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ABSTRACT

. s s . . P
Let Yt satisfy the stochastic difference equation Yt Ij=1qut—j te .
for t =1, 2, ..., where e, are independent and identically distributed random

variables and the initial conditjons (Y_ ey YO) are fixed constants. It

p+1

is assumed that the true, but unknown, roots m1, mz, Caey mp of

. mp - E‘;ﬂajmp-'] = 0 satisfy the hypothesis H m, = ... =m, = 1 and

d’ M d
|mj| <1 for j=d+l,..., p . We present a reparameterization of the model

for Yt that is convenient for testing the hypothesis H We consider the

g
asymptotic properties of (i} a likelihood ratio type "F-statistic"” for testing

the hypothesis H (ii) a least squares regression t-statistic, and (iii) a

dl’

Tikelihood ratio type t-statistic for testing the hypothesis H, against the

d

alternative H Using these asymptotic results, we obtain two sequential

a-1"

testing procedures that are asymptotically consistent. Extensions to

autoregressive moving average processes are also presented.
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1. Introduction: Autoregressive inteqrated moving average (ARIMA) models

are used to represent economic, meteorological and physical processes. The
hypothesis regarding the number of unit roots in the model has important
consequences for the interpretation of economic data. Methods for detecting
the presence of unit roots and their‘app1ications have appeared in varidus
journals. For example, Altonji and Ashenfelter (1980) use the unit root tests
to investigate an equilibrium hypothesis for wage movements:; Meese and
Singleton (1983) apply the unit root tests to exchange rates and discuss the
importance of unit root testing in the theory of linearized expectations;
Nelson and Plosser (1982) discuss the relationship of unit roots to the effect
that monetary disturbances have on macroeconomic series; and Schwert (1987)
analyses several macroecenomic variables and compares different methods for
detecting the presence of a single unit root. Schwert (1987) also considers
ARIMA meodels with two unit roots for the variables: Consumer Price Index,
Gross National product, Monetary Base and Total Civilian Noninstitutional
Population. (A1l of the variables are transformed using natural logarithm.)
Models with more than two unit roots, though very rare in economics, have some
applicﬁtions in physical sciences. Box and Pallesen (1978) analysed the x-
coordinate of a missile trajectory using an ARIMA model (ARIMA (0,3,5)) with
three unit roots.

In this paper we present methods for testing the hypothesi; that the
process has a specified number of unit roots. We begin the discussion with

pure autoregressive processes.
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Let the time series {Yt} satisfy

- ¢P -
Yt = Ej=1ant-j + et s £ =1,2,.0.., {(1.1)

where {et}ut’_1 is a sequence of 1iid random variables with mean zero and

variance oz. It is assumed that E[Iet|4+6] < M for some § > 0 . It is further

assumed that the initial conditions (Y - Yo) are known constants. The

-p+1’ "

time series is said to be an autoregressive process of order p. Let
m - z§_1qjmp‘3= 0 (1.2)

be the characteristic equation of the process. The roots of (1.2), denoted by

m .y mp are called the characteristic roots of the process. Assume that

1!
> > 2 ... 2 .

Let the observations Y1, Y . Yn be available. It is assumed that

2"

Q= (a,, « . ap)' and 02 are unknown. The least squares estimator & of «

1 2’

is obtained by regressing Yt on Yt- Y, . Lai and Wei (1983} established

10 Ve
the strong consisteﬁcy of ; under a very general set of conditions, and Chan and
Wei (1986) obtained the asymptotic distribution of ;_ If |mj|<1, i=1,....p,
then Yt converges to a weakly stationary process as ¢t - o, In the stationary
case, the asymptotic properties of & and of the re1atea likelihood ratio type
"F-statistic" are well known. See Mann and Wald (1943), Anderson (1971) and
Hannan and Heyde (1972).

Dickey and Fuller (1979) and Fuller (1979} have considered testing for a
single unit root in a p-th order autoregressive process (i.e., m, = 1 and |mj|
<1, j=2,...,p). Phillips (1987) and Phillips and Perron (1986} present

alternative methods for testing a single unit root in a general time series
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. setting. Their approach is nonparametric with respect to nuisance parameters

and hence allows for a wide class of ARIMA models with a single unit root.

Hasza and Fuller (1979) considered a p-th order autoregressive process with

m, = m, = 1 and [mjl <1 for j=23,4, ..., p. They characterized the

asymptotic distribution of the likelihood ratio type "F-statistic" for testing

m,=m, = 1. Yajima (1985) proposed a method of estimating the number of unit

roots using ;ﬁ(k,d), k large and for reasonable choices of d, where ;:

(k,d} is the residual mean square error obtained by fitting a kth order

autoregression to the dth difference of the data. For a second order process,

Sen (1985) studied the asymptotic distribution of the regressign t-statistic

for testing H1: m m, =m, = 1. He

1 2* M 2
observed empirically that the probability of the Dickey and Fuller (1979)

= 1 and |m2|<1, under the assumption H

criterion rejecting the hypothesis H1, in favor of the hypothesis H m <1

. and lmzl < 1, is higher under H than under H1 . That is, it is more likely to

2

conclude incorrectly that the process is stationary when there are really two
unit roots present than when there is just one unit root present. Pantula
(1985) observed empirically that the probability of rejecting H1 increases with
the number of unit reoots present. It is not clear how the modified procedure

of Phillips (1987) behaves under the hypothesis H , d > 1.

dl

In this paper we (i) present a reparameterization of the model (1.1) that

d: m1=...=md

j =d+1,...,p, (ii) characterize the asymptotic distribution of the likelihood

is convenient for testing the hypothesis H = 1 and |mj| < 1,

ratio type "F-statistic,” the regression t-statistic and the likelihood ratio

type t-statistic under'the hypothesis Hd for d =0, 1, ..., p, and (iii) present

two asymptotically consistent sequential procedures to test H, versus H_

d d-1"
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. The procedures are such that, asymptotically, the chance of rejecting the
hypothesis Hd in favor of Hd—1 is smaller than the specified level (a) when the
process has d or more unit roots and is equal to one when the process has less
than d unit roots. The procedﬁres presented here successfully answer the
question "how many times should one difference the series to attain
stationarity?" A proof of the main results is presented in Appendix A.
Extensions of the procedures to autoregressive moving average processes is

included in Appendix B.

2. Notation and the Main Results: Consider the following reparameterization

of the model {1.1),

R ‘
Yot = LiaiBi¥ior,ea1 ¥ & (2.1)

where Yi = (1—B)1Yt = ith difference of Yt; and B is the back shift operator.

t
. Comparing (1.1) with (2.1) it is easy to show that the vector of parameters
a = (&« ,...,ap)' is linearly related to the parameters g = (31,...,Bp)' and the

retation is given by

‘a =Tpg+c {2.2)

where T is a pxp nonsingular upper triangular matrix with Tij = (-1)1-1(€:1)

for j2 i and ¢ = (c1, e cp)' with c; = (-1)1-1(ﬁ). We now show that the

hypothesis H,: m, = ... = m, = 1 can be tested using a test for By = ... =By = 0

d' ™ d
in the model (2.1).

Lemma 1: Let Yt satisfy the model (1.1). Then, my = ... =m, = 1 if and

only if By = +.. = sd =0,
Proof: In terms of the characteristic roots, the pth order autoregressive

model (1.1) can be written as
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o p _ i .
L [{1 mi) + mi(1 B)]Yt e, {2.3)
Also, from (2.1) we have
p P =1
{(1-B)" - ¥ B.(1-8B) BlY, =e_,
. i t t
1=1
which can also be written as
p p-1 i
[O-8)7(18) - B (18) By = Byyq) = ByIVy = & (2.4)
Now, comparing (2.3) with (2.4) we get
By = i, (1-m.)
B, =B, _, - Im. ... m, (1-m. ) (1-m. Y .
.and =2, ..., p-1
By = WM - (2.5)
where the summation is over all possible indices i _, = {i,,....i _;} and

{31""'Jp-k+1} = {1,...,p} - 1k—1' Note that if m1 = ... =mg = 1, then

B1 = ,,, = Bd = 0 and Bd+1 = -ng=d+1(1-mi). We prove the converse by
induction. Since 1 2 |m1| > ...2 ]mp| and B1 = -ﬂ§=1(1—m1)' we have that

31 = 0 implies m, = 1. Suppose 31 = ... = Bd = 0 implies that m, = ... =m,=
Now, suppose 31 s ... = Bd+1 = 0, Then, clearly m = ...=m,= 1,

Bd+1 = -ﬂﬁ=d+1(1-mi) = 0 and hence Myeq = 1. (1]

Note that the additional assumption |mj| <1 for j =d+1,...,p in the

hypothesis Hd imposes extra conditions on Bj . In particular,

-

i=d+1(1-mi) < 0.

By
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. Let B denote the ordinary least squares estimator of g obtained by

regressing Y Y That is

p,t %" Yo,t-17 T1,e-170 0 Tpor,t

g = (29 ' $ v

2.6
(p) (2.6)
where -
- ]
® = Mg, e ' Yp-1,t~1) ’
¢ = (¢1; 621 ) Qn)' )
and
Y = (Y Y ., P Y )

Define the regression "F-statistic" for testing B, =By = ... =B, = 0 by
s S20-1 2, -1 2 :

where C is the (ixi) submatrix consisting of the first i rows and i columns of

(1)
@ ¥ B = (B By oo, B and

"2 -1 n , 2
o, = (n-p) Et=1[Yp,t - B(p)l

Define alsc the regression t-statistic for testing the hypothesis Bi = 0 by
_It2 tid =172 7
t1'n(p} = [dn c‘p'n} B.l (2'8)
where cb ;1 is the (i,i)th element of (Q't)_1 . Following Lemma 1, we use the
"F-statistic” Fi n(p) to test the hypothesis Hi . We now present a lemma that

will be useful in obtaining the asymptotic distribution of Fi n(p) and ti (p).

n
For the statistics considered in this paper, without loss of generality, we

assume that Y_ = ... =Y_=0 and 02 = 1. We use the notation " Qa " to

p+1 0
indicate convergence in distribution and the notation " Pow to indicate

convergence in probability of a statistic as the sample size tends to infinity.
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Lemma 2: Define,

SO,O =0
So,¢ = ¢
(1-B)Si,t = si-\,t , for i =1, 2, ..., d,

where e, is a sequence of iid random variables with E[|et|4+6] < M < » for some

éd > 0. Then, as n tends to infinity,
1

=i h B _
" EeaSiLe So,ee T % T j Hioq(8) d Hylt)
0
and ]
~(i+j) 8 }
n £:=1 si,tsj,t - cij = Hi—1(t) Hj-1(t) dt
0
where Ho(t) is a standard Brownian motion and
t
Hi(t) = f Hi_1(s) ds
0 .

Proof: See Chan and Wei (1986) . []

Pantula {1985) obtained an alternate representation, involving quadratic
forms, for the limiting distributions of Lemma 2. (See also Yajima (1985).)
The representations are similar to those of the W variables presented in Hasza
and Fuller (1979) and are useful in obtaining the percentiles of the limiting
distribution.

We now present the joint limiting distributions of the."F;statistic" Fi n(p)

and the regression t-statistic t_i n(p), under the hypothesis Hd .



Theorem 1: Assume that Yt is defined by (1.1).

Fi(d) if i<d

Footp) -
' ® if i >d

B8 e s
t, (P t,(d) if i<d
and

n2¢ o) P4 8. if i>d

1,Nn 1

where f is a finite positive constant,

Page 9

Then, under the hypothesis H

(2.9)

(2.10)

(2.11)

Fold) = i7'[d F(d) - (d-i) F__.(d-1)],

-1 -1
F k) =k & E§ .

.- d-i+1,d-i+1 -1/2

tld) = 4y 541,06 %

- . -1
ﬂi,d = ith element-of Ed €d .

iio_ L . -1
o4 = {(i,i)th element of Ed .
€k = (€1. 62, . ik) '
Zk = ((oij)) kxk , k = 1,....,d,

as defined in Lemma 2.

{1

and §. and g, .
1 1)

Proof: See Appendix A.

Notice that the Timiting distribution of Fi n(p) is independent of the

order p.

{the true number of unit roots present).

form type representations to obtain the empirical percentiles of Fi(d)'

It depends only on i {the number of unit roots being tésted) and d

Pantula (1985) used the quadratic

Let

dl'
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. Fi(d,a) denote the 100(1-a)% percentile of the distribution of Fi(d)' Pantula
{1985) obtained Fi(d,a) for 1€ icd<5anda=10.5, 0.2, 0.1, 0.05, 0.025

and 0.0%, Extending the criterion suggested by Hasza and Fuller {(1979) we may

reject the hypothesis H_  of exactly d unit roots (in favor of the hypothesis

d
Hd—1 of exactly d-1 unit roots) if Fd n(p) > Fd(d,a) . Pantula (1985) observed

that the empirical percentiles Fi(d,a) increase in d. That is,
Fd(d,q) < Fd(d+1,a) < Fd(d+2,a) < ... . Therefore, the probability ef rejecting

Hd {in favor of H } increases with the number of unit roots (2 d) present.

d-1

For example, if we use the criterion of rejecting the hypothesis H1 that there

is exactly one unit root (in favor of H stationary process) whenever

0:
F1 n(p) > F1(1,a), then the higher the number of unit roots present, the more

1ikely we are to conclude that the process is stationary. Intuitively,
however, we hope that our criterion should strongly indicate nonstationharity
|
when more than one unit root is present.
Suppose we have a prior knowledge that there are at most s £ p unit roots
present. (If no such prior knowledge is available then take s = p.) In practice
s < 3. We now suggest a sequential criterion to test the hypothesis Hd for d <

s. The criterion is: "Reject the hypothesis Hd (in favor of Hd_1) if

F_i n(p) > Fi(i,a) for i = d, d+1,..., s ." Since under the hypothesis Hd'
Fi n(p) converges in probability to infinity for i > d we get

a . j=d

. . . - < .
R1mnquHj[ReJect1ng Hd] <a , j»d
1 . Jj<d

That .is, if we use our sequential procedure, asymptotically, the chance that we
reject the hypothesis that there are exactly d unit roots is (i) «, if there

. are exactly d unit roots, (ii) less than or equal to a, if there are more than
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. d unit roots and (iii) one, if there are less than d unit roots. Thus, for
example, if we use the sequential procedure, the chance of concluding that the
process is stationary is smaller than a when there is one or more unit roots
present. .In this sense, it is advantageous to use the F-statistics
sequentially rather than individually.

Let us now interpret the results from the hypothesis testing problem in the
context of estimating 0 < d0 < s, the unknown number of uﬁit roots that are
actually present. Suppose for a given & we use the estimator &q which takes
the value d if Fd,n(p) < Fd(d,a) and Fi,n(p) > Fi(i,a) for d < i £ s and takes
the value zero if Fi,n(p) > Fi(i.a) for 1 £ i £ s. Then our results imply
that, for d0 >0,

1-« , d=4d

2im P fd =d] = €a , d<d

0 , d>d

and for do = Q, PHO

asymptotically consistent. Pantula (1986) compared the power of the sequential

[da = 0] converges to one. In this sense, our procedure is

procedure with that of the traditional methods and concluded that the lass in
power is minimal even for samples of size 25.

Note that the asymptotic distribution of ti,n(p) also depends on the number
of unit roots that are actually present. A natural question is to see whether
the t-statistic ti,n(p) can be used in a sequential manner to test the relevant
hypotheses. Consider for examplie an AR{3) process. As mentioned earlier, Sen
(1985) observed that the Dickey and Fuller (1979) criterion based on t1,n(3)
rejects the hypothesis H1 of exactly one unit root in favor of the hypothesis H

0

of no unit roots more often under H2 and H3 than under H1. So we cannot hope

. to obtain a consistent procedure by first testing 51 = 0 (for a single unit
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. root), then testing 32 = 0 (for two unit roots) and then testing 33 = 0., Also
the sequential procedure that first tests 53 = 0 using t3 n(3) and then tests

32 = 0 using t n(3) will not be consistent. This is because it jis possible to

2

have 32 2 0 even though the process is stationary. For example, if m, =m

2
=my = -0.5, then the process is stationary with 32 = 0 and the t-statistic
t2 n(3) converges in distribution to N(0,1). Also, if m1 = m2 =m,y = -0.75,

then the process is stationary with Bz = 0.5(1.75)2 and the t-statistic t2 r|(3)
diverges to positive infinity,
Now consider the problem of testing the hypothesis Hd: 31 = 32 = ... = ﬁd =0

against the alternative Hd—1: 31 = 32 = = 0, ﬁd < 0. Note that under

= By

the null (Hd) and the alternative (Hd_1) hypotheses we have 31 = ... =0

= Bg-1
and the alternative hypothesis is one sided in nature (Bd < 0). This suggests

that a more powerful (likelihood ratio type) test for testing the hypothesis

Hd against the alternative Hd-1 is obtained by regressing Yp ¢ on

. . *
Yd-1,t—1' ceas Yp-1,t*1' (i.e., set B1 = ... = Bd—1 =0 1in (2.1)). Let td,n(p}
denote the regression t-statistic for testing the coefficient of Yd-1 £-1 is
2ero in the regression of Yp,t on Yd-1,t-1' cees Yp-1,t—1 Note that
*
t1'n(p) = t1,n(p)-

We now obtain the asymptotic distribution of the likelihood ratio type t-

*
statistic ti n(p) under the hypothesis Hd'
Theorem 2: Suppose the process Yt satisfies the conditions of Theorem 1.

Then, under the hypothesis H,,

d
[ T ., 1i=d
* BH * .
ti,n(p) - 4 t.(d) » i<d
L - , i>d
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where
v g 1) = €1°;:/2
D = gy gy [T ]2
and €1, 011flﬁi'd and cgi are as defined in Theorem 1.
Proof: See Appendix A. {1]

Note that-for any d, under the hypothesis Hd’ the asymptotic distribution
of the t-statistic t;,n‘P’ is the distribution of ; cbtained by Dickey and
Fuller {1979) for the single unit root case. Therefore, we do not have to
tabulate different percentiles for t;(d) as we have done for the F-statistic.
We now suggest a sequential procedure based on the t-statistic tz'n(p). For
a given a, the second procedure is: "Reject Hd in favor of Hd_1 if t:’n(p)
< ;a for i=d, d+1, ..., s, where ;d is the lower a percentile of the ;
distribution given in Table 8.5.2 of Fuller (1976)." Also, let Eq be an

estimator of d0 (the number of unit roots actually present) which takes the

* -~ * -
i > i =
value d if td,n(p) 2 Ta and ti,n(p) < Ta, i d+1, ..., s and takes the

* - .
value zero when ti n(p) < Tq for i 1, +ve+ S.

From Theorem 2 it follows that

r
| « ,  J=d
I
R1mnﬂm PHj {Rejecting Hd] = is a ' .J>d
| 1 . Jed
L
Also, for dO > 0,
r
:1~a ’ d=d0
Q1mnqm PHd [da = d] = E_ a . d<d0
0
| O . d>d0
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Ho[da = 0] converges to one.
*

The sequential procedure based on the t-statistic td
’

advantages over the sequential procedure based on the F-statistic Fd n(p). The

and for d0 =0, P

n(p) has several

sequential t*—procedure requires only one set of tables given in Fuller (1976).
Also, the t*-procedure makes use of the one sided nature of the alternatives
and hence is expected to be more powerful than the F-procedure. On the other
hand, the F-procedure is a two-tailed test and hence is expected to be robust
in the presence of mildly explosive roots. Of course, the t*-procedure can be
modified to a two-tailed procedure by considering tZ?n(p) and comparing it

with the percentiles of Tz

= F1(1). Using simulations, Dickey and Pantula
(1987) compared the t*-procedure and the F-procedure and recommend the use of
the t*-procedure. Dickey and Pantula (1987) also present a numerical example
(Real Estate Loans) of a third order autoregressive process with two unit

roots.

3. Concluding Remarks: We have given here a reparameterization of an

autoregressive model] that is convenient for testing the number of unit roots.
We have derived the asymptotic distributions of the regression t-statistic
ti,n(p) and the likelihood ratio type F-statistic, Fi,n(p)’ under various
hypotheses.

We have indicated why the t-statistic ti,n(p) may not be useful in testing
or estimating the number of unit roots present. We have obtained a sequential
procedure based oﬁ the F-statistic Fi,n(p) for testing the hypothesis Hd and
estimating do the actual number of unit roots present. We also obtained the

*

asymptotic distribution of the likelihood ratio type t-statistic td n(p) for

testing the hypothesis Hd against the alternative hypothesis Hd-1' We
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developed a sequential procedure based on the t*-statistics that is also
asymptotically consistent. The t*—procedure takes into account the one-sided
nature of the alternatives and hence is superior to the F-procedure.

We have presented the results for an autoregressive process with mean zero.
Our procedure can be extended to autoregressive processes where an intercept or
a time trend is included. The percentiles for the F-statistic when an
intercept is included in the regression are given in Pantula (1985). (See also
Phillips and Perron (1986).) Also, the assumption of e, being a sequence of

independent random variables can be weakened to e, being a sequence of

t
martingale differences as in Chan and Wei (1986) and Phillips (1987). In
Appendix B, following the approach of Said and Dickey (1984), the sequential

procedures are extended to autoregressive moving average processes.
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. | Appendix_ A

We prove Theorem 1 in three steps: (i) we consider a dth order process with
d unit roots and obtain the limiting representation Fi(d) of the "F-statistic”
Fi,n(d) for i=1,2,..., d; (ii) for a pth order process with exactly d unit roots
and remaining p-d roots inside the unit circle we will show that Fi,n(p) converges
in distribution to Fi(d) for 1 = 1,2,..., d, and (iii) diverges to infinity for
i >d . The results for the t-statistic ti,n(p) follow in the process. We
will use the following fact from regression theory repeatedly: The F (or t) -
statistic for testing a linear hypothesis involving the parameters of a linear
model is identical to the F (or t) - statistic of an equivalent hypothesis
under a (linearly) reparameterized model.

Consider a dth order autoregressive process with d unit roots given by
d
‘l. (1-8) Nt = e

where {et} is a sequence of iid random variables given in Lemma 2. Notice

¢ 7 (A.1)

sd,t where Sd,t

(2.1) we can write Nt as

that wt = is defined in Lemma 2. 1In the parameterization of

d
Wa, e = Bizt BiMioq, e * & (A.2)
where
.i
Wie = (1-B) " W, =Sy i ¢~
and
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‘ Note that we can rewrite (A.2) in terms of S1. t as
’

d ‘e ' (A.3)

So,t = Ei=1 4§ 55,1 * &

where Hi = Byoier *
Therefore, the hypothesis 51 = .. = Bi = 0 is the same as Hgaipq Zoco=Hy = 0.

Consider the regression of So,t on S1,t-1' 2,t-1" *°*’ Sd,t—1 .

regression F-statistic Fi n(d) for testing exactly i(< d) unit roots in a dth
’

S Then, the

order process is given by
F. (d) = [ o2(d)1”" [R ) - R_( )] (A.4)
i,n n piMqeer My At LARREZ B .

where Rn(y1,...,ﬂi))denotes the regression sums of squares for the regression of

So,t °" 51,1

regression of so,t on S1,t-1' cees Sd,t-1' Let td-i+1,n(d) denote the regression t-

‘ statistic for testing H; = 0. Note that, for k =1,...,d,

cees S,

P and cﬁ(d) denotes the mean square error in the

By =Gy n9q,n = (Kyreeorntg)’ o

’

2 ii -1/2 °
td-i+1,n(d) - [oh(d) Gd,n] Ky oo

' -1
Rn(”1""'”k) - gk,n Gk,n gk,n '

where G = ((G

. .. - '
K,n )) is a kxk matrix; gk,n (91,k,n""'gk,k,n) ;

ij,k,n

_ N i1,
8i5,kon = Btat Si,e<1 Sj,e-1" 94,k = Pea1 Si,e-1 So,¢ 39 Oy, S the
. . -1
(i,i)th element of Gd,n'
We now obtain the limiting distributions of Fi n(d) and t_i n(d).

Lemma A.1: Consider the model (A.3) where e_ satisfy the conditions of Lemma 2.

t
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. Then,

. B, o 1 = =

(1) Rn(y1,..., pk) - €k Ek €k = Rk , k=1,...,d
Loy 2 P

(i4) oh(d) - 1

8 1

(iii) Fi,n(d) - Fi(d) = i [Rd - Rd-i] , 1 €d
and
(iv) t (d) B ¢ (d) i<d
d-i+1,n d-i+1 ! =
where Fi,n(d) is defined in (A.4), €k, Ek, and td-i+1(d) are as defined in Theorem 1
and RO = 0.

Proof: From Lemma 2, we know that for k < d,

! s (A.5)

‘l"and
1 -1 8

Dk,n Gk,n Dk,n - zk

LY

where Dk n = diagonal {n, nz, cess nk} .

Pantula (1985) and Chan and Wei (1986) showed that zk is nonsingular.

Therefore,
B -1
R (Hyreeoot) = & E & . (A.6)
Now,
~2 -1 n 2
ch(d) = (n-d) £t=1 So,t - Rn(y1,...,pu)
=1 .n 2 ; -1
= (n-d) E,_, e + 0 ((n-d) )
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The result (iii) follows immediately from (i) and (ii). The result (iv)
follows from (A.5), (A.6) and (i1). []

Note that, from Lemma A.1,
F(d) =d ' & E ¢
d d ©d *d

and hence for i € d,

Fo(d) = i7'[d Fy(d) = (d-1)F_.(d=i)]

Now we will obtain the asymptotic distribution of Fi n(p), the F-statistic for
4
testing i unit roots in a pth order autoregressive process, under the hypothesis Hd.
Consider Yt a pth order autoregressive process with d unit roots and p-d

stationary roots. Then, Yt can be written as

- yd p
Yot = Ei=1BiYi-1,e-1 * BiaderBiYio1,e-1 ¥ C (A.T)

' i
where Yi,t = (1-B) Yt’ 91 = ,,, = Bd = 0 and Bd+1 < 0.

Let

(A.8)

-d,t - z§=d+1 BiYi-1-d,t-1

Nt = Yp

and

d
Zt = (1-B) Yt = Yd,t . (A.9)

Then wt is a dth order autoregressive process with d unit roots and Zt is a
(p-d)th order autoregressive process with (p-d) stationary roots. Following
the arguments used in Lemma 5.1 of Hasza and Fuller (1979) and Lemmas 2.4 and

2.5 of Tiao and Tsay (1983) it can be shown that, for 0 € i, j £ d-1,

~(2d-i-j) n -2 _-(2d-i-j) n -1
n Eea1Yi,t-175,t-1 = Bgeq M EeaiWi, -1, 01 * Ol ) (A10)
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'l' and

~(d=i)n 1 -l

- -1
t=1Yi,t-1"p,t = Bas" t=1%i, 1% Y %0 ) (A.11)

where wi,t = (1-8)'i wt . .
(See also Lemma A.1 and Proposition A.1 of Yajima (1985).)
We now obtain the limiting distributions of Fi,n(p) and ti,n(p) under the
hypothesis Hd'
Lemma A.2: Let Yt be a pth order process with d unit roots and (p-d)
stationary roots. Let Fi,n(p) be the regression F-statistic for testing

31 = ,,., = Bi = 0 in the model (A.7). Then, as n tends to infinity,

H

(i) Fi,n(p) - Fi(d) for i €£d,
‘ (i1) Fd+1,n(p) diverges to infinity,
(ii1) t. _(p) B t.(d) for i<d,
i.,n b ]
and
(iv) n /2 €, (p) PL ¢ B, for i>d,

where Fi(d) and ti(d) are given in Lemma A.1 and and f is a finite positive
constant.
Proof: Let

¢ = (Y

?
t 0,t-1""'Yp-1,t-1)

(¥} . v,

- L}
¥, = (YO,t-1""'Yd-1,t-1) '
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'I' and

Ve = (Yg, 617000 Ypoq,e-1)

Define, M = diagonal 3, 2%, n 02, L, a3

Then, from the arguments used in Theorem:-5.1 of Hasza and Fuller (1979),
and (A.10) we get
' -1

2
Pas1 AEg A 0

M e e T 8 (A.12)

where T is defined in (2.2) with (p-d) in place of p; zd defined in Lemma 2;
r. is a (p-d) x (p-d) matrix with VZ(i-j) as the (i,j)th element,

Y, (h) = gim _ E[Z.Z, . 1; and

A= . : dxd.

—y
o
o
o

Also, from Lemma 2 and (A.11) it follows that

-1

" Bger A &
M " e v, Pa (A.13)
[} - ]
TDb -T rzc
where €d is defined in Lemma 2, b = (72(1), ooy YZ(p-d))' and ¢ is as defined in
(2.2) with p-d in place of p. |
Now consider Fi n(p), the regression F-statistic for testing By = ... =B, = 0

in (A.7) . Note that,

Fi n(P) = [ GBI IR (B uB)) = RU(By e B))]
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where oﬁ(p) is the residual mean square of the regression (A.T), Rn(Bi+1""’Bp)

denote the regression sums of squares of the regression (A.7) with s1,-52, ey Bi

set equal to zero. Since the expression (A.12) is block diagonal, it follows from

(A.13) and Lemma A.1, for i £ d,

B

Fi’n(p) - Fi(d) .
and
B
t1’n(p) - t,-(d) .
Now,
n"TE, . (p) = [n(a+n)(p)1 IR (B B) - R (B 8]
d+1,n n N1 " p n‘Yd+2’'"""""p
2 [n(d+1)a3(p)1 R (B B.) - R (B 8,8 8]
> n n(Byr---1By n(Byre-erBgrBgyore--iBy
_ ~2 “d+1,d+1.-1 =2
= [+ 1) (p) no” "1 By,
where ag+;’d+1 is the (d+1,d+1)th element of EE:=1 ’t’%]—1‘ Note that,
“d+1,d+1 _ _, n 11
"% .n = €4eq MolEeo 09 M &y,
P» the first element of T-1 P;1 T-1'
and
~2 P 2
B+ Bas1 -
where ed+1 is the (d+1)th column of a pxp identity matrix. Therefore,
Fd+1 n(p) diverges to infinity as n tends to infinity.

Also, note that for i > d,

t; o) = [cf,(p) g’ ]'1/2 [ﬁ,- - B,-] + [of,(p) o ]'1/23

p.n p.,n i

(A.14)
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. and hence from {A.12) and (A.13)

172 P

€ n(P) = f8y

where f is a finite positive constant,. [

We now complete the proof of Theorem 1.

Proof of Theorem 1: From Lemma A.1 and Lemma A.2, we know that for i € d ,

B

F. ~(p)

i,n ~ F;(d)

under the hypothesis Hd' From Lemma A.2, it follows that Fd+1 n(p) diverges to

infinity under the hypothesis Hd' Now, since

(p) 2 (d+j) T (d+1)F

Fd+j'n d+1'n(P)

for j 2 2, we have that F_i n diverges to infinity for i > d, under the

‘ hypothesis H []

4 -
We now prove Theorem 2.

*
Proof of Theorem 2: Note that ti n(p) is the regression t-statistic for
?

testing the hypothesis that the coefficient of Vt_ is zero in the regression

1

o (18P, where v = (1-8)" v,

_pyp-itl _
of (1-8) Vt on Vt-1' (1-8)V ¢

t-1'"

Under the hypothesis H,, for i € d, the process Vt has (d-i+1) unit roots and

dl
(p-d) stationary roots. Therefore, from the results of Dickey and Fuller
(1979) and the arguments of Lemma A.2 it follows that, under the hypothesis Hd,

T = t1(1) for i = d

*
ti(d) for i < d,
* ~
where ti(d) and T are as defined in Theorem 2. Also, as in (A.14) it

‘foﬂows that under the hypothesis H,, for i > d
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-1/2 . * P * %
n ti,n(p) - f Bip

* * ~%
where f 1is a finite positive constant, Bi p is the probability limit of Bi b
14 ’

i-1 .
= (1-B) Yt-1 in the

We will show that

~%
and g, p is the regression coefficient of Y. . . ,

regression of (1-8)P Y, on (1-8)1_1 Y , (1-B)p-1 Y

t-1' " t-1°

> * » - » 3
under the hypothesis Hd, Bi p is a finite negative constant.
’

Note that for i > d, under the hypothesis Hd’ thé process Vt = (1—8)"-1 Yt is

. ~%
essentially a stationary process. It is easy to see that Bi b is also the

regression coefficient of V in the regression of (1--B)Vt on V

t-1 t-1'

(1-B)V ., (1-B)V where 2 = p-i+1 . Since the dth difference of Yt is

t-1" °° t-2+1
essentially a stationary (p-d)th autoregressive process and that Vt is an {i-1)th

difference of Yt' it follows that

7 (h) = Rim__ EIV.V, ]

is a positive definite function. Define

rV = toep]itz(VV(O), ceey YV(Q—1)),
70 = (7v(1), cens VV(Q))
and
~1
d = rv 70 . (A.15)

Now, using the standard arguments it can be shown that, under the hypothesis Hd’ the

regression coefficients & of the regression Vt on Vt-1’ coey Vt-Q converge in

probability to 8. Also, since

R o R
1,p =174
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‘ we get
~% P * Q
Bip  ~PBip T Ei=1%

(See Fuller (1976), p. 374). Now, since & is a solution to the Yule-Walker
equations in (A.15), it follows from Theorem 2.2 of Pagano (1973) that the

roots of the characteristic equation

o .
m - Zi 6im = 0 (A.16)
1ie inside the unit circle. Therefore,

*
i.p

2
B, o= -(1-E;, &,

Q
'"i=1(1-mi)

is negative, where mysee.,my are the roots of the characteristic equation

’ (A.16). (]

Appendix B

In this appendix we extend the testing procedures to autoregressive moving

average processes. Consider the model

= yvP q
Yt £i=1 ath_i + zj=1xjet-j + et (B.1)

where we assume that
(1) {et} is a sequence of iid (0,02) random variables with finite (4+d)th

moment for some & > O,
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. {(ii) the characteristic equations
w - am =0, (B.2)
i=14
and
q q q-j
m'+ k] K.m =0, B.3
jo1* (8-3)

have no common roots,
and
(ii1) the roots of (B.3) lie inside the unit c¢ircle.
Let 1 2 |m1| 2 .00 2 |mp| denote the roots of (B.2). We wish to test the

hypothesis H ,: m, = ... = m

d* ™
reparameterization of (B.1)

q = 1 and |md+1| < 1. Consider the

8Py = gy i1 5
(1-8)° v, = :’;131.(1 B) Yo *EjiKj eq te (8.4)
From Lemma 1 we know that, under the hypothesis Hd' B1 = L., = Bd = 0 (and
' Bd+1 < 0). Cohs-ider the regression models
(1-8)Pv. =% . a (1-8)% "y, . + EXP b (1-8)P v, . + error (B.5)
t =1 "¢ t-1 j=1 7 t-j ! :
and, for i =1, ..., p,
WPy - P L * g R k=p . * . o\P
(1-B) Yt = zg:iag(1 B) Yt-l + 2j=1 bj(1 B) Yt-j + erroh ' (B.6)

where k (>p) will be chosen to be a function of the sample size n. Let Fi,n(p’k)
denote the usual regression F-statistic for testing a, =...=a, = 0 in (B.5)
and let t?’n(p,k) denote the regression t-statistic for testing a: = 0 in

(B.6). We now present the asymptotic distributions of Fi,n(p’k) and

t:’n(p,k) under the hypothesis Hd for i 2 d. For the remainder of the paper,

we assume that the choice of k is such that k-1 and n-1k3 tend to zero as n

' tends to infinity.
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' Result B.1: Suppose the hypothesis Hd is true. Then,

. b
(1) Fy (p.k) © = Fy(d) ,

(idi) t: (p.k) ‘B-»; ’
N
(iii) for i > d, t:'n(p,k) diverges to negative infinity, and
{iv) Fi,n(p’k) diverges to infinity for i > d,
where Fd(d) and ; are as defined in Theorems 1 and 2.
Based on Result B.1, we suggest two sequential procedures for testing the

hypothesis H Let s £ p denote our prior belief of the maximum number of unit

d’
roots present in the process.
Procedure 1: Consider the regression (B.5) and compute Fi,n(p'k) where k is
such that k™' and n"'k> tend to zero as n tends to infinity. Reject the
hypothesis Hd (in favor of Hd-1) if Fi,n(p’k) > Fi(i,a), for i=d,d+1,...,s,

‘ where Fi(i,oc) is the 100(1-a)% percentile of tHe distribution of Fi(i)' (See
Theorem 1.)
Procedure 2: Consider the regressions (B.6) to compute t:,n(p,k), i=1,...,s,
where k is such that k-1 and n-1k3 tend to zero as n tends to infinity. Reject
the hypothesis H, (in favor of H,_ ) if t’:’n(p,k) < -f—q, for i=d, d+1, ...,

s, where 1a are the percentiles of T given in Table 8.5.2 of Fuller (1976).

For either procedure, we get,

;'oz , j=d
%im P [Rejecting H,] = {<a L ojed
e J 11 , j<d
We will now outline a proof of Result B.1. Assume that the hypothesis H, of

d

exactly d unit roots is true.

1. Note that Z, = (1-B)dYt is essentially a stationary and invertible ARMA
(p-d,q) process.
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‘ 2. Consider the regressions
z, = 241:.|=_1a1.(1-8)1'-1 Yeq ¥ z?;? Yﬁzt-j + error , (8.7)
(1-8)z, = £{11 a,0-8) " v+ E511TT M -8z, v error . (8.8)
z, = a: (1-B)d-1 Yeoq * z?;? Tg* zt—j + error , (8.9)

and

’

-i i-d
z, o+ z§=1 v(1-8)7% 2, + error. (8.10)

. . o
(1-8)77d z, = a (1-8)" d-1

Note that (B.7) and (B.8) are reparameterizations of (B.5) and (B.9) and
(B.10) are reparameterizations of (B.6). Therefore, Fd n(p,k) is the same
as the regression F-statistic for testing a1 =... = ad = 0 in (B.T);

Fd+1,n(p'k) is the regression F-statistic for testing a, = ... 2 Ay, = 0

*
in (B.8); ¢t p.k) is the same as the t-statistic for testing ad = 0 in

d,n(
* *
(8.9); and ti n(p,k) is the same as the t-statistic for testing ai =0

*
in (B.10). Also, ti n(p,k) is the regression on t-statistic for testing
’

K=i+1

£j=1 d. =1 1in the regression
i-d-1 _ <k-i#1 i-d=-1
(1-B) Zt = £j=1 6j(1 B) Zt-j + error . (B.11)
*
Said and Dickey (1984) showed that td n(p,k) converges in distribution to

-~

T as n tends to infinity. (See Theorem 6.1 and Section 7 of Said and
Dickey (1984).) Also, using the arguments of Said and Dickey (1984) and
the arguments used in the proof of Lemma A.2, it can be shown that
Fd,n(p'k) converges in distribution to Fd(d) as n tends to infinity. The
main difference for the general ARMA case is that in the expressions (A.10)
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|.', and (A.11),
* q * _-1
Bd+1 =" [ﬂj=1(1-mj)] T£=d+1(1-mi) (8012)
. ) * *
is used in place of 3d+1’ where 1 > |m1[ 2 ... 2 |mq| are the roots of

the characteristic equation (B.3). (See also Yajima (1985).)

*
4. Now, to show that t

d+1 n(p,k) diverges to negative infinity, consider the

regression (B.11) with i=d+1, i.e.,

-d+1
Z, = £§=1 Gth_j + error . (B.13)
*
Note that td+1 n(p,k) is the regression t-statistic for testing the
hypothesis E§;g+16j = 1 in (B.13). Therefore,
/2, . =1/2_% _ (o2 “1ip=149°1/2, 402 _
k' “(n-k) td+1,n(p'k) = [on(p,k)k 1 RZ 1] (1 JZ 1), (B.14)
. _ o1 5 o (o] \ _ .
. where ‘Z = RZ ry Rz = (n-k) Zt[xt(k)xt(k)] , 1 =(1,...,1)',
- -1

r, = (n-k) zt[xt(k)zt], c:(p,k) is the residual mean square error

N *
Z Since |m1| < 1 and |md+1| <1, from

ce )'.
t-1"""""Tt-k+d-1
Theorem 1 of Berk (1974) it follows that, as n tends to infinity,

and Xt(k) = (Z

o:(p.k) P

IA - = lh - e o
1 JZ 1 1 (JZ 8) +1'$ 1

P *
= By

-1
r4

*
defined in (B.12). (In Berk's notation, 8§ = -a(k) and 1 + f?=1ai = -Bd+1

- - *
and Kk 1 1'R, 1 is bounded and bounded away from zero, where Bd+1 is

*
is positive,) Therefore, td+1 n(p,k) diverges to negative infinity.
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5. We will now show that Fd+1 n(p,k) diverges to infinity and hence
’

(p.k) (2 (d+j)-1(d+1) F (p,k)) diverges to infinity as n tends to

Fd+j,n d+1,n

infinity. Consider the regressions (8.8) and (B.10) with i = d+1. Then,

in the notation of regression sums of squares introduced in (A.4),

-1 -1
Faaq,n(Prk) = [(d+1)(n-2k-d) T (M, = 4,017 (M, = M)
and
2 (p,k) = [(n-2k)"T(M, - M)1"T(M, - M)
d+1,n'"’ 1 3 3 4
2
where M1 > M2 2 M3 2 M4, M1 = zt(zt - Zt_1) ’

* *
Mz = Rn(a1,...,ad+1,n1,..., n k-d-1)'
R * = R * * d
My = Ro(ageqoVyres s Vengoq) = Ra(3geq Myre e M goq)e @0

* *
Mo = RalvgreeeMeigar) = Ry(Mpreen Megq)

Note that, since (M1 - M4) (MZ - M3) >0,

-1 -1
My = M) (M, - M) 2 - M) My - )
Therefore,
F (p.K) 2 [(d+1)(n-2k)] 1 (n-2k-d)t 2. (p,K)
d+1,n'"’ = d+1,n'"’

and hence F (p.k) diverges to infinity.

d+1,n

*
6. We will now show that ti n(p,k) diverges to negative infinity for
’

*
i > d+1. Recall that ti n(p,k) is the regression t-statistic for testing
L]

£"1*15 = 1 in the regression
=1 j
Vt = E§;1+1 ajvt_j + error , (B.15)
where v, = (1-8)" "z, i.e.,
(k)2 (oK) = (i) 1RV R (s - )
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where 3 = R 1rv, Ry = (n=k) ™! I, IX (KIXLK)T

~

= (n-k) Zt[Xt(k)Vt], oﬁ(p,k) is the residual mean square error of

the regression (B8.15) and Xt(k) = (V )'. Since Vt is the

t-1""'vt-k+i-1
(i-d-1)th difference of Zt' We can write

- o 1 1 [ 4
Ry = Ci g qCig +-r CREY o Ch o, (B.16)
here R, = (n-k) 'y, X ()X T (k) "] , XT(K) = (Z 7 *, and
wnere R, = (n-k) 'L, XS (K)Xg (K) '] 4 X(K) = (Zy_oeensZy Q)" and |

(1 1 0 ... 0 o0

0 1 -1 ... 0 0
Cj = . ) : (k-d-j) x (k-d-j+1)

0 0 0 ... 1 -1

L J

Therefore, from Theorem 6.5.5 of Anderson (1971), we get

i-d-1 _i-d-1 -1
mm(RV) 2 m1n(R )2 ey [1 - Cos m(k-d-j+1) ]
and
i=d-1 _i-d-1 -1
max(Rv) b3 max(R )2 et {1 + Cos m(k-d-j+1) ']

Since [1 - Cos n(k+1)'1]-1 = 0(k2), we get

(R 2(i-d-1)

max Vv ) =M 1 max(RZ )k

and

(R

>‘m-in(RV )2 M 2 min' Z ) '

where M1 and M2 are finite constants and A (A) and A (A) denote the

minimum and maximum eigenvalues of A, respectively. From Berk's results,

we know that Xmin and Amax of RZ are bounded and bounded away from zero.
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Note that,
/2, . \=1/2 ) - -1/2
(k)2 1E] (el 2 M nk) TV AL (R
~(i-d-1), .5
K 118, - 1|
We will show that k-(1_d_1)(1'6 - 1) converges to a negative constant

\'

*
and hence that ti n(p,k) diverges to negative infinity. We will present
the proof for the case i = d+2 and indicate how to extend for i > d+2.

Consider the case i = d+2. The regression (B.15) then is

FALT S Zt-j-1) + error,

k-d :
Zt £j=1 eth_j + error, (B.17)
where 2§ ? j is restricted to be equal to one. Note that
J sm -d-
Jj Zg 1eﬁ 1, for j=1,..., k-d-1 and hence
1'4 = k ? {k-d-3j) e - (k-d-1). From equation (97) of Searle

{1971, p. 206), the restricted least squares estimate of @ in (B.17) is,

U DUPIES SR R
e =6 - RZ 1{1 Rz 1) (1'e -1) , (B.18)
where © = R.'r
Y 2 4
Therefore,
_ -1 ' e _ _ _ -1.k-d-1 s % -
(k-d) (1 JV 1) = (k-d) £j=1 (k-d J)ej 1
= -b' © +b' R. 1(1'R Ty e -1 (B.19)
k k Z ‘

where bk = (k-d)-1(1,2,...,k-d)'. From Theorem 1 of Berk (1974) it follows
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. that

b;((é-e)"-» 0,

-1, ., P

-1, ,5-1
(k-d)" 'BL(R, - R, ) 1~ = 0

1y a=1 =1 P
(k=d) "1 (R, - RN T =0

and
~. P
1'(® - ©) -0,

*
where RZ = Qim Cov(X, (k)).
t
t

Since Zt has stationary and invertible roots, we get |ej| < M\J for some

0<XA<1and0<M<eo . Therefore, as k tends to infinity,

*
' - - =
1' e 1 = ZJ.=19J. 1 ﬁd+1 <0,

‘l' and

k-d je. = 0.

-1
© = (k-d) E|
(k=d) j=1 77

[}
b,

Also, from the arguments of Theorem 10.2.7 of Anderson (1971) we get, as

k tends to infinity,

-1 ., o1 1 -1
(k-d)™" by R, 1 =2 [2; f,(0)]

and

1

(|<—d)'1 1'R,'1 - [2m fz(o)]'1 ’

4

where fz(o) is the spectral density of an ARMA (p-d,q) process with

. * *
md+1,...,mp as the roots of the AR polynomial and m1,...,mq as the

roots of the MA polynomial.



