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ABSTRACT

Let Yt satisfy the stochastic difference equation Yt = I~ 1~'Yt . + et '
J= J - J

for t = 1, 2, ... , where et are independe~t and identically distributed random

variables and the initial conditions (Y 1"'" yo) are fixed constants. It" -p+

is assumed that the true, but unknown, roots m1 , m2 , ••• , m of
p

• rtf r!'. p- j = 0 satisfy the hypothesis Hd : m1 = = md = 1 andj=l~jm ...
I mj I < 1 for j = d+ 1 , •.. , p We present a reparameterization of the model

for Yt that is convenient for testing the hypothesis Hd. We consider the

asymptotic properties of (i) a likelihood ratio type "F-statistic" for testing

the hypothesis H
d

, (ii) a least squares regression t-statistic, and (iii) a

likelihood ratio type t-statistic for testing the hypothesis Hd against the

alternative Hd_1. Using these asymptotic results, we obtain two sequential

testing procedures that are asymptotically consistent: Extensions to

autoregressive moving average processes are also presented.
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• 1. Introduction: Autoregressive integrated moving average (ARIMA) models

are used to represent economic, meteorological and physical processes. The

hypothesis regarding the number of unit roots in the model has important

consequences for the interpretation of economic data. Methods for detecting

the presence of unit roots and their applications have appeared in various

journals. For example, Altonji and Ashenfelter (1980) use the unit root tests

to investigate an equilibrium hypothesis for wage movements; Meese and

Singleton (1983) apply the unit root tests to exchange rates and discuss the

importance of unit root testing in the theory of linearized expectations;

Nelson and Plosser (1982) discuss the relationship of unit roots to the effect

that monetary disturbances have on macroeconomic series; and Schwert (1987)

analyses several macroeconomic variables and compares different methods for

• detecting the presence of a single unit root. Schwert (1987) also considers

ARIMA models with two unit roots for the variables: Consumer Price Index,

Gross National product, Monetary Base and Total Civilian Noninstitutional

Population. (All of the variables are transformed using natural logarithm.)

Models with more than two unit roots, though very rare in economics, have some

applications in physical sciences. Box and Pallesen (1978) analysed the x­

coordinate of a missile trajectory using an ARIMA model (ARIMA (0,3,5)) with

three unit roots.

In this paper we present methods for testing the hypothesis that the

process has a specified number of unit roots. We begin the discussion with

pure autoregressive processes .

•
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~ Let the time series {Yt } satisfy

(1. 1 )

CD
where {et }t=1 is a sequence of iid random variables with mean zero and

variance 0
2 • It is assumed that E[letI4+O] < M for some 0 > O. It is further

assumed that the initial conditions (Y 1"'" YO) are known constants. The-p+

time series is said to be an autoregressive process of order p. Let

be the characteristic equation of the process. The roots of (1.2), denoted by

Let the observations Y1 , Y2 , ...• Yn be available. It is assumed that

a = (a1• a 2•... , a p)' and 0
2 are unknown. The least squares estimator a of a•

m" ... ,

1 2 Im11

m are called the characteristic roots of the process.
p

2 Im21 2 ... 2 Impl . ,

Assume that

is obtained by regressing Yt on Yt - 1 • ...• Yt - p Lai and Wei (1983) established

the strong consistency of a under a very general set of conditions. and Chan and

Wei (1986) obtained the asymptotic distribution of a. If Im
j l <1. j = 1•...• p,

then Yt converges to a weakly stationary process as t - CD. In the stationary

case, the asymptotic properties of a and of the related likelihood ratio type

"F-statistic" are well known.

Hannan and Heyde (1972).

See Mann and Wald (1943). Anderson (1971) and

•

Dickey and Fuller (1979) and Fuller (1979) have considered testing for a

single unit root in a p-th order autoregressive process (i.e .• m1 = 1 and Imj l

< 1. j=2, ...• p). Phillips (1987) and Phillips and Perron (1986) present

alternative methods for testing a single unit root in a general time series



Page 4

~ setting. Their approach is nonparametric with respect to nuisance parameters

and hence allows for a wide class of ARIMA models with a single unit root.

Hasza and Fuller (1979) considered a p-th order autoregressive process with

m1 =m2 = 1 and Im
j l < 1 for j =3.4, ...• p. They characterized the

asymptotic distribution of the likelihood ratio type "F-statistic" for testing

m1 = m2 = 1. Yajima (1985) proposed

"2
roots using a (k,d). k large and for

n

a method of estimating the number of unit

"2
reasonable choices of d, where an

~

~

(k,d) is the residual mean square error obtained by fitting a kth order

autoregression to the dth difference of the data. For a second order process,

Sen (1985) studied the asymptotic distribution of the regression t-statistic

for testing H1: m1 = 1 and Im21<1, under the assumption H2, m1 = m2 = 1. He

observed empirically that the probability of the Dickey and Fuller (1979)

criterion rejecting the hypothesis H
1

, in favor of the hypothesis HO' Im11 < 1

and Im21 < 1. is higher under H2 than under H1 . That is, it is more likely to

conclude incorrectly that the process is stationary when there are really two

unit roots present than when there is just one unit root present. Pantula

(1985) observed empirically that the probability of rejecting H1 increases with

the number of unit roots present. It is not clear how the modified procedure

of Phillips (1987) behaves under the hypothesis Hd• d> 1.

In this paper we (i) present a reparameterization of the model (1.1'> that

is convenient for testing the hypothesis Hd: m1 - ... =m
d

= 1 and Im
j l < 1,

j = d+1 •...• p. (ii) characterize the asymptotic distribution oT the likelihood

ratio type "F-statistic." the regression t-statistic and the likelihood ratio

type t-statistic under the hypothesis Hd for d = O. 1, ...• p, and (iii) present

two asymptotically consistent sequential procedures to test Hd versus Hd_1 .
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~ The procedures are such that. asymptotically. the chance of rejecting the

hypothesis Hd in favor of H
d

_1 is smaller than the specified level (a) when the

process has d or more unit roots and is equal to one when the process has less

than d unit roots. The procedures presented here successfully answer the

question "how many times should one difference the series to attain

stationarity?" A proof of the main results is presented in Appendix A.

Extensions of the procedures to autoregressive moving average processes is

included in Appendix B.

2. Notation and the Main Results: Consider the following reparameterization

of the model (1".1).

Y = t"~ 1~' Y. 1 1 + e tP.t L 1= 1 1- .t- (2.1 )

where Yi •t = (l-B) iYt = ith difference of Yt ; and B is the back shift operator.

~ Comparing (1.1) with (2.1) it is easy to show that the vector of parameters

a = (a
1
•••••ap)· is linearly related to the parameters ~ = (~l""'~p)' and the

relation is given by

a =T ~ + c (2.2)

. i-l j-lwhere T is a pxp nonsingular upper triangular matrix w1th T .. = (-1) (" 1)
1 J . 1-

for j ~ i and c = (C
1

cpl' with c i = (_1)i-l(~). We now show that the

hypothesis Hd : m
1

= =md = 1 can be tested using a test for ~1 = ... =~d = 0

in the model (2.1).

Lemma 1:

only if ~1 =

Let Yt satisfy the model (1.1).

= tJd = 0 .

Then. m
1

= = 1 if and

Proof: In terms of the characteristic roots. the pth order autoregressive

model (1.1) can be written as

~
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(2.3)

[(l-B)P
p . 1

- E ~.(l-B)'- BIYt =e t '
i=1 1

which can also be written as

p-1
- E

i=1
(2.4)

Now, comparing (2.3) with (2.4) we get
.'

~1 = -J;=1 (l-m i )

~k = ~k -1 - Em. ... m. (1-m.)... (1-m. )
'1 'k-1 J 1 J p- k+l

• and j = 2, .... p-l

(2.5)

[ I

where the summation is over all possible indices ;k-1 = (i 1 , ... ,ik_1 ) and

(j1'···.jp-k+1) = (1, ...•p).- ;k-l' Note that if m1 = ... = md = 1, then

~1 = ... = ~d = a and ~d+1 = -J;=d+l(1-m i )· We prove the converse by

induction. Since 1 2 Im,1 2 ... 2 Imp l and ~, = ~=,(l-mi)' we have that

~, = a implies m, =,. Suppose~, = ... = ~d = a implies that m, = ... = md = ,.

Now, suppose~, = .,. - ~d+' = O. Then, clearly m, = ... = md = "

~d+' = ~=d+,('-mi) = a and hence md+, = ,.
Note that the additional assumption Imj l < , for j = d+', ... ,p in the

•
hypothesis Hd imposes extra conditions on ~j

~d+' = ~=d+,('-mi) < O.

In particular,
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~ Let p denote the ordinary least squares estimator of p obtained by

regressing Yp,t on YO,t-l' Y1 ,t-l"'" Yp- 1 ,t-l That is

p = (+,t)-l t' V
(p)

(2.6)

where

and

V( ) = (V l' V 2' ••• ,V )'.p p, p, p,n

Define the regression "F-statistic" for testing /3
1

= /3
2

=

. -2 -1 -, -1-
Fi,n(p) = (1 an) P(i) C(i) P(i)

= 13; = 0 by

(2.7)

the (ixi) submatrix consisting of the first i rows and i columns of

~

where C(i) is
-1 ­

(t' t) ,/3(i) ... , /3 . ) '; and
1

Define also the regression t-statistic for testing the hypothesis p. =
1

o by

[a-2 a-i i ] -1/2 -
t. (p)= /31,n n p,n ; (2.8)

where a ii is the (i,i)th element of (t,t)-l. Following Lemma 1, we use thep,n

We now present a lemma that

We use the notation "

this paper,

2and a = 1.= V = 0o- ...
For the statistics considered in

"F-statistic" F. (p) to test the hypothesis H.
1 , n 1

will be useful in obtaining the asymptotic distribution of F. (p) and t. (p).
l,n l,n

without loss of generality, we

assume that V 1-p+

indicate convergence in distribution and the notation" p.... " to indicate

~
convergence in probability of a statistic as the sample size tends to infinity.
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~ Lemma 2: Define,

(l-B)Si,t =Si-l,t ' for i = 1, 2, ... , d,

where e t is a sequence of iid random variables with E[letI4+ol < M < ~ for some

o > O. Then, as n tends to infinity,

1

B~ ~i = f Hi _l (t) d Ho(t)

o
and

1

= f Hi _l (t) H
j

_l (t) dt

o
where HO(t) is a standard Brownian motion and

~ t

H.(t) = f
o

Hi -1 (s) ds
1

Proof: See Chan and Wei ( 1986) []

Pantula (1985) obtained an alternate representation, involving quadratic

forms, for the limiting distributions of Lemma 2. (See also Yajima (1985).)

The representations are similar to those of the Wvariables presented in Hasza

and Fuller (1979) and are useful in obtaining the percentiles of the limiting

distribution.

We now present the joint limiting distributions of the "F-statistic" F. (p)
1, n

and the regression t-statistic t. (p), under the hypothesis Hd .
1, n

~
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• Theorem 1: Assume that Yt is defined by (1.1). Then, under the hypothesis H
d

,

Fi(d) if i S d

F. (p) B (2.9)-0

',n
'" if i > d

t . (p) B t . (d) if i S d (2.10)-0, ,n ,
and

n-1/ 2t. (p) P f ~i if > d (2.11)-0, ,n

where f is a finite positive constant,

F . (d) = i-1[d Fd(d) - (d-i) Fd .(d-i)]., -,

Fk(k)
-1 -1

= k t k Ek t k '

• J.l. d1 ,
= ith

d-i+l,d-i+l -1/2
ad

-1
element-of Ed t d

i i -1
ad = (i,i)th element of Ed

= «a ..» kxk , k = 1, .... d,
lJ

and ~. and a . . as defined in Lemma 2.
, 'J

Proof: See Appendix A. []

Notice that the limiting distribution of F. (p) is independent of the
1, n

order p. It depends only on i (the number of unit roots being tested) and d

(the true number of unit roots present). Pantula (1985) used the quadratic

• form type representations to obtain the empirical percentiles of F.(d)., Let
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~ Fi(d.a) denote the 100(1~)% percentile of the distribution of Fi(d). Pantula

(1985) obtained F.(d.a) for 1 SiS d S 5 and a = 0.5. 0.2. 0.1. 0.05. 0.025,
and 0.01. Extending the criterion suggested by Hasza and Fuller (1979) we may

reject the hypothesis Hd of exactly d unit roots (in favor of the hypothesis

Hd_1 of exactly d-1 unit roots) if Fd.n(p) > Fd(d.a) Pantula (1985) observed

that the empirical percentiles F.(d.a) increase in d. That is,,
Fd(d.a) < Fd (d+1.a) < Fd (d+2.a) < •• : • Therefore. the probability of rejecting

Hd (in favor of Hd- 1) increases with the number of unit roots (~ d) present.

For example. if we use the criterion of rejecting the hypothesis H1 that there

is exactly one unit root (in favor of HO: stationary process) whenever

F1•n (P) > F1(1.a). then the higher the number of unit roots present. the more

likely we are to conclude that the process is stationary. Intuitively.

~
however, we hope that our criterion should strongly indicate nonstationarity

when more than one unit root is present.

Suppose we have a prior knowledge that there are at most s < p unit roots

present. (If no .such prior knowledge is available then take s = p.) In practice

s S 3. We now suggest a sequential criterion to test the hypothesis Hd for d S

s. The criterion is: "Reject the hypothesis Hd (in favor of Hd- 1 ) if

F. (p) > F,.(i.a) for i = d, d+l •...• s ." Since under the hypothesis Hd,, ,n

Fi.n(P) converges in probability to infinity for i > d we get

a • j=d

~im~PH.[Rejecting Hdl =
J

j>d

1 • j<d

That .is. if we use our sequential procedure. asymptotically. the chance that we

reject the hypothesis that there are exactly d unit roots is (i) a, if there

~ are exactly d unit roots. (ii) less than or equal to a. if there are more than
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~ d unit roots and (iii) one, if there are less than d unit roots. Thus, for

example, if we use the sequential procedure, the chance of concluding that the

process is stationary is smaller than q when there is one or more unit roots

present ..In this sense, it is advantageous to use the F-statistics

sequentially rather than individually.

Let us now interpret the results from the hypothesis testing problem in the

context of estimating 0 5 dO 5 s, the unknown number of unit roots that are

actually present. Suppose for a given q we use the estimator d which takes
q

the value d if Fd,n(P) 5 Fd(d,q) and F. (p) > F. (i ,q) for d < ; ~ s and takes, ,n ,
the value zero if F. (p) > F. ( i ,q) for 1 ~ i ~ s. Then our results imply, ,n ,
that, for do > 0,

1-<X d = dO

Rim PH [dq = dj = ~q d < do

~
n__

do
0 d > do

and for dO = 0, PHO[dq = OJ converges to one. In this sense, our procedure is

asymptotically consistent. Pantu1a (1986) compared the power of the sequential

procedure with that of the traditional methods and concluded that the loss in

power is minimal even for samples of size 25.

Note that the asymptotic distribution

of unit roots that are actually present.

of t. (p) also depends on the number
',n

A natural question is to see whether

the t-statistic t. (p) can be used in a sequential manner to test the relevant, ,n

hypotheses. Consider for example an AR(3) process. As mentioned earlier, Sen

(1985) observed that the Dickey and Fuller (1979) criterion based on t
1

(3),n

rejects the hypothesis H, of exactly one unit root in favor of the hypothesis H
O

of no unit roots more often under H2 and H3 than under H,. So we cannot hope

~ to obtain a consistent procedure by first testing ~, = 0 (for a single unit
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~ root), then testing ~2 = 0 (for two unit roots) and then testing ~3 = O. Also

the sequential procedure that first tests ~3 = 0 using t 3,n(3) and then tests

~ = 0 using t 2 (3) will not be consistent. This is because it is possible to2 ,n

have ~2 2 0 even though the process is stationary. For example, if m1 = m2

= m3 = -0.5, then the process is stationary with ~2 = 0 and the t-statistic

t 2,n(3) converges in distribution to N(O.l). Also. if m1 = m2 = m3 = -0.75,

then the process is stationary with ~2 = 0.5(1.75)2 and the t-statistic t 2 ,n(3)

diverges to positive infinity.

•

Now consider the problem of testing the hypothesis Hd: ~1 = ~2 = ... = ~d = 0

against the alternative Hd_1 : ~1 = ~2 = = ~d-l = 0, ~d < O. Note that under

the null (Hd ) and the alternative (Hd_1) hypotheses we have ~1 = .,. =~d-l = 0

and the alternative hypothesis is one sided in nature (~d < 0). This suggests

that a more power.ful (likelihood ratio type) test for testing the hypothesis

Hd against the alternative Hd_1 is obtained by regressing Yp,t on

*Yd- 1,t-l' ... , Yp- 1,t-l' (i.e .. set ~1 = ... = ~d-1 = 0 in (2.1». Let td,n(p)

denote the regression t-statistic for testing the coefficient of Yd- 1,t-l is

zero in the regression of Yp,t on Yd- 1,t-l' ... , Yp- 1 •t - 1 Note that

*t 1 (p)=t 1 (p).,n , n

We now obtain the asymptotic distribution of the likelihood ratio type t­

*statistic t. (p) under the hypothesis Hd.
1, n

Theorem 2: Suppose the process Yt satisfies the conditions of Theorem 1.

Then, under the hypothesis Hd ,

r~ i=d

<,n(p) B.... ~ t7(d) i<d

•
L_ i>d
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• where

-1/2
T = t 1 (1) = ~lall

* [ d-i+l ,d-i+l ] -1/2
tied) = ~d-i+l,d-i+l a d- i +1

- i ;
and ~1' all: ~i,d and ad are as defined in Theorem 1.

Proof: See Appendix A. [l

Note that"for any d, under the hypothesis Hd, the asymptotic distribution

*of the t-statistic t d (p) is the distribution of T obtained by Dickey and,n

Fuller (1979) for the single unit root case. Therefore, we do not have to

*tabulate different percentiles for td(d) as we have done for the F-statistic.

< TCl for i=d, d+l, ..• , s, where TCl is the lower Cl percentile of the T

distribution given in Table 8.5.2 of Fuller (1976)." Also, let dCl be an•
We now suggest a sequential procedure based on

a given Cl, the second procedure is: "Reject Hd

*the t-statistic t d (p). For,n
*in favor of Hd 1 if t. (p)- , ,n

estimator of do (the number of unit roots actually present) which takes the

* *value d if td,n(p) 2 TCl and t. (p) < 'lex' i = d+l, ... , s and takes the
1 ,n

*value zero when t i ,nIP) < T for i = 1, ..., s .
cl

From Theorem 2 it follows that

IUmn-- PH. [Rejecting Hdl
J

Also, for dO > 0,

r
I Cl
I

= l~ Cl
I
I 1
L

j=d

j>d

j<d

•
R.imn_ PH [d = dl =

d Cl
o

r
11-.x
I
l ~ Cl
I
I 0
L
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and for do =0, PHO[da = 0] converges to one.

*The sequential procedure based on the t-statistic t d (p) has several,n

advantages over the sequential procedure based on the F-statistic Fd (p). The,n
*sequential t -procedure requires only one set of tables given in Fuller (1976).

*Also, the t -procedure makes use of the one sided nature of the alternatives

and hence is expected to be more powerful than the F-procedure. On the other

hand, the F-procedure is a two-tailed test and hence is expected to be robust

in the presence of mildly explosive roots. Of course, the t*-procedure can be

modified to a two-tailed procedure by considering t*d2 (p) and comparing it,n

with the percentiles of ~2 = F1(1). Using simulations, Dickey and Pantu1a

*(1987) compared the t -procedure and the F-procedure and recommend the use of

*the t -procedure. Dickey and Pantu1a (1987) also present a numerical example

(Real Estate loans) of a third order autoregressive process with two unit

roots.

3. Concluding Remarks: We have given here a reparameterization of an

autoregressive model that is convenient for testing the number of unit roots.

We have derived the asymptotic distributions of the regression t-statistic

t. (p) and the likelihood ratio type F-statistic, F. (p), under variousl,n l,n

hypotheses.

We have indicated why the t-statistic t. (p) may not be useful in testing
1, n

or estimating the number of unit roots present. We have obtained a sequential

procedure based on the F-statistic F. (p) for testing the hypothesis Hd and
1, n

estimating do the actual number of unit roots present. We also obtained the

*asymptotic distribution of the likelihood ratio type t-statistic t d (p) for,n

testing the hypothesis Hd against the alternative hypothesis Hd_1. We
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*developed a sequential procedure based on the t -statistics that is also

*asymptotically consistent. The t -procedure takes into account the one-sided

nature of the alternatives and hence is superior to the F-procedure.

We have presented the results for an autoregressive process with mean zero.

Our procedure can be extended to autoregressive processes where an intercept or

a time trend is included. The percentiles for the F-statistic when an

intercept is included in the regression are given in Pantula (1985). (See also

Phillips and Perron (1986).) Also, the assumption of e t being a sequence of

independent random variables can be weakened to et being a sequence of

martingale differences as in Chan and Wei (1986) and Phillips (1987). In

Appendix B, following the approach of Said and Dickey (1984), the sequential

procedures are extended to autoregressive moving average processes.
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Appendix A

We prove Theorem 1 in three steps: (i) we consider a dth order process with

d unit roots and obtain the limiting representation F.(d) of the "F-statistic",
F. (d) for i=1,2, ••• , d; (ii) for a pth order process with exactly d unit roots, ,n

and remaining p-d roots inside the unit circle we will show that F. (p) converges, ,n

in distribution to F.(d) for i = 1,2, ••. , d, and (iii) diverges to infinity for,
i > d. The results for the t-statistic t. (p) follow in the process. We, ,n

will use the following fact from regression theory repeatedly: The F (or t) -

statistic for testing a linear hypothesis involving the parameters of a linear

model is identical to the F (or t) - statistic of an equivalent hypothesis

under a (linearly) reparameterized model.

Consider a dth order autoregressive process with d unit roots given by

where {et } is a sequence of iid random variables given in Lemma~. Notice

that Wt =Sd,t where Sd,t is defined in Lemma 2. In the parameterization of

(2.1) we can write Wt as

where

and

W =I:~- 13 W + ed,t 1=1 i i-1,t-1 t (A. 2)
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Note that we can rewrite (A.2) in terms of S. t as
1 ,

(A.3)

where ~i = ~d-i+1 •

Therefore, the hypothesis ~1 = ..• = ~i = 0 is the same as ~d-i+1 =..• =~d = o.

Consider the regression of SO,t on S1,t-1' S2,t-1' •.• , Sd,t-l . Then, the

regression F-statistic F. (d) for testing exactly i(S d) unit roots in a dth
1, n

order process is given by

(A.4)

where R (~1' ••• '~') denotes the regression sums of squares for the regression ofn 1 '

"'2
SO,t on S1,t-l'· •• ' Si,t-1 and an(d) denotes the mean square error in the

regression of SO,t on Sl,t-1' ..• , Sd,t-1. Let td- i +1 ,n(d) denote the regression t­

statistic for testing~. = O. Note that, for k = 1, .•• ,d,
1

R ( )' G- 1
n ~1'···'~ = gk,n k,n gk,n '

is a kxk matrix; ~ = (g1 k , ... ,~ k )';"1<,n "n -K"n
-_ ~n S S d Gii . th
~t=l i,t-1 O,t an d,n lS e

where Gk = «G . . k ) ),n lJ, ,n

G" k =F!!t1 S , 1 S 't1;g'klJ"n = l,t- J, - 1"n
(i,i)th element of G-d

1 .,n

We now obtain the limiting distributions of F. (d) and t. (d).1,n l,n

Lemma A.1: Consider the model (A.3) where et satisfy the conditions of Lemma 2.
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e Then,

(0

( ;; ) ~2 (d) P~ 1
n

and

( iii) F. (d) /J~ F,. (d) =
" n

i-1 [R
d

R ] i ~ d- d-i '

(iv) , i ~ d

where Fi,n(d) is defined in (A.4), ~, Ek, and t d_i +1(d) are as defined in Theorem 1

and RO = o.

Proof: From Lemma 2, we know that for k ~ d,

e" and

0-1 G. 0-1 /J~ ~
k,n -I<,n k,n K

(A. 5)

where Ok = diagonal {n,,n
2n , k••• , n } •

Pantula (1985) and Chan and Wei (1986) showed that Ek is nonsingular.

Therefore,

Now,

(A.6)

~~ (d) =
-1(n-d)

-1 n 2 +. -1= (n-d) Et =1 e t ope (n-d) )

P
~ 1



~ The result (iii) follows immediately from (i) and (ii).

follows from (A.5), (A.6) and (ii). []

Note that, from Lemma A.1,

and hence for i ~ d,
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The result (iv)

Now we will obtain the asymptotic distribution of F. (p), the F-statistic for, , n

testing i unit roots in a pth order autoregressive process, under the hypothesis Hd •

Consider Yt a pth order autoregressive process with d unit roots and p-d

stationary roots. Then, Yt can be written as

(A. 7)

i
where Yi,t = (1-8) Yt , ~1 = ... =~d =0 and ~d+l < 0 •

Let

(A.8)

and

(A.9)

Then Wt is a dth order autoregressive process with d unit roots and Zt is a

(p-d)th order autoregressive process with (p-d) stationary roots. Following

the arguments used in Lemma 5.1 of Hasza and Fuller (1979) and Lemmas 2.4 and

2.5 of Tiao and Tsay (1983) it can be shown that, for 0 ~ i, j ~ d-1,
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e and

i
where Wi,t = (1-6) Wt .

(See also Lemma A.1 and Proposition A.1 of Yajima (1985).)

(A.11)

We now obtain the limiting distributions of F. (p) and t. (p) under thel,n l,n

hypothesis Hd •

Lemma A.2: Let Yt be a pth order process with d unit roots and (p-d)

stationary roots. Let F. (p) be the regression F-statistic for testing
1 , n

~1 = ... = ~i =0 in the model (A.7). Then, as n tends to infinity,

( i ) F . (p).8-+ F. (d)
1, n 1

for i S d ,

(ii) Fd+
1

,n(P) diverges to infinity,

and

( iii) t. (p).8-+ t.(d)
1 , n 1

for i S d ,

( iv) n-1/2 t. (p) P-+ f ~. for i > d ,
1, n 1

where F.(d) and t.(d) are given in Lemma A.1 and and f is a finite positive
1 1

constant.

Proof: Let

= (d_' v' ) ,
T t , t '
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e and

d d-1 1/2 1/2Oef i ne, "n = di agona1 {n , n , •.• , n, n , ... , n }.

Then, from the arguments used in Theorem' 5.1 of Hasza and Fuller. (1979),

and (A.10) we get

2 A E-1 A 0~d+1 d.

"n
n

+t +1:
-1

"
13 (A.12)Et =1 ~

n

0
-1 -1 T-1 IT r z

where T is defined in (2.2) with (p-d) in place of p; Ed defined in Lemma 2;

rz is a (p-d) x (p-d) matrix with Yz(i-j) as the (i,j)th element,

Yz(h) = limt~ E[ZtZt_h]; and

e O' 0 0 1
0 0 1 0

A = d x d ..
1 0 • •• 0 0

Also, from Lemma 2 and (A. 11 ) it follows that

-1
A (d- ~d+1

-1 n
tt Yp,t

13 (A.13)" Et =1 ~

n

Tlb - Tlr cz

where (d is defined in Lemma 2, b = (Yz(1), .•• , Yz(P-d))I and c is as defined in

(2.2) with p-d in place of p.

Now consider F. (p), the regression F-statistic for testing ~1 = ••. =~. = 01,n 1

in (A.7) • Note that,

F. (p)
1,n

A2 -1
= [i 0n(p)] [R (~1""'~) - R (~. 1"'" ~)]n p n 1+ p
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where ~n2(p) is the residual mean square of the regression (A.7), R (~. 1' .•• '~ )n 1+ p

denote the regression sums of squares of the regression (A.7) with ~1' ~2' ... , ~i

set equal to zero. Since the expression (A.12) is block diagonal, it follows from

(A.13) and Lemma A.1, for i 5 d,

and

Now,

-1 "2 -1
n Fd+1,n(P) = [n(d+1)On(p)] [Rn(~1'···'~p) - Rn(~d+2'···'~p)]

"'2 -1
2 [n(d+1)On(p)] [Rn(~1'···'~p) - Rn(~1'···'~d'~d+2'···'~p)]

= [(d+t)~2(p) n ~d+1,d+1]-1 "2
n p,n ~d+1

. "'d+1 d+1 r, n ] 1
where 0p,n' is the (d+1,d+1)th element of LEt=1 +t+t - •

P~ the first element of T-1 r;1 T-1 ,

and

Note that,

where Ed+1 is the (d+1)th column of a pxp identity matrix. Therefore,

Fd+1,n(P) diverges to infinity as n tends to infinity.

Also, note that for i > d,

(A.14)
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e and hence from (A.12) and (A.13)

n-1/2 t. (p) P~ f Q

, , n I""i '

where f is a finite positive constant.

We now complete the proof of Theorem 1.

[]

Proof of Theorem 1: From Lemma A.1 and Lemma A.2, we know that for i ~ d ,

JJF. (p) ~ F.(d)"n ,

under the hypothesis Hd• From Lemma A.2, it follows that Fd 1 (p) diverges to+ ,n

infinity under the hypothesis Hd • Now, since

-1
Fd+j,n(P) ~ (d+j) (d+1)Fd+1,n(P)

for j ~ 2, we have that F. diverges to infinity for i > d, under the
" n

_ hypothesis H
d

[]

We now prove Theorem 2.

*Proof of Theorem 2: Note that t. (p) is the regression t-statistic for
" n

testing the hypothesis that the coefficient of Vt _1 is zero in the regression

p-i+1 p-i i-1of (1-8) Vt on Vt _1, (1-8)Vt _1,· •• ,(1-8) Vt _1 , where Vt = (1-8) Yt .

Under the hypothesis Hd, for i ~ d, the process Vt has (d-i+1) unit roots and

(p-d) stationary roots. Therefore, from the results of Dickey and Fuller

(1979) and the arguments of Lemma A.2 it follows that, under the hypothesis Hd,

* JJt. (p) ~
1, n

*t. (d)
1

for i = d

for i < d ,

*where t.(d) and ~ are as defined in Theorem 2. Also, as in (A.14) it
1

_follows that under the hypothesis Hd , for i > d
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n- 1/ 2 t~ (p) P~ f* ~~
l,n l,p

negative constant.

* A*
is a finite positive constant, ~i,p is the probability limit of ~i,p

is the regression coefficient of Yi - 1,t-1 = (1-B) i-1Yt _1 in the

p-1•.. , (1-B) Yt - 1 • We will show that

"'*and ~. p,,
regression of (1-B)P Y

t
on (1_B)i-1 Yt - 1 ,

*under the hypothesis Hd'~. is a finitel,p

*where f

Note that for i > d, under the hypothesis Hd , the process Vt
= (1-B) i-1 Yt is

essentially a
A*

stationary process. It is easy to see that ~. is also the, ,p

regression coefficient of Vt - 1 in the regression of (1-B)V t on Vt-1'

(1-B)Vt _1, ••. , (1-B)Vt _
l
+1 where l =p-i+1 . Since the dth difference of Yt is

essentially a stationary (p-d)th autoregressive process and that Vt is an (i-1)th

difference of Y
t

, it follows that

is a positive definite function. Define

r V = toeplitz(~v(O), ••• , ~v(l-1»,

"0 = (~v(1), •• ., ~v(l»

and

(A.15 )

Now, using the standard arguments it can be shown that, under the hypothesis Hd, the

regression coefficients 4 of the regression Vt on Vt - 1' .•. , Vt - l converge in

probability to 4. Also, since
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e we get
A* P * l
$,. , p .... $. = 1:. 10. - 1 •"p ,=,

(See Fuller (1976), p. 374). Now, since d is a solution to the Yule-Walker

equations in (A.15), it follows from Theorem 2.2 of Pagano (1973) that the

roots of the characteristic equation

l l l-im - 1:. 1 o.m = 0,= ,

lie inside the unit circle. Therefore,

* l
$. = -( 1 - t. 1 o .), ,p ,= ,

l= -n' . 1(1-m . ),= ,

(A.16)

is negative, where m1, ..• ,m
l

are the roots of the characteristic equation

(A.16).

Appendix 8

(]

In this appendix we extend the testing procedures to autoregressive moving

average processes. Consider the model

Y = ~p. <X Y + ~q J( e + et ~,=1 i t-i ~j=1 j t-j t (8.1 )

where we assume that

(i) {et } is a sequence of iid (0,02) random variables with finite (4+o)th

moment for some 0 > 0,
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(ii) the characteristic equations

D p p-i
nr - 1:. ,<X, m = 0 ,,= , (B.2)

and

mq + 1:~ K.mq- j =0
J=' J '

have no common roots,

(B.3)

and

(iii) the roots of (B.3) lie inside the unit circle.

Let , ~ Im,1 ~ ••. ~ Imp l denote the roots of (B.2). We wish to test the

hypothesis Hd : m, = ••• = md = , and Imd+11 < 1. Consider the

reparameterization of (B.1)

P -D i-1 q
('-B) Yt = 1,;'. 1Q

• ('-B) Yt · +1:. 1 K • et - 1 + et,= ~, -, J= J (B.4)

From Lemma' we know that, under the hypothesis Hd , 13, = ... = I3d = 0 (and

I3d+1 < 0). Consider the regression models

p P ll.-' k-p P(1-B) Y =1: a/l(1-B) Yt -, + 1:, 1 b ,('-B) Yt ' + error,
t ll.=' ~ J= J - J

(B.5)

and, for i = 1, ••• , P,

(B.6)

where k (>p) will be chosen to be a function of the sample size n. Let F, (p,k), , n

a, = ... =a i = 0 in (B. 5)

*for testing a. =0 in,
denote the usual regression F-statistic for testing

*and let t, (p,k) denote the regression t-statistic, ,n

(B.6). We now present the asymptotic distributions of F, (p,k) and
" n

t~ (p,k) under the hypothesis Hd for i ~ d. For the remainder of the paper,, ,n

we assume that the choice of k is such that k-1 and n-1k3 tend to zero as n

tends to infinity.
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~ Result B.1: Suppose the hypothesis Hd is true. Then,

( i )

*(iii) for i > d, t. (p,k) diverges to negative infinity, and>1,n

(iv) F. (p,k) diverges to infinity for i > d,, ,n
A

where Fd(d) and T are as defined in Theorems 1 and 2.

Based on Result B.1, we suggest two sequential procedures for testing the

hypothesis Hdi Let s ~ p denote our prior belief of the maximum number of unit

roots present in the process.

Procedure 1: Consider the regression (B.5) and compute F. (p,k) where k is
1, n

-1 -1 3such that k and n k tend to zero as n tends to infinity. Reject the

hypothesis Hd (in favor of Hd 1) if F. (p,k) > F .(i,a), for i=d,d+1, ••. ,s,
- 1, n 1

where F.(i,a) is the 100(1-«)% percentile of the distribution of F .(i). (See
1 1

Theorem 1.)

Procedure 2: *Consider the regressions (B.6) to compute t. (p,k), i=1, ... ,s,
" n

where k is such that k-1 and n-1k3 tend to zero as n tends to infinity. Reject

*the hypothesis Hd (in favor of Hd_1 ) if t. (p,k) < T , for i=d, d+1, .•• ,, , n <X

s, where T
a

are the percentiles of T given in Tabl~ 8.5.2 of Fuller (1976).

For either procedure, we get,

r a , j=d
I

lim PH. [Rejecting Hd ] =l~ ,j>d
n-o J 1 , j<d

We will now outline a proof of Result B.1. Assume that the hypothesis Hd of

exactly d unit roots is true.

1. Note that Zt = (1-B)dV t is essentially a stationary and invertible ARMA
(p-d,q) process.
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~ 2. Consider the regressions

d i-1 -k-d
Zt = E. 1a .(1-B) Yt 1 + E"~ 1 'I1. Zt . + error,,= , - J= J - J

(B.7)

(B.8)

* (1_B)d-1 Y -k-d **Zt = ad t-1 + E"j=1 'I1j Zt_ j +, error , (B.9)

and
,

(1_B)i-d Zt = a7(1-B)i-d-1 Zt-1 + Ij:~ Vj (1_B)i-d Zt_j + error. (B.10)

Note that (B.7) and (B.8) are reparameterizations of (B.S) and (B.9) and

(B.10) are reparameterizations of (B.6). Therefore, Fd (p,k) is the same,n

as the regression F-statistic for testing a1 = •.. = ad = 0 in (B.7);

= ad+1 = 0

*ad =0 in

*same as the t-statistic for testing a. = 0,

1 in the regression

in (B.10).

E~-i+1&. =
J=1 J

Fd+1,n(p,k) is the regression F-statistic for testing a1 = •••

in (B.8); t d (p,k) is the same as the t-statistic for testing,n
*(B.9); and t. (p,k) is the
"n

*Also, t. (p,k) is the regression on t-statistic for testing, , n

(1-B) i-d-1 Z = E~-i+1& .(1-B) i-d-1 Z . + error.
t J=1 J t-J

(B.11)

3. *Said and Dickey (1984) showed that t d (p,k) converges in distribution to,n

T as n tends to infinity. (See Theorem 6.1 and Section 7 of Said and

Dickey (1984).) Also, using the arguments of Said and Dickey (1984) and

the arguments used in the proof of Lemma A.2, it can be shown that

TheFd,n(p,k) converges in distribution to Fd(d) as n tends to infinity.

main difference for the general ARMA case is that in the expressions (A.10)
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and (A. 11) ,

* q * -1 D
Q d 1 = - [n. 1(1-m.)] Tr, d 1(1-m.)
P + J= J 1= + 1 (B.12)

* *is used in place of I3d+1, where 1 > Im11 2 ••• 2 Imq l are the roots of

the characteristic equation (B.3). (See also Yajima (1985).)

*4. Now, to show that t d+1,n(P,k) diverges to negative infinity, consider the

regression (B.11) with i=d+1, i.e.,

-k-d+1
Zt =~: 1 &,Zt . + error.J= J-J

*Note that t d+1,n(p,k) is the regression t-statistic for testing the

. k-d+1hypothesls Ej =1 &j = 1 in (B.13). Therefore,

(B.13)

(B.14)

A A_1 A A -1
where 4Z = RZ r Z ' RZ = (n-k) Lt[\(k)Xt(k)] ,1 = (1, .. .,1)',
A -1 A2
r Z = (n-k) Lt[Xt(k)Zt]' 0n(p,k) is the residual mean square error

*and Xt(k) = (Zt-1"",Zt-k+d-1)'. Since Im11 < 1 and Imd+11 < 1, from

Theorem 1 of Berk (1974) it follows that, as n tends to infinity,

A2 P 2
On (p,k) ~ °

1 '4z - 1 =l' (4Z - 4) + 1 14 - 1

-1 A_1 *
and k 1'RZ 1 is bounded and bounded away from zero, where I3d+1 is

defined in (B.12). (In Berk's notation, 4 = -a(k) and 1 + ~=1ai = -13:+1

*is positive.) Therefore, t d 1 (p,k) diverges to negative infinity.
+ ,n
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~ 5. We will now show that Fd+1,n(P,k) diverges to infinity and hence

Fd+j,n(P,k) (~ (d+j)-1(d+1) Fd+1,n(p,k» diverges to infinity as n tends to

infinity. Consider the regressions (B.8) and (B.10) with i =d+1. Then,

in the notation of regression sums of squares introduced in (A.4),

and

2
where M1 > M2 ~ M3 ~ M4 , M1 =tt(Zt - Zt-1) ,

* *M2 =Rn(a1,···,ad+1,Yl1'···' Yl k-d-1)'

* * *M3 =Rn(ad+1,v1,···,vk_d_1) =Rn (ad+1 ,Yl1""'Ylk-d-1)' and

* *M4 =Rn(v1,···,vk_d_1) = Rn (Yl1""'Ylk-d-1)'

Note that, since (M1 - M4 ) (M2 - M3 ) ~ 0 ,

-1 -1
(M1 - M2) (M2 - M4) ~ (M1 - M3 ) (M3 - M4) .

Therefore,

-1 *2
Fd+1,n(p,k) ~ [(d+1)(n-2k)] (n-2k-d)td+1,n(p,k)

and hence Fd+1,n(p,k) diverges to infinity.

6. We will now show that

i > d+1. Recall that

*t. (p,k)l,n

*t. (p,k)
1, n

diverges to negative infinity for

is the regression t-statistic for testing

t~-i+1&. = 1 in the regression
J=1 J

k-i+1
Vt =t. 1 &.Vt · + error,

J= J - J

i-d-1where Vt = (1-B) Zt ' i.e.,

(B.15)
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A_1 A A -1

where I y = Ry r y ' Ry = (n-k) Lt[Xt(k)Xt(k)],
A -1 A2
r y = (n-k) Lt[Xt(k)Yt]' O'n(p,k) is the residual mean square error of

the regression (8.15) and Xt(k) = (Yt-1' .•• 'Yt-k+i-1)'. Since Yt is the

(i-d-1)th difference of Zt' we can write

(8.16)

where RZ

1 -1 0 0 0

0 1 -1 0 0
Cj = (k-d-j) x (k-d-j+1) .

0 0 0 1 -1

Therefore, from Theorem 6.5.5 of Anderson (1971), we get

~ • (~y) ~ ~ . (~Z)2i-d-1 n~-d1-1 [1 - Cos n(k-d-J"+1)-1]
mln mln J=

and

" (R) <" (R) 2i -d-1 i -d-1 -1
A max Y - Amax Z nj =1 [1 + Cos n(k-d-j+1) ].

Since [1 - Cos n(k+1)-1]-1 = O(k2), we get

and

where M1 and M2 are finite constants and ~min(A) and ~max(A) denote the

minimum and maximum eigenvalues of A, respectively. From 8erk ' s results,

we know that ~ . and ~ of RZ are bounded and bounded away from zero.mln max
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Note that,

-(i-d-1) A

We will show that k (l'&V - 1) converges to a negative constant

*and hence that t. (p,k) diverges to negative infinity. We will present, , n

the proof for the case i = d+2 and indicate how to extend for i > d+2.

Consider the case i = d+2. The regression (B.15) then is

k-d-1
Zt - Zt-1 = E. 1 &,(Zt . - Zt . 1) + error,J= J -J - J-

or, equivalently,

k-d
Zt = Ej =1 9l t - j + error, (B.17)

k-dwhere E. 19. is restricted to be equal to one. Note that
J= J

&j = Ei=19t - 1, for j=1, •.. , k-d-l and hence

1'& = E~-d1-1(k-d-j) 9. - (k-d-1). From equation (97) of Searle
J::I J

(1971, p. 206), the restricted least squares estimate of e in (B.17) is,

A_1 A

where e = RZ r Z .

Therefore,

(B.19)

-1where bk = (k-d) (1,2, .•. ,k-d)'. From Theorem 1 of Berk (1974) it follows
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e that

b' (8 - 8)
P o ,....

k

(k-d) - 1b ' (R-1- R- 1 ) 1 P .... 0k Z Z

(k-d)-1 1 '(R-1- R-1 )1 P .... 0
Z Z

and
P

l' (8 - 8) .... 0,

*where RZ = lim Cov(Xt(k» .t __

Since Zt has stationary and invertible roots, we get le
j l < MX j for some

o < A < 1 and 0 < M < ~. Therefore, as k tends to infinity,

l' 8 - 1

e and

-1 k-dbk' 8 = (k-d) E. 1 J'e, .... 0 .
J= J

Also, from the arguments of Theorem 10.2.7 of Anderson (1971) we get, as

k tends to infinity,

and

where fZ(e) is the spectral density of an ARMA (p-d,q) process with

* *md+1, ••. ,mp as the roots of the AR polynomial and m1, •.. ,mq as the

roots of the MA polynomial.


