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Testing gene-environment interactions in the presence of measurement error 1

1. Introduction

Investigating the interplay between genes and environmental factors, i.e., gene-environment inter-

action (G × E), is very important to understand the etiology of complex diseases, especially with

recent advances in genome-wide association studies (GWAS) and exome sequencing studies (Park

et al., 2010; Goldstein et al., 2013). These studies successfully identified many genetic variants

that are marginally associated with complex diseases including cancers, cardiovascular diseases,

and diabetes. However, these genetic variants explain only a small fraction of familiar aggregation

of corresponding diseases (Zuk et al., 2012). It is hypothesized that the interplay between genetic

and environmental risk factors, such as diet, physical activity, and air pollution, plays a significant

role in explaining familiar aggregation. Investigating G×E could potentially lead to identification

of variants that affect certain subgroups only but missed by marginal analysis. It could also lead to

better understanding of disease etiology, such as how a genetic association may vary over different

subgroups of environmental risk factors. This may help inform effective targeted intervention

strategies for reducing disease burden.

Compared with marginal genetic association analysis, investigation of G×E presents additional

challenges, partly due to the complexity in environmental exposure assessments (Thomas, 2010).

In practice, measurements of environmental factors are often imprecise, sometimes with substantial

measurement error. For example, blood pressure measurements are subject to device recording

error and daily variability, while diet and physical activity are often measured by self-reported

questionnaires, which are known to be biased and subject to systematic over- or under-reporting

of energy intake (e.g., Prentice et al., 2011). While there is a rich literature on accounting for

measurement error in assessing main effects (Carroll et al., 2006), little work has been done

on its effect in G × E analysis. Measurement error of E could have different implications in

testing G × E interactions compared to testing main effects. For example, it is well known that

naı̈ve tests that ignore measurement error are valid in testing the main effect of E (Carroll et al.,

Hosted by The Berkeley Electronic Press



2 Biometrics, 000 2012

2006) under the classical measurement error model. However, it is not clear whether the naı̈ve

test for interaction has the proper size. Previous studies generally ignored measurement error in

the interaction analysis. Based on simulation studies, it was conjectured that the type I error of

the naı̈ve test was still valid under non-differential measurement error (Greenwood et al., 2006;

Williamson et al., 2010). However, our studies show that naı̈ve tests can have incorrect type I error

rate even under non-differential measurement error. As a result, ignoring measurement error may

lead to incorrect conclusions, such as spurious G×E interaction findings. Thus, it is very important

to investigate the influence of measurement error on G × E systematically and develop statistical

methods for G× E that appropriately account for measurement complexities.

Another challenge for G× E analysis is the lack of power, which has motivated many methods

works to improve power especially for genome-wide G × E scans. The methods include case-

only and empirical Bayes methods (Khoury and Flanders, 1996; Chatterjee and Carroll, 2005;

Mukherjee and Chatterjee, 2008), two-stage testing (Kooperberg and LeBlanc, 2008; Dai et al.,

2012; Hsu et al., 2012), and set-based G×E testing (Lin et al., 2013). Strategies to improve power

from the E side (e.g., to improve measurement accuracy of E) have received less attention (Wong

et al., 2003). It is also of interest to study performances of various tests, including naı̈ve tests and

measurement error corrected approaches, in terms of power in detecting G× E.

In this paper, we systematically investigate the consequence of ignoring measurement error in

the analysis of G×E interactions in terms of type I error and power. We then propose a regression

calibration–based testing procedure that accounts for measurement error and compare its power

with the naı̈ve test. The finite sample performances of these tests are evaluated via simulation

studies. The proposed methods are illustrated by applying them to a genetic association study on

coronary heart disease.
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Testing gene-environment interactions in the presence of measurement error 3

2. Influences of measurement error in E on G× E

2.1 Notations and model setup

We consider testing G×E when the environmental exposure E is measured with error. Let Y,G,E

and Z denote the disease outcome, genotype, true environmental exposure, and other confounders,

respectively. The true exposure E is measured with error, and we denote the imprecisely measured

exposure by X . We assume the following generalized linear model (McCullagh and Nelder, 1989)

for disease association:

h(µ) = β0 + β1G+ β2E + β3GE + β4Z, (1)

X = E + ǫ,

where µ = E(Y |G,E) and h is a link function. The popular choices of h are canonical links, e.g.,

identify for continuous outcomes, logit for binary outcomes and log for counts data. In this paper,

we focus on classic measurement error models. Namely, E(ǫ) = 0, var(ǫ) = σ2
E and E,G and Z

are uncorrelated with ǫ. Under this model, the interaction GE is also subject to measurement error,

with the induced measurement error structure

GX = GE +Gǫ.

The measurement error for GE, namely Gǫ, is still centered around 0 and uncorrelated with GE

conditional on G. However, it has non-constant variance, as var(Gǫ | G) = G2σ2
E .

We are interested in testing the null hypothesis in model (1), H0 : β3 = 0 (testing interaction

term). In genetic studies, sometimes one is also interested in testing the composite H ′

0 : β1 =

0, β3 = 0, which has been proposed as a test for joint genetic effects (Kraft et al., 2007; Williamson

et al., 2010) to identify variants while accounting for potential heterogeneity effects across different

levels of E.

The naı̈ve procedure ignores measurement error and fits the following working model,

h(µ) = γ0 + γ1G+ γ2X + γ3GX + γ4Z. (2)

The score, Wald or likelihood ratio tests derived based on this model are referred to as naı̈ve
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tests. We focus on the Wald test, which is (asymptotically) equivalent to the score or likelihood

ratio test to the first order under the null hypothesis. Let Tnaive = γ̂T
3 V

−1
γ,33γ̂3 be the Wald test

statistic under model (2), where Vγ,33 = { I−1
γγ }(3,3) is the (3, 3) element of the inverse Fisher

information matrix. If the true E without measurement error is available, one can define the ideal

test statistic as Tideal = β̂T
3 V

−1
β,33β̂3, where Vβ,33 = { I−1

ββ }(3,3) is the (3, 3) element of the inverse

Fisher information matrix of the true model (1). In practice, however, Tideal cannot be used directly

since E is not observable in the presence of measurement error. We view Tideal as the gold standard

that achieves the maximal asymptotic power, and only use it for comparing power in simulation

studies.

Statistical issues discussed in this paper apply to G × E analyses with single or multiple en-

vironmental exposures E, single or multiple loci G, candidate gene or genome-wide association

analyses. However, without loss of generality and for ease of presentation, we consider one envi-

ronment exposure E and one locus G throughout the paper.

2.2 A simple scenario with continuous outcome and binary genotype

To illustrate the effect of measurement error on G × E, we first consider a simple scenario: 1) Y

follows a Gaussian distribution; 2) G is binary, taking values 0 and 1 with probability 1− p and p,

respectively; 3) ǫ follows Gaussian distribution N(0, σ2
ǫ ) and ǫ is independent of E, G, and Y ; 4) Z

is absent. The third assumption implies non-differential measurement error. G and E are possibly

correlated. We define the following notation on the conditional distribution of E given G,

E(E|G = 0) = µ0, var(E|G = 0) = σ2
e0,E(E|G = 1) = µ1, var(E|G = 1) = σ2

e1.

By the law of total probability, µE = (1 − p)µ0 + pµ1 and σ2
E = (1 − p)σ2

e0 + pσ2
e1 + p(1 −

p)(µ1 − µ0)
2. The subgroup effects of E on Y in genotype groups G = 0 and G = 1 are β2 and

β2 + β3, respectively. Note that we use E to denote the environmental variable and E to denote the

expectation operator. If one ignores measurement error, the estimates of regression coefficients will

be attenuated towards the null in each of the two subgroups (Carroll et al., 2006), with attenuation
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factors (also called reliability ratios) λ1 =
σ2
e1

σ2
e1+σ2

ǫ
and λ0 =

σ2
e0

σ2
e0+σ2

ǫ
, respectively. More precisely,

E(γ̂2) = λ0β2, E(γ̂2 + γ̂3) = λ1(β2 + β3),

thus,

E(γ̂3) = (λ1 − λ0)β2 + λ1β3 =

(
σ2
e1

σ2
e1 + σ2

ǫ

− σ2
e0

σ2
e0 + σ2

ǫ

)
β2 +

σ2
e1

σ2
e1 + σ2

ǫ

β3.

Proposition 1. For the measurement error model (1) with Gaussian outcome Y , identity link

function h and binary genotype G, the following results hold.

(a) The MLE from the naı̈ve model, γ̂3, is generally biased for the true G×E coefficient β3, with

bias term E(γ̂3)− β3 = (λ1 − λ0)β2 + (λ1 − 1)β3.

(b) Under H0 : β3 = 0, E(γ̂3) = (λ1 − λ0)β2. Thus, γ̂3 is biased unless λ0 = λ1 or β2 = 0. The

corresponding test Tnaive has incorrect type I errors unless λ0 = λ1 or β2 = 0.

(c) For fixed β2, σ
2
e0 and σ2

e1, the bias term under H0 depends only on λ1 − λ0. Its absolute value

is monotonically increasing with respect to σ2
ǫ in the interval [0, σe0σe1] and monotonically

decreasing in [σe0σe1,∞], where σe0σe1 is the geometric mean of the variances of E in the

genotype subgroups.

(e) Under G− E independence, λ0 = λ1 and thus γ̂3 is unbiased for β3 under H0.

From these results, one can see that the least squares estimate of the interaction term is generally

biased even in the no-interaction-case. Intuitively, marginal effects of E in the two subgroups

G = 0 and G = 1 are both attenuated towards the null, namely, γ2 = λ0β2 and γ2+γ3 = λ1(β2+β3)

with attenuation factors λ0, λ1 ∈ [0, 1]. However, the magnitude of attenuation in the two groups

can be different. The interaction between the mis-measured exposure X and G, as the difference

between two subgroup effects, is γ3 = (λ1 − λ0)β2 + λ1β3. As a result, the null hypothesis of

H0 : β3 = 0 in the true model does not imply γ3 = 0 in the working model, unless λ0 = λ1

or β2 = 0. Thus, the naı̈ve tests for interactions are invalid in general, and the magnitude of the
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inflation in the type I error depends on both the differential attenuation factor λ1−λ0 and the main

environmental effect β2.

We further look at how measurement error variance σ2
ǫ affect the amount of bias through λ1−λ0.

When σ2
ǫ is small (implying very accurate measurements), both λ0 and λ1 are close to 1 and thus

their difference is small. On the other hand, when σ2
ǫ is very large (implying extremely inaccurate

measurements), both λ0 and λ1 are close to 0 and thus their difference is also small. Specifically,

the magnitude of bias reaches its maximum when the measurement error variance is the same as

the geometric mean of the variances of E in the two genotype subgroups.

There are special occasions under which the bias vanishes and the naı̈ve test becomes valid. The

first setting is β2 = 0, which implies that there is no main effect for the environmental factor E.

The second setting is λ0 = λ1, which is equivalent to σ2
e0 = σ2

e1. A sufficient condition for this is

G−E independence. However, we want to point out that G−E uncorrelatedness is not a sufficient

condition. It is the second moment that really matters, i.e., whether the variance of E varies in

different genotype subgroups. For example, E|G = 0 ∼ N(0, 1) and E|G = 1 ∼ N(0, 22), G and

E are uncorrelated, but the naı̈ve test is still not valid since σ2
e0 6= σ2

e1.

Figure 1 illustrates the magnitude of type I error inflation of the naı̈ve test under this scenario.

The true parameter values are β0 = 1, β1 = 1, β2 = 1, β3 = 0 and there is no interaction effect. We

generated E from N(0, 1) and binary G from a logistic regression model given E with correlation

of G and E ρ = 0.6, 0.4, 0.2. The intercepts in the logistic regression model were chosen to keep

the minor genotype frequency p = 0.36 or p = 0.04, corresponding to minor allele frequency 0.2

under dominant and recessive models, respectively. The type I error is generally inflated and the

inflation increases when the correlation between G and E increases, or when the minor genotype

frequency decreases. The type I error rates are not monotone with respect to σǫ, but increase first

and then decrease as σǫ varies from 0 to ∞. This observation verifies the theoretical result in

Proposition 1(c).

http://biostats.bepress.com/uwbiostat/paper405



Testing gene-environment interactions in the presence of measurement error 7

To summarize, this simple scenario illustrates that, contrary to conjectures in the literature, naı̈ve

tests for interactions generally do not maintain correct type I error even under non-differential

measurement error.

2.3 General cases for continuous outcomes

We now consider general cases for continuous outcomes via linear models, where Z is present

and G is not limited to binary genotype, and assess the bias of the naı̈ve interaction coefficient

estimation. Let DE = (1, G,E,GE,Z) and DX = (1, G,X,GX,Z) denote design matrices for

the true model and working model, respectively, and let ∆ = DX − DE = (0, 0, ǫ, Gǫ, 0) denote

their difference. Under model (2.1), E(Y |G,E, Z) = DEβ and var(Y ) = σ2In×n, where β =

(β0, β1, β2, β3, β4) and σ2 is residual error variance for the outcome variable Y .

The least squares estimator (or equivalently the maximum likelihood estimator) of γ in the

working model (2) is given by γ̂ = (DT
XDX)

−1DT
XY . To assess the bias of γ̂, we calculate its

expection as

E(γ̂) = E{ (DT
XDX)

−1DT
XY }

= E{ (DT
XDX)

−1DT
XDEβ }

= E{ (DT
XDX)

−1DT
X(DX −∆)β }

= β − E{ (DT
XDX)

−1DT
X∆β }

= β − E{ (DT
XDX)

−1DT
X(β2ǫ+ β3Gǫ) }

= β − β2 · E{ (DT
XDX)

−1DT
Xǫ } − β3 · E{ (DT

XDX)
−1DT

X(Gǫ) }. (3)
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To interpret the bias, we note that the two expetation terms can be represented as

E{ (DT
XDX)

−1DT
Xǫ } = E{ (DT

XDX)
−1DT

X(X − E) }

= E{ (DT
XDX)

−1DT
XX − (DT

XDX)
−1DT

XE }

= (0, 0, 1, 0, 0)T − E{ (DT
XDX)

−1DT
XE }, (4)

E{ (DT
XDX)

−1DT
X(Gǫ) } = (0, 0, 0, 1, 0)T − E{ (DT

XDX)
−1DT

X(GE) }. (5)

According to these equations, the bias terms E{ (DT
XDX)

−1DT
Xǫ } and E{ (DT

XDX)
−1DT

X(Gǫ) }

are closely linked to coefficients from regression calibration equations. We consider the following

working models,

E = λ10 + λ11G+ λ12X + λ13GX + λ14Z + εe,

GE = λ20 + λ21G+ λ22X + λ23GX + λ24Z + εge.

The last terms in (4) and (5) are exactly least square estimates of these two regression calibration

models, and thus E{ (DT
XDX)

−1DT
XE } = (λ10, λ11, λ12, λ13, λ14) and E{ (DT

XDX)
−1DT

X(GE) } =

(λ20, λ21, λ22, λ23, λ24). Note that we specifically include the interaction term GX in the calibration

equations, which is crutial for testing G×E as will be shown in the next section. The coefficient λ13

in the calibration model for E is related to differential attenuation factor with respect to genotype

subgroups. In fact, one can show that λ13 = λ1 − λ0 under the simple scenario with binary G in

the absence of Z.

http://biostats.bepress.com/uwbiostat/paper405
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Based on (3–5), it follows that

E




γ̂0

γ̂1

γ̂2

γ̂3

γ̂4




=




β0

β1

β2

β3

β4




+ β2




λ10

λ11

λ12 − 1

λ13

λ14




+ β3




λ20

λ21

λ22

λ23 − 1

λ24




=




1 0 λ10 λ20 0

0 1 λ11 λ21 0

0 0 λ12 λ22 0

0 0 λ13 λ23 0

0 0 λ14 λ24 1







β0

β1

β2

β3

β4




The following are implications of this result.

Proposition 2. Consider the measurement error model (1) with identity link function h. The

following results hold.

(a) The least square estimate for G×E from the naı̈ve model, γ̂3, satisfies E(γ̂3) = λ13β2+λ23β3

and E(γ̂3 − β3) = λ13β2 + (λ23 − 1)β3.

(b) Under H0 : β3 = 0, one has E(γ̂3) = λ13β2. Thus, γ̂3 is biased unless λ13 = 0 or β2 = 0.

(c) The effect of E in subgroup G = g, E(γ̂2 + gγ̂3) = (λ12β2 + λ22β3) + (λ13β2 + λ23β3)g =

(λ12 + gλ13)β2 + (λ22 + gλ23)β3. Under H0 : β3 = 0, E(γ̂2 + gγ̂3) = (λ12 + gλ13)β2 for

subgroup G = g.

(e) When G and E are independent, λ13 = 0 and σ2
ge = var(E|G = g) is invariant with respect to

g. On the other hand, λ13 = 0 does not necessarily imply G− E independence

The main idea remains that estimates of subgroup effects are attenuated towards the null in each

genotype subgroup, but the magnitude of attenuation may be different across subgroups. These

results indicate that the magnitude of type I error inflation under H0 is determined by two factors.
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The first factor is β2, the main effect of E in the genotype subgroup G = 0. The second factor is

λ13, the coefficient for the interaction term GX in the regression calibration equation for E, which

can also be interpreted as differential attenuation factors among genotype subgroups.

If the bias term λ13β2 is known, one can construct a bias-corrected test statistic Tnaive,bc = (γ̂3 −

λ13β2)
T V̂ −1

γ,33(γ̂3 − λ13β2), which will maintain correct type I error rates under H0. In application,

if additional validation data or replicates are available, it is possible to estimate λ13β2 first and

construct a corrected test, although it is important to account for such uncertainty in calculating p

values.

Remark 1: The results in the previous section can be obtained as a corollary of Proposition 2.

When the genotype is binary and Z is absent, one can show that λ13 = λ1 −λ0 =
σ2
e1

σ2
e1+σ2

ǫ
− σ2

e0

σ2
e0+σ2

ǫ
.

In addition, λ20 = 0, λ21 = λ10 + λ11, λ22 = 0, λ23 = λ12 + λ13.

Remark 2: In generalized linear models for non-Gaussian outcomes, the effect of measurement

error is more complex and not necessarily in the form of attenuation. However, we expect that the

naı̈ve tests are not valid in general due to similar reasons. That is, the effect of measurement error

varies across genotype subgroups. As a result the interaction estimate from the naı̈ve model can

be biased. However, it is difficult to obtain an explicit form for the bias term in generalized linear

models. Simulation studies are conducted to evaluate its performance in Section 4.

3. Corrected testing procedures under classic measurement error

In the statistical literature, there are several popular approaches to correcting for measurement error

under a classical measurement error model, including regression calibration (Carroll and Stefanski,

1990), simulation extrapolation (Cook and Stefansk, 1994), conditional score and corrected score

methods and others (for a comprehensive review of these methods, see Carroll et al., 2006). For

hypothesis testing, when the variable with measurement error appears in the main effect term,

it has been shown that the naı̈ve test that ignores measurement error is still valid as it maintains

http://biostats.bepress.com/uwbiostat/paper405
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correct type I error rate under the null hypothesis. Thus, it is popular to use the naı̈ve test for testing

purpose, as it does not require additional validation or replicate data.

When the primary interest is in the G × E, we have shown in Section 2 that naı̈ve tests are no

longer valid. To correct for the inflation in type I error, one needs validation or replication data

to provide information on the measurement error structure. In this paper, we focus on regression

calibration–based tests, which are easy to implement and shown to be optimal in terms of efficiency

for hypothesis testing (Tosteson and Tsiatis, 1988; Stefanski and Carroll, 1990), in the context of

testing main effects only. In this section, we consider regression calibration–based tests, with a

focus on testing G× E instead of the main effect of E.

3.1 Regression calibration (RC)

Regression calibration is an effective approach that has been widely used for measurement error

correction(Carroll et al., 2006; Carroll and Stefanski, 1990). In the context of G×E analysis, both

E and GE are error-prone variables and need to be calibrated.

In the calibration step, we aim to estimate calibration functions for E and GE based on validation

or replicates data. As E(GE|X,G,Z) = G {E(E|X,G,Z) } = G {m(X,G,Z) }, one only needs

to calibrate E. In the presence of G × E, we consider the following two possible approaches to

implement regression calibration (RC):

RC0: excluding the interaction term in calibration, i.e.,

m0(X,G,Z) = λ′

10 + λ′

11G+ λ′

12X + λ′

13Z.

RC1: including the interaction terms in calibration.

m1(X,G,Z) = λ10 + λ11G+ λ12X + λ13GX + λ14Z.

Note that RC0 is the standard approach when the primary interest is testing the main effect.

However, we will show that this version of RC does not correct the bias for the interaction term,

and thus will lead to an invalid hypothesis testing procedure for G × E. On the other hand, RC1
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includes the GX term in the calibration model explicitly, and leads to consistent estimation and

valid testing procedure for G× E.

The calibration model can be estimated based on either validation or replicates data. In an internal

or external validation study, the true exposure E is recorded along with X,G and Z, so one can fit a

linear regression model and estimate λ parameters. On the other hand, if replicated measurements

are available in the full sample or a subsample, the data recorded are (X1, X2, · · · , XJ , G, Z). Let

X denote the average of J measurements, i.e., X =
∑J

j=1 Xj/J . Based on classical measurement

error model, one can first estimate σ2
E and σ2

ǫ using analysis of variance, and calculate var(X) =

σ2
E + σ2

ǫ/J . Let Q = (X,G,GX,Z)T , then the calibration equation for E based on replicated

measurements can be obtained by

m(X,G,GX,Z) = E(X) + ΣXQ Σ−1
QQ {Q− E(Q) },

where ΣXQ = cov(X,Q), ΣQQ = cov(Q,Q), E(X) and E(Q) are estimated by the method

of moments (sample mean, variances or covariances). More details of estimating the calibration

function parameters based on a validation study or replicate data are discussed in Section 4.4 of

Carroll et al. (2006).

In the estimation step, E and GE are replaced by their calibrated estimates. The working model

for this approach is

h(µ) = η0 + η1G+ η2 m̂(X,G,Z) + η3 Gm̂(X,G,Z) + η4Z.

To test the hypothesis H0 : η3 = 0, one can apply a Wald or score test for this working model with

its variance estimated by the sandwich estimator (Carroll et al., 2006). Alternatively, one can use

re-sampling procedures, such as the bootstrap, to obtain standard errors and confidence intervals.

Based on our experience, we recommend the bootstrap approach, especially with small to medium

sample sizes.

Proposition 3. Let η̂RC0
3 and η̂RC1

3 denote the estimated η3 from the two regression calibration

approaches, respectively, and let TRC0 and TRC1 denote the corresponding Wald test statistics.

http://biostats.bepress.com/uwbiostat/paper405



Testing gene-environment interactions in the presence of measurement error 13

Assuming the measurement error model (1) with identity link for continuous outcome and correctly

specified regression calibration model, η̂RC1
3

P−−→ β3, while η̂RC0
3

P−−→ λ13β2+λ23β3 is generally

biased for β3. Under H0 : β3 = 0, TRC1 maintains the correct type I error, while TRC0 does not

unless λ13 = 0 or β2 = 0.

Proposition 3 demonstrates that it is crucial to include the interaction term GX in the calibration

equation when G×E is of primary interest. Similar to the situation for measurement error for main

effects, regression calibration estimators are consistent for linear models if the calibration model

is correctly specified. In generalized linear models, consistency does not hold exactly in general.

However, under rare disease and when the magnitude of association is small to medium, regression

calibration provides approximately unbiased estimators (Rosner et al., 1989).

Remark 3: an alternative method of moment approach. For linear models, Proposition 2 provides

an analytic form of the bias term and thus an alternative method of moment approach for bias

correction. If one can estimate the magnitude of bias, test statistics can be constructed directly by

correcting the bias explicitly. Using validation or replicate data, one could first fit the regression

calibration equation m1(X,G,Z) and obtain an estimate for λ13. An estimate for β2 can be es-

timated by γ̂2/λ̂0 using data from the subgroup G = 0. One can then estimate the bias term by

λ̂13β̂2. However, this approach works for linear models only, and we find its performance similar

to TRC1 empirically. Thus, we focus on the RC approach in this paper.

3.2 Power considerations

In this section, we investigate power performances of several test statistics for G × E, including

the ideal, naı̈ve and RC–based tests.

Proposition 4. Assuming measurement error model (1) with continuous outcome, the following

results hold.
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(a) Under both null and alternative hypotheses,
√
n(β̂3 − β3)

D−−→ N(0, σ2
β),

√
n(γ̂3 − λ13β2 −

λ23β3)
D−−→ N(0, σ2

γ), where σ2
β = limn→∞{nσ2(DT

EDE)
−1 }3,3, σ2

γ = limn→∞{nσ2(DT
XDX)

−1 }3,3.

(b) Under local alternatives Han : β3 = δ/
√
n, the ideal test statistic Tideal converges to χ2

1,τ1
, with

non-centrality parameter τ1 = δ2/σ2
β . The naı̈ve test statistic Tnaive converges to χ2

1,τ2
, where

τ2 = (
√
nλ13β2 + λ23δ)

2/σ2
β . If one knows the bias term λ13β2 under H0 and corrects for it

explicitly, the corresponding test statistic Tnaive,bc converges to χ2
1,τ ′2

, where τ ′2 = λ2
23δ

2/σ2
β .

(c) Assuming the RC function is correctly specified,
√
n(η̃3 − β3)

D−−→ N(0, σ2
β,rc). Under local

alternatives Han : β3 = δ/
√
n, the corresponding test statistic TRC1 converges to χ2

1,τ3
, with

non-centrality parameter τ3 = δ2/σ2
β,rc.

We illustrate power comparisons using the simple scenario with continuous outcomes and binary

genotype (Figure 2). Under the null β3 = 0, the rejection rate of the naı̈ve test (dotted line) is around

15%, inflated from its size α = 0.05, while the RC–based test (dashed line) maintains a valid size

of around 5%. In this setting, the power of the naı̈ve test is not meaningful since its type I error

is not controlled properly. Nevertheless, when β3 > 0, the RC–based test often has higher power

than the naı̈ve test; when β3 < 0, the naı̈ve test is superficially more powerful, but such “power

gain” is not real and is due to its inflated type I error. Thus, the naı̈ve test for G×E can yield both

false positive and false negative G×E findings. The ideal test is substantially more powerful than

the RC–based test, illustrating that potential power gain can be obtained with accurate exposure

measurements. Thus, improving measurement accuracy of the assessment of E is an effective way

to improve power for testing G× E, in addition to increasing sample size (Wong et al., 2003).

3.3 Extension to testing interactions between E and a set of genes

In this paper, we illustrated the impact of measurement on G × E under a simple setting with

a single gene or SNP. However, our results can be extended to more general settings with gene

sets or genome wide G × E analysis. For example, Lin et al. (2013) proposed gene set-based

G × E testing, while Kooperberg and LeBlanc (2008), Dai et al. (2012) and Hsu et al. (2012)
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proposed several two-stage testing approaches for genome wide G × E scan. Under the settings

of multiple G, following our arguments, it is straightforward to show that ignoring measurement

error leads to incorrect type I errors and invalid conclusions for G × E. The RC–based test can

be extended relatively easily to either gene set-based tests or two stage screening based tests,

with the modification of replacing mis-measured exposure X by its regression calibration estimate

m(X,G,Z) as outlined in Section 3.1. The statistical properties (type I error and power) of these

tests are analogous to those discussed in Sections 2 and 3. In fact, generalizability to more complex

settings is another reason that we prefer the regression calibration approach for measurement error

correction in G× E analysis.

4. Numerical results

4.1 Simulations

To evaluate finite sample performances, we conducted simulation studies under both linear models

with continuous outcomes and generalized linear models with binary outcomes.

For continuous outcomes, the data were simulated under model (1) with identity link and Z

absent. We generated E from the standard Gaussian distribution, G as a binary genotype with

p = Pr(G = 1) = 0.05, 0.15 and 0.4, and possible G-E correlation of ρ = 0, 0.4 and0.7. True

parameter values were (β0, β1, β2, σ
2) = (1, 1, 1, 1), with G × E parameter β3 taking values

(0,−0.4,−0.2, 0.2, 0.4) under the null and alternative hypotheses. The standard deviations of mea-

surement error σǫ were (0.3, 0.8, 1.5, 2.5), corresponding to reliability coefficients of (0.92, 0.61, 0.31, 0.14),

respectively. Simulations were conducted under various sample sizes, and we reported results with

n = 1000, a 30% internal sample as validation data, and 2000 repetitions in each simulation.

Table 1 shows empirical type I error rates from simulations. Under H0, type I error rates for

the naı̈ve test are close to its nominal level of 0.05 in most cases, but are clearly inflated for

several settings, especially when ρ is high and σǫ is close to 1 (e.g., σǫ = 0.8, ρ = 0.7 or σǫ =
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1.5, ρ = 0.7). As demonstrated in Section 2.2, the magnitude of inflation depends on the amount

of measurement error, G-E correlation, genotype frequency and sample size. Fixing ρ and p, we

confirm the observed phenomenon in Figure 1, i.e., the amount of inflation in type I error initially

increases with σǫ, reaches its maximum in the middle range and then decreases with σǫ afterwards.

In contrast, the RC–based test TRC1 appears to maintain the correct type I error rates across all

settings. Note that TRC0 performs similarly to Tnaive and has invalid type I errors under several

settings, due to the fact that it does not properly incorporate the interaction term in the calibration

step (Proposition 3).

Table 2 displays empirical power under alternatives β3 = −0.2 and β3 = 0.2. We make the

following observations regarding power. First, these results verify that the naı̈ve test can lead to

both missed G × E signals and spurious G × E findings, as was illustrated by Figure 2 in the

previous section. For example, we consider the scenario σǫ = 0.8, ρ = 0.7, p = 0.15, the type

I error for Tnaive is severely inflated to 0.140. When β3 = −0.2, TRC1 has substantially higher

power than Tnaive. On the other hand, when β3 = 0.2, Tnaive appears to have even higher power

than Tideal, but the seemingly high power of Tnaive is due to inflated type I error and likely lead

to false positives. Second, when σǫ is very small or large (0.3), Tnaive is approximately valid in

terms of type I error. In these cases, power performances of Tnaive, TRC0 and TRC1 are similar

to each other. Based on these results, we would always recommend the proposed RC-based test,

as it is valid in terms of type I error under all scenarios and it has at least comparable power to

the naı̈ve test even when naı̈ve test is valid. Third, these results also shed light on the power loss

due to imprecise measurements. TRC1 always maintains correct type I errors, and it demonstrates

power loss compared to Tideal. Not surprisingly, larger measurement error leads to more substantial

power loss. This implies that improving measurement accuracy of E will lead to improved power

to detect G× E.

We also conducted simulation studies under generalized linear models for binary data. E, G and
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X were generated similarly as above. True parameter values were (β0, β1, β2) = (−4, 1, 2), with

G × E parameter β3 taking values (0,−1,−0.5, 0.5, 1). Under case-control sampling, n = 1000

cases and controls were simulated, and a random sample of 30% subjects were chosen as internal

validation data. The empirical type I error rates are shown in the last four columns of Table 1.

The proposed RC approach maintains the correct type I error. The naı̈ve test has inflated type I

errors for several settings, especially when the G-E correlation is high and σǫ is close to 1 (e.g.,

σǫ = 0.8, ρ = 0.7 or σǫ = 1.5, ρ = 0.7), although the magnitude of inflation is generally smaller

than in linear models. The power comparison among various tests shows similar patterns to linear

models, and thus the results are omitted.

[Table 1 about here.]

[Table 2 about here.]

4.2 Application

We apply the proposed methods for G × E analysis to a Women’s Health Initiative (WHI) study

in the Genomics and Randomized Trials Network (GARNET). It is a genome wide association

study (GWAS) on hormone treatment and cardiovascular disease/metabolic outcomes involving

approximately 5, 000 subjects, chosen from the WHI hormone therapy trial cohorts in a nested

case-conrol study (Rossouw et al., 2008; Women’s Health Initiative Study Group et al., 1998;

Prentice and Anderson, 2008).

In this analysis, we investigated potential gene–blood pressure interactions on the risk of coro-

nary heart disease (CHD). Our sample included 520 CHD cases and 2128 controls. Systolic blood

pressure (SBP) was measured at baseline and after 1 year in the study (year 1), denoted as SBP1

and SBP2, respectively. We considered the long-term average SBP as the true environmental

exposure, and viewed measurements at two visits as replicates that follow a classic measurement

error model. We conducted genetic association analysis, using single nucleotide polymorphisms

(SNPs) identified to be strongly associated with risk of CHD. For illustration we focused on the
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8 genotyped SNPs known to be associated with CHD based on the National Human Genome

Research Institute (NHGRI) GWAS Catalog (Welter et al., 2014; Schunkert et al., 2011; Davies

et al., 2012). For each SNP, a logistic regression was fitted including the SNP genotype, SBP and

SNP-SBP interaction, adjusting for age, body mass index and four leading principal components

to control for potential population structure. We conducted several tests for G×E, including naı̈ve

tests using SBP1, SBP2 and SBP = (SBP1 + SBP2)/2, as well as the RC–based test TRC1.

Based on replicates data for SBP, we estimated variances of the true SBP and its measurement

error in each replicate to be 171 and 137, respectively. The reliability coefficients for SBP1 (SBP2)

and SBP were 0.55 and 0.71, respectively, verifying modest improvement in accuracy by taking

the average of two measurements. Table 3 shows the p values from these tests on the 8 SNPs.

Based on the RC test, SNP rs6922269 is significant at level α = 0.05. The naı̈ve tests using

SBP1,SBP2 or SBP yield inconsistent results with SBP2 showing some evidence of G × E

(p value = 0.039). A close examination of attenuation factors shows that they are quite different

among three genotypic groups. There are two other SNPs (rs9349379 and rs16893526) that also

show inconsistent p-values between our approach and naı̈ve tests, with the similar observation of

different attenuation factors in the genotype subtypes. Finally we note that the average SBP is more

accurate than SBP measurement at a single visit, and p values from the naı̈ve test using average

SBP are closer to the RC–based test.

The identified SNP rs6922269 with significant G × E is in the intron region of the methylene-

tetrahydrofolate dehydrogenase 1-like (MTHFD1L) gene. Several studies have shown that poly-

morphisms in MTHFD1L, including rs6922269 as its lead polymorphism, are associated with

risk for CHD (Palmer et al., 2014). Coronary Artery Disease (C4D) Genetics Consortium et al.

(2011) studied potential interaction between this SNP and hypertension. They reported slightly

stronger SNP-CHD association among hypertensive subjects versus non-hypertensive subject, but

the interaction effect was not statistically significant. In our analysis, blood pressure is treated as a

http://biostats.bepress.com/uwbiostat/paper405



Testing gene-environment interactions in the presence of measurement error 19

continuous variable rather than an binary hypertension status and the proposed measurement error

correction method is used instead of the naı̈ve test, both of which lead to potential power gains to

detect interactions.

[Table 3 about here.]

5. Discussion

In this paper, we consider statistical issues in testing G × E in the presence of environmental

measurement error. Specifically, we assume a classical measurement error model for E with non-

differential measurement error. We demonstrate that maximum likelihood estimates for G×E are

generally biased under the null hypothesis of no interaction if one ignores measurement error, and

as a result the naı̈ve test has inflated type I error. This is contrary to conjectures in the literature.

Analytic forms of the bias term are obtained, and consequences of ignoring measurement error

in G × E analysis are discussed in terms of type I error and power. To properly account for

measurement error, we propose RC–based testing procedures when validation or replicate data

are available. Through theoretical derivations, simulation studies, and an application to a genetic

study of coronary heart disease, we demonstrate that naı̈ve tests can yield both false positive and

false negative G×E findings and that RC–based tests maintain correct type I errors as long as the

regression calibration model is correctly specified.

Our results shed light on implications of study design and data collection on G×E analysis. The

effort to understand measurement error and improve measurement accuracy of E has been limited

in many genetic studies, due to various reasons such as budget constraints. We have shown that

simply applying the naı̈ve test can lead to incorrect conclusions. In order to use the corrected RC–

based test, one needs an internal or external validation or replication sub-study to help understand

measurement error properties of E. If it is possible to adopt more accurate measurements (e.g.,

by repeated measurements or alternative measurement devices), the magnitude of bias from the
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naı̈ve analysis will be reduced and the power to detect G × E will be improved. In fact, based on

power considerations only, Wong et al. (2003) argued that “smaller studies with repeated and more

precise measurement of the exposure and outcome will be as powerful as studies even 20 times

bigger, which necessarily employ less precise measures because of their size.”

Although we focus on testing G × E with measurement error in E in this paper, statistical

issues discussed here also apply to measurement error in G, and more generally testing interactions

between two environmental variables where one is prone to measurement error. An example is

using imputed genotypes for G× E analysis, when genotype data is missing. Another example is

to investigate potential interaction between body mass index (BMI) and blood pressure for CHD

risk when blood pressure is measured with error but BMI is fairly accurate. In both examples,

ignoring measurement error can lead to inflated type I errors and the RC–based test provides a

valid approach to testing interactions.

There are several related topics that need future research. First, we consider classic measurement

error models in this paper, but in practice, environmental exposures may be subject to systematic

bias and complex measurement error structure. Examples include questionnaires for diet and phys-

ical activity, which are known to suffer from systematic under- or over-reporting of energy intake

and substantial measurement error more generally (Prentice et al., 2011). It will be interesting to

extend the proposed methods to more complicated measurement error settings. Second, one could

consider alternative approaches to correct for measurement error other than regression calibration,

such as conditional or corrected score methods. Third, the induced measurement error in the

interaction term is heteroscedastic and refinement of regression calibration methods can potentially

further improve power.

[Figure 1 about here.]

[Figure 2 about here.]
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Figure 1. Type I error rates of the naı̈ve test for G × E interaction versus the magnitude of

measurement error σǫ. The figure shows that the type I error rate α can be inflated (true α = 0.05)

when E is measured with error. The inflation in α depends on the magnitude of measurement error

σǫ, correlation ρ between G and E, and genotype frequency p.
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Figure 2. Power curves of the naı̈ve test, regression calibration-based test and the ideal test

(assuming E is known). The horizonal axis is the magnitude of interaction, β3.
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σǫ ρ p
linear models generalized linear models

ideal naı̈ve RC0 RC1 ideal naı̈ve RC0 RC1

0.3 0.0 0.05 0.043 0.051 0.051 0.051 0.027 0.027 0.027 0.060

0.3 0.0 0.15 0.061 0.062 0.062 0.056 0.045 0.050 0.050 0.049

0.3 0.0 0.40 0.044 0.048 0.048 0.048 0.047 0.054 0.054 0.055

0.3 0.4 0.05 0.052 0.047 0.047 0.050 0.024 0.030 0.030 0.057

0.3 0.4 0.15 0.051 0.052 0.052 0.052 0.041 0.040 0.040 0.048

0.3 0.4 0.40 0.065 0.060 0.060 0.060 0.050 0.053 0.053 0.055

0.3 0.7 0.05 0.043 0.053 0.053 0.042 0.014 0.023 0.023 0.050

0.3 0.7 0.15 0.055 0.059 0.059 0.046 0.040 0.040 0.040 0.052

0.3 0.7 0.40 0.047 0.045 0.045 0.036 0.056 0.048 0.048 0.049

0.8 0.0 0.05 0.044 0.047 0.047 0.047 0.045 0.041 0.041 0.052

0.8 0.0 0.15 0.048 0.053 0.053 0.053 0.051 0.056 0.056 0.046

0.8 0.0 0.40 0.048 0.050 0.050 0.052 0.036 0.050 0.050 0.052

0.8 0.4 0.05 0.053 0.042 0.042 0.038 0.024 0.020 0.020 0.049

0.8 0.4 0.15 0.057 0.057 0.057 0.049 0.045 0.040 0.040 0.049

0.8 0.4 0.40 0.047 0.050 0.050 0.052 0.038 0.070 0.070 0.052

0.8 0.7 0.05 0.060 0.107 0.107 0.045 0.011 0.018 0.018 0.052

0.8 0.7 0.15 0.065 0.140 0.140 0.058 0.032 0.031 0.031 0.044

0.8 0.7 0.40 0.040 0.068 0.068 0.059 0.038 0.036 0.036 0.049

1.5 0.0 0.05 0.037 0.033 0.033 0.033 0.040 0.046 0.046 0.043

1.5 0.0 0.15 0.058 0.048 0.048 0.049 0.053 0.058 0.058 0.051

1.5 0.0 0.40 0.048 0.051 0.051 0.052 0.050 0.061 0.061 0.054

1.5 0.4 0.05 0.046 0.060 0.060 0.049 0.023 0.029 0.029 0.055

1.5 0.4 0.15 0.047 0.057 0.057 0.042 0.047 0.044 0.044 0.060

1.5 0.4 0.40 0.043 0.047 0.047 0.044 0.061 0.081 0.081 0.053

1.5 0.7 0.05 0.049 0.100 0.100 0.029 0.012 0.011 0.011 0.047

1.5 0.7 0.15 0.038 0.143 0.143 0.042 0.042 0.048 0.048 0.047

1.5 0.7 0.40 0.041 0.066 0.066 0.053 0.048 0.061 0.061 0.052

2.5 0.0 0.05 0.051 0.046 0.046 0.044 0.056 0.054 0.054 0.051

2.5 0.0 0.15 0.052 0.047 0.047 0.047 0.042 0.066 0.066 0.053

2.5 0.0 0.40 0.039 0.056 0.056 0.058 0.053 0.058 0.058 0.053

2.5 0.4 0.05 0.036 0.048 0.048 0.043 0.035 0.037 0.037 0.053

2.5 0.4 0.15 0.047 0.054 0.054 0.050 0.040 0.057 0.057 0.051

2.5 0.4 0.40 0.051 0.053 0.053 0.056 0.039 0.087 0.087 0.049

2.5 0.7 0.05 0.055 0.069 0.069 0.039 0.016 0.011 0.011 0.046

2.5 0.7 0.15 0.042 0.088 0.088 0.041 0.035 0.054 0.054 0.050

2.5 0.7 0.40 0.063 0.054 0.054 0.050 0.044 0.052 0.052 0.061Table 1

Empirical type I error rates for testing G× E in the presence of measurement error. The parameters σǫ, ρ and p are standard
deviation of measurement error, correlation between G and E, and frequency of minor genotype, respectively. Columns 4-7

correspond to linear models for continuous outcomes, while Columns 8-11 correspond to generalized linear models for binary
outcomes.
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σǫ ρ p
β3 = −0.2 β3 = 0.2

ideal naı̈ve RC0 RC1 ideal naı̈ve RC0 RC1

0.3 0.0 0.05 0.295 0.254 0.254 0.237 0.246 0.199 0.199 0.212

0.3 0.0 0.15 0.583 0.525 0.525 0.555 0.637 0.548 0.548 0.526

0.3 0.0 0.40 0.860 0.816 0.816 0.816 0.872 0.799 0.799 0.797

0.3 0.4 0.05 0.259 0.208 0.208 0.217 0.251 0.229 0.229 0.212

0.3 0.4 0.15 0.540 0.464 0.464 0.502 0.578 0.523 0.523 0.477

0.3 0.4 0.40 0.821 0.745 0.745 0.746 0.821 0.747 0.747 0.747

0.3 0.7 0.05 0.188 0.124 0.124 0.177 0.165 0.208 0.208 0.156

0.3 0.7 0.15 0.419 0.271 0.271 0.381 0.418 0.494 0.494 0.363

0.3 0.7 0.40 0.736 0.621 0.621 0.644 0.706 0.671 0.671 0.626

0.8 0.0 0.05 0.285 0.189 0.189 0.193 0.264 0.120 0.120 0.119

0.8 0.0 0.15 0.585 0.344 0.344 0.361 0.619 0.305 0.305 0.293

0.8 0.0 0.40 0.868 0.561 0.561 0.586 0.878 0.503 0.503 0.484

0.8 0.4 0.05 0.244 0.110 0.110 0.151 0.248 0.140 0.140 0.103

0.8 0.4 0.15 0.570 0.240 0.240 0.311 0.531 0.330 0.330 0.253

0.8 0.4 0.40 0.840 0.477 0.477 0.512 0.815 0.477 0.477 0.443

0.8 0.7 0.05 0.168 0.051 0.051 0.124 0.196 0.281 0.281 0.077

0.8 0.7 0.15 0.415 0.079 0.079 0.246 0.440 0.520 0.520 0.205

0.8 0.7 0.40 0.733 0.268 0.268 0.386 0.744 0.484 0.484 0.345

1.5 0.0 0.05 0.248 0.102 0.102 0.102 0.250 0.047 0.047 0.047

1.5 0.0 0.15 0.618 0.197 0.197 0.195 0.608 0.108 0.108 0.113

1.5 0.0 0.40 0.851 0.273 0.273 0.265 0.877 0.227 0.227 0.238

1.5 0.4 0.05 0.231 0.085 0.085 0.112 0.255 0.085 0.085 0.063

1.5 0.4 0.15 0.535 0.114 0.114 0.171 0.560 0.158 0.158 0.110

1.5 0.4 0.40 0.849 0.227 0.227 0.248 0.823 0.239 0.239 0.216

1.5 0.7 0.05 0.191 0.061 0.061 0.082 0.191 0.174 0.174 0.050

1.5 0.7 0.15 0.418 0.054 0.054 0.146 0.434 0.334 0.334 0.086

1.5 0.7 0.40 0.722 0.128 0.128 0.196 0.717 0.227 0.227 0.164

2.5 0.0 0.05 0.290 0.086 0.086 0.089 0.290 0.044 0.044 0.040

2.5 0.0 0.15 0.621 0.113 0.113 0.112 0.612 0.073 0.073 0.073

2.5 0.0 0.40 0.873 0.133 0.133 0.126 0.863 0.119 0.119 0.124

2.5 0.4 0.05 0.260 0.079 0.079 0.094 0.235 0.059 0.059 0.044

2.5 0.4 0.15 0.550 0.090 0.090 0.115 0.578 0.092 0.092 0.067

2.5 0.4 0.40 0.821 0.121 0.121 0.132 0.828 0.125 0.125 0.107

2.5 0.7 0.05 0.176 0.063 0.063 0.065 0.180 0.086 0.086 0.029

2.5 0.7 0.15 0.434 0.056 0.056 0.084 0.417 0.160 0.160 0.050

2.5 0.7 0.40 0.728 0.101 0.101 0.124 0.709 0.126 0.126 0.094Table 2

Empirical power for testing G× E in the presence of measurement error. These results are based on linear models for continuous
outcomes, under alternatives β3 = −0.2 and β3 = 0.2.
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SNP
naı̈ve test

RC-test MAF
Attenuation factors

SBP1 SBP2 SBP λG=0 λG=1 λG=2

rs9349379 0.051 0.591 0.296 0.298 0.396 0.577 0.580 0.528

rs3869109 0.291 0.787 0.384 0.402 0.437 0.552 0.565 0.561

rs6905288 0.853 0.151 0.268 0.416 0.430 0.554 0.565 0.558

rs16893526 0.143 0.060 0.025 0.057 0.083 0.564 0.532 0.752

rs12190287 0.741 0.439 0.332 0.282 0.368 0.536 0.581 0.559

rs1332844 0.085 0.365 0.199 0.201 0.382 0.519 0.567 0.567

rs2048327 0.320 0.398 0.185 0.271 0.362 0.601 0.537 0.575

rs6922269 0.327 0.039 0.081 0.040 0.269 0.543 0.596 0.486Table 3

Application to gene-blood pressure interaction for coronary heart disease in the WHI GARNET study. Columns 2-5 are p values
for G× E, based on logistic regression models adjusting for age, body mass index and the first four principal components to

control for population structure. SBP1, SBP2 and SBP are systolic blood pressure levels in baseline, year 1, and their average,

respectively. RC-test is regression calibration-based test TRC1. Attenuation factors are defined as λG=g =
var(E|G=g)

var(E|G=g)+σ2
ǫ

for

g = 0, 1, 2.
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