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Testing Game Theory in the Field: 
Swedish LUPI Lottery Games1^ 

By Robert Östling, Joseph Tao-yi Wang, Eileen Y. Chou, 
and Colin F. Camerer* 

Game theory is usually difficult to test in the field because predic- 
tions typically depend sensitively on features that are not controlled 
or observed. We conduct one such test using both laboratory and 
field data from the Swedish lowest unique positive integer (LUPI) 
game. In this game, players pick positive integers and whoever 
chooses the lowest unique number wins. Equilibrium predictions are 
derived assuming Poisson distributed population uncertainty. The 
field and lab data show similar patterns. Despite various deviations 
from equilibrium, there is a surprising degree of convergence toward 
equilibrium. Some deviations can be rationalized by a cognitive hier- 
archy model. (JEL C70, C93, D44, H27) 

theory predictions are challenging to test with field data because those 
predictions are usually sensitive to details about strategies, information and 

payoffs which are difficult to observe in the field. As Robert Aumann pointed out: 
"In applications, when you want to do something on the strategic level, you must 
have very precise rules [. . .] An auction is a beautiful example of this, but it is very 
special. It rarely happens that you have rules like that (Eric van Damme 1998)." 

In this paper we exploit such a happening, using field data from a Swedish lottery 
game. In this lottery, players simultaneously choose positive integers from 1 to K. 
The winner is the player who chooses the lowest number that nobody else picked. We 
call this the LUPI game, because the /owest wnique positive integer wins.1 Because 
strategies and payoffs are known, the field setting is unusually well-structured 
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The Swedish company called the game Limbo, but we think LUPI is more mnemonic, and more apt because in 
the typical game of limbo, two players who tie in how low they can slide underneath a bar do not lose. 

1 
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compared to other strategic field data on contracting, pricing, entry, information dis- 
closure, or auctions. The price one pays for clear structure is that the game does not 
very closely resemble any other familiar economic game. Gaining structure at the 
expense of generality is similar to the tradeoff faced in using data from game shows 
and sports to understand general strategic principles. 

This paper analyzes LUPI theoretically and reports data from the Swedish field 
lottery and from parallel lab experiments. The paper has several theoretical and 
empirical parts. The parts have a coherent narrative flow because each part raises 
some new question which is answered by the next part. The overarching question, 
which is central to all empirical game theory, is this one: What strategic models best 
explain behavior in games? 

The first specific question is Ql: What does an equilibrium model of behavior 
predict in these games? To answer this question, we first note that subjects do not 
know exactly how many other players are participating in the game and that the 
actual number of players varies from day to day. We therefore approximate the equi- 
librium by applying the theory of Poisson games.2 In Poisson games, the number of 
players is Poisson-distributed (Roger B. Myerson 1998).3 Remarkably, assuming a 
variable number of players rather than a fixed number makes computation of equi- 
librium simpler if the number of players is Poisson-distributed. 

The number of players in the Swedish LUPI game actually varies too much from 
day-to-day to match the cross-day variance implicit in the Poisson assumption. 
However, the Poisson-Nash equilibrium is (probably) the only computable equilib- 
rium benchmark. Field tests of theory always violate some of the assumptions of the 
theory, to some degree; it is an empirical question whether the equilibrium bench- 
mark fits reasonably well despite resting on incorrect assumptions. (We revisit this 
important issue in the conclusion after all the data are presented.) 

After deriving the Poisson equilibrium in order to answer Ql, we compare the 
Poisson equilibrium to the field data. In our view, the equilibrium is surprisingly 
close (given its complexity and counterintuitive properties). However, there are 
clearly large deviations from the equilibrium prediction and some behaviorally 
interesting fine-grained deviations. These empirical results raises question Q2: Can 
non-equilibrium behavioral models explain the deviations when the game is first 
played? 

The simple LUPI structure allows us to provide tentative answers to Q2 by 
comparing Poisson-Nash equilibrium predictions with predictions of a particu- 
lar parametric model of boundedly rational play: the level-/: or cognitive hierar- 
chy (CH) approach. CH predicts too many low-number choices (compared to the 
Poisson-Nash), capturing some deviation of the field data. 

Because the LUPI game is simple, it is easy to go a step further and run a lab 
experiment that matches many of the key features of the game played in the field. 

As Milton Friedman (1953) famously noted, theories with false assumptions could often predict well (and, in 
economics, often do). 

This also distinguishes our paper from contemporaneous research on unique bid auctions by Jürgen Eichberger 
and Dmitri Vinogradov (2008); Andrea Gallice (2009); Yaron Raviv and Gabor Virag (2009); Amnon Rapoport et 
al. (2009), and Harold Houba, Dinard van der Laan, and Dirk Veldhuizen (forthcoming), which all assume that the 
number of players is fixed and commonly known. 
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The lab data enable us to address one more question: Q3: How well does behavior in 
a lab experiment designed to closely match features of a field environment parallel 
behavior in the field? Q3 is important because of an ongoing debate about lab-field 
parallelism in economics, rekindled with some skepticism by Steven D. Levitt and 
John A. List (2007) (see Armin Falk and James J. Heckman 2009 and Camerer 
forthcoming for replies). We conclude that the basic empirical features of the lab 
and field behavior are comparable. This close match adds to a small amount of evi- 
dence of how well experimental lab data can generalize to a particular field setting 
when the experiment was specifically intended to do so. 

The ability to track decisions by each player in the lab also enables us to answer 
some minor questions that cannot be answered by field data. For example, it appears 
that players tend to play recent winning numbers more, sociodemographic variables 
do not correlate strongly with performance, and there are not strong identifiable dif- 
ferences in skill across players (measured by winning frequency). 

Before proceeding, we must mention an important caveat. LUPI was not designed 
by the lottery creators to be an exact model of a particular economic game. However, 
it combines some strategic features of interesting naturally occurring games. For 
example, in games with congestion, a player's payoffs are lower if others choose 
the same strategy. Examples include choices of traffic routes and research topics, 
or buyers and sellers choosing among multiple markets. LUPI has the property of 
an extreme congestion game, in which having even one other player choose the 
same number reduces one's payoff to zero.4 Indeed, LUPI is similar to a game in 
which being first matters (e.g., in a patent race), but if players are tied for first they 
do not win. One close market analogue to LUPI is the lowest unique bid auction 
(LUBA; see Eichberger and Vinogradov 2008; Gallice 2009; Raviv and Virag 2009; 
Rapoport et al. 2009; and Houba, van der Laan, and Veldhuizen forthcoming). In 
these auctions, an object is sold to the lowest bidder whose bid is unique (or in 
some versions, to the highest unique bidder). LUPI is simpler than LUBA because 
winners do not have to pay the amount they bid, and there are no private valuations 
and beliefs about valuations of others. However, LUPI contains the same essential 
strategic conflict: between wanting to choose low numbers and wanting to choose 
unique numbers. 

Finally, the scientific value of LUPI games is like the scientific value of data 
from game shows and professional sports, such as Deal or No Deal (e.g., Steffen 
Andersen et al. 2008, and Thierry Post et al. 2008). Like the LUPI lottery, game 
shows and sports are not designed to be replicas of typical economic decisions. 
Nonetheless, game shows and sports are widely studied in economics because they 
provide very clear field data about actual economic choices (often for high stakes), 
and they have simple structures that can be analyzed theoretically. The same is true 
for LUPI. 

The next section provides a theoretical analysis of a simple form of the LUPI 
game, the Poisson-Nash equilibrium. Section II reports the basic field data and 

4Note, however, that LUPI is not a congestion game as defined by Robert W. Rosenthal (1973) since the payoff 
from choosing a particular number does not only depend on how many other players picked that number, but also 
on how many picked lower numbers. 
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compare them to the Poisson-Nash approximate benchmark. It also introduces the 
cognitive hierarchy model and asks whether it can explain the field data. Section III 
describes the lab replication. Section IV concludes the paper. Supporting material is 
available in a separate online Appendix. 

I. Theory 

In the simplest form of LUPI, the number of players, N, has a known distribution, 
the players choose integers from 1 to К simultaneously, and the lowest unique num- 
ber wins. The winner earns a payoff of 1, while all others earn 0.5 

We first analyze the game when players are assumed to be fully rational, best 
responding, and have equilibrium beliefs. We assume that the number of players N 
is a random variable that has a Poisson distribution.6 The Poisson assumption proves 
to be easier to work with than a fixed N, both theoretically and computationally. The 
actual variance of N in the field data is much larger than in the Poisson distribution 
so the Poisson-Nash equilibrium is only a computable approximation to the correct 
equilibrium. Whether it is a good approximation will partly be answered by looking 
at how well the theory fits the field data.7 In addition, we implement the Poisson 
distribution of N exactly in lab experiments. 

A. Properties of Poisson Games 

In this section, we briefly summarize the theory of Poisson games developed by 
Myerson (1998, 2000). The theory is then used in Section IB to characterize the 
Poisson-Nash equilibrium in the LUPI game. 

Games with population uncertainty relax the assumption that the exact number of 
players is common knowledge. In particular, in a Poisson game the number of play- 
ers N is a random variable that follows a Poisson distribution with mean n. We have 

-n к 
N ~ Poisson^): N = к with probability , 

and, in the case of a Bayesian game (or the cognitive hierarchy model developed 
below), players' types are independently determined according to the probability 
distribution r - (r(t))teT on some type space T. Let a type profile be a vector of 
non-negative integers listing the number of players of each type t in Г, and let Z(T) 
be the set of all such type profiles in the game. Combining N and r we can describe 

5 In this stylized case, we assume that if there is no lowest unique number then there is no winner. This simplifies 
the analysis because it means that only the probability of being unique must be computed. In the Swedish game, if 
there is no unique number then the players who picked the smallest and least-frequently-chosen number share the 
top prize. 6 Players did not know the number of total bets in both the field and lab versions of the LUPI game. Although 
players in the field could get information about the current number of bets that had been made so far during the day, 
players had to place their bets before the game closed for the day and therefore could not know with certainty the 
total number of players that would participate in that day. ' For small N, we show in online Appendix A that the equilibrium probabilities for fixed-TV Nash and Poisson- 
Nash equilibrium are practically indistinguishable (Figure Al). 
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the population uncertainty with the distribution y ~ Q(y) where y G Z(T) and y(t) 
is the number of players of type t G T. 

Players have a common finite action space С with at least two alternatives, which 
generates an action profile Z(C) containing the number of players that choose each 
action. Utility is a bounded function U: Z(C) x С х Г- » M, where f/(jc, b, t) is 
the payoff of a player with type ¿, choosing action ¿?, and facing an opponent action 
profile of x. Let x(c) denote the number of other players playing action с G С. 

Myerson (1998) shows that the Poisson distribution has two important properties 
that are relevant for Poisson games and simplify computations dramatically. The 
first is the decomposition property, which in the case of Poisson games imply that 
the distribution of type profiles for any y G Z(T) is given by 

m U - m - • 
Hence, Y(t), the random number of players of type t G Г, is Poisson with mean 

nr(t), and is independent of Y(t') for any other ť G T. Moreover, suppose each 
player independently plays the mixed strategy o' choosing action с e С with prob- 
ability cr(c 1 1) given his type t. Then, by the decomposition property, the number of 
players of type t that chooses action c, Y(c, f), is Poisson with mean nr(t)a(c 1 1) and 
is independent of Y(c' ť) for any other c', ť . 

The second property of Poisson distributions is the aggregation property, which 
states that any sum of independent Poisson random variables is Poisson distrib- 
uted. This property implies that the number of players (across all types) who choose 
action c, X(c), is Poisson with mean ]CřGrwr(ř)a(c 1 1), independent of X(c') for any 
other c' G C. We refer to this property of Poisson games as the independent actions 
(IA) property. 

Myerson (1998) also shows that the Poisson game has another useful property: 
environmental equivalence (ЕЕ). Environmental equivalence means that conditional 
on being in the game, a type t player would perceive the population uncertainty 
as an outsider would, i.e., Q(y). If the strategy and type spaces are finite, Poisson 
games are the only games with population uncertainty that satisfy both IA and ЕЕ 
(Myerson 1998). 

ЕЕ is a surprising property. Take a Poisson LUPI game with 27 players on average. 
In our lab implementation, a large number of players are recruited and are told that the 
number of players who will be active (i.e., play for real money) in each period varies. 
Consider a player who is told she is active. On the one hand, she might then act as if 
she is playing against the number of opponent players that is Poisson-distributed with 
a mean of 26 (since her active status has lowered the mean of the number of remaining 
players). On the other hand, the fact that she is active is a clue that the number of play- 
ers in that period is large, not small. If TV is Poisson-distributed the two effects exactly 
cancel out so all active players in all periods act as if they face a Poisson-distributed 
number of opponents. ЕЕ, combined with IA, makes the analysis rather simple. 

An equilibrium for the Poisson game is defined as a strategy function a such that 
every type assigns positive probability only to actions that maximize the expected 
utility for players of this type; that is, for every action с e С and every type t G T, 
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if сг (с I ř) > 0 then U(c 't,o) = max U(b ' t, a) 

for the expected utility 

^|.,^1п('У')%>,). cec ' xyc) ! / xez(c) cec ' xyc) ! / 

where 

t(c) = Y,r{t)a{c't) 
teT 

is the marginal probability that a random sampled player will choose action с under 
a. Note that this equilibrium is by definition symmetric; asymmetric equilibria 
where players of the same type could play differently are not defined in games with 
population uncertainty since ex ante we do not know the list of participating players. 

Myerson (1998) proves existence of equilibrium under all games of population 
uncertainty with finite action and type spaces, which includes Poisson games.8 This 
existence result provides the basis for the following characterization of the Poisson- 
Nash equilibrium. 

B. Poisson Equilibrium for the LUPI Game 

In the (symmetric) Poisson equilibrium, all players employ the same mixed strat- 
egy p = (pup2, . . . ,Pk) where Y^i=' Pi - 1- Let the random variable X(k) be the 
number of players who pick к in equilibrium. Then, Pr (X(fc) = i) is the probability 
that the number of players who pick к in equilibrium is exactly /. By environmen- 
tal equivalence (ЕЕ), Pr(X(ifc) = /) is also the probability that / opponents pick к. 
Hence, the expected payoffs for choosing different numbers are: 

тг(1) = Pr(X(l) - 0) - e~np> 

тг(2) - Pr(X(l) + 1) • Pr(X(2) = 0) = (1 - npxe-™) • e~np2 

тг(З) = Pr(X(l) ф 1) - Pr(X(2) ф 1) • Pr(X(3) = 0) 

тг(Л) = Щ Рг(*(0 Ф 4 * МВД = 0) 

= 
[Г! [l-nPie-^]j 

- e-™ 

8 For infinite types, Myerson (2000) proves existence of equilibrium for Poisson games alone. 
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for all /: > 1 . If both к and к + 1 are chosen with positive probability in equilib- 
rium, then n(k) = n(k + 1). Rearranging this equilibrium condition implies 

(1) enpM = enpk - npk. 

Alternatively, this condition can be written as 

(2) Pk - Рш = -тНп(1 - W~n 

In addition to condition 1 (or 2), the probabilities must sum up to one and the 
expected payoff from playing numbers not in the support of the equilibrium strategy 
cannot be higher than the numbers played with positive probability. 

The three equilibrium conditions allow us to characterize the equilibrium and 
show that it is unique. 

PROPOSITION 1 : There is a unique mixed equilibrium p = (рь ръ • • • , pK) of the 
Poisson LUPI game that satisfies the following properties: 

1) Full support: pk > 0 for all k. 

2) Decreasing probabilities: pk+' < pkforallk. 

3) Convexity /concavity: (pM - pk+2) > (Pk ~ Рш) far pk+{ > '/n, and 
(Pk+i - Pk+i) < (pk- Pk+i)forl/n > pk. 

4) Convergence to uniform play with many players: for any fixed K, n - » oo 
implies рш -> pk. 

5) Probability asymptotes to zero with more numbers to guess: for any fixed n, 
К - > oc implies pK - ► 0. 

The proof is given in the Appendix. The intuition for the results in Proposition 1 
are as follows. For the first property, first note that if к is chosen, so is к + 1, since 
deviating from к to к + 1 would otherwise be profitable. Nothing matters if there 
is a smaller number than к uniquely chosen by an opponent, but if not, picking 
к wins only if nobody else chooses к, while picking к + 1 wins if either nobody 
chooses к or if more than two opponents choose к. Together with the fact that 1 has 
to be chosen guarantees full support. Secondly, lower numbers should be chosen 
more often because the LUPI rule favors lower numbers. For example, if everyone 
is choosing uniformly, you should pick 1 . However, as more people participate in 
the game, this advantage disappears which implies convergence to uniform (prop- 
erty 4).9 Thirdly, condition 2 shows that the difference between pk and pk+x solely 

9 For example, when К = 100 and n = 500, the mixture probabilities start at p] - 0.0124 and end with 
p91 = 0.0043, /?98 = 0.0038, p99 = 0.0031, pm = 0.0023; so the ratio of highest to lowest probabilities is about 
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x10"4 

s 
о 
°- Above 1/53783: Concave 

1 " 

Below 1/53783: Convex, 

asymptotes to zero 

I 
ol 

 1  1  1  1  1  1  1  1  1  1  1 

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 

Numbers chosen (truncated at 10,000) 

Figure 1. Poisson-Nash Equilibrium for the Field LUPI Game (n = 53,783, К = 99,999) 

depends on the function /(*) = xe x where x = npk. Since/ (x) > 0 if x < 1, and 
f'(x) < 0 if x > 1, the critical cutoff for concavity /convexity happens dXpk = l/n. 
Lastly, since pK is the smallest among all probabilities, if pK does not converge to 
zero as К becomes large, the probabilities will not sum up to one. 

In the Swedish game the average number of players was n - 53,783 and num- 
ber choices were positive integers up to К = 99,999. As Figure 1 shows, the equi- 
librium involves mixing with substantial probability between 1 and 5,500, starting 
from/?! = 0.0002025. The predicted probabilities drop off very sharply at around 
5,500. This is due to the concavity /convexity switch around l/n, which happens at 
T = 5,513 (pT = 0.00001857); the difference (рк - рш) increases as you move 
toward '/n from either side. Figure 1 shows only the predicted probabilities for 1 
to 10,000, since probabilities for numbers above 5,518 are positive but minuscule. 
Note that n = 53,783 < К = 99,999 implies that K/n > 1, and hence, the concav- 
ity/convexity switch (and the "sharp drop") has to occur at T < K.10 

The central empirical question that will be answered later is how well actual behav- 
ior in the field matches the equilibrium prediction in Figure 1. Keep in mind that the 
simplified game analyzed in this section differs in some potentially important ways 
from the actual Swedish game. Computing the equilibrium is complicated and its 

six-to-one. When К = 100 and n = 5,000, all mixture probabilities for numbers 1 to 100 are 0.01 (up to two- 
decimal precision). 10 pT is close to 1 /n by the concavity /convexity switch. So, Tis positively related to n. Since pK converges to zero 
for large К due to Property 5 of Proposition 1 , T does not depend on К as long as К is large (and "non-binding"). 
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properties are not particularly intuitive. It might therefore be surprising if the actual 
data matched the equilibrium closely. Because there are 49 days of data, we can also 
see whether choices move in the direction of the Poisson-Nash benchmark over time. 

II. The Field LUPI Game 

The field version of LUPI, called Limbo, was introduced by the government- 
owned Swedish gambling monopoly Svenska Spel on January 29, 2007. This sec- 
tion describes its essential elements; additional description is in online Appendix C. 

In Limbo, players chose an integer between 1 and 99,999. Each number bet 
costs SEK 10 (approximately EURO 1). The game was played daily and the win- 
ning number was presented on TV in the evening and on the Internet. The winner 
received 18 percent of the total sum of bets, with the prize guaranteed to be at least 
100,000 SEK (approximately EURO 10,000). If no number was unique the prize 
was shared evenly among those who chose the smallest and least-frequently chosen 
number. There were also smaller second and third prizes (SEK 1,000 and SEK 20) 
for being close to the winning number. 

During the first three to four weeks, it was only possible to play the game at 
physical branches of Svenska Spel by filling out a form (Figure All in the online 
Appendix). The form allowed players to bet on up to six numbers,1 * to play the same 
numbers for up to 7 days in a row, or to let a computer choose random numbers for 
them (a "HuxFlux" option). During the following weeks it was also possible to play 
online, see online Appendix С for a description of the online interface. 

Daily data were downloaded for the first seven weeks, ending on the 18th of 
March 2007. The game was stopped on March 24th, one day after a newspaper 
article claimed that some players had colluded in the game, but it is unclear whether 
collusion actually occurred. 

Unfortunately, we have only gained access to aggregate daily frequencies, not to 
individual level data. We also do not know how many players used the randomiza- 
tion HuxFlux option. However, because the operators told us how HuxFlux worked, 
we can estimate that approximately 19 percent of players were randomizing in the 
first week.12 

Note that the theoretical analysis of the LUPI game in the previous section differs 
from the field LUPI game in three ways. First, the theory used a tie-breaking rule 
in which nobody wins if there is no uniquely chosen number (to simplify expected 
payoff calculations enormously). In the field game, however, players who tie by 
choosing the smallest and least-frequently chosen number share the prize. This is 
a minor difference because the probability that there is no unique number is very 
small and it never happened during the 49 days for which we have data. A second, 
more important, difference is that we assume that each player can only pick one 

1 ' The rule that players could only pick up to six numbers a day was enforced by the requirement that players 
had to use a "gambler's card" linked to their personal identification number when they played. Colluding in LUPI 
can conceivably increase the probability of winning but would require a remarkable degree of coordination across 
a large syndicate, and is also risky if others collude in a similar way. 12 In the first week, the randomizer chose numbers from 1 to 15,000 with equal probability. The drop in numbers 
just below and above 15,000 suggests the 19 percent figure. 
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Table 1 - Descriptive Statistics and Poisson-Nash Equilibrium Predictions for Field LUPI Game 

All days Weekl Week 7 Eq 

Avg. SD Min. Max. Avg. Avg. Avg. 

Number of bets 53,783 7J82 38,933 69,830 57,017 47,907 53,783 
Average number played 2,835 813 2,168 6,752 4,512 2,484 2,595 
Median number played 1,675 348 436 2,273 1,204 1,936 2,542 
Winning number 2,095 1,266 162 4,465 1,159 1,982 2,595 
Lowest number not played 3,103 929 480 4,597 1,745 3,462 4,938 
Above T= 5,513 (percent) 6.65 6.24 2.56 30.32 20.11 2.80 0.00 
First (25 percent) quartile 780 227 66 1,138 425 914 1,251 
Third (75 percent) quartile 2,898 783 2,130 7,610 3,779 3,137 3,901 
Below 100 (percent) 6.08 4.84 2.72 2.97 15.16 3.19 2.02 
Below 1,000 (percent) 32.31 8.14 21.68 63.32 44.91 27.52 20.03 
Below 5,000 (percent) 92.52 6.44 68.26 96.74 78.75 96.44 93.32 
Below 10,000 (percent) 96.63 3.80 80.70 98.94 88.07 98.81 100.00 
Even numbers (percent) 46.75 0.58 45.05 48.06 45.91 47.45 50.00 
Divisible by 10 (percent) 8.54 0.466 7.61 9.81 8.43 9.01 9.99 
Proportion 1900-2010 (percent) 71.61 4.28 67.33 87.01 79.39 68.79 49.78 
11,22, ...,99 (percent) 12.2 0.82 10.8 14.4 12.39 11.44 9.09 
111, 222, . . . , 999 (percent) 3.48 0.65 2.48 4.70 4.27 2.78 0.90 
1111,2222, ...,9999(1/1,000) 4.52 0.73 2.81 5.80 4.74 3.95 0.74 
11111, 22222, ..., 99999 (1/1,000) 0.76 0.84 0.15 5.45 2.26 0.21 0 

Notes: Proportion of numbers between 1900 and 2010 refers to the proportion relative to numbers between 1844 
and 2066. "11, 22, ..., 99" refers to the proportion relative to numbers below 100, "111, 222, ..., 999" refers to 
numbers below 1,000, and so on. The "Eq Avg" predictions refers to the predictions of the Poisson-Nash equilib- 
rium with n = 53, 783, and К = 99,999. 

number. In the field game, players are allowed to bet on up to six numbers. This does 
play a role for the theoretical predictions, since it allows players to coordinate one's 
guesses to avoid choosing the same number more than once (as could be the case 
when each bid is placed by a different player). Finally, we do not take the second 
and third prizes present in the field version into account, but this is unlikely to make 
a big difference given the strategic nature of the game. 

Nevertheless, these three differences between the payoff structures of the game 
analyzed theoretically, and the field game as it was played, are a motivation for run- 
ning laboratory experiments with single bets, no opportunity for direct collusion, 
and only a first prize, which match the game analyzed theoretically more closely. 

A. Descriptive Statistics 

Table 1 reports summary statistics for the first 49 days of the game. Two addi- 
tional columns display the corresponding daily averages for the first and last weeks 
to see how much learning takes place. The last column displays the corresponding 
statistics that would result from play according to the Poisson equilibrium. 

Overall, the average number of bets N was 53,783, but there was considerable 
variation over time. There is no apparent time trend in the number of participating 
players, but there is less participation on Sundays and Mondays (see Figure A2 in 
the online Appendix).13 The variation of the number of bets across days is therefore 

13The Sunday-Monday average N (standard deviation) is 44,886 (4,001) and the Tuesday-Saturday average is 
57,341 (5,810). Dividing the sample in this way does reduce the variance in N by almost half. However, the sum- 
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much higher than what the Poisson distribution predicts (its standard deviation is 
232). However, note that larger variance in N means sometimes there are many fewer 
players (so chosen numbers should be smaller) and sometimes there are many more 
players (so chosen numbers should be larger). Fixing the mean of N and increasing 
the variance might therefore have little overall impact on the equilibrium number 
distribution (and has little effect in the lab data reported later). 

Despite some differences between the simplified theory and the way the field lot- 
tery game was implemented, the average number chosen overall was 2,835, which 
is close to the equilibrium prediction of 2,595. The mean number in the last week 
is 2,484, compared to the prediction of 2,595. 14 The median converged toward the 
equilibrium prediction of 2,542, from 1,204 in the first week to 1,936 in the last 
week. Winning numbers, and the lowest numbers not chosen by anyone, also varied 
a lot over time. 

In equilibrium, the first and foremost prediction is that essentially nobody (fewer 
than 0.01 percent) should choose a number above T = 5,513. In the field lottery 
game, 20 percent chose these high numbers in the first week, but in the last week 
only 2.8 percent did. For numbers above 10,000, 12 percent chose these extremely 
high numbers in the first week, but in the last week only 1 percent did. This indicates 
both compelling convergence, as well as initial deviation. In fact, the third quartile 
(75 percent) was 7,610 in day 1, but quickly dropped below 3,200, resulting in an 
average of 3,779 for week 1 and 2,443 for week 2. Then, the third quartile con- 
verged back toward the equilibrium prediction (3,901), ending up at 3,137 in week 
7. All other aggregate statistics in Table 1 are closer to the equilibrium predictions 
in the last week than in the first week. Many of the statistics converge rather swiftly 
and closely. For example, although 20 percent chose numbers above T - 5,513 in 
week 1, less than 5 percent did each day from week 3 to 7.15 

An interesting feature of the data is a tendency to avoid round or focal numbers and 
choose quirky numbers that are perceived as "anti-focal" (as in hide-and-seek games, 
see Vincent P. Crawford and Nagore Iriberri 2007a). Even numbers were chosen less 
often than odd ones (46.75 percent versus 53.25 percent). Numbers divisible by 10 are 
chosen a little less often than predicted. Strings of repeating digits (e.g., 1 1 1 1) are cho- 
sen too often. Players also overchoose numbers that represent years in modern time 
(perhaps their birth years). If players had played according to equilibrium, the fraction 
of numbers between 1900 and 2010 divided by all numbers between 1844 and 2066 
should be 49.78 percent, but the actual fraction was 70 percent.16 

тагу statistics in the two groups are very close together (the means are 2,792 and 2,941). 
To judge the significance of the difference between theory and data we simulated 1000 weekly average num- 

bers from the Poisson-Nash equilibrium. That is, 7 x 53,783 i.i.d. draws were drawn from the equilibrium distribu- 
tion and the average number was computed. This yields one simulated average. The procedure was then repeated 
a total of 10,000 times to create 10,000 simulated averages. The low and high range of 9,500 of these simulated 
averages - a 95 percent confidence interval - is 2,590 to 2,600. Since the weekly averages in the data lie outside this 
extremely tight interval, we can conclude that the data are significantly different than those predicted by theory. But 
note that this is an extremely demanding test because the very large sample sizes mean that the data must lie very 
close to the theory to not reject the theory. 15 Figure A3 (in online Appendix) provides weekly boxplots of the data and Figure A4 plots average daily fre- 
quencies for week 1, 3, 5, and 7 for those who are interested in weekly changes in the distribution and percentiles. 

õWe compare the number of choices between 1900 and 2010 to the number of choices between 1844 and 
2066 since there are twice as many strategies to choose from in the latter range compared to the first. If all players 
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Figure 2. Numbers Chosen between 1900 and 2010, and between 1844 and 2066, 
during All Days in the Field 

Figure 2 shows this focality in a histogram of numbers between 1900 and 2010 
(aggregating all 49 days). Note that although the numbers around 1950 are most 
popular, there are noticeable dips at focal years that are divisible by ten.17 Figure 
2 also shows the aggregate distribution of numbers between 1844 and 2066, which 
clearly shows the popularity of numbers around 1950 and 2007. There are also spikes 
in the data for special numbers like 2121, 2222, and 2345. Explaining these focal 
numbers with the cognitive hierarchy model presented below is not easy (unless the 
0-step player distribution is defined to include focality), so we will not comment on 
them further (see Crawford and Iriberri 2007a for a successful application in simpler 
hide-and-seek games). 

B. Results 

Do subjects in the field LUPI game play according to the Poisson-Nash equilib- 
rium benchmark? In order to investigate this, we assume that the number of players 
is Poisson distributed with mean equal to the empirical daily average number of 
numbers chosen (53,783). As noted previously, this assumption is wrong because 
the variation in number of bets across days is much higher than what the Poisson 
distribution predicts. 

Figure 3 shows the average daily frequencies from the first week together with 
the equilibrium prediction (the dashed line), for all numbers up to 99,999 and for 
the restricted interval up to 10,000. Recall that in the Poisson-Nash equilibrium, 
probabilities of choosing higher numbers first decrease slowly, drop quite sharply 

randomized uniformly (an approximation to the equilibrium strategy with large n and K), the proportion of numbers 
between 1900 and 2010 would be 50 percent. 17 Note that it would be unlikely to observe these dips reliably with typical experimental sample sizes. It is only 
with the large amount of data available from the field (2.5 million observations) that these dips are visually obvious 
and different in frequency than neighboring unround numbers. 
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Figure 3. Average Daily Frequencies and Poisson-Nash Equilibrium Prediction for the First Week 
in the Field (n = 53,783, К = 99,999) 

at around 5,500, and asymptotes to zero after p55l3 « '/n (recall Proposition 1 and 
Figure 1). Compared to equilibrium, there is overshooting at numbers below 1,000, 
undershooting at numbers between 2,000 and 5,500, and again overshooting beyond 
5,500. 18 It is also noteworthy how spiky the data is compared to the equilibrium pre- 
diction, which is a reflection of clustering on special numbers, as described above. 

Nonetheless, the ability of the very complicated Poisson-Nash equilibrium 
approximation to capture some of the basic features of the data is surprisingly good. 
For example, most of the guesses (79.89 percent in the first week) are concentrated 
at or below T = 5,513. As a referee nicely expressed this central result: "To me, the 
truncation of the distribution (i.e., the set [Г, К] has negligible mass) is the first- 
order effect of equilibrium reasoning. Furthermore, the relationship between k, K, 
and T is not obvious so the finding that, by the seventh week, almost all of the mass 
of the empirical distribution is concentrated in [0, T] is quite striking." 

Figure 4 shows average daily frequencies of choices from the second through the 
last (7th) week. Behavior in this period is closer to equilibrium than in the first week. 
In particular, the overshooting of high numbers almost vanishes - only 4.41 percent 
of the choices are above 5,513. However, when only numbers below 10,000 are plot- 
ted, the overshooting of low numbers and undershooting of intermediate numbers is 
still clear (although the undershooting region shrinks to numbers between 4,000 and 
5,500) and there are still many spikes of clustered choices. 

The first three columns of Table 2 provide the frequencies for the last week of 
field data (Figure A4 in the online Appendix) with a bin size of 500 up to number 
5,500 and compare it with the Poisson-Nash equilibrium prediction. The '2 test 
statistic is 53,864.6, strongly rejecting the equilibrium model. This suggests that 
although there is only substantial undershooting in the last three bins, the data from 
the final week is still far from the Poisson-Nash equilibrium. Moreover, the drop 
from around 43,000 (in the first four bins) to around 30,000 (in the next four bins) 
is also difficult to account for. 

18 This overshooting-undershooting-overshooting pattern could explain why in Table 1, the average number 
played is close to the equilibrium prediction, while the first quartile and median are always too low (though con- 
verging up) and the percentage above 5,513 is always too high. 
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Figure 4. Average Daily Frequencies and Poisson-Nash Equilibrium Prediction 
for Week 2-7 in the Field (n = 53,783, К = 99,999) 

Table 2 - Frequency Table for the Last Week of Field Data, the Poisson-Nash Equilibrium and 
Cognitive Hierarchy Model 

Week 7 versus equilibrium Week 7 versus cognitive hierarchy 

Total frequency Average frequency Total frequency Average frequency 
(for all numbers) (for each number) (for all numbers) (for each number) 

Bin range Week 7 Eq Week 7 Ëq Week 7 CH Week 7 CH 

1-500 47,047 33,796.5 94 бгб 47,047 43,538.8 94 87Л 
501-1,000 45,052 33,448.3 90 66.9 45,052 42,641.2 90 85.3 
1,001-1,500 41,489 33,060.8 83 66.1 41,489 42,343.9 83 84.7 
1,501-2,000 43,815 32,624.0 88 65.2 43,815 41,257.8 88 82.5 
2,001-2,500 33,827 32,123.5 68 64.2 33,827 39,631.4 68 79.3 
2,501-3,000 29,850 31,537.8 60 63.1 29,850 36,794.6 60 73.6 
3,001-3,500 33,115 30,832.0 66 61.7 33,115 32,437.4 66 64.9 
3,501-4,000 25,765 29,943.8 52 59.9 25,765 25,532.5 52 51.1 
4,001^,500 16,810 28,745.2 34 57.5 16,810 16,006.9 34 32.0 
4,501-5,000 6,614 26,891.5 13 53.8 6,614 6,401.8 13 12.8 
5,001-5,500 2,463 22,130.7 5 44.3 2,463 2,075.7 5 4.2 
X2 53,864.6*** 107.6*** 2,891.4*** 5.66 

*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 

Nevertheless, given there are so much data, it is not surprising that the equi- 
librium model is rejected. One possible remedy is to use the average number of 
guesses for each number (in the bin range), instead of the total number of guesses. 
This is done by simply dividing the bin totals by 500. We then round these numbers 
into integers so we can perform a x2 test (like for the total number of guesses). The 
results are shown in column 4 and 5 of Table 2. The x2 test statistic is 107.6, still 
rejecting the equilibrium model, but much smaller than that of the total. 

The top panel of Table 3 provides additional weekly goodness-of-fit measures for 
the Poisson-Nash equilibrium. Weekly x2 test results are shown in the first two rows. 
In particular, the x2 test statistics drop sharply from more than 640 in the first week 
to less than 1 10 in the last week. Nevertheless, the equilibrium prediction is rejected 
at the 0.1 percent level for all weeks. 
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Table 3 - Goodness-of-Fit for Poisson-Nash Equilibrium and Cognitive Hierarchy for Field Data 

Week 
 (1) (2) (3) (4) (5) (6) (7) 

Poisson-Nash equilibrium 
X2 (for average frequency) 640.45 323.76 257.42 259.27 261.19 121.29 107.60 
(Degree of freedom) (10)*** (10)*** (10)*** (10)*** (10)*** (10)*** (10)*** 
Proportion below (percent) 48.95 61.29 67.14 67.44 69.93 76.25 76.23 
ENO 2,176.4 4,964.4 6,178.4 7,032.4 8,995.0 14,056.8 13,879.3 

Cognitive hierarchy model 
Log-likelihood -53,740 -31,881 -22,085 -19,672 -19,496 -19,266 -17,594 
r 1.80 3.17 4.17 4.64 5.02 6.76 6.12 
Л 0.0034 0.0042 0.0058 0.0068 0.0069 0.0070 0.0064 
X2 (for average frequency) 77.92 52.21 7.64 3.90 4.60 4.64 5.48 
(Degree of freedom) (9)*** (9)*** (8) (8) (8) (9) (9) 
Proportion below (percent) 62.58 72.57 78.65 80.17 82.09 82.43 82.24 
ENO 3,188.8 7,502.5 9,956.0 12,916.1 17,873.0 21,469.6 21,303.0 

Notes: The degree of freedom for a '2 test is the number of bins minus one. The proportion below the theoretical 
prediction refers to the fraction of the empirical density that lies below the theoretical prediction. 

*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 

Another possibility is to calculate the proportion of the empirical density that lies 
below the predicted density. This measure is one minus the summed "miss rates", 
the differences between actual and predicted frequencies, for numbers which are 
chosen more often than predicted. In Table 3, the percentage of empirical data that 
lies below equilibrium density is reported in the third row, increasing from just 
below 50 percent in the first week to more than 75 percent in the last week. 

Finally, when all models are not literally true, one can compare models using the 
"equivalent number of observations" (ENO) of the relevant model computed from 
raw mean squared errors. ENO was first proposed by Ido Erev et al. (2007) to com- 
pare relative performance of different learning models (that were all rejected) pre- 
dicting subject behavior in games with mixed strategy equilibria, a similar situation 
to what we have here. Roughly speaking, ENO represents the weight one should 
put on the model relative to the existing data when predicting new observations. As 
stated in Erev et al. (2007): "The ENO of the model is the value of [N] (the size 
of the experiment) that is expected to lead to a prediction that is as accurate as the 
model's prediction." As shown in the fourth row of Table 3, the ENO of the Poisson- 
Nash equilibrium increases from about 2,200 in week 1 to almost 14,000 in week 7, 
demonstrating the improvement of equilibrium from week 1 to 7.19 

The next question is whether an alternative theory can explain both the degree to 
which the equilibrium prediction is surprisingly accurate and the degree to which 
there is systematic deviation. 

19However, since there are on average 47,907(^¿ 335,347/7) guesses every day in week 7, even an ENO of 
14,000 can still be easily outweighed by one day of data. 
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Figure 5. Probability of Choosing Numbers 1-20 in Symmetric QRE (n= 26.9, K= 99, Л = 0.001,..., 10) 
and in the Poisson-Nash Equilibrium (n = 26.9, К = 99) 

С. Rationalizing Non-Equilibrium Play 

A natural way to model limits on strategic thinking is by assuming that different 
players carry out different numbers of steps of iterated strategic thinking in a cogni- 
tive hierarchy (CH). This idea has been developed in behavioral game theory by sev- 
eral authors (e.g., Rosemarie Nagel 1995; Dale О. Stahl and Paul W. Wilson 1995; 
Miguel Costa-Gomes, Crawford, and Bruno Broseta 2001; Camerer, Teck-Hua Ho, 
and Juin-Kuan Chong 2004; and Costa-Gomes and Crawford 2006) and applied to 
many games of different structures (e.g., Crawford 2003; Camerer, Ho, and Chong 
2004; Crawford and Iriberri 2007b; and Tore Ellingsen and Östling 2010).20 

One alternative candidate to cognitive hierarchy would be the quantal response 
equilibrium (QRE). QRE and CH have been compared to Nash predictions in many 
experimental studies, and they often explain deviations from Nash equilibrium 
in similar ways (e.g., Brian W. Rogers, Thomas R. Palfrey, and Camerer 2009). 
However, QRE and CH can be clearly distinguished in LUPI games since QRE 
seems to predict too few low-number choices. For example, for n = 26.9 players and 
number choices from 1 to К = 99 (as implemented in our lab experiment), Figure 5 
shows a 3-dimensional plot of the QRE probability distributions for many values 
of Л, along with the Poisson-Nash equilibrium.21 When A is low, the distribution is 
approximately uniform. As Л increases more probability is placed on lower num- 
bers 1-12. When Л is high enough the QRE closely approximates the Poisson-Nash 
equilibrium, which puts roughly linear declining weight on numbers 1 to 15 and 

20 A precursor to these models was the insight, developed much earlier in the 1980's by researchers studying 
negotiation, that people often "ignore the cognitions of others" in asymmetric-information bidding and negotiation 
games (Max H. Bazerman et al. 2000). 

The plot shows the QRE based on a power function, but the picture looks identical with a logit function. 
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infinitesimal weight on higher numbers. We therefore focus on a cognitive hierarchy 
model in this paper. 

Level-/: and cognitive hierarchy models require a specification of how &-step 
players behave and the proportions of players for various k. We follow Camerer, 
Ho, and Chong (2004) and assume that the proportion of players that do к thinking 
steps is Poisson distributed with mean r, i.e., the proportion of players that think in 
к steps is given by 

/(*) = e'Trk/kl. 

We assume that £-step thinkers incorrectly believe that all other players can only 
think fewer steps than themselves, but correctly guess the proportions of players 
doing 0 to к - 1 steps (as a truncated Poisson distribution). In other words, level- 1 
thinkers believe all other players are level- 0 types. Level-2 thinkers believe there 
are level-0 types and level- 1 types. Level-3 thinkers believe there are level-0, level- 1 
and level-2 types, and so on.22 Then the conditional density function for the belief 
of a &-step thinker about the proportion of / < к step thinkers is 

Х^оДА) 
The IA and ЕЕ properties of Poisson games (together with the general type speci- 

fication described earlier) imply that the number of players that a k-sttp thinker 
believes will play strategy i is Poisson distributed with mean 

k-' 

щ' = "E 8kU)pjr 

Hence, the expected payoff for a /¿-step thinker of choosing number / is 

7=1 

To fit the data well, it is necessary to assume that players respond stochastically 
(as in QRE) rather than always choose best responses (see also Rogers, Palfrey, and 
Camerer 2009). 23 We assume that level-0 players randomize uniformly across all 

22 An alternative approach which often has advantages is that level-/: types think all other players are exactly 
level (k - 1). However, this does not work in LUPI games: If we start out with LO types playing random, LI types 
should all play 1. If L2 types believe there are only LI types, they should never play 1. If L3 types best respond to 
only L2 types, then they should all play 1 (since they believe nobody is playing 1), and this logic will continue to 
cycle. 

The CH model with best-response piles up most predicted responses at a very small range of the lowest inte- 
gers ( 1 -step thinkers choose 1 , 2-step thinkers choose 2, and ¿-step thinkers will never pick a number higher than 
k). Assuming quantal response smoothes out the predicted choices over a wider number range. 
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' <- Cognitive hierarchy (r = 1 .80, Л = 0.0034) 

2 3 - ' Cognitive hierarchy (r = 6.12, Л = 0.0064) 

' ' ^N. *- Equilibrium 
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Numbers chosen (truncated at 10,000) 

Figure 6. Probability of Choosing Numbers 1-10,000 in the Poisson-Nash Equilibrium 
and the Cognitive Hierarchy Model (n = 53,783, К = 99,999) 

numbers 1 to K, and higher-step players best respond with probabilities determined 
by a normalized power function of expected payoffs.24 

The probability that а к step player plays number / is given by 

k_ (nj-îli-f^g-ф-«*)* 
EL (n¿! [l - née-^}e-»«)X 

' 

for A > 0. Since q) is defined recursively - it only depends of what lower step 
thinkers do - it is straightforward to compute the predicted choice probabilities 
numerically for each type of &-step thinker (for given values of т and A) using a 
loop, then aggregating the estimated p' across steps к. Apart from the number of 
players and the number of strategies, there are two parameters: the average number 
of thinking steps, r, and the precision parameter, A. 

Figure 6 shows the prediction of the cognitive hierarchy model for the parameters 
of the field LUPI game, i.e., when n = 53,783 and К = 99,999. The dashed line 

24 In many previous studies logit choice functions are typically used and they fit comparably to power functions 
(e.g., Camerer and Ho 1998 for learning models). Some QRE applications have used power functions and found 
better fits (e.g., in auctions, Jacob K. Goeree, Charles A. Holt, and Palfrey 2002). However, in this case a logit 
choice function fits substantially worse for the field data (with 99,999 numbers to choose from). The reason is that 
logit choice probabilities are convex in expected payoff. This implies numerically that probabilities are either sub- 
stantial for only a small number of the 99,999 possible numbers, or are close to uniform across numbers. The logit 
CH model simply cannot fit the intermediate case in which thousands of numbers are chosen with high probability 
and many other numbers have very low probability (as in the data). 
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Figure 7. Average Daily Frequencies, Cognitive Hierarchy (solid line) and 
Poisson-Nash Equilibrium Prediction (dashed line) for the First Week in the Field 

{n = 53,783, К = 99,999, т= 1.80, Л = 0.0034) 

corresponds to the case when players do relatively few steps of reasoning and their 
responses are very noisy (r = 1.80 and Л = 0.0034). The dotted line corresponds 
to the case when players do more steps of reasoning and respond more precisely 
(r = 6.12 and Л = 0.0064). Increasing r and Л creates a closer approximation 
to the Poisson-Nash equilibrium, although even with a high r there are too many 
choices of low numbers. 

Can the cognitive hierarchy model account for the main deviations from equi- 
librium described in the previous section? The bottom panel of Table 3 reports the 
results from the maximum likelihood estimation of the data using the cognitive hier- 
archy model.25 The best-fitting estimates week-by-week suggest that both param- 
eters increase over time. The average number of thinking steps that people carry 
out, r, increases from about 1.8 in the first week - an estimate in line with estimates 
from 1.0 to 2.5 that typical fit experimental datasets well (Camerer, Ho, and Chong 
2004) - to 6 in the last week. 

Figure 7 shows the average daily frequencies from the first week together with 
the CH estimation and the equilibrium prediction. The CH model does a reasonable 
job of accounting for the over- and undershooting tendencies at low and interme- 
diate numbers (with the estimated f = 1.80). In later weeks, the week-by-week 

25 It is difficult to guarantee that these estimates are global maxima since the likelihood function is not smooth 
and concave. We also used a relatively coarse grid search, so there may be other parameter values that yield slightly 
higher likelihoods and different parameter values. 
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Figure 8. Average Daily Frequencies, Cognitive Hierarchy (solid line) and 
Poisson-Nash Equilibrium Prediction (dashed line) for the Last Week in the Field 

(n = 53,783, K= 99,999, r= 6.12, Л = 0.0064) 

estimates of т drift upward a little (and Л increases slightly), which is a reduced- 
form model of learning as an increase in the mean number of thinking steps. In the 
last week the cognitive hierarchy prediction is much closer to equilibrium (because 
r is around 6) but is still consistent with the smaller amounts of over- and under- 
shooting of low and intermediate numbers (see Figure 8). 

To get some notion of how close to the data the fitted cognitive hierarchy model 
is, the bottom panel of Table 3 displays several goodness-of-fit statistics. First, the 
log-likelihoods reveal that the cognitive hierarchy model does better in explain- 
ing the data toward the last week and is always much better than Poisson-Nash.26 
However, as shown in the right panel of Table 2, though predictions of the cogni- 
tive hierarchy model are much closer to the data than that of equilibrium, the large 
number of observations simply forces the x2 test to reject the model, even when 
we bin 500 numbers into one category. In particular, the last week x2 test statistic 
for the cognitive hierarchy model is 2,891.4, much smaller than that of equilibrium 
(53,864.6), but still at an extremely high level of significance. 

As discussed above, one remedy is to consider rounded averages for each bin. 
This is reported in the last two columns of Table 2. The last week x2 test statistic 

26 Since the computed Poisson-Nash equilibrium probabilities are e for k > 5,518, the likelihood is always 
essentially zero for the equilibrium prediction. In online Appendix B, however, we compute the log-likelihood for 
the low numbers only. Based on Gideon Schwarz' (1978) information criterion, the cognitive hierarchy model still 
performs better in all weeks. 
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is 5.66, implying that the prediction is not statistically different from the cognitive 
hierarchy prediction. Since there is one cell that has a predicted value less than five, 
it might not be appropriate to conduct a x2 test including that cell. Hence, the bot- 
tom panel of Table 3 reports weekly x2 test results that focus on only the bins that 
have a predicted value greater than 5. The fifth row of the bottom panel provides the 
number of bins used, and the fourth row reports x2 test statistics. As can be seen, the 
cognitive hierarchy model is still strongly rejected in the first two weeks, though not 
as strongly as equilibrium, but not in the following weeks. 

Two other measures of goodness-of-fit previously discussed are also computed 
in order to compare the CH model with the equilibrium prediction. In particular, the 
proportion of the empirical density that lies below the predicted density is reported 
in sixth row of the bottom panel (in Table 3). The cognitive hierarchy model does 
better than the equilibrium prediction in all seven weeks based on this statistic. For 
example, in the first week, 63 percent of players' choices were consistent with the 
cognitive hierarchy model, whereas 49 percent were consistent with equilibrium. 
However, both models improve substantially across the weeks. On the other hand, 
weekly ENO is calculated and reported in the fourth row of the bottom panel (in 
Table 3). Again, the cognitive hierarchy model does better in all seven weeks, start- 
ing from around 3,200 in the first week and end up at 21,000 in the final two.27 

In conclusion, the cognitive hierarchy model performs better than the Poisson- 
Nash equilibrium in all seven weeks of data regardless of what measure is used, 
explaining the systematic deviation from equilibrium. In particular, the cognitive 
hierarchy model can rationalize the tendencies that some numbers are played more, 
as well as the undershooting below the equilibrium cutoff. The value-added of the 
cognitive hierarchy model is not primarily that it gives a slightly better fit, but that it 
provides a plausible story for how players manage to play so close to equilibrium.28 

III. The Laboratory LUPI Game 

We conducted a parallel lab experiment for two reasons. 
First, the rules of the field LUPI game do not exactly match the theoretical 

assumptions used to generate the Poisson-Nash equilibrium prediction. In the field 
data some choices were made by a random number generator, some players might 
have chosen multiple numbers or colluded, there were multiple prizes, and the vari- 
ance in TV is larger than the Poisson distribution variance. 

In the lab, we can more closely implement the assumptions of the theory. If the 
theory fits poorly in the field and closely in the lab, then that suggests the theory is 
on the right track when its underlying assumptions are most carefully controlled. If 

27 Again, since the total number of guesses in week 7 is 335,347, even though the CH model has a much higher 
ENO than Poisson-Nash equilibrium, it also can be easily outweighed by merely one day of data. 

28 Nonetheless, one might wonder whether the parameter-free Poisson-Nash equilibrium does worse than cogni- 
tive hierarchy merely because the latter has two parameters. We address this issue in Online Appendix В by estimat- 
ing the Poisson-Nash equilibrium model week-by-week to obtain the best n (mean of the Poisson distribution) that 
minimizes mean squared error instead of maximizing empirical likelihood. As shown in Table Al, the estimated 
Poisson-Nash model still performs worse than the cognitive hierarchy model in week 1-5, but catches up and is 
comparable to cognitive hierarchy in week 6 and 7. Nevertheless, to make this prediction, the estimated n have to be 
much lower than the actual n and it is not clear how such incorrect beliefs could be sustained. 

This content downloaded from 128.32.135.128 on Mon, 21 Jul 2014 17:24:34 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


22 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS AUGUST 201 1 

the theory fits closely in both cases, this suggests that the additional factors in the 
field that are excluded from the theory do not matter. If the theory fits both well, but 
slightly better in the lab, this is also reassuring since it indicates the additional fac- 
tors in the field contributed merely noise. 

Second, because the field game is rather simple, it is possible to design a lab 
experiment which closely matches the field in its key features. How closely the lab 
and field data match provides some evidence in ongoing debate about how well lab 
results generalize to comparable field settings (e.g., Levitt and List 2007, and Falk 
and Heckman 2009). 

In designing the laboratory game, we compromise between two goals: to create a 
simple environment in which theory should apply (theoretical validity), and to rec- 
reate the features of the field LUPI game in the lab (specialized external validity). 
Because we use this opportunity to create an experimental protocol that is closely 
matched to a particular field setting, we often sacrificed theoretical validity in favor 
of close field replication. 

The first choice is the scale of the game: The number of players (N), possible 
number choices (K), and stakes. We choose to scale down the number of players 
and the largest payoff by a factor of 2,000. This implies that there were on average 
26.9 players and the prize to the winner in each round was $7. We scaled down 
К by a factor of 1,000 since К - 99 allows for focal numbers such as 66, 77, 88, 
and 99 to be chosen, and the shape of the equilibrium distribution has some of the 
basic features of the equilibrium distribution for the field data parameters (e.g., most 
numbers should be below 10 percent of K). Since the field data span 49 days, the 
experiment also has 49 rounds in each session. (We typically refer to experimental 
rounds as "days" and seven-"day" intervals as "weeks" for semantic comparability 
between the lab and field descriptions.) 

The number of players in each round was drawn from a distribution with mean 
26.9. In three of the four sessions, subjects were told the mean number of players, 
and that the number varied from round to round, but did not know the distribution 
(in order to match the field situation in which players were very unlikely to know the 
total number playing each day). Due to a technical error, in these three sessions, the 
variance was lower than the Poisson variance (7.2 to 8.6 rather than 26.9). However, 
this mistake is likely to have little effect on behavior because subjects only know the 
winning number in each round and can draw little inference about the underlying 
distribution of the number of players. In the last session, the number of players in 
each round was drawn from a Poisson distribution with mean 26.9 and the subjects 
were informed about this (Figure A5 in the online Appendix). Furthermore, the data 
from the true Poisson session and the lower- variance sessions look statistically simi- 
lar so we pool them for all analysis (see below). 

Some design choices made the lab setting different from the field setting but 
closer to the assumptions of the theory. In contrast to the field game, in the lab each 
player was allowed to choose only one number, they could not use a random number 
generator, there was only one prize per round, $7, and if there was no unique number 
nobody won. 

In the field data, we do not know how much Swedish players learned each day 
about the full distribution of numbers that were chosen. The numbers were available 
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online and partially reported on a TV show. To maintain parallelism with the field, 
only the winning number was announced in the lab. 

Four laboratory sessions were conducted at the California Social Science 
Experimental Laboratory (CASSEL) at the University of California Los Angeles 
on March 22nd and March 25th of 2007, and on March 3, 2009. The experiments 
were conducted using the Zürich Toolbox for Ready-made Economic Experiments 
(zTree) developed by Urs Fischbacher, as described in Fischbacher (2007). Within 
each session, 38 graduate and undergraduate students were recruited, through 
CASSEL's web-based recruiting system. All subjects knew that their payoff will be 
determined by their performance. We made no attempt to replicate the demograph- 
ics of the field data, which we unfortunately know very little about. However, the 
players in the laboratory are likely to differ in terms of gender, age and ethnicity 
compared to the Swedish players. In the four sessions, we had slightly more male 
than female subjects, with the great majority clustered in the age bracket of 18 to 
22, and the majority spoke a second language. Half of the subjects had never partici- 
pated in any form of lottery before. Subjects had various levels of exposure to game 
theory, but very few had seen or heard of a similar game prior to this experiment. 

A. Experimental Procedure 

At the beginning of each session, the experimenter first explained the rules of 
the LUPI game. The instructions were based on a version of the lottery form for the 
field game translated from Swedish to English (see online Appendix D). Subjects 
were then given the option of leaving the experiment, in order to see how much self- 
selection influences experimental generalizability. None of the recruited subjects 
chose to leave, which indicates a limited role for self-selection (after recruitment 
and instruction). 

In three of the four sessions, subjects were told that the experiment would end at 
a predetermined, but non-disclosed time to avoid an end-game effect (also matching 
the field setting, which ended abruptly and unexpectedly). Subjects were also told 
that participation was randomly determined at the beginning of each round, with 
26.9 subjects participating on average. Subjects in the fourth session were explicitly 
told there were 49 rounds, and the number of players was drawn from a Poisson 
distribution. They were also shown in the instructions a graph showing a distribution 
function for a Poisson distribution with mean 26.9. 

In the beginning of each round, subjects were informed whether they would 
actively participate in the current round (i.e., if they had a chance to win). They 
were required to submit a number in each round, even if they were not selected to 
participate. The difference between behavior of selected and non-selected players 
gives us some information about the effect of marginal incentives on performance 
(see Camerer and Robin M. Hogarth 1999). 

When all subjects had submitted their chosen numbers, the lowest unique positive 
integer was determined. If there was a lowest unique positive integer, the winner 
earned $7; if no number was unique, no subject won. Each subject was privately 
informed, immediately after each round, what the winning number was, whether 
they had won that particular round, and their payoff so far during the experiment. 
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Figure 9. Laboratory Total Frequencies and Poisson-Nash Equilibrium Prediction 
{all sessions, participating players only, n = 26.9, К = 99) 

This procedure was repeated 49 times, with no practice rounds (as is the case of the 
field). After the last round, subjects were asked to complete a short questionnaire 
which allowed us to build the demographics of our subjects and a classification of 
strategies used. In two of the sessions, we included the cognitive reflection test as a 
way to measure cognitive ability (to be described below). All sessions lasted for less 
than an hour, and subjects received a show-up fee of $8 or $13 in addition to earn- 
ings from the experiment (which averaged $8.60). Screenshots from the experiment 
are shown in online Appendix D. 

B. Lab Descriptive Statistics 

In the remainder of the paper, we focus only on the choices from incentivized 
subjects that were selected to actively participate. It is noteworthy, however, that 
the choices of participating and non-participating subjects did not significantly dif- 
fer (/7-value 0.66, Mann- Whitney). The choices of participating subjects from the 
session with the announced Poisson distribution and the pooled other three ses- 
sions do not significantly differ at the five percent level (p = 0.058, Mann- Whitney, 
p = 0.59 based on Mest with clustered standard errors). In the remainder of the 
paper we therefore pool all four sessions. 

Figure 9 shows the data for the choices of participating players (together with the 
Poisson-Nash equilibrium prediction). There are very few numbers above 20 so the 
numbers 1 to 20 are the focus in subsequent graphs. In line with the field data, play- 
ers have a slight predilection for certain numbers, while others are avoided. Judging 
from Figure 9, subjects avoid some even numbers, especially 10, while they endorse 
the odd (and prime) numbers 11, 13, and 17. Interestingly, only one subject played 
20, while 19 was played ten times and 21 was played seven times. 

Table 4 shows some descriptive statistics for the participating subjects in the lab 
experiment. As in the field, some players in the first week tend to pick very high 
numbers (above 20) but the percentage shrinks by the seventh week. The average 
number chosen in the last week corresponds closely to the equilibrium prediction 
(5.8 versus 5.2) and the medians are identical (5.0). Both the average winning 
numbers and the lowest unchosen numbers are relatively close to the equilibrium 
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Table 4 - Descriptive Statistics for Laboratory Data 

 Allrounds  R.l-7 R.43^9 Eq 
Avg. SD Min. Max. Avg. Avg. Avg. 

Average number played 1% L43 432 1Z55 8^56 Jm Jj2 
Median number played 4.65 1.03 3 10 6.14 5.00 5 
First (25 percent) quartile 2.50 0.54 2 4 3.00 2.43 3 
Third (75 percent) quartile 7.24 1.72 5 17 10.21 7.14 8 
Below 20 (percent) 98.02 2.77 81.98 100.00 93.94 98.42 100.00 
Above T = 1 1 (percent) 5.60 6.52 0 42.34 16.52 4.64 2.44 
Even numbers (percent) 45.19 4.47 35.16 53.47 42.11 49.15 46.86 
Session 1 

Winning number 6.02 9.38 1 67 13.00 2.50 5.22 
Lowest number not played 8.08 2.57 1 12 4.86 8.14 8.44 

Session 2 
Winning number 5.07 2.59 1 10 5.83 5.14 5.22 
Lowest number not played 7.47 2.96 1 12 6.29 8.43 8.44 

Session 3 
Winning number 5.61 3.26 1 14 6.14 5.67 5.22 
Lowest number not played 7.53 2.68 2 13 7.43 10.00 8.44 

Session 4 (Poisson) 
Winning number 5.81 3.62 1 17 6.71 3.14 5.22 
Lowest number not played 7.61 3.30 1 13 5.14 8.14 8.44 

Notes: Summary statistics are based only on choices of subjects who are selected to participate. The equilibrium 
column refers to what would result if all players played according to equilibrium (n = 26.9 and К - 99). 

prediction. The tendency to pick odd numbers decreases over time - 42 percent of 
all numbers are even in the first week, whereas 49 percent are even in the last week. 
As in the field data, the overwhelming impression from Table 4 is that convergence 
to equilibrium is quite rapid over the 49 periods (despite receiving feedback only 
about the winning number). 

С Aggregate Results 

In the Poisson equilibrium with 26.9 average number of players, strictly posi- 
tive probability is put on numbers 1 to 16, while other numbers have probabilities 
numerically indistinguishable from zero. Figure 10 shows the average frequencies 
played in week 1 to 7 together with the equilibrium prediction (dashed line) and the 
estimated week-by-week results using the cognitive hierarchy model (solid line). 
These graphs clearly indicate that learning is quicker in the laboratory than in the 
field. Despite that the only feedback given to players in each round is the winning 
number, behavior is remarkably close to equilibrium already in the second week. 
However, we can also observe the same discrepancies between the equilibrium pre- 
diction and observed behavior as in the field. The distribution of numbers is too 
spiky and there is overshooting of low numbers and undershooting at numbers just 
below the equilibrium cutoff (at number 16). 

Figure 10 also displays the estimates from a maximum likelihood estimation of 
the cognitive hierarchy model presented in the previous section (solid line).29 In this 

29 To illustrate how the CH model behaves, consider N = 26.9 and К = 99, with r = 1.5 and Л = 2. Figure A6 
(in the online Appendix) shows how 0 to 5 step thinkers play LUPI and the predicted aggregate frequency, summing 
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Figure 10. Average Daily Frequencies in the Laboratory, Poisson-Nash Equilibrium Prediction 
(dashed lines) and Estimated Cognitive Hierarchy (solid lines), Week 1-7 (n = 26.9, К = 99) 

estimation, we use the estimated weekly rfrom the field data and estimate Л only.30 
We do not estimate both parameters since we are most likely over-fitting by allowing 
two free parameters to estimate relatively few choice probabilities.31 The cognitive 
hierarchy model can account both for the spikes and the over- and undershooting. 
Table 5 shows the estimated Л parameter. There is no clear time trend in this param- 
eter and the A parameter moves around quite a lot over the weeks. We also estimate 
the precision parameter A while keeping the average number of thinking steps fixed 
at 1.5, which has been shown to be a value of r that predicts experimental data 
well in a large number of games (Camerer, Ho, and Chong 2004). The estimated 
precision parameter is in this case considerably lower in the first week, but is then 
relatively constant.32 

across all thinking steps. In this example, 1-step thinkers put most probability on number 1, 2-step thinkers put most 
probability on number 5, and 3-step thinkers put most probability on numbers 3 and 7. 

The alternative would be to fix Л and estimate r, but there is no way to tell what a "reasonable" value of Л is. 
The precision parameter Л depends on scaling of payoffs, the number of strategies, etc., and can not be interpreted 
across games. 31 When trying to estimate both parameters simultaneously, we found different estimates for different grid sizes 
and initial values. Most estimates of r were between 6 and 12 and Л were most often between 10 and 20 (apart from 
the first week which always resulted in а Л of 1.32 ). The log-likelihood is neither smooth nor concave with fixed r 
either, but with only one parameter to estimate we could use a very fine grid to search for the best-fitting parameter. 32 Figure A7 (in the online Appendix) shows the fitted cognitive hierarchy model when r is restricted to 1.5. It 
is clear that the model with r = 1.5 can account for the undershooting also when the number of thinking steps is 
fixed, but it has difficulties in explaining the overshooting of low numbers. The main problem is that with r = 1.5, 
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Table 5 - Goodness-of-Fit for Poisson-Nash Equilibrium and Cognitive Hierarchy Model for 
Laboratory Data 

Week  (1) (2) (3) (4) (5) (6) (7) 
Poisson-Nash equilibrium 
X2 (for average frequency) 24.69 24.14 18.86 21.81 20.17 11.58 21.39 
(Degree of freedom) (5)*** (5)*** (5)*** (5)*** (5)*** (5)** (5)*** 
Proportion below (percent) 82.25 88.55 87.61 88.64 88.64 92.86 87.06 
ENO 158.5 202.5 173.2 239.5 244.1 844.4 200.3 

Cognitive hierarchy model 
Log-likelihood -210.4 -104.3 -88.6 -88.7 -87.5 -80.2 -99.4 
r (from field) 1.80 3.17 4.17 4.64 5.02 6.76 6.12 
Л 1.26 5.97 16.89 5.59 5.28 22.69 4.52 
X2 (for average frequency) 24.31 18.80 8.49 4.57 6.83 2.74 10.06 
(Degree of freedom) (5)*** (5)*** (5) (5) (5) (5) (5)* 
Proportion below (percent) 84.62 87.44 90.52 92.54 92.42 91.11 91.07 
ENO 296.0 263.3 466.8 4,909.9 3,475.8 894.7 502.9 
Restricted cognitive hierarchy model 
A(r=1.5) 1.09 2.52 2.57 2.63 2.60 2.31 2.08 

Notes: The degree of freedom for a x2 test is the number of bins minus one. The proportion below the theoretical 
prediction refers to the fraction of the empirical density that lies below the theoretical prediction. 

*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 

Table 5 provides some goodness-of-fit statistics for the cognitive hierarchy model 
and the Poisson-Nash equilibrium prediction. Consistent with results in the field, the 
cognitive hierarchy model fits data slightly better than the (parameter free) Poisson- 
Nash equilibrium in most weeks. In particular, the x2 test rejects equilibrium for all 
7 weeks, but cannot reject the cognitive hierarchy model starting from week 3, even 
when we only bin 2 numbers into one category.33 Similarly, based the proportion 
below the predicted density, the equilibrium prediction does remarkably well, while 
the cognitive hierarchy model does even better in all but the second and sixth weeks.34 

The ENO results also confirm that equilibrium does pretty well starting from the 
second week, while cognitive hierarchy always does better than equilibrium. 

D. Individual Results 

An advantage of the lab over the field, in this case, is that the behavior of indi- 
vidual subjects can be tracked over time and we can gather more information about 
them to link to choices. Online Appendix D discusses some details of these analyses 
but we summarize them here only briefly. 

there are too many zero-step thinkers that play all numbers between 1 and 99 with uniform probability. The log- 
likelihoods for the CH model with r = 1.5 range from -241 in week 1 to -212 in week 2, which are much worse 
than when using the field values of r. 

33 We only use 6 bins (up to number 12) here to prevent the predicted number of observations to drop below 5. 
Even if we do not bin numbers at all, the x2 test (up to number 12) yields similar results, rejecting the equilibrium 
prediction for all weeks, and rejecting the cognitive hierarchy model for week 1,2,3, 6, and 7 (at the 5 percent level) 
and marginally for week 4 and 5 (at the 10 percent level). 

In online Appendix В we calculate the log-likelihoods using data from numbers 1 to 16, which allows us to 
compare the equilibrium prediction with cognitive hierarchy. Based on the Schwarz (1978) information criterion, 
the cognitive hierarchy model outperforms equilibrium in all weeks. 
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Table 6 - Panel Data Regressions Explaining Individual Number Choices in the 
Laboratory 

All periods Weekl Week 2 Week 3-7 

Round (1-49) 0.001 -0.109 -0.065 0.023 
(0.13) (-0.42) (-0.62) (1.58) 

t - 1 winner 0.178*** 0.148** 0.304*** 0.059* 
(4.89) (2.38) (2.98) (1.89) 

ř-2winner 0.133*** 0.096 0.242** 0.038* 
(2.98) (1.18) (2.40) (1.68) 

t - 3 winner 0.083* 0.052 -0.050 0.030 
(1.94) (0.65) (-0.63) (1.18) 

Fixed effects Yes Yes Yes Yes 
Observations 4,360 421 585 3,354 
R2 0.03 0.09 0.01 0.00 

Notes: The table report results from a linear subject fixed effects panel regression. Only actively 
participating subjects are included, ř-statistics based on clustered standard errors are within 
parentheses. 

*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 

In a post-experimental questionnaire, we asked people to state why they played 
as they did. We coded their responses into four categories (sometimes with multiple 
categories): "Random," "stick" (with one number), "lucky," and "strategic" (explic- 
itly mentioning response to strategies of others). The four categories were coded 
35, 30, 11, and 38 percent of the time. These categories had some relation to actual 
choices because "stick" players chose fewer distinct numbers and "lucky" players 
had number choices with a higher mean and higher variance. The only demographic 
variable with a significant effect on choices and payoffs was "exposure to game 
theory"; those subjects chose numbers with less variation across rounds. A measure 
of "cognitive reflection" (Shane Frederick 2005), a short-form IQ test, did not cor- 
relate with choice measures or with payoffs. 

As is often seen in games with mixed equilibria, there is some mild evidence 
of "purification" since subjects chose only 9.65 different numbers on average (see 
online Appendix D), compared to 10.9 expected in Poisson-Nash equilibrium. 

In the post-experimental questionnaire, several subjects said that they responded 
to previous winning numbers. To measure the strength of this learning effect we 
regressed players' choices on the winning number in the three previous periods. Table 
6 shows that the winning numbers in previous rounds do affect players' choices early 
on, but this tendency to respond to previous winning numbers is considerably weaker 
in later weeks (3 to 7). The small round-specific coefficients in Table 6 also show that 
there does not appear to be any general trend in players' choices over the 49 rounds. 

IV. Conclusion 

It is often difficult to test game theory using field data because equilibrium predic- 
tions depend so sensitively on strategies, information and payoffs, which are usually 
not observable in the field. This paper exploits an empirical opportunity to test game 
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theory in a field setting which is simple enough that clear predictions apply (when 
some simplifying assumptions are made). The game is a LUPI lottery, in which the 
lowest unique positive integer wins a fixed prize. LUPI is a close relative of auctions 
in which the lowest unique bid wins. 

One contribution of our paper is to characterize the Poisson-Nash equilibrium of 
the LUPI game and analyze behavior in this game using both a field dataset, including 
more than two million choices, and parallel laboratory experiments which are designed 
to first permit a clear test of the theory while also matching the field setting. In both 
the field and lab, players quickly learn to play close to equilibrium, but there are some 
diagnostic discrepancies between players' behavior and equilibrium predictions. 

As noted earlier, the variance in the number of players in the field data is much 
larger than the variance assumed in the Poisson-Nash equilibrium. So the field data 
is not an ideal test of this theory, strictly speaking. Therefore, the key issues are 
how much the theory's predictions vary with changes in var (TV), and how much 
behavior changes in response to var (TV). If either theory or behavior is insensitive 
to var (TV), then the Poisson-Nash equilibrium could be a useful approximation to 
the field data. 

As for theory: For the simple examples in which fixed-TV and Poisson equilibria 
can be computed, zero variance (fixed-TV) and Poisson variance equilibria are almost 
exactly the same (see online Appendix A) . In fact, as shown in Figure Al (in the online 
Appendix), the equilibrium probabilities for the fixed-TV and Poisson-Nash equilib- 
rium for the LUPI game with n = 27 and К = 99 (similar to the values used in the 
lab) are practically indistinguishable. Keep in mind that increasing var (TV) (holding 
n constant) implies that sometimes there are a lot of extra players so number choices 
should be higher, and sometimes there are fewer players so number choices should 
be lower. These two opposing effects could minimize the effect of variance on mean 
choices (as the low-K cases in online Appendix A suggest they do). 

As for behavior: There are two sources of evidence that actual behavior is not too 
sensitive to var (TV) . First, in the field data the Sunday and Monday sessions have lower 
n and lower standard deviation than all days, but choices are very comparable to data 
from all days (in which var (TV) about twice as large). Second, in the lab data different 
sessions with var (TV) « 8 and var (TV) « 27 lead to indistinguishable behavior. 

These theoretical and behavioral considerations suggest why the "wrong" theory 
(Poisson-Nash) might approximate actual behavior surprisingly well in the field 
(despite the field var (TV) being empirically far from what the theory assumes). 

A different way to describe our contribution is this: A LUPI game was actually 
played in the field, with specific rules. Can we produce any kind of theory which 
fits the data from this game? In this view, it does not matter whether the field setting 
matches the predictions of a theory exactly. Instead, all that matters is whether the 
theory fits well, even if its assumptions are wrong. 

Here the answer is rather clear: The empirical distribution of choices clearly is 
moving in the direction of the Poisson-Nash equilibrium over the 49 days (as judged 
by every number choice statistic) and is numerically close. As a bonus, the CH 
model improves a little on the Poisson-Nash equilibrium, when optimally param- 
eterized, in the sense that it can explain the key ways in which behavior departs from 
Poisson-Nash (too many low and very high numbers) in the short run. The estimated 
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number of thinking steps is in the first week 1.80, which is in line with estimates 
from many lab experiments. 

Note that the point of the cognitive hierarchy model is not simply to fit the data 
better than Poisson-Nash, but also to show how people with limited computational 
power might start near, and converge to, such a complex equilibrium. However, the 
cognitive hierarchy model provides merely suggestive evidence regarding this con- 
vergence, and hence, should be viewed as a potential stepping stone (instead of the 
final word) to an investigation using a formal learning model. 

Finally, because the LUPI field game is simple, it is possible to do a lab experi- 
ment that closely replicates the essential features of the field setting (which most 
experiments are not designed to do). This close lab-field parallelism in design adds 
evidence to the ongoing debate about when lab findings generalize to parallel field 
settings (e.g., Levitt and List 2007, and Falk and Heckman 2009). The lab game was 
described very much like the Swedish lottery (controlling context), experimental 
subjects were allowed to select out of the experiment after it was described (allow- 
ing self-selection), and lab stakes were made equal to the field stakes (in expected 
terms). Basic lab and field findings are fairly close: In both settings, choices are 
close to equilibrium, but there are too many large numbers and too few agents 
choose intermediate numbers at the high end of the equilibrium range. We interpret 
this as a good example of close lab-field generalization, when the lab environment 
is designed to be close to a particular field environment.35 

Appendix: Proof of Proposition 1 

We first prove the five properties and then prove that the equilibrium is unique. 

1) We prove this property by induction. For к - 1, we must have px > 0. 
Otherwise, deviating from the proposed equilibrium by choosing 1 would 
guarantee winning for sure. Now suppose that there is some number к + 1 
that is not played in equilibrium, but that к is played with positive probability. 
We show that n(k + 1) > тг(&), implying that this cannot be an equilibrium. 
To see this, note that the expressions for the expected payoffs allows us to 
write the ratio тг[к + 1)/тг(&) as 

к(к + 1) = Pr(X(k + 1) = Q) ■ nti РгДО) Ф 1) 
чк) рг(вд = o)-nř:;pr(x(i)#i) 

_ Рт(Х(к + 1) = 0) ■ Рг(ВД ф 1) 
РгДО) = 0) 

If к + 1 is not used in equilibrium, Pr(X(fc + 1) = 0) = 1, implying that 
the ratio is above one. This shows that all integers between 1 and К are played 
with positive probability in equilibrium. 

35 Of course, it is also conceivable that there is a genuine lab-field behavioral difference but it is approximately 
canceled by differences in the design details which have opposite effects. 
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2) Rewrite condition (1) as 

enPM _ enPk = _npk 

By the first property, both/?¿ and/?¿_H are positive, so that the right hand side 
is negative. Since the exponential is an increasing function, we conclude that 
Pk > Pk+'- 

3) Condition (2) can be re-written as 

Pk-Pk+i = -jfH1 -f(nPk)) 

where f(x) - xe~x, f'x) - (1 - x)e~x and x = npk. Hence, f'x) > 0 
if* < 1, and/'(jc) < Oifjc > 1. If pk+i > 1/w, by the second property, 
npk > npk+' > 1. So,f(npk+i) > f(npk). It follows that 

{Pk+i - Pk+i) - ~7f ta(l -ЛпРш)) 

> -¿Ц1 -f(npk)) = (Pk-Pk+i)- 

lfpk < i/n, by the second property, npk+x < npk < l.So, f(npk+i) <f(npk). 
Thus, 

(Pk+i - Pk+2) = -jïH1 -finPk+i)) 

< -jfHl -f{npk)) - (Рк-рш). 

4) Taking the limit of (2) as n -> oo implies that^+1 = pk. 

5) Since 1 = Y,k=l Рк > К • pK by the second property, we have 
pK < 1/K-* Oas/T^ oc. 

In order to show that the equilibrium p = {p',p2,- • -,Рк) is unique, suppose by 
contradiction that there is another equilibrium p' = (p[9 p'2, . . . , pfK). By the equi- 
librium condition (1), Pi uniquely determines all probabilities /?2,...,р^, while p' 
uniquely determines Ръ-.-^Рк- Without loss of generality, we assume p[ > px. 
Since in any equilibrium, pk+x is strictly increasing in pk by condition (1), it must 
be the case that all positive probabilities in p' are higher than in p. However, since 
p is an equilibrium, ^2k=i Pk= 1- This means that J2 k=l p¿ > 1, contradicting the 
assumption that pr is an equilibrium. 
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