  Xi,

X2,  0  0  0  X25

X3,  0  0  0  X33

0 1 0 0  X,;

0  X5J  0  0  X5J

Xji  0  1  0  X«

0  0  X,3  0  X7J

0  0  X83  0  X8!

0 0 0 1  X,;

0 0 0  X,04  X,05

_0  0  0  Xiu  X, 1 5 _

fll
fn  fa

fjl  f»  f»

j*4l  ^42  ^43  T<U

0  0  0  0  0.

",,,

0  in

0  0 €„

0 0 0 fa

0 0 0 0 (55

0 0 0 0 0 <„

0 0 0 0 0 0 e,7

0 0 0 0 «8s 0 0 e,8

0 0 0 0 0 0 0 0 c»

0 0 0 0 0 0 e,07 0 0 t.oio

0 0 0 0 <i,9 0 0 t,,8 0 0 <„,,

1 f
T
"

721

731

74,

la.

Note. Ar = factor loading matrix; * = factor variance-coraiiance matrix; (, = error variance-covariance matrix; r = mean estimate vector, Y —
observed measures of self-concept (SC); i), — ij4 = SC factors (i;, = genera] SC; ijz = academic SC; % = English SC; 54 = mathematics SQ; p = mean

intercepts; GSC = general SC; ASC = academic SC; ESC = English SC; MSC = mathematics SC; DUMMY - extra variable; SDQGSC = Self

Description Questionnaire (SDQ) General Self subscale; APIGSC =• Affective Perception Inventory (API)—Self-Concept subscale; SESGSC = Self-
Esteem Scale; SDQASC = SDQ Academic SC subscale; SCAASC = Self-Concept of Ability Scale (SCA); SDQESC = SDQ English SC subscale; APIESC =

API English Perceptions subscale; SCAESC = SCA Form B (SC of English ability); SDQMSC = SDQ Mathematics SC subscale; APJMSC = Mathematics

Perceptions subscale; SCAMSC = SCA Form C (SC of mathematics ability).

added to the A matrix, which represented the measurement in-

tercepts; and (b) an extra row of zeros was added to the * ma-

trix, and fjs was fixed to zero.17 Finally, the latent mean values

were estimated in the gamma (F) matrix. Whereas ju to 741

were fixed to zero for the low track, these parameters were freely

estimated for the hi^i track;-v51 was fixed to 1.0 for both tracks.

Because the origins of the measurements and the means of

the latent variables cannot be identified simultaneously, abso-

lute mean estimates are not possible. However, when the pa-

rameter specifications, as were described earlier, are imposed,

latent mean differences between groups can be estimated; one

group is used as the reference group, and as such, its latent mean

parameters are fixed to 0.0. In this case, the low track served as

the reference group; mean parameters for the high track were

freely estimated. Comparison of the groups, then, was based on

the difference from zero. Statistical significance was based on T

values (mean estimates divided by their standard error esti-

mates).

We emphasize, again, that only the factor loading parameters

known to be consistent in their SC measurements across track

were held invariant. In particular, the reader should note that

because X71 and X^ were freely estimated for the low track and

the high track, respectively, the intercept terms for these param-

eters (X75, ASS) were also free to vary for each track.

The parameter estimates and standard errors are presented

in Table 5. Examination of the gamma estimates (711 - 741)

revealed statistically significant mean track differences in aca-

demic, English, and mathematics SCs, with positive values indi-

cating higher scores for the high track. The largest differences

between tracks were in academic SC (72]), followed by mathe-

matics SC (741) and English SC (731), respectively. Mean track

11 The LISREL program will print the message, "PSI is not positive

definite." This can be ignored because it is a function of f» being fixed

to 0.0.
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Table 5

Maximum Likelihood Estimates and Standard Errors for Self-Concept Facets

Parameter

*i(X,!)
»2(X2s)
»3<X35)

MX«)
*5(X«)
MW

»7(X,5)

»8(X8S)
»9<X93)

»K>(X|0,s)

' l l f X l l . s )

Xj,
X3,
XJ2

X,3

X83

XlO.4

X,,.4

x«,
X71

«<„
«22

«33

«44

»5S

«66

» 7 7

» M

»»

0 10, 10

0 11,11

««s

0 10,7

0 11,5

«f«

«<H,8

T,,(GSC>
T2i(ASC)
T3, (ESC)
Y4, (MSC)

fn
&Z

f33

&4

Low track

Estimate

55.07
58.03

13.71

23.98

-6.98

40.03
42.06
6.38

77.80
8.88

42.53
28.16

14.43
41.86

22.79
10.92
4.67

17.60
3.70

-8.37

0.0
0.0
0.0
0.0
0.15

0.07

0.05

0.15

SE

0.61

0.65

1.31
1.21

1.66

6.81
4.29

0.94

8.72
1.34

4.76
6.30

1.48
5.72

3.65
1.25

0.96
3.17

0.85

3.63

0.12

0.01

0.01
0.02

Across-track
equivalencies

Estimate

75.71
76.69
31.34

47.55
25.20

25.61

41.72
42.17

23.05
16.00
10.69

13.72
42.71

12.83

SE

0.81
0.47

0.29
0.67

0.28

0.31
0.81

0.58
0.35

0.66
0.3S

0.56
1.94

0.31

High track

Estimate

52.35
54,36

18.53
20.26

3.56

44.72
40.33

4.25
52.95

8.05

37.12
17.67

14.34

25.91

16.56

14.30

6.12

7.65
5.69

3.20

0.01

0.36
0.17

0.25

0.19

0.09

0.06

0.29

SE

0.69

0.88

0.94

0.43

0.69

4.86
2.69

0.57

4.16

0.78
2.73

3.38

1.05

3.22

1.65

1.00

0.66
1.41

0.65

0.72

0.03

0.03

0.02
0.03

0.01

0.01

0.01
0.02

Note. x?76) - 201.82. OSC =
mathematics SC.

general self-concept (SC); ASC = academic SC: ESC - English SC; MSC =

differences in general SC (•/„) were negligible and not statisti-

cally significant.

The results demonstrate that, overall, the test for invariant

SCs across track based on mean and covariance structures was

statistically more powerful than tests based on covariance struc-

tures alone. Whereas tests of mvariance based on the latter

found academic track differences in mathematics SC (044) only,

this was not so in the analysis that also included mean struc-

tures. Significant differences were also found in academic and

English SCs.

Conclusion

Using data based on SC responses for low- and high-track

high school students, we demonstrated procedures for (a) estab-

lishing a subslantively well-fitting baseline model for each

group; (b) conducting sensitivity analyses to assess the stability

of a baseline model; (c) determining partial measurement in-

variance by testing parameters, independently, given findings of

noninvariance at the matrix level; and (d) testing for factorial

invariance and differences in mean structures, given partially

invariant measuring instruments. Throughout the article, we

emphasized the exploratory nature of our analyses and noted

the limitations of interpretations based on the results.

Post hoc analyses with confirmatory covariance structure

models are, indeed, problematic; with multiple model respeci-

fications, probability values become meaningless. At this point

in time, however, there is simply no direct way to adjust for

the probability of either Type I or Type II errors arising from
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capitalization on chance factors (see also Cliff, 1983). This rep-

resents a serious limitation in the analysis of covariance and

mean structures because, realistically, most psychological re-

search is likely to require the specification of alternative models

in order to attain one that is well fitting (see, e.g., Anderson &

Gerbing, 1988; MacCallum, 1986). Thus, practitioners of the

LISREL methodology must await the research efforts of statisti-

cians in resolving this important psychometric obstacle.

In the meantime, one approach to the problem is to employ

a cross-validation strategy using an independent sample (An-

derson & Gerbing, 1988; Bentler, 1980; Browne, 1982; Cliff,

1983; Cudeck & Browne, 1983; Long, 1983; MacCallum,

1986). In lieu of collecting new data, one can randomly subdi-

vide a large sample into two. The researcher uses exploratory

procedures with the first subsample to determine a well-fitting

model; hypotheses related to this model are then tested, statisti-

cally, using confirmatory procedures on data from the second

subsample. In this way, the model is not influenced by the data,

and thus the hypotheses can be tested legitimately within a con-

firmatory framework (Cliff, 1983).

Cross-validation, however, is not a panacea; it requires judi-

cial implementation. The procedure is most effective with mini-

mal model modifications; the relaxation of many parameters

is likely to yield an unsuccessful cross-validation. The major

disadvantage of cross-validation, of course, is reduced sample

size. However, as others have noted (Cliff, 1983; Cudeck &

Browne, 1983), the benefits derived in estimate stability and in-

terpretability far outweigh this limitation. Alternatively, Cu-

deck and Browne (1983) have outlined cross-validation proce-

dures for use with small samples, in which case sample splitting

may be statistically inappropriate.

In this article, we have encouraged researchers to gather max-

imal information regarding individual model parameters, and

we have provided some technical details on how to do so. How-

ever, as with other statistical procedures, this information

comes at a price: the risk of capitalization on chance factors.

Thus, we emphasize the importance of exercising sound judg-

ment in the implementation of these procedures; one should

not relax constrained parameters unless it makes sense substan-

tively to do so. Only a solid theoretical and substantive knowl-

edge of one's subject area can guide this investigative process.

Cross-validation procedures can then be used to test for the va-

lidity of these results.
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Appendix

Summary of Self-Concept Measurements and Descriptive Summary of Data

Self-concept factors are genera] self-concept, academic self-concept,

English self-concept, and mathematics self-concept. Measures of self-

concept factors are as follows: general self-concept—SDQ General Self

subscale, API Self-Concept subscale, SES; academic self-concept*'—

SDQ Academic Self-Concept subscale, SCA Form A; English self-con-

cept—SDQ English Self-Concept subscale, API English Perceptions

subscale, SCA Form B; mathematics self-concept—SDQ Mathematics

Self-Concept subscale, API Mathematics Perceptions subscale, SCA

FormC.

On the basis of listwise deletion of missing cases, the data were consid-

ered to approximate a normal distribution. Skewness ranged from

-1.19 to. 19 (M= -.27) for the low track and from -1.26 to. 10(A/ =

-.50) for the high track; kurtosis ranged from -.53 to 1.60 (M = .23)

for the low track and from -.92 to 1.83 (M = .27) for the high track.

*' Although the API Student Self subscale was originally intended as

one measure of academic SC, a factor analysis in an earlier study (Byrne

& Shavelson, 1986) showed this subscale to be problematic; only 10 of

the 25 items loaded greater than .25 on the academic SC factor. We

therefore deleted it as a measure of academic SC in this study.
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