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Abstract

We review recent developments and results in testing general relativity (GR) at cosmo-
logical scales. The subject has witnessed rapid growth during the last two decades with
the aim of addressing the question of cosmic acceleration and the dark energy asso-
ciated with it. However, with the advent of precision cosmology, it has also become
a well-motivated endeavor by itself to test gravitational physics at cosmic scales. We
overview cosmological probes of gravity, formalisms and parameterizations for testing
deviations from GR at cosmological scales, selected modified gravity (MG) theories,
gravitational screening mechanisms, and computer codes developed for these tests.
We then provide summaries of recent cosmological constraints on MG parameters and
selected MG models. We supplement these cosmological constraints with a summary
of implications from the recent binary neutron star merger event. Next, we summarize
some results on MG parameter forecasts with and without astrophysical systematics
that will dominate the uncertainties. The review aims at providing an overall picture
of the subject and an entry point to students and researchers interested in joining the
field. It can also serve as a quick reference to recent results and constraints on testing
gravity at cosmological scales.
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1 Introduction

For over a century, Einstein’s general relativity (GR) has continued to be an impressive
theory of gravity that fits observations from our solar system to the entire cosmological
model of the universe. Guided by some key principles, Einstein came to the important
realization of a very close relationship between the curvature of spacetime and gravity.
Taking into account further requirements, such as coordinate invariance, conservation
laws, and limits that must be consistent with Newtonian gravity, he proposed his grav-
itational field equations (Einstein 1915). Astonishingly, the same simple but powerful
equations remain to date the most accurate description of gravitational physics at all
scales.

Shortly after that, GR gave birth to the current standard model of cosmology
predicting exact solutions with expanding or contracting universes. It allowed the
combination of ideas from Friedmann and Lemaître about expanding universes (Fried-
mann 1922; Lemaître 1931) along with the geometry of homogeneous and isotropic
spacetimes of Robertson (1935) and Walker (1937) in order to produce the so-called
Friedmann–Lemaître–Robertson–Walker models (FLRW). These models describing
the background cosmological evolution were completed by the addition of cosmolog-
ical perturbation theory to populate them with cosmic structures. Over the years and
decades to follow, the FLRW models plus cosmological perturbations benefited from
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a number of theoretical developments and observational techniques that allowed us to
map the whole history of cosmic evolution from very early times to the current stages
of the universe as we observe it today.

However, this scientific triumph in cosmology came with two conundrums: dark
matter and cosmic acceleration (or dark energy). Indeed, in order for the FLRW model
to fit current observations, we first need ∼25% of the mass-energy content in the uni-
verse to be in the form of a pressureless dark matter component that interacts only
gravitationally with baryons and light (possibly weakly with baryons as well). The
requirement for the presence of such a dark matter component does not come only
from cosmology but also from rotation curves of galaxies, gravitational lensing obser-
vations, and the requirement of deep initial potential wells that would have allowed
the formation of the largest structures that we observe today; see for example Trimble
(1987), Bertone et al. (2005), D’Amico et al. (2009), Einasto (2014), Freese (2017) and
references therein. The dark matter problem motivated the introduction of modified
gravity (MG) theories that would explain such observations by a small modification
to Kepler laws such as Modified Newtonian Dynamics (MOND) (Milgrom 1983b),
its relativistic generalization known as TeVeS (tensor–vector–scalar) theory (Beken-
stein 2004), or other vector–tensor theories. While Dark Matter motivated proposals
of some MG models, the main focus of this review is rather on models that attempt to
address the question of cosmic acceleration that we describe next.

The second problem in standard cosmology is indeed that of cosmic acceleration
and the dark energy associated with it. Two decades ago, two independent groups
using supernova measurements found that the universe’s expansion is speeding up
rather than slowing down (Riess et al. 1998; Perlmutter et al. 1999). A plethora of
complementary cosmological observations have continued since to confirm this result
and require that an FLRW model fitting observations must have a genuine or effective
dark energy component that would account for ∼70% of the total energy budget in
the universe. In such a universe, the baryons constitute only ∼5% of this budget.
This picture has become the concordance model in cosmology referred to as the
Lambda-Cold-Dark-Matter (ΛCDM) model. This best fit model is spatially flat. Λ
is the cosmological constant, and its addition to the Einstein’s equations can produce
an accelerated expansion of the universe.

The cosmological constant can be cast into the model as an effective cosmic fluid
with an equation of state of minus one. This coincides exactly with the equation of
state of the vacuum energy associated with zero-level quantum fluctuations. Inter-
estingly, this connects the problem of cosmic acceleration to the problems of the
cosmological constant/vacuum energy problems (Weinberg 1989; Carroll et al. 1992;
Sahni and Starobinsky 2000; Carroll 2001; Peebles and Ratra 2003; Padmanabhan
2003; Copeland et al. 2006; Ishak 2007). Namely, why is the value measured from
cosmology so small compared to the one predicted from quantum field calculations?
This is known as the old cosmological constant problem. A second question (the new
problem) is why the energy density associated with the cosmological constant/vacuum
energy is of the same order of magnitude as the matter density at present cosmic time?
(If it were any larger it would have prevented cosmic structure from forming.) Other
types of dark energy have been proposed with an equation of state that is very close to
minus one and would be not connected to the cosmological constant/vacuum energy.
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These are for example quintessence models based on a scalar field with kinetic energy
and potential terms that can be cast as well into an effective dark energy model with a
negative equation of state also close to minus one (Peebles and Ratra 1988; Ratra and
Peebles 1988; Caldwell et al. 1998). It is worth noting that most of these dark energy
models do not address the cosmological constant problem and may suffer from some
form of fine-tuning as well.

Relevant to our review, the question of cosmic acceleration motivated a number of
proposals for modified gravity models that could produce such an acceleration without
the need for a cosmological constant. Such models are said to be self-accelerating. In
most cases, these models do not address the cosmological constant problems and it
is hoped that by some mechanism, for example degravitation or some given cancella-
tion, vacuum energy does not contribute to gravitational and cosmological dynamics.
However, in some cases, modified gravity models do provide some degravitation mech-
anism, although not successfully so far. We discuss these further in this review.

Finally, there are also modified gravity models at high energies that have been
motivated by the search for quantum gravity and other unified theories of physics
which may or may not have any consequences at cosmological scales.

While the rapid growth of the subject of deviations from GR and MG models
has been motivated by cosmic acceleration/dark energy and to some extent by dark
matter, the subject of MG models is an old one. Indeed, just a few years after GR
was introduced, Weyl gravity was proposed by Weyl (1918), and so were the theories
of Eddington (1924), Cartan (1922b) and Brans and Dicke (1961), and many others.
Testing GR and gravity theories within the solar system and using other astrophysical
objects have been the subject of intense work with a number of important results over
the last five decades or so; see for a review (Will 2014). Impressively, GR fits all these
local tests of gravity. In fact, it fits them so well that these tests are commonly referred
to as GR local tests. This is very useful to the current cosmological developments,
because it has established very stringent constraints at the level of the solar system that
any gravity theory must pass. Nevertheless, to address these requirements, some MG
models have some gravitational screening mechanisms that allow them to deviate from
GR at cosmological scales but then become indistinguishable from it at small scales.

Further motivation for testing GR at cosmological scales is the increasing quantity
and quality of available cosmological data. These are indeed good times for cosmol-
ogy where a plethora of complementary observational data from ongoing and planned
surveys will continue to flow for the many decades to come. These include the cosmic
microwave background radiation, weak gravitational lensing, galaxy surveys, dis-
tances to supernovae, baryon acoustic oscillations, and gravitational waves. A good
piece of news is that one can not only combine these data sets to increase their con-
straining power, but one can also apply consistency tests between such complementary
data sets. This would allow one to identify any problems with systematic effects in the
data or any problems with the underlying model. Furthermore, nature has also given
us a break in cosmology as we have two types of data sets. Indeed, some data sets
are sensitive to the geometry and expansion of the universe and some other sets are
sensitive to the growth of large-scale structure (i.e., the rate at which structures cluster
in the universe). These two sets of observations must be consistent with one another.
For testing deviations from GR and constraining MG models, it was realized that MG

123



1 Page 6 of 204 M. Ishak

models can mimic an expansion history of the universe that is identical to that of the
concordanceΛCDM model while they can still have a structure formation history that
is different and distinguishable from that of ΛCDM. It has become common practice
that the background expansion is modeled with an effective dark energy with an equa-
tion of state close to the minus one value of ΛCDM. Meanwhile, any departure from
GR is constrained by using the growth data from large-scale structure observables.

There are two general approaches that have been developed to test departures from
GR at cosmological scales. The first one is where the deviation is parameterized in a
phenomenological way with no necessary exact knowledge of the specific alternative
theory. The growth equations are modified by the addition of MG parameters that
represent the departure from GR. These MG parameters are expected to take values of
unity for GR but depart from it for MG models. It is worth noting that such an effective
description may not necessarily remain valid at all scales constrained by observations
and so must be used with some caution when compared to various observations. The
second approach is to choose a specific class of MG models [like the popular f (R) or
DGP models (see Sects. 7.4.1 and 7.5.2)] and derive cosmological perturbations and
observables for these models. These are then implemented in cosmological analysis
software and used to compare to the data. We cover both approaches in this review. A
related question is what one could call a modified gravity model versus a dark energy
model. There are some guiding helpful prescriptions that we discuss in the review but
the spectrum of models has a grey zone where such a distinction is not unambiguous.
We characterize various types of deviations from general relativity and organize MG
models accordingly with some illustrative examples.

In this review, we aim at providing an overall current picture of the field of testing
gravity at cosmological scales including a selection of recent important results on the
subject. The review is meant to provide an entry point for students and researchers
interested in the field where they can find summaries and references to further read-
ings. This review can also serve for experienced researchers or other readers to find
quickly recent developments or results in the field. As required for the Living Review
guidelines, this review is written with the depth and style of a plenary review talk
on the subject. It is not meant to replace thorough comprehensive reviews on various
parts of this topic and we refer the reader constantly to such specialized reviews as we
discuss each sub-topic.

2 General relativity (GR)

2.1 Basic principles

Einstein considered some key guiding principles and well-known limits that a success-
ful theory of gravity must obey. At the forefront is the principle of covariance—that
is the laws of physics must be independent of any coordinate system. So the right lan-
guage must be that of tensors or another coordinate independent formulation. Such a
successful theory should locally be consistent with special relativity and must inherit its
principles including the equivalence of local inertial frames of reference, the universal
constancy of the speed of light in vacuum, and the Lorentz-invariance of the theory.
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An important part of Einstein’s reflections when he proposed special relativity
and then continued to work toward general relativity was about the principles of
equivalence. He found guidance in Mach’s ideas about relativity and the nature of
inertia (Mach et al. 1905, 1988), although, he had to abandon some of them later on.

From the principle of equivalence between gravity and inertia that we provide below,
Einstein developed the important insight that gravity seems to have a privileged status
compared to other interactions. That is gravity is equivalent to inertia. The principle
of universality of free-fall and gravitational interaction as expressed below in the
equivalence principles combined with some insight that gravity is omnipresent in
spacetime, led Einstein to formulate gravity as the curvature of spacetime. See various
discussions and perspectives in reviews and books, e.g., Will (2014, 2018), d’Inverno
(1992), Rindler (2006), Weinberg (1972), Misner et al. (1973) and Carroll (2003).

– Weak equivalence principle (WEP) WEP is stated in a variety of formulations.
One of them is usually stated as the equivalence between the inertial mass and the
gravitational mass which has been been tested to a few parts in 1013 (Adelberger
2001; Wagner et al. 2012) and a few parts in 1014 (Touboul et al. 2017), Will (2014)
for WEP test timeline. Einstein then advocated that inertia and gravity must be the
same and that an observer inside a “cabin” (with no windows) at rest in the presence
of a gravitational acceleration will not be able to distinguish that situation from one
where the “cabin” is on a rocket moving up with the exact opposite acceleration.
The WEP is expressed as the universality of the gravitational interaction and free-
fall for all particles. For our review, we focus on the notions of universality of free
fall and the matter coupling in the context of GR + dark energy versus modified
gravity (MG) models following for example Joyce et al. (2016). WEP is satisfied
if there exists some spacetime metric (in the Jordan frame) to which all species
of matter are universally coupled. Test particles fall then along geodesics of this
metric.

– Einstein equivalence principle (EEP) The EEP requires the validity of the WEP,
and that in all local freely falling frames, the laws of physics reduce to those of
special relativity (assuming tidal gravitational forces are absent). It is also custom-
ary to add here that the EEP contains the statement that the outcome of any local
non-gravitational experiment is independent of where and when it is performed
(Will 2014).

– Strong equivalence principle (SEP) The SEP extends the universality of free fall
of the WEP to massive gravitating objects so it is completely independent of the
composition of the objects as well as their gravitational binding energy. Compact
objects like Black Holes will also fall along geodesics like test particles (Will
1994, 2014). The SEP extends also the EEP to include all of the laws of physics,
gravitational or otherwise.

One more remark is worth mentioning about the relationship between the equiva-
lence principles and the spacetime metric. Let us recall that metric theories of gravity
satisfy the following properties, see for example Will (2014): (i) a symmetric metric
exists, (ii) test particles follow geodesics of such a metric, and (iii) in local reference
frames, the non-gravitational laws of physics are those of special relativity. From this
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definition, it follows that metric theories obey the EEP. It also encourages one to imply
that theories that obey the EEP are metric theories, e.g., Will (2014).

We conclude this subsection by commenting on a few other notions that guided
Einstein in formulating his equations of the gravitational field. The geometrical nature
of GR and the principles it is built upon are certainly far from the Newtonian gravity
based on forces and potentials, not to mention the notions of absolute space and other
shortcomings that had to be abolished. However, it is interesting to remark that the
notion of spacetime and its metric to explain gravity can be compared to the notion of
the gravitational potential field in space created by massive objects. However, there is
a major difference, in GR there is no gravitational potential or gravity that is added
on the top of spacetime, but gravity is curvature of spacetime itself. This was a major
insight that Einstein got from his EEP principle. In fact, he knew well that GR must
have Newtonian gravity as a limit in the weak regime and that provided to him many
hints on how to formulate the field equations that we provide in the next section.

2.2 Einstein field equations (EFEs) and their exact solutions

In addition to the principles above, Einstein used the fact that, in the weak field limit, the
gravitational field equations must locally reduce to those of Newtonian gravity where
the metric tensor components would be related to the gravitational potential and the
field equations must reduce to Poisson equations. From the latter, he imposed that the
curvature side of the equations must contain only up to second order derivatives of the
metric and must also be of the same tensor rank as the energy-momentum tensor. This
naturally led Einstein to consider the Ricci tensor, derived from contracting twice the
Riemann curvature tensor, but there was a little bit more into it. Indeed, he knew that
the equations must satisfy conservation laws and thus must be divergence-free. While
the vanishing of the divergence of the matter-energy source side of the equations
is assured by energy conservation laws and continuity equations, on the curvature
side, the Ricci tensor is not divergence-free so more work was required. For that,
Einstein built precisely the tensor that holds his name which, by the Bianchi identity,
is divergence-free hence complies with conservation laws, as it should. Some technical
or historical entire books or articles have been devoted to what led Einstein to derive
his equations and we refer the reader to the extended study by Janssen et al. (2007)
and references therein.

With no further discussion, the Einstein’s field equations (EFEs) read

Gμν +Λgμν = 8πGTμν, (1)

where Gμν ≡ Rμν − 1
2 gμνR is the Einstein tensor representing the curvature of

spacetime, Rμν is the Ricci tensor, R the Ricci scalar, gμν is the metric tensor, and Λ
is the cosmological constant. For brevity we use units such that c = 1 throughout. On
the RHS, the source (content) of spacetime is represented by the energy momentum
tensor

Tμν = (ρ + p)uμuν + pgμν + qμuν + uμqν + πμν, (2)

where uμ is the tangent velocity 4-vector (e.g., the tangent field to the cosmic fluid par-
ticle world-lines) normalized by uμuμ = −1, ρ is the relativistic mass-energy density,
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p is the isotropic pressure, qμ the energy flux, and πμν is the trace-free anisotropic
pressure or stress, all relative to uμ. The quantities ρ, p, qμ, and πμν are functions
of time and space. We use the signature (−,+,+,+) and a 3+1 decomposition of
spacetime unless stated otherwise.

In standard cosmology, it is assumed that the cosmic fluid is well-described by
a perfect fluid (i.e., qμ = 0 and πμν = 0) at the cosmic background level which
accounts for baryons, dark matter, radiation and a cosmological constant or another
dark energy component. The energy-momentum tensor then reduces to

Tμν = (ρ̄ + p̄)uμuν + p̄gμν, (3)

where the last three terms of (2) are set to zero, and the over bar means average over
space of quantities and are now functions of time only. However, at the perturbation
level, the velocity field contributes to the heat flux and neutrinos, for example, generate
anisotropic shear at early times in the universe.

It is not widely known that the EFEs have over 1300 exact solutions that have
been derived over the last century, see for example the classical compilation book by
Stephani et al. (2003) and also Online Interactive Geometric Databases equipped with
a live tensor component calculator (Ishak and Lake 2002). These solutions are based
on symmetries of the spacetime and defined forms of the energy momentum source.

While the large number of exact solutions exhibit the richness and mathematical
beauty of the field, a number of solutions still lack any physical interpretation (Stephani
et al. 2003; Delgaty and Lake 1998; Ishak et al. 2001). Some of these solutions have
found direct applications to real astrophysical systems. These include the popular
Schwarzschild static spherically symmetric vacuum solution around a concentric mass
(Schwarzschild 1916). The solution is often used to model space around Earth, Sun,
or other slowly rotating objects where it leads to more accurate predictions than New-
tonian gravity, see e.g., Will (2014). The solution is also used to represent the exterior
spacetime around a static spherically symmetric black hole. A second well-know exact
solution is that of Kerr (1963) representing the vacuum space around an axially sym-
metric rotating compact object or black hole. Next, several other static spherically
symmetric non-vacuum solutions such as the Tolman family of solutions (Tolman
1939) and the Buchdahl solutions (Buchdahl 1967) have been used to model the inte-
rior of compact astrophysical objects such as Neutron stars (Lattimer and Prakash
2007). Finally, some solutions have found applications in cosmology. These include,
for example, the isotropic and homogeneous Friedmann–Lemaître–Robertson–Walker
(FLRW) solutions (Friedmann 1922; Lemaître 1931; Robertson 1935; Walker 1937),
the inhomogeneous Lemaître–Tolman–Bondi solutions (Lemaître 1933; Tolman 1934;
Bondi 1947), the inhomogeneous Szekeres models (Szekeres 1975), the anisotropic
Bianchi models (Ellis and MacCallum 1969), and others (Ellis and van Elst 1999).

Einstein’s Equations of general relativity connected naturally the isotropic and
homogeneous geometry of space given by the Robertson–Walker metric to the cosmic
fluid substratum described by a perfect fluid, giving birth to the standard model of
cosmology that we describe in the next section.

It is important to note, and in particular in the context of this review, that while
Einstein derived his equations from the principles and approach discuss above, the
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field equations also derive immediately from a variational principle where the action
for the curvature sector is simply the Ricci scalar. This was derived simultaneously by
Einstein and Hilbert and the curvature part of the action bears their names. The GR
action with a cosmological constant term reads

SGR =
∫

d4x
√

−g

[
R − 2Λ

16πG
+ LM

]
, (4)

where g is the determinant of the metric tensor and LM is the Lagrangian for the matter
fields. Variations of Eq. (4) with respect to the metric, gμν , gives the field equations
(1) above. Modified gravity models are often introduced at the level of the action.

Finally, with regards to this review, it is worth clarifying that modifications to
GR mean also that the above exact solutions are not anymore valid and need to be
replaced by their homologous solutions in the modified theory. For cosmology, an
FLRW metric is often used but then leads to modified dynamical equations often
referred to as modified Friedmann’s equations.

3 The standardmodel of cosmology

3.1 The homogeneous cosmological background

3.1.1 FLRWmetric and Friedmann’s equations

From the nearly isotropic large scale observations around us and the assumption that it
should not look any different from another point in the universe (i.e., the cosmological
principle), one can infer that the universe can be described by a spacetime that is
globally isotropic and thus homogeneous. The geometry is then described by the
metric of Friedmann–Lemaître–Robertson–Walker (FLRW) with line element

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)

)
, (5)

where a(t) is the expansion scale factor representing the time-dependent evolution of
the spatial part of the metric (surfaces of constant t), and k ∈ {−1, 0,+1} determines
the geometry of these spatial sections: negatively curved, flat, or positively curved,
respectively.

The EFEs (1) solved for the FLRW metric (5) and a perfect fluid source energy
momentum tensor (3) give the dynamical Friedmann equations. The first equation
derives from time-time components of the EFEs as

ȧ2

a2 = H(t)2 = 8πG

3
ρ̄ + Λ

3
− k

a2 , (6)

where an overdot denotes the derivative with respect to the cosmic time t , and we
isolated on the LHS the Hubble parameter defined as,

H(t) ≡ ȧ(t)

a(t)
. (7)
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This allows us to define a first cosmological parameter, the Hubble constant as
H0 = H(t0) where t0 is the present time. It is common to use instead the normalized
parameter h ≡ H0/(100 km s−1 Mpc−1). As usual, in the spatially flat case, the scale
factor can be normalized such that its present value a0 = a(t0) ≡ 1. We recall that in
spatially curved space, one cannot normalize simultaneously the spatial curvature and
the scale factor. The cosmological redshift is related to the scale factor by 1+z = a0/a.

The second Friedmann equation derives from the combination of the space-space
component and the time-time component of the EFEs, and can be written as an accel-
eration/deceleration equation as follows

ä

a
= −4πG

3
(ρ̄ + 3 p̄) + Λ

3
. (8)

It is sometimes more convenient to replace the radial coordinate, r , by the comoving
coordinate χ using dχ ≡ dr/

√
1 − kr2 so that the line element reads

ds2 = −dt2 + a2(t)
(

dχ2 + f 2
K (χ)

(
dθ2 + sin2 θdφ2

))
, (9)

where

fK (χ) =

⎧
⎨
⎩

sin(χ) k = +1
χ k = 0
sinh(χ) k = −1

. (10)

Finally, it is also sometimes convenient to change the coordinate (cosmic) time to
the conformal time defined as dτ ≡ dt/a(t) so the line element now reads

ds2 = a2(τ )
[
−dτ 2 + dχ2 + f 2

K (χ)
(

dθ2 + sin2 θdφ2
)]
. (11)

The Friedmann equations and the FLRW metric provide a description of the homo-
geneous universe and its dynamics serving as a basis to study the propagation of light,
the expansion history, distance measures, and the energy budget of the universe.

Again, with regards to modifications to GR, the Friedmann’s equations above, i.e.,
(6) and (8), are modified and so are all the observables and distance measurements
described below that build on these equations. For example, in relation to cosmic
acceleration, the cosmological constant term can be replaced by extra terms coming
from the modification and that could play a similar role to it. However, as we already
mentioned in the introduction, some of these models are able to fit well the expansion
and background observations so any further distinction will have to come from the
growth of structure constraints and observables.

3.1.2 Cosmic mass-energy budget, dark energy and cosmic acceleration

In general relativity, conservation laws are given by the vanishing of the covariant
derivative of the energy momentum tensor, i.e., T

μν

;ν = 0. This provides the continuity
equation

˙̄ρ + 3
ȧ

a
(ρ̄ + p̄) = ˙̄ρ + 3

ȧ

a
ρ̄(1 + w) = 0, (12)
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where in the last step we used the equation of state variable, w, defined as

p̄ = wρ̄. (13)

It follows from the continuity Eq. (12), that for a matter (baryon and dark matter)
dominated epoch (i.e., w = 0) ρ̄m ∝ a−3, for a radiation dominated epoch (i.e.,
w = 1/3) ρ̄r ∝ a−4, and for a cosmological constant (i.e., w = −1) ρΛ is a constant,
while for a dynamical dark energy with wde,

ρ̄de = ρ̄0
dea−3(1+wde). (14)

In models of dynamical dark energy, wde is another cosmological parameter that is
allowed to be different from −1 in cosmological analyses. It can also be allowed
to vary in redshift (or scale factor) in which case it can, for example, take the form
w(a) = w0 + wa(1 − a) known as CPL parameterization (Chevallier and Polarski
2001; Linder 2003). Other parameterizations for w have been introduce in order to fit
other dark energy or modified gravity models. Alternatively, the equation of state can
also be binned in the redshift.

It is trivial to observe from the second Friedmann equation (8) that a cosmic effec-
tive dark energy fluid with an equation of state wde = pde/ρde < −1/3 gives an
accelerated expansion. This is the case for a cosmological constant. The field equa-
tions of GR have no difficulty in mathematically producing an accelerated expansion,
but the real challenge is to figure out what is the physical nature of such an effective
dark energy fluid.

So far, most analyses are consistent with the value of w = −1 of a cosmological
constant with shrinking error bars around it; see for example DES Year-1 cosmological
parameter paper (Abbott et al. 2018b) where combining most available data sets gave
wde = −1.00 +0.04

−0.05. Although the latest data from Planck and Planck combined with
other data sets was found to slightly favor wde values slightly smaller than −1 (Ade
et al. 2016b). However, current data do not yet significantly constrain the w0 and wa

parameters for a time-varying equation of state of DE.
In order to describe the energy budget in the universe as measured from observa-

tions, we first need to describe the critical density of the universe evaluated today, noted
as ρ0

cri t . This will serve as a reference density and is determined from the first Fried-
mann equation (6) in a spatially flat universe with no cosmological constant. That is:

ρ0
cri t = 3H2

0

8πG

= 1.9 × 10−29h2grams cm−3

= 2.8 × 1011h2M⊙Mpc−3. (15)

The last line is given in solar masses, M⊙, per megaparsec cubed. We can now use
this reference density to express the density parameters today for different species as
the ratio

123



Testing general relativity in cosmology Page 13 of 204 1

Ω0
i =

ρ̄0
i

ρ0
cri t

. (16)

This defines 3 other cosmological parameters with their values today as for exam-
ple estimated from Planck and other data sets (Ade et al. 2016a): Ω0

b ≈ 0.05 for
baryonic matter, Ωdm0 ≈ 0.26 for cold dark matter, Ω0

Λ ≈ 0.69 for a cosmological

constant, and a tiny curvature “density” parameter |Ω0
k ≡ −k/H2

0 | < 0.01. These
numbers characterize the standard spatially flat Lambda-Cold-Dark-Matter (ΛCDM)
concordance model.

The Friedmann equation (6) can be re-written in terms of these density parameters
and the scale factor as

H2(a) = H2
0

[
Ω0

ma−3 +Ω0
r a−4 +Ω0

k a−2 +Ω0
dea−3(1+w)

]
, (17)

where we use Ω0
m ≡ Ω0

b +Ω0
c and recall that Ω0

r ≈ 10−4 and is so negligible at the
present time. So when evaluated today for a spatially flat universe with a cosmological
constant, Λ, Eq. (17) reduces to simply Ω0

m +Ω0
Λ = 1.

3.1.3 Cosmological distances

Another useful background information to cover is that of distances in cosmology. We
start with the physical distance or proper distance (e.g., Weinberg 1972), defined for
example by integrating the line element (9) at a given instant along a radial direction
so that dt = dθ = dφ = 0

dphys(t) = a(t)

∫ χ

0
dχ ′ = a(t)χ. (18)

This is the distance that would be instantaneously measured if we used a gigantic
ruler from us to a remote object. In Weinberg (1972), this is equivalently defined from
(9) as

dprop(t) =
∫ r

0

√
grr dr ′ = a(t)

∫ r

0

dr ′
√

1 − kr ′2
= a(t)χ. (19)

This distance is time dependent so a radial comoving distance is often used as

χ = dphys

a(t)
. (20)

In the spatially flat case, with the normalization of a ≡ 1 today, the comoving
distance is normalized to be equal to the proper distance today. Also, the normalized
comoving distance to a galaxy with redshift z (or a = 1/(1 + z)) is thus given from
Eq. (9) as

χ =
∫ ttoday

t

dt ′

a(t ′)
=

∫ 1

a

da′

a′2 H(a′)
. (21)
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Now, astronomers define other distances that can be measured by different methods.
First, the angular diameter distance is defined for an object that has a typical diameter
size, D, and an angular observed size, δθ as (Ellis 1973; Ellis and van Elst 1999)

dA ≡ D

δθ
=

√
gθθdθ

δθ
= a(t) fK (χ), (22)

where we have used the metric (9) and fK (χ) is given by (10). Furthermore, the
comoving angular diameter distance is defined as

dAC ≡ dA

a(t)
= fK (χ), (23)

so in a spatially flat cosmology, χ is also referred to as the comoving angular diameter
distance.

Finally, for an object with luminosity, L , and flux, F , measured here at the observer
[for example on a Charged-Coupled Device (CCD)], the luminosity distance, dL , is
defined from the relation

F ≡ L

4πd2
L

. (24)

From photon conservation, the flux measured at observer can be written in terms of
the metric functions of (9) and the source redshift as Ellis and van Elst (1999)

F = L

4π(1 + z)2r2
G

, (25)

where rG ≡ a(t0) fK (χ) is called the galaxy area distance. Furthermore, two effects
need to be considered. The first is that photons are redshifted by a factor (1 + z), and
the second effect is that there is a time dilation due to cosmic expansion providing a
second factor (1 + z).

Now, comparing Eqs. (24) and (25), and using rG , the luminosity distance is given
by

dL(z) = fK (χ)(1 + z). (26)

dL is thus related to the angular diameter distance, dA, by

dL = dA(1 + z)2. (27)

This is Etherington’s reciprocity theorem (or distance-duality relation), which is true
when the number of photons traveling on null geodesics is conserved.
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3.2 The inhomogeneous lumpy universe and the growth of large-scale structure

3.2.1 Large-scale structure and cosmological perturbations

The universe we observe at large scales is rather full of clusters and superclusters of
galaxies. Such a picture is mathematically realized by applying linear perturbations to
Einstein’s equations in an FLRW background. Sufficiently large scales are considered
so linear perturbations are a valid description.

This is done by adding to the metric tensor a small perturbation tensor. Then com-
puting the Einstein tensor to the first order. At the same time, the energy momentum
tensor is also linearly perturbed. The Einstein equations then give the usual back-
ground Friedmann equations (184) plus additional equations governing the evolution
of the perturbations (see, e.g., Carroll 2003; Peter 2013 for a pedagogical introductions
and also some of the seminal references Bardeen 1980; Kodama and Sasaki 1984).
An insightful approach to these linear perturbations is to decompose the components
of the symmetric metric tensor perturbations according to how they transform under
spatial rotations. The 00-component of the metric perturbation tensor is a scalar, the
three 0i-components (or equally the three i0-components) constitute a vector, and
the remaining nine ij components form a symmetric spatial tensor of rank two. This
is known as the SVT decomposition of linear perturbations. The three parts trans-
form only into components of the same type under spatial rotations. In GR, the scalar
modes are, for example, associated with matter density fluctuations and used for large
scale structure studies, tensor modes are associated with gravitational radiation used,
for example, for primordial gravitational waves, while vector modes decay in and
are usually ignored. Last, in addition to this decomposition, one needs to specify a
gauge choice where the components of the perturbations can be different in the corre-
sponding coordinate system, see e.g., Carroll (2003) and Peter (2013) for pedagogical
discussions. Modification to gravity can be implemented at the level of scalar mode
perturbations as we discuss further below or at the level of tensor modes as in, e.g.,
Saltas et al. (2014), Pettorino and Amendola (2015), Dubovsky et al. (2010), Raveri
et al. (2015), Amendola et al. (2014) and Lin and Ishak (2016).

In this review, we will focus scalar perturbations. The perturbed spatially flat FLRW
metric reads in, for example, the conformal Newtonian gauge as

ds2 = a(τ )2[−(1 + 2Ψ )dτ 2 + (1 − 2Φ)dx i dxi ], (28)

where xi ’s are the comoving coordinates, and τ the conformal time defined further
above. Φ and Ψ are the gravitational scalar potentials describing the scalar mode of
the metric perturbations.

We consider subhorizon scales with k ≫ aH . In many analyses and papers on
testing gravity at cosmological scales, the perturbed equations are often specialized
to the quasi-static limit or approximation. This means that the time evolution of the
gravitational potentials is assumed to be small compared to the Hubble time so one
can assume the derivatives of the potentials to be zero for sub-Hubble-horizon scales.
For scalar–tensor theories, this approximation also means that one neglects the time
derivatives of the fluctuations in the scalar field at scales below the scalar perturbation
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sound horizon. More on this approximation or its limits can be found in, e.g., Noller
et al. (2014), Sawicki and Bellini (2015) and Pogosian and Silvestri (2016).

The first-order perturbed Einstein equations in Fourier space give two equations
that describe the evolution of the two scalar gravitational potentials, e.g., Ma and
Bertschinger (1995). The combination of the time-time and time-space perturbed equa-
tions provides a Poisson equation for the potential Φ. The second equation includes
the two potentials and comes from the traceless space-space components. The two
equations read (in the quasi-static approximation for the potentials)

k2Φ = −4πGa2
∑

i

ρ̄iδi (29)

k2(Ψ −Φ) = −12πGa2
∑

i

ρ̄i (1 + wi )σi , (30)

where ρ̄i and σi are the density and the shear stress, respectively, for matter species
denoted by the index i . δi is the gauge-invariant, rest-frame overdensity for matter
species, i . Its evolution describes the growth of inhomogeneities. It is defined by

δi = δi + 3H
qi

k
, (31)

where H = a′/a is the Hubble factor in conformal time (where ′ is for differentiation
with respect to conformal time), and for species i ,

δi = ρi − ρ̄i

ρ̄i

(32)

is the fractional overdensity; ρ̄i is the background average density; qi is the heat flux
related to the divergence of the peculiar velocity, θi , by

θi = k qi

1 + wi

. (33)

From conservation of the energy-momentum in the perturbed matter fluid, these quan-
tities for uncoupled fluid species or the mass-averaged quantities for all the fluids
evolve as, e.g., Ma and Bertschinger (1995):

δ′ = −kq + 3(1 + w)Φ ′ + 3H

(
w − δP

δρ

)
δ (34)

q ′

k
= −H(1 − 3w)

q

k
+ δP

δρ
δ + (1 + w) (Ψ − σ) . (35)

Combining these two equations, one obtains the evolution equation of δ as

δ′ = 3(1 +w)
(
Φ ′ + HΨ

)
+ 3Hwδ−

[
k2 + 3

(
H

2 − H
′
)] q

k
− 3H(1 +w)σ. (36)

123



Testing general relativity in cosmology Page 17 of 204 1

Equations (29), (30), (34), and (35) above are coupled to one another; their com-
binations, along with the evolution equations for the scale factor a(τ ), can provide a
full description of the growth history of structures in the universe.

3.2.2 Growth factor and growth rate of large-scale structure

Now, specializing the above equations to the case of matter (baryons plus cold dark
matter) at late time, we can set w = δP/δρ = σ = 0. Also using the quasi-static
approximation (i.e., Φ ′ = 0), Eq. (34) reduces to

δ′m = −kq = −θ. (37)

Next, taking its derivative and using Eq. (35) as well as the two Poisson equations (29)
and (30), we write

δ′′m + Hδ′m − 4πGa2ρ̄δm = 0. (38)

In cosmic time, this reads,

δ̈m + 2H δ̇m − 4πGρ̄δm = 0. (39)

This time evolution equation for δ has a solution with decaying and growing modes.
We are interested in the growing modes (denoted with a + subscript) that gave the
structures that we observe today in the universe. One thus defines D+(t) as the linear
growth factor of perturbations relating the overdensity δ(t) at some given time t to its
value at some initial time ti . That is

δ(t) = D+(t)

D+(ti )
δ(ti ), (40)

where D+(ti ) and δ(ti ) are constants set by initial conditions. The growth factor is
often properly normalized as G(z) ≡ D(a)/a.

A paramount quantity in probing the growth of large scale structure is the growth
rate, defined as the derivative of the logarithm of the growth factor with respect to the
logarithm of the scale factor, i.e.,

f (a) ≡ d ln D

d ln a
. (41)

As we will discuss further, some observations, such as Redshift Space Distortions
(RSD), are directly sensitive to this function (or its product with the amplitude of
matter fluctuation, σ8(a)). The growth differential equation (39) above can be rewritten
in terms of the growth rate (41) where the effect of modification to gravity can be
encapsulated in an effective gravitational constant Geff or a modified gravity parameter
μ(k, a) (see Sect. 5.2 further) and thus re-written as:

d f

d ln a
+ f 2 +

(
Ḣ

H2 + 2

)
f = 3

2

G
ψ
eff

G
Ωm ≡ 3

2
μΩm (42)
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Fig. 1 Growth rate of matter density fluctuations, f (z). Theory prediction curves are shown for: theΛCDM
model; the Dvali–Gabadadze–Porrati braneworld model (the self-accelerating branch, see Sect. 7.5.2) (Dvali
et al. 2000); and the f (R) (see Sect. 7.4.1) modified gravity model (Hu and Sawicki 2007a) [model with
c = 3 from Linder (2009)]. Note that the growth in f (R) models is scale-dependent so the authors show
predictions at two wavenumbers, k = 0.02 h Mpc−1 and k = 0.1 h Mpc−1. Also shown are the error bars
projected from a future galaxy spectroscopic redshift survey designed with DESI survey specifications
(Aghamousa et al. 2016). Image reproduced with permission from Huterer et al. (2015), copyright by
Elsevier

(for GR, Geff = G and μ = 1 , recovering the standard expression).
For illustration, we reproduce Fig. 2 from Huterer et al. (2015) (Fig. 1 here) where

it is shown how the function f (z) can be a discriminator for various gravity theories.

3.2.3 Correlation function andmatter power spectrum

The galaxy correlation function is a measure of the degree of clustering in a spatial
or angular distribution of galaxies. If δg(r) represents the galaxy overdensity with
respect to an expected mean density then the correlation function is given by the
2-point function

ξ(r1, r2) ≡ 〈δg(r1)δg(r2)〉, (43)

where 〈. . . 〉 denotes the ensemble average. The galaxy correlation function can be
further understood as follows (Baugh 2000): Let’s consider two volume elements, dV1
and dV2 separated in space by r12. The 2-point correlation can be defined as the excess
probability, in comparison with a random distribution, of finding a galaxy in dV1 and
another in dV2. That is:

d P = n̄2 [1 + ξ(r12)] dV1dV2, (44)

where n̄ is the mean galaxy number density. Due to the assumption of isotropy and
homogeneity, the vector notation is dropped and only the distance r12 has been kept.

A closely related quantity is the galaxy power spectrum which is defined as the
Fourier transform of the correlation function as

Pg(k) =
∫
ξ(r)eik·rd3r , (45)
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ξ(r) =
∫

P(k)e−ik·r d3k

(2π)3
. (46)

Note that we have again dropped the vector notation in the argument of Pg(k) and
ξ(r) due to the statistical isotropy and homogeneity. In other words, they are only
functions of the magnitudes of k and r. In this case, it is assumed that one of the two
galaxies is at the origin and the other one is at a distance r . It is worth noting that for
a Gaussian random field, the power spectrum contains all the statistical information
of the field which explains its wide use in cosmological studies.

The correlation function can be measured from a galaxy survey using estimators
taking into account observational subtleties (Landy and Szalay 1993). Its theoretical
counterpart is calculated from using the model predicted matter power spectrum that
we discuss next. However, we use now the term matter because we refer to the dark
matter field and its fluctuation, δ(k, z), which is traced by the galaxy fluctuation
modulo some bias factor. The matter power spectrum, P(k, z), is defined by

〈δ(k, z)δ(k′, z)〉 = (2π)3 P(k, z) δ3
D(k − k′), (47)

where δ3
D is the delta function of Dirac. P(k, z) is determined from theoretical grounds

as we discuss next.
The standard picture of structure formation in the universe is that structures have

grown by gravitational infall and clustering from primordial small fluctuations in the
matter density field. These seed fluctuations would have originated from microscopic
quantum fluctuations that have been blown up to macroscopic scales by cosmic infla-
tion (Guth 1981; Bardeen et al. 1983; Albrecht and Steinhardt 1982). These primordial
fluctuations would be scale invariant and described by the power spectrum (Harrison
1970; Peebles and Yu 1970; Zeldovich 1972)

P(k) ∝ kns . (48)

with ns ≈ 1. This is consistent with current observations finding that ns = 0.9652 ±
0.0062, see e.g., Ade et al. (2016a) and Spergel et al. (2003).

The matter power spectrum today has evolved from this primordial spectrum while
subject to a number of physical processes. During the radiation-dominated epoch,
perturbations outside the horizon grow as the square of the expansion scale factor
while those inside the horizon do not grow. This is due to the radiation pressure
in the primordial plasma acting against gravity and preventing gravitational infall.
Furthermore, as the universe expands, modes entering the horizon are also frozen.
This happens until the time of matter-radiation dominance equality where modes
inside the horizon can then grow. Accordingly, the scale of the horizon at this matter-
radiation equality is marked in the distribution of density fluctuations and appears as
a turn-over in the shape of the matter power spectrum, see e.g., Peacock (1999) and
Dodelson (2003). This and other processes about mode behaviors are formulated in
the so-called transfer function, T (k), (Bardeen et al. 1986; Sugiyama 1995; Eisenstein
and Hu 1998). The primordial power spectrum is also enhanced by the growth factor
of structure, G(z) as described in Sect. 3.2.2. In sum, the matter power spectrum
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today can be written as a product of the components discussed above plus a primordial
amplitude determined by observations:

P(k, z) = As kns T 2(k)G2(z). (49)

In a last step, we need to connect the galaxy and matter power spectra. For that, we
recall that galaxies trace the distribution of dark matter in the universe so the galaxy
overdensity also traces the matter overdensity. However, this tracing is subject to some
subtle galaxy bias that can be non-local and nonlinear encoding various processes and
physics of structure formation, see for example discussion in Percival (2013) and
references therein. On large scales, it is often assumed that one has a linear bias
defined via δg(z, k) = b(z, k) δm(z, k). Additionally, as we discuss in some detail in
Sect. 4.3, peculiar motion of galaxies adds distortions that can be accounted for via
the factor f (z)μ2 where μ is the cosine of the angle to the line of sight. Consequently,
the galaxy power spectrum can be written as

Ps
gg(k, μ, z) = As kns T 2(k)G2(z)

[
b(z, k)+ f (z)μ2

]2
. (50)

Finally, the linear matter power spectrum above under-predicts power on small
scales, and must be modified to the nonlinear matter power spectrum Pnl to include
nonlinear effects on small scales using simulations or fitting formulas for specific
class of models, e.g., Peacock and Dodds (1996) and Smith et al. (2003) for ΛCDM
and Zhao (2014), Hojjati et al. (2011) and Zhao et al. (2009) for f (R) MG models
(see Sect. 7.4.1). The presence of screening mechanisms also complicates the picture
for nonlinear modes in MG. There have been some recent interesting developments
on simulation codes for MG models. Winther et al. (2015) (and references therein)
presents a comparative analysis of MG N-body codes. See also Valogiannis and Bean
(2017), Winther et al. (2017) where a Comoving Lagrangian Acceleration (COLA)
approach was used. This last method uses fewer time-steps and resources and trades
some accuracy at small scales to obtain more efficiency. A parameterization for modi-
fied gravity on nonlinear cosmological scales was also proposed in Lombriser (2016).

Relevant to our review, deviations from general relativity can affect the transfer
function T (k), the growth factor G2(z), and the growth rate f (z). These can be
reflected on the shape and amplitude of the galaxy power spectrum as a function
of redshift and scale with some degeneracies. We discuss in the next section various
observational probes, surveys and techniques that constrain and connect to the galaxy
power spectrum.

4 Cosmological probes of gravity theory

A well-appreciated “break” that nature has given us in cosmology is that we have
two categories of measurements and probes that we can use. One category of probes
constrains the expansion history and geometry of the universe via, for example, dis-
tance measurements and expansion rate. The second category constrains the growth
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and history of structure formation and clustering over space and time in the universe.
Not only can we combine them, we can also contrast them for consistency. Indeed,
combining probes from the two categories allows one to break further degeneracies
between cosmological parameters and to tighten significantly the constraints, while
contrasting their constraints can reveal systematics in some data sets or the need of
some extensions to the underlying model. It is worth noting that some probes are sen-
sitive to both the expansion and the growth such as CMB and weak lensing, however,
for probing modifications to GR, it is rather the growth constraints that are the most
useful.

Modifications to gravity change the Friedmann equations and the functions derived
from them for distance and expansion observables. We give in Sect. 7 examples for
some MG models. However, as we show there as well, the modified terms in the
Friedmann equations can be cast into effective dark energy density and pressure leading
to an effective equation of state. A number of MG models can then have an expansion
history that is indistinguishable from that ofΛCDM (or a quintessence model closed to
it), thus fitting cosmological distance and expansion observations equally well with the
ΛCDM. However, such models can still exhibit a growth of structure that is different
from that of ΛCDM so growth data can then be used as a discriminator between
the theories. For this reason, studies testing GR at cosmological scales then focused
on deviations from GR (or MG models) that can mimic well the expansion history of
ΛCDM but can still be distinguished from it using the growth rate of structure. For that,
most studies assume aΛCDM (or a quintessencewCDM) background model and then
use the growth probes to constrain any deviation from GR. It has been argued though
that one should implement and use both expansion and growth explicitly modified
functions for consistency. Also, the background can be used to test GR based on
spatial curvature consistency, see e.g. Zolnierowski and Blanchard (2015).

We briefly overview various probes of gravity below and refer the reader to corre-
sponding review articles in each sub-section. We start with probes of cosmic geometry
and expansion and then follow with various probes of the growth of large-scale struc-
ture in the universe.

4.1 Probes of cosmic geometry and expansion

Bearing in mind the strategy described above, probes of expansion and geometry have
been very useful in constraining tightly background cosmological parameters such as
the density parameters, the Hubble constant, the true or effective equation of state of
dark energy, and then setting the stage for growth probes to constrain any deviation
from GR at cosmological scales.

4.1.1 Standard candles: type Ia supernova

One of the first compelling evidences for cosmic acceleration came from Supernovae
type Ia (SN Ia) observations (Riess et al. 1998; Perlmutter et al. 1999). After some
corrections, SN Ia can be considered as good standard candles with an average absolute
bolometric magnitude of MB ≈ −19.3; see for example Phillips (1993). The ratio of
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their apparent brightness to their intrinsic one can provide a measure of their luminosity
distance while their redshift can be measured independently from spectroscopy. The
theoretical model’s function dL(z) (or m(z)) are then fit to the data points after further
corrections on the data, see for example Hamuy et al. (1996), Riess et al. (1998),
Perlmutter et al. (1999) and references therein. These and other similar plots are
known as the popular Hubble plots. SN Ia Hubble plots provide relative measurements
of distances that can be calibrated using low redshift distance measurements such as
Cepheid variable stars in the host galaxies building a distance ladder. A more practical
function to use for distance estimation in cosmological analyses is the distance modulus

μ(z) = m(z)− M = 5 log DL + 25, (51)

where M is an effective absolute magnitude degenerate with the Hubble constant, H0
and DL is the luminosity distance in units of Mpc given, for example, for a spatially
flat ΛCDM universe by

DL(z) = (1 + z)

H0

∫ z

0

dz′
√
Ω0

m(1 + z′)3 +Ω0
Λ

. (52)

DL(z) for spatially curved universes follows straightforwardly from Eqs. (26), (10),
(21) and (17). Supernova data combined with other distance probe data sets can put
tight constraints on background cosmological parameters. For example, supernova
constraints on present time density parametersΩ0

m andΩ0
Λ have a degeneracy direction

that is orthogonal to that from CMB constraints so when combined together they
provide tight constraints on these parameters, see e.g., Spergel et al. (2003). We list here
a number of projects and popular compilations of supernova data that we will refer to
in this review including: Supernova Legacy Survey (SNLS) compilation (Conley et al.
2011); Union2.1 compilation (Suzuki et al. 2012); Joint Light Curve Analysis (JLA)
constructed from SNLS, SDSS and several low-redshift SN samples, e.g., Betoule
et al. (2014); Pan-STARRS sample, e.g., Rest et al. (2014); and most recently the
Pantheon Sample compiled from a number of the above and other surveys which was
provided in Scolnic et al. (2017).

4.1.2 Standard rulers: angular distance to CMB last scattering surface and baryon

acoustic oscillations

The very early universe was made of a hot and dense plasma of electrons, baryons,
mixed with a pressure-less dark matter component. Photons were trapped with this
plasma via Thompson scattering. This is sometimes referred to as the baryon-photon
fluid. As the universe expanded and cooled down, electrons and protons formed neutral
hydrogen atoms. This is called recombination and happened at approximately 380,000
years after the Big Bang corresponding to a redshift of about 1090 (Ade et al. 2016a;
Spergel et al. 2003). Shortly after that, photons decoupled from the matter and traveled
freely in the universe constituting the relic background radiation that we observe today
as the CMB.
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Before decoupling, the baryon-photon fluid was subject to gravitational infall
toward the center of overdense regions (dominated by dark matter) but then pushed
back outward by the building pressure of the photons. This process created spherical
sound oscillations in the plasma fluid traveling at a sound speed cs that depends on
the baryons and photon density parameters. The largest comoving distance that such
sound waves could have traveled from the Big Bang time to decoupling time is denoted
here as rs,com,dec and can be calculated as follows

rs,com,dec =
∫ tdec

0

csdt

a

= c√
3

∫ tdec

0

dt

a
√

1 + (3Ωb)/4(Ωγ )a

= c√
3H0

∫ adec

0

da√
Ωr + aΩm

√
1 + (3Ωb)/4(Ωγ )a

For example, if we use the values from Ade et al. (2016a) as follows: Ωb = 0.0492,
Ωm = 0.3156, Ωγ = 5.45 × 10−5, Ωr = 9.16 × 10−5 for baryon, matter, photon,
and radiation (photons + neutrinos) density parameters, respectively; H0 = 67.3 km
s−1 Mpc−1and zdec = 1090; then Eq. (53) above gives rs,com,dec = 144.7 Mpc.

The corresponding physical scale is given by rs,dec = adec × rs,com,dec = 0.133
Mpc and is called the crossing sound horizon at time of recombination. It corresponds
to the largest scale at which an acoustic oscillation can be present in the baryon-photon
fluid. After decoupling, these standing acoustic waves remained imprinted in the CMB
temperature maps as well as in the distribution of matter structure in the universe. It
constitutes a “standard ruler” that can be measured in the universe while taking into
account the expansion scale factor (or redshift).

For the CMB, this standard ruler and the angular diameter distance from the observer
to the CMB last scattering surface can be combined to give the angular size of the
sound horizon on such a surface as

θs ≈ rs

dsls
A

. (53)

This angle is particularly sensitive to the density and spatial curvature parameters,
thus providing a good constraints on the geometry of the universe. This is related to
the position of the CMB acoustic peaks (e.g., ℓ ≈ π/θs for the first peak). Planck has
put a remarkably tight constraints on this angle as θs = (1.04106 ± 0.00031)× 10−2

(Ade et al. 2016a). A concise description of how the distance to last scattering using
the crossing sound horizon can be found in for example Wijenayake and Ishak (2015)
and more detail in Bond et al. (1997).

On the side of Baryons, part of the pattern is the presence of shells of overdense
regions with comoving radius equal to the sound crossing horizon. This pattern is called
the Baryon Acoustic Oscillations (BAO) and was indeed detected in various galaxy
surveys as we cite further below. In BAO geometry, one is dealing with a spherical
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shell of matter so one can use the standard ruler along the line of sight (longitudinal)
as well as in the transverse direction.

For the line-of-sight part, one can write from the line element of spacetime

H(z) = δz

δχ‖
. (54)

One can measure δz from spectroscopy in the survey while δχ‖ is the standard ruler,
so one can constrain the Hubble function H(z) at some effective redshift.

For the transverse part, one can use the small angle approximation for the angle
subtended by the standard ruler δχ⊥ as

dA(z) = δχ⊥
δθ

, (55)

where δθ is measured from the survey while δχ⊥ is the known standard ruler so one
can derive the angular diameter distance dA(z) at the effective redshift used.

Some analyses like Gaztañaga et al. (2009) and Chuang and Wang (2012) have
used this approach and made very low-signal-to-noise detection because extremely
large volumes are necessary for a 2D correlation function (Beutler et al. 2011). But a
number of other analyses, e.g., Cole et al. (2005), Beutler et al. (2011), Blake et al.
(2011b) and Anderson et al. (2012) made much stronger detections using rather a 1D
correlation function and an effective projected distance defined as

DV (z) ≡
[
(1 + z)2d2

A(z)
cz

H(z)

]
. (56)

In such analyses, what is fit to the data is then the ratio

dz = rs(zdrag)

DV (z)
, (57)

where rs(zdrag) is specifically the comoving crossing sound horizon when baryons
became dynamically decoupled from photons. This can be understood as after photons
last scattering, the baryons encountered a baryon drag epoch until redshift of about
1060 (Ade et al. 2016a). Other variations or definitions of useful effective distances
like (56) have been defined and used in literature (Bassett and Hlozek 2010; Aubourg
et al. 2015).

A number of measurements of BAO have been made and have become very useful
in constraining the background geometry providing important complementary data
to that of CMB and SN measurements. These include measurements of the BAO
effective projected distance (or other measures) by for example the SDSS at zeff = 0.15
(Eisenstein et al. 2005; Ross et al. 2015), the 2-degree-Field Galaxy Survey (2dFGRS)
at zeff = 0.32 (Cole et al. 2005), BOSS LOWZ at zeff = 0.32 and CMASS at
zeff = 0.57 (Anderson et al. 2014), the 6dFGS measured at zeff = 0.106 (Beutler
et al. 2011), and WiggleZ survey at zeff = 0.6 (Blake et al. 2011b).
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4.1.3 Local measurements of the Hubble constant or measurements of H(z)

The Hubble constant, H0, is one of the oldest cosmological parameters describing the
rate of expansion of the Universe and entering all distance and geometry measurements
of the universe.

A direct measurement of the local Hubble constant is possible using the cosmic
distance ladder (e.g., Freedman and Madore 2010). Once this local measurement is
accomplished, it can serve as a prior to further cosmological analyses. This is in
particular useful if one wants to fix the background cosmology to that of a fiducial
ΛCDM while allowing for the growth parameter to vary. This is useful in the case of
models that can mimic a ΛCDM expansion but can still have a distinct growth rate of
structure, like for example some f (R) models (see Sect. 7.4.1).

Furthermore, other cosmological probes such as the CMB infer the value of the Hub-
ble constant by assuming and using a cosmological model. Therefore the comparison
of the local measurement with that of the CMB provides an important consistency test
for the underlying model. This highlights the importance of such a local measurement
and we report here some of the values of the local measurements of H0.

We list here some measurements of H0. First, using the Hubble Space Telescope
(HST) Key Project and Cepheid calibration of distances to 31 galaxies and other
calibrated secondary distance indicators (Type Ia and Type II Supernovae), Freedman
et al. (2001) reported H0 = 72 ± 8 km s−1 Mpc−1. A decade later, Riess et al.
(2011) used HST new camera observations of over 600 Cepheids in host galaxies
of 8 Type Ia SN. This allowed the authors to calibrate the SN magnitude-redshift
relation and to obtain a much more precise value of H0 = 73.8 ± 2.4 km s−1 Mpc−1.
Efstathiou (2014) used different outlier rejection criteria for the Cepheids and obtains
H0 = 70.6 ± 3.3 km s−1 Mpc−1. He also obtained H0 = 72.5 ± 2.5 km s−1

Mpc−1when the H-band period-luminosity relation is assumed to be independent
of metallicity using other combined distance anchors. Freedman et al. (2012) used
HST with further calibrations from the Spitzer Space Telescope to measure H0 =
74.3 ± 1.5 (statistical) ± 2.1 (systematic) km s−1 Mpc−1. Most recently, Riess et al.
(2016), used four geometric calibration methods of Cepheids to obtain 73.24 ± 1.74
km s−1 Mpc−1.

It is worth noting here that a tension seems to persist between the local measurement
values and the lower value obtained from Planck, i.e., H0 = 66.93 ± 0.62 km s−1

Mpc−1. This tension has been the subject of numerous discussions in recent literature
offering different perspectives (Bernal et al. 2016; Lin and Ishak 2017a, b; Luković
et al. 2018; Wang et al. 2017; Haridasu et al. 2017; Zhang et al. 2018; Gómez-Valent
and Amendola 2018; Abbott et al. 2018a). As we discuss further below in some of the
sub-sections (see e.g., Sects. 9.7 and 9.9), some authors find that some modified gravity
models reduce or alleviate the tension in the Hubble parameter (see e.g., Barreira et al.
2014a; Belgacem et al. 2018b).

However, other approaches have been used to determine local measurement of H0.
Some time ago, Gott et al. (2001) developed and used a median statistics method that
provides an alternative ofχ2 likelihood methods and requires fewer assumptions about
the data. They found at that time a median value of H0 = 67 km s−1 Mpc−1with ±2 km
s−1 Mpc−1statistical errors (95% CL) and ±5 km s−1 Mpc−1statistical errors (95%
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CL) from using 331 measurements of H0 from by Huchra’s compilation. Some time
later Chen and Ratra (2011) used the same method and the final compilation of Huchra
with 553 measurements finding a median of H0 = 68±5.5 km s−1 Mpc−1(at 95% CL)
including statistical and systematics uncertainties. Most recently, Chen et al. (2017)
used rather the Hubble function H(z) with 28 measurements at intermediate redshifts
0.07 ≤ z ≤ 2.3 in order to determine the local Hubble constant, H0. They find for the
spatially flat and non-flat ΛCDM model, H0 = 68.3+2.7

−2.6. The authors stress that this
value is consistent with the low value obtained with the previous work using the median
statistics. They also note that this value is consistent with the low value measured
by Planck while it includes the high value from local measurement in the previous
paragraph within the 2σ bound. Further work using, H(z), was carried (Moresco
et al. 2016; Farooq et al. 2017; Yu et al. 2018) where the authors put constraints on
a cosmological deceleration-acceleration transition with various levels of confidence.
Capozziello et al. (2014) made some first developments to constrain f (R) models
using the cosmological deceleration-acceleration transition redshift. They required
that the model reduces to ΛCDM at z = 0 but they parametrize possible departures
from it at higher redshifts in terms of a two-parameter logarithmic correction. They
found that the transition in this model happens at a redshift consistent with using
type Ia supernova apparent magnitude data and Hubble parameter measurements.
Finally, Gómez-Valent and Amendola (2018) followed on the H(z) approach using
cosmic chronometers, Type Ia supernovae, Gaussian processes and a novel Weighted
Polynomial Regression method to find H0 = 67.06 ± 1.68 km s−1 Mpc−1which is in
agreement with low values and in 2.71-σ tension with the local measurement of Riess
et al. They also determine a more conservative value of H0 = 68.45 ± 2.00 which
is still about 2-σ tension with the value from Riess et al. further above. With future
precise data from for example, GAIA, and other experiments, one will hopefully get
to the bottom of these tensions.

4.2 Weak gravitational lensing

Trajectories of photons traveling to us from remote galaxies get deflected along the
line of sight by matter overdensities in the intervening medium. This is called gravi-
tational lensing. Depending on the positions of the sources and lenses relative to the
observer, these deflections can result in strong, intermediate, or weak lensing. Strong
and intermediate lensing provides spectacular multiple images such as Einstein rings
and crosses (Cabanac et al. 2005; Belokurov et al. 2009), giant arcs, and arclets (Hen-
nawi et al. 2008). Less impressive but so abundant, weak lensing consists of tiny
distortions to the shapes of millions and millions of galaxies that can be accounted for
using statistical techniques and turned into a powerful cumulative signal which probes
the cosmology of the intervening deflector medium including any modification to
gravity theory at cosmological scales.

Weak lensing at cosmological scales, also called cosmic shear, is quantified by
the shear of images that tend to transform circular shapes into elliptical ones and is
represented by the complex-quantity γ , and the convergence, κ , that represents the
magnification of these images. In this weak regime, the two effects are very small,
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of the order of a few percent at most and equal, thus used interchangeably. To linear
order, the shear is a good approximation to the reduced shear that is determined from
the measured shapes (ellipticies) of galaxy images and on scales typically used in
weak lensing analyses to date, see e.g., reviews Bartelmann and Schneider (2001) and
Kilbinger (2015).

Cosmic shear surveys measure ellipticities and positions of galaxies in the sky and
then build from them pairs and triplets called 2- and 3-point correlation functions
that can be compared to theoretical models using the lensing power spectrum and
bispectrum that are derived from the formalism as follows (we use a mixture of steps
from Kilbinger 2015; Troxel and Ishak 2015).

The mean convergence can be written as a weighted projection of the overdensities
along the line of sight

κ(θ) = 3H2
0Ωm

2c2

χH∫

0

dχ
g(χ)

a(χ)
fK (χ) δ( fK (χ)θ, χ), (58)

where χH is is the comoving coordinate at the horizon, fK (χ) is given by Eq. (10),
and g(χ) is defined as

g(χ) =
χH∫

χ

dχ ′ n(χ ′)
fK (χ

′ − χ)

fK (χ ′)
, (59)

and represent the lensing efficiency at a distance χ . The convergence 2-point correla-
tion functions is constructed as

〈κ(θ1)κ(θ2)〉, (60)

where again 〈 〉 denotes the ensemble average. Now, the convergence scalar field can
be decomposed into multipole moments of the spherical harmonics as

κ(θ) =
∑

lm

κlmY m
l (θ), (61)

where

κlm =
∫

d θ̂κ(θ , χ)Y m∗
l (θ). (62)

The convergence power spectrum Pκ(ℓ) is then defined by

〈κlmκl ′m′〉 = δll ′δmm′ Pκ(ℓ). (63)

In the Limber approximation (Limber 1953), it is given by Kaiser (1992, 1998) and
Jain and Seljak (1997):

Pκ(ℓ) = 9

4
Ω2

m

(
H0

c

)4 ∫ χH

0
dχ

g2(χ)

a2(χ)
Pδ

(
k = ℓ

fK (χ)
, χ

)
, (64)
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where Pδ

(
k = ℓ

fK (χ)
, χ

)
is the 3D nonlinear matter power spectrum (Sect. 3.2.3).

As we discuss further below, modifications to gravity will alter the growth
factor function and the matter power spectrum (49) as well as Weyl potential
Eq. (88). A generalization of the above steps to the convergence 3-point correlation,
〈κ(θ1)κ(θ2)κ(θ3)〉, provides the convergence bispectrum

Bκ(ℓ1, ℓ2, ℓ3) =
∫ χH

0
dχ

W 3(χ)

fK (χ)4(χ)

Bδ

(
k1 = ℓ1

fK (χ)
, k2 = ℓ2

fK (χ)
, k3 = ℓ3

fK (χ)
;χ

)
, (65)

where we encapsulated the other factors into the W (χ) as follows,

W (χ) = 3

2
H2

0
Ωm

a(χ)

∫ χH

χ

dχ ′n(χ ′) fK (χ)
fK (χ

′ − χ)

fK (χ ′)
, (66)

and Bδ(k1 = ℓ1
fK (χ)

, k2 = ℓ2
fK (χ)

, k3 = ℓ3
fK (χ)

;χ) is the 3D matter bispectrum.

Next, we describe a few more steps on how comparison to observed ellipticities
of galaxies is performed. We note that the ellipticity is also represented as a complex
number field just like the shear. For a galaxy with intrinsic ellipticity ǫint, cosmic shear
modifies this ellipticity [via combination with the reduced shear Kilbinger (2015)] such
that the observed ellipticity in the weak-lensing regime is given by

ε ≈ εint + γ. (67)

If we average over a large number of galaxies, we expect the averaged first term to drop
due to the assumed random intrinsic ellipticity of galaxies (any residual is usually put
into a noise term) so the observed ellipticity components can be used as an estimator
of the complex shear, i.e., γ = 〈ε〉.

Additionally, galaxies also have intrinsic alignments that provide signals contam-
inating the lensing signal. These intrinsic alignments are due to processes of galaxy
formation in the gravitational field. They need to be isolated and mitigated for weak
lensing to reach its full potential. See the following reviews for this topic (Troxel and
Ishak 2015; Kirk 2015).

In practice, the two components of the shear can be identified as a tangential compo-
nent with respect to the 1-axis, i.e., γt = −γ1, and a cross-component, i.e., γ× = −γ2,
obtained by a rotation of an angle +π/4 from the tangential component. These com-
ponents are used to build 2-point correlators that can be combined to construct two
practical and often-used 2-point correlations from observations as follows (Miralda-
Escude 1991),

ξ+(θ) = 〈γtγt〉(θ)+ 〈γ×γ×〉(θ);
ξ−(θ) = 〈γtγt〉(θ)− 〈γ×γ×〉(θ). (68)
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The explicit corresponding weighted estimators from ellipticities can be found in for
example Kilbinger (2015).

Finally, in order to compare the correlation functions above to their theoretical coun-
terparts, the shear 2-point correlations are related to the convergence power spectrum
as follows

ξ+(θ) = 1
2π

∫
dℓ ℓ J0(ℓθ)Pκ(ℓ),

ξ−(θ) = 1
2π

∫
dℓ ℓ J4(ℓθ)Pκ(ℓ), (69)

where Jn(x) are the n-th order Bessel function of the first kind.
Finally, it is worth mentioning that cosmic shear analyses perform a powerful tech-

nique called tomography where the data is split into redshift bins. This strongly probes
the growth rate of large scale structure. With tomography, the 2-point correlation func-
tions between two bins i and j is specialized as

ξ
i j
± (θ) = 1

2π

∫
dℓ ℓ J0/4(ℓθ)P

i j
κ (ℓ), (70)

where the corresponding power spectrum is given by

P i j
κ (ℓ) = 9

4
Ω2

m

(
H0

c

)4 ∫ χlim

0
dχ

gi (χ)g j (χ)

a2(χ)
Pδ

(
k = ℓ

fK (χ)
, χ

)
. (71)

Modifications to gravity are constrained by weak lensing via the growth factor
function and any other changes in the matter power spectrum (49) as well as the
modifications to the Weyl potential equation (88). The latter change is usually captured
phenomenologically by the addition of the MG parameter factor, Σ(k, χ)2, in the
integrand of equation (71). This highlights the sensitivity and importance of WL
surveys in testing deviations from GR. We reproduce here the right-top panel of Fig. 1
from Shirasaki et al. (2016) (Fig. 2 here) comparing convergence power spectra of two
f (R) models, two dynamical dark energy models and the standard ΛCDM model.

Recent cosmic shear surveys have already provided us with several analyses to
constrain modification to GR or some classes of MG models that we discuss further
below. These include, CFHTLenS (Heymans et al. 2013; Simpson et al. 2013), KIDS
(Joudaki et al. 2017; Hildebrandt et al. 2017), and KIDS+2dFLenS (Amon et al.
2017; Joudaki et al. 2018). It is expected that LSST (https://www.lsst.org/; LSST
Dark Energy Science Collaboration 2012) and WFIRST (https://wfirst.gsfc.nasa.gov/;
Spergel et al. 2015), and Euclid (http://sci.esa.int/euclid/; Amiaux et al. 2012) will be
particularly effective in constraining beyondΛCDM model including deviations from
GR and a number of classes of MG theories (Jennings et al. 2012; Xu 2015; Kwan
et al. 2012; Tsujikawa 2015; Bellini et al. 2016; Okumura et al. 2016).
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Fig. 2 Top panel: convergence power spectra for f (R) models (see Sect. 7.4.1), dynamical dark energy
models and theΛCDM standard model. Error bars are for the survey indicated on the figure—sky coverage
of 20,000 square degrees with a galaxy density number of 10 per arcminutes squared. The dashed line
corresponds to the shot noise term of auto power spectrum. Bottom panel: Ratio between ΛCDM model
and f (R) models or wCDM models. Image reproduced with permission from Shirasaki et al. (2016),
copyright by the authors

4.3 Galaxy surveys: clustering and redshift space distortions (RSD)

In the recent years, a wealth of cosmological information has been provided to us from
spectroscopic redshift surveys such as SDSS, BOSS, 2dF, 6dF and WiggleZ. From
galaxy redshift surveys one can measure the isotropically averaged galaxy power
spectrum or the galaxy correlation function and thus put constraints on cosmological
parameters as well as MG parameters and models. This can be done via constraints
on various factors in the galaxy power spectrum (50) discussed in Sect. 3.2.3. For
example, we reproduce Fig. 2 from Barreira et al. (2014a) (see Fig. 4 here) showing
in the bottom panel the data points from the SDSS-DR7 Luminous Red Galaxy host
halo power spectrum of Reid et al. (2010) against Galilean MG models and ΛCDM
with massive neutrinos (Barreira et al. 2014a).

Additionally, there are Lyman-α surveys (sub-surveys) that can determine the fre-
quency, density and temperature of matter clouds containing neutral hydrogen between
the observer and remote quasars. Each spectrum gives information about multiple
structures along the line of sight and that traces the distribution and growth of matter
along the line of sight, see for example Weinberg et al. (2003), McDonald et al. (2006)
and Font-Ribera et al. (2013).
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In regards to testing deviations from GR using galaxy redshift surveys, it seems
that “the good comes from the bad”. Indeed, observations along the line of sight are
also subject to distortions due to the fact that we make measurements in the redshift
space and then convert them to the real space. It turns out that these distortions are a
rich source of cosmological information which has at its forefront the redshift space
distortions (RSD) that are very sensitive to the growth rate of structure and the gravity
theory governing such a growth. We briefly describe below some aspects of the RSD
formalism and refer the reader to specialized reviews on the topic (Samushia et al.
2014; Blake et al. 2011a; Hamilton 1998; Percival and White 2009; Percival 2013)
and references therein.

Redshifts to remote cosmic objects such as galaxies are distorted by peculiar veloc-
ities of these objects with respect to the Hubble flow. These peculiar velocities follow
large-scale infall of matter toward over dense regions in the cosmic web and by that
they can trace the growth rate of large-scale structure. The distortions can be observed
in the redshift space as two main effects. The first one is due to random peculiar
velocity distribution of galaxies in clusters that produce a Doppler effect stretching
out a cluster of galaxies in the radial direction on redshift maps. This radial stretching
points to the observer and was dubbed by the “fingers-of-god” (FoG) effect, see e.g.,
the seminal papers by Kaiser (1987) and Hamilton (1998). See also earlier work by
Jackson (1972). The FoG effect happens at relatively smaller nonlinear scales. The
second effect happens on larger scales where the peculiar velocities are not random but
directed coherently toward the center of overdense regions (center of mass of clusters).
It is a subtle blend of effects that combine to produce a flattening of the distribution on
larger scales on redshift survey maps, sometimes dubbed as the “pancakes-of-god”,
see e.g., Hamilton (1998), Percival and White (2009) and Percival (2013). The related
equations are as follows.

A point in the redshift space can be related to the real space by

s(r) = r + vr (r)r̂, (72)

where vr is the peculiar velocity projected in the radial direction. Next, we recall the
linearized continuity equation

βδm + ∇̄ · v̄ = 0 (73)

where v is the matter velocity field, β(z) ≡ f (z)/b(z) and b(z) is the galaxy bias .
Using the Jacobian between the redshift and real spaces, conservation of galaxy

number in the two spaces, the continuity equation and a few steps, it is straightforward
to derive (Kaiser 1987; Hamilton 1998)

δs
g(k) =

(
1 + βμ2

)
δr

g(k), (74)

where the μ is the cosine of the angle with the line of sight.
Using (74) and a linear galaxy bias, the corresponding power spectra are related as

follows
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Ps
g (k, μ, z) = b(z)2

[
1 + β(z)μ2

]2
Pr

m(k, z) (75)

=
[
b(z)+ f (z)μ2

]2
Pr

m(k, z) , (76)

where in the last line, we split b(z) and f (z) on purpose and note that from the matter
power spectrum on the right comes its amplitude, e.g., σ8 that is then degenerate with
f (z) in such a measurement. This illustrates why RSD surveys probe b(z)σ8 and
f (z)σ8, unless the degeneracies are broken by other means.

Equation (75) gives the linear RSD at large-scales,1 while the nonlinear FoG effect
can be modeled by a damping factor multiplying the power spectrum and often chosen
to be an exponential (Lorentzian) or Gaussian form Percival and White (2009)

FLorentzian(k, μ
2) = [1 + (kσpμ)

2]−1, (78)

FGaussian(k, μ
2) = exp[−(kσpμ)

2]. (79)

It is then customary to multiply Eqs. (75) and (78) to combine the effect with
caution though about some limitations and the need for some accurate simulations as
discussed in for example Percival and White (2009). Indeed, other combined models
including contributions from nonlinear effects and numerical simulations are used to
fully explore RSD modeling and observations and we refer the reader to the following
RSD reviews in the literature (Hamilton 1998; Percival and White 2009; Percival 2013)
and references therein.

Finally, it is worth noting that measurement of RSD are degenerate with another
effect called the Alcock–Paczynski effect (Alcock and Paczynski 1979) which is
caused by the conversion of angles and redshifts measured in redshift space to phys-
ical distances and Hubble function in the real space. If the theoretical cosmological
model used is significantly different from the true model then further distortions are
introduced in this process. These can be confused with the RSD effects and need to
be accounted for. This results in a further multiplicative expression to Eq. (75) with
one or two more parameters. See for example, treatments and discussions in Ballinger
et al. (1996), Simpson and Peacock (2010), Samushia et al. (2012) and Montanari and
Durrer (2012). This is well summarized in the following equation from Raccanelli
et al. (2015):

Ps
g(k

′, μ′, α⊥, α||,p) = (b + μ′2 f )2

α2
⊥α||

P r
m

[
k′

α⊥

√
1 + μ

′2

(
1

F2 − 1

)]
, (80)

1 Expanding Eq. (75) shows how each term relates to the respective power spectra under the assumptions
of linearity in the density, velocity and galaxy bias. That is

Ps
gg(k, μ) = Pr

gg(k)+ 2μ2 Pr
gθ (k)+ μ4 Pr

θθ (k) (77)

where θ = ∇.v is the divergence of the peculiar velocity field and where Pgg(k), Pgθ (k), Pθθ (k), are the
galaxy–galaxy, galaxy–θ and θ–θ power spectra respectively.
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Fig. 3 Growth rate f (z)σ8(z) measurements for redshift range 0 < z < 1.55 and theoretical predic-
tions from standard GR-ΛCDM model and MG models f (R) (see Sect.7.4.1), covariant Galileons (see
Sect. 7.3.1), extended Galileons, DGP (see Sect. 7.5.2), and models with varying gravitational constant.
The constraint obtained from Subaru FastSound sample at 1.19 < z < 1.55 (Okumura et al. 2016) is plotted
as the big red point. The other results include the 6dFGS, 2dFGRS, SDSS main galaxies, SDSS LRG, BOSS
LOWZ , WiggleZ, BOSS CMASS, VVDS, and VIPERS surveys at z < 1. Predicted f σ8 from GR-ΛCDM
with the amplitude determined by minimizing their χ2 is shown as the red solid line. The data points used
for the χ2 minimization are denoted as the filled-symbol points. The other curves are predictions from MG
models as indicated on the right. Image reproduced with permission from Okumura et al. (2016), copyright
by the authors

where p are the cosmological parameters of the real-space power-spectrum and the
primed quantities are the observed quantities that have been introduced here to distin-
guish them from the real quantities as follows: k′ and μ′ are the observed wavevector
and angle; their relation to the real quantities is given by k′

|| = α||k||, k′
⊥ = α⊥k⊥,

μ′ = k′
||√

k′
||+k′

⊥
; F = α||/α⊥, with α|| = Hfid

H real and α⊥ = Dreal

Dfid the ratios of angular and

radial distances between the fiducial and real cosmological models, see Raccanelli
et al. (2015).

An important aspect of RSD analyses is to use measurements of the correlation
function from galaxy redshift surveys and then compare them to galaxy theoretical
power spectrum or its Legendre decomposition in order to estimate f σ8 and bσ8 at
different effective redshifts.

For our review, we stress that modifications to gravity enter into the f (z)σ 8 term
in Eq. (80) and also into the G2(z) contained in the matter power spectrum. RSD
measurements are thus very important in constraining deviations from GR affecting
Poisson equation (29). While current error bars on measurements are still too large to
exclude a number of contenders to GR, RSD is considered one of the most promising
probes of gravity theories and has been used in a number of analysis as we discuss
further below. For example, it has been shown in Okada et al. (2013) that RSD can
already exclude some covariant Galileon MG models (see Sect. 7.3.1) to high level
of confidence (Okada et al. 2013). We reproduce Fig. 17 from Okumura et al. (2016)
(see Fig. 3) for a number of f σ8 measurements to date along with GR-ΛCDM and
five MG models (see discussion in Sect. 6.2).
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Current RSD data include for example measurements from 6dFGS (Beutler et al.
2012), 2dFGRS (Cole et al. 2005), SDSS LRG (Samushia et al. 2012), BOSS LOWZ
(Tojeiro et al. 2012), BOSS CMASS (Anderson et al. 2014), VVDS (Guzzo et al.
2008), VIPERS (de la Torre et al. 2013), WiggleZ Dark Energy Survey (Blake et al.
2012; Parkinson et al. 2012), and Subaru FMOS galaxy redshift survey (FastSound)
(Okumura et al. 2016). A compilation of 34 points with corrections from model depen-
dencies can be found in Nesseris et al. (2017). It is worth noting that when using f σ8
data to constrain modified gravity models, one has to make sure no assumptions of
the ΛCDM model are kept in the data points due to calibration using ΛCDM mocks.
See for example the following papers that performed validation analyses of f σ8 con-
straints in MG models and pointed out to possible biases (Taruya et al. 2014; Barreira
et al. 2016; Bose et al. 2017).

In addition to linear scales, RSD and velocity power spectra were shown to be a
promising probe of deviations from gravity. Jennings et al. (2012) used large volume
N-body simulations to study dark matter clustering in redshift space in f (R)modified
gravity models (see Sect. 7.4.1). The nonlinear matter and velocity fields were resolved
to a high level of accuracy over a broad range of scales for f(R) models. The analysis
found significant deviations from the clustering signal in GR, with an enhanced boost
in power on large scales and stronger damping on small scales in the f (R) models
at redshifts z below 1. In particular, they found that the velocity power spectrum
is a strong discriminator between f (R) and GR suggesting that the extraction of the
velocity power spectrum from future galaxy surveys is a promising method to constrain
deviations from GR. See also (Hellwing et al. 2014) on the galaxy velocity field and
a signature of MG.

It is worth mentioning here that almost a decade ago RSD already attracted a lot
of attention after a study in Guzzo et al. (2008) using the VIMOS-VLT Deep Survey
(VVDS) measured the anisotropy parameter β(z = 0.77) = 0.70 ± 0.26, which
corresponds to a growth rate of structure f (z = 0.77) = 0.91 ± 0.36 consistent with
GR and ΛCDM, but with too large errors leaving room for other possibilities. We
present recent constraints from RSD on gravity in Sect. 6.2.

4.4 Cosmic microwave background radiation

This relic radiation that we call the CMB is among the most powerful cosmolog-
ical probes. Not only does it constrain the background geometry (as discussed in
Sect. 4.1.2) but it also constrains the growth of structure in the universe. The informa-
tion in the CMB is expressed into temperature and polarization power spectra. These
spectra have primary anisotropies that were imprinted at the surface of last scattering
and also secondary anisotropies that happen later while the CMB photons are traveling
in the intervening medium.

CMB spectra provide via their primary anisotropies a powerful probe of the early
universe to constrain cosmological parameters. It is complementary to other geometry
probes such as supernova and BAO that probe the later times. CMB by itself can
already tightly constrain background parameters such as the Hubble constant, the
matter density and the effective dark energy density parameters. In combination with
other probes, it can also tightly constrain an effective dark energy equation of state.
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Most relevant to dark energy and modification to GR at cosmological scales, are
the secondary anisotropies that constrain scalar mode perturbations and the growth of
large-scale structure. These are the Integrated Sachs–Wolfe–Effect (ISW) that affect
the spectrum at small multipoles (large angular scales) (Sachs and Wolfe 1967; Kofman
and Starobinskij 1985), Lensing of the CMB (Blanchard and Schneider 1987; Cole
and Efstathiou 1989; Linder 1997; Seljak 1996) that affects the spectrum progressively
at high multipoles (small angular scales), and the Sunyaev–Zel’dovich (SZ) effect at
even higher multipoles (smaller angular scales). We review the former two effects in
the next sub-sections.

Finally, it is worth mentioning that a general practice in using CMB in analysis
where geometry constraints are compared to growth constraints, the spectra are split
into low and high multipoles as follows. Low multipoles (ℓ < 30) are used to constrain
the growth while the higher multipoles (30 ≤ ℓ ≤ 2508) are more sensitive to the
background geometry via the position of the acoustic peaks and are used for that.

4.4.1 Integrated Sachs–Wolfe (ISW) effect

The Integrated Sachs–Wolfe (ISW) effect is a secondary anisotropy in the CMB tem-
perature fluctuations that is caused by time variations in the gravitational potentials
(Sachs and Wolfe 1967; Kofman and Starobinskij 1985; Rees and Sciama 1968). In
this review, we focus on the late-time ISW that can be caused by a Dark Energy
component or a modification to gravity that can effect the evolution of the potentials
associated with large-scale structures and voids. Namely, CMB photons traveling to
us encounter potential wells due to large structures. They gain energy while falling
down the potential wells but then lose it back while climbing out of them except for
a small difference left due to a stretching in the potential well caused by repulsive
Dark Energy or Modified gravity that happened during the photons’ journey through
the potential. This results in a net gain in energy for the photons coming out of the
potential’s well. The opposite scenario happens to photons when they travel across
large voids (potential hills) causing a net loss in their energy. The effect is given by

δT

T
(n̂) = −

∫ η∗

η0

dη
∂(Ψ +Φ)

∂η
(81)

where T is the CMB temperature,η∗ is the conformal time at CMB surface andη0 at the
observer. We note that spatial curvature can also cause such a variation (Kamionkowski
1996) but we assume here spatial flatness in accordance with current observational
constraints.

The ISW effect modifies the CMB temperature power spectrum at the largest angular
scales with multipoles ℓ ≤ 10 affecting the height of the left tail of the spectrum.
The first detections of the ISW effect were done by cross-correlating the WMAP
CMB temperature data with galaxy density surveys, see for example Boughn and
Crittenden (2004), Fosalba et al. (2003), Nolta et al. (2004), Corasaniti et al. (2005),
Padmanabhan et al. (2005), Vielva et al. (2006) and Giannantonio et al. (2012) and
later on by cross-correlating Planck with large scale structure data (Ade et al. 2014b,
2016d). Other methods using stacking of CMB fields at coordinates coinciding with
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known superstructures have also led to detection, see for example Granett et al. (2008),
Pápai et al. (2011) and Ade et al. (2014b). The ISW was also detected through the
ISW-lensing bispectrum using Planck data only (Ade et al. 2016d).

By changing the gravitational potentials [as in (88)] and their time evolution
(growth), MG models affect the ISW and change the very-left end of the CMB power
spectrum. We reproduce Fig. 2 from Barreira et al. (2014a) (see Fig. 4 here) where the
top panel shows the ISW effect for various Galileon MG models (see Sect. 7.3.1) and
theΛCDM model augmented by massive neutrinos. As we discuss further in Sect. 9.7,
such an effect played a major role in ruling out the cubic Galileon models and putting
very stringent constraints on the quartic and quintic ones. It is worth noting though that
since the ISW effect enters only on the largest angular scales, its constraining power is
limited by cosmic variance. However, cross-correlating CMB with large-scale struc-
ture tracers such as galaxies enhances its measurement significance and usefulness as
we listed above.

As we describe further below, the ISW effect has been used extensively to constrain
deviations from GR in conjunction with other data sets and plays a central role in
obtaining such constraints.

4.4.2 CMB lensing

Just as in cosmic shear, CMB photons traveling to us from the surface of last scattering
are subject to deflections by large-scale structure and mass concentrations along the
intervening medium. These deflections change the trajectories of photons and affect
the CMB temperature and polarization maps observed in the form of very small dis-
tortions that can be statistically collected and analyzed from high-precision CMB
experiments (Blanchard and Schneider 1987; Cole and Efstathiou 1989; Linder 1997;
Seljak 1996). This lensing smears out the CMB temperature power spectrum and pro-
duces non-guaussianities in the temperature and polarization maps, generating 3- and
4-point correlations (Bernardeau 1998; Zaldarriaga and Seljak 1999; Okamoto and Hu
2003), and converting E-mode polarization of the CMB photons into lensing B-mode
(Zaldarriaga and Seljak 1998). CMB lensing and its effects have been measured by
various experiments (Hanson et al. 2013; van Engelen et al. 2012; Keisler et al. 2015;
Ade et al. 2014f, g, e; van Engelen et al. 2015; Das et al. 2011; Ade et al. 2014d, 2016c).
For example, Planck-2015 measured the CMB lensing potential to an overwhelming
40-σ confidence level (Ade et al. 2016c).

These deflections and the resulting observed lensed CMB are sensitive to the dis-
tribution and growth rate of large-scale structures and their associated gravitational
potential. Modification to the gravitational potential due to deviations from general
relativity are thus reflected on the CMB Lensing and can be used to constrain MG
parameters and models.

CMB lensing can be understood as a remapping of CMB temperature (or polariza-
tion) as follows. The lensed CMB temperature, noted as T̃ (n̂) in a direction n̂, is given
by the unlensed temperature, T (n̂′) = T (n̂ +α) in the deflected direction n̂′ = n̂ +α.
α is the deflection angle that is expressed at lowest order as α = ∇ψL where ψL is
the lensing potential, see e.g., Lewis and Challinor (2006). The latter is the result of

123



Testing general relativity in cosmology Page 37 of 204 1

Fig. 4 These plots illustrate the differences between ΛCDM and Galileon models (see Sect. 7.3.1), with
and without massive neutrinos. The Galileon models have background Friedmann equations that contain a
scalar-field energy density contribution that generates late time cosmic acceleration and has an evolution
consistent with observations and thus similar to that of aΛCDM model. The Galileon scalar field here also
affects linear perturbations and is not coupled to matter. The effect of the Galileon field considered here
is focused on large-scale structure. The Top: CMB temperature power spectra showing the ISW effect at
low multipoles. Middle: CMB lensing potential spectra. Bottom: linear matter power spectra. The models
plotted in dashed lines indicate their best fit models to Ade et al. (2014c) temperature data, WMAP9
polarization data (Hinshaw et al. 2013), and Planck-2013 CMB lensing (Ade et al. 2014d). They note these
as PL models. The solid lines indicate their best fits to CMB data (i.e., PL) plus BAO measurements from
6dF, SDSS DR7 and BOSS DR9. They note these as PLB models. The models correspond to best-fitting
base Galileon modified gravity model (in blue), νGalileon (in red) and νΛCDM (in green). For the last
two models, the authors added massive neutrino. In the upper and middle panels, the data points show the
power spectrum measured by the Planck satellite (Ade et al. 2014c). In the lower panel, the data points show
the SDSS-DR7 Luminous Red Galaxy power spectrum of Reid et al. (2010), but scaled down to match the
amplitude of the best-fitting νGalileon (PLB) model (Barreira et al. 2014a). We refer to this figure from
various parts of the text. Image reproduced with permission from Barreira et al. (2014a), copyright by APS
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an integration along the line of sight of the gravitational potential from the surface of
last scattering all the way to us as an observer, that is

ψL(n̂) ≡ −2
∫ χ∗

0
dχ

fK (χ∗ − χ)

fK (χ∗) fK (χ)
Ψw(χ n̂; τ0 − χ), (82)

where χ∗ is the conformal distance to the surface of last scattering; τ0 − χ is the
conformal time at which the photon was at position χ n̂; Ψw(χ n̂; τ) ≡ (Ψ + Φ)/2
is the Weyl gravitational potential at conformal distance χ , in direction n̂, and at
conformal time τ ;

Following a similar procedure as in Sect. 4.2, the power spectrum of the CMB
lensing potential, for a spatially flat cosmology and in the Limber approximation
(Limber 1953) is given as (see, e.g., Lewis and Challinor 2006)

C
ψLψL
l = 8π2

l3

∫ χ∗

0
χdχ PΨ (l/χ; τ0 − χ)

(
χ∗ − χ

χ∗χ

)2

. (83)

The lensing potential power spectrum probes the matter power spectrum and its evolu-
tion and is thus sensitive to its amplitude, growth and how modification to GR affects
these quantities. For example, it is very sensitive to modification to the second per-
turbed Eq. (30). For example, we reproduce Fig. 2 from Barreira et al. (2014a) (Fig. 4
here) where the middle panel shows how CMB lensing power spectra for Galileon
MG models (see Sect. 7.3.1) versus ΛCDM model plus massive neutrinos.

It is worth pointing out Hojjati and Linder (2016) where the authors showed that
CMB Lensing will be particularly useful in constraining modified gravity models,
massive neutrino models, or other new physical models that are scale dependent. Such
signatures will show up in the CMB lensing power spectrum and provide an additional
means to constrain MG models and other models beyond wCDM. They show that the
shapes of the deviations of the CMB lensing power spectra from that of a ΛCDM
model are fairly distinct between the various scale-dependent physical origins. They
highlight the role of arcminute resolution polarization experiments such as ACTpol,
POLARBEAR/Simons Array, and SPT-3G, as well as the next generation CMB-S4
will be able to distinguish between these models.

A number of analyses of CMB Lensing have provided already useful constraints on
various cosmological parameters, see for example Hanson et al. (2013), van Engelen
et al. (2012), Keisler et al. (2015), Ade et al. (2014f, g, e), van Engelen et al. (2015), Das
et al. (2011) and Ade et al. (2014d, 2016c). We will provide in Sect. 6 further below,
various constraints on deviations from GR and MG models based on CMB Lensing.

5 Formalisms and approaches to testing GR at cosmological scales

Modifications to GR at cosmological scales have been often proposed at the level of
the action and its Lagrangian or at the level of the perturbed Einstein’s equations.
Accordingly, formalisms for deviations from GR in this context have been developed
at these two levels as we discuss in the following sub-sections.
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5.1 Effective field theory (EFT) approach to dark energy andmodified gravity

The EFT approach to dark energy and modified gravity is often referred to as a “Uni-
fied” approach to dark energy since it includes in its action a broad spectrum of single
field scalar–tensor dark energy and modified gravity models. It was applied first to
inflation models using a Lagrangian derived from an EFT expansion (Cheung et al.
2008) and then to dark energy by for example Gubitosi et al. (2013), Bloomfield et al.
(2013), Gleyzes et al. (2013) and Creminelli et al. (2009).

The approach is based on constructing a Lagrangian that includes the scalar terms
for a perturbed FLRW metric assuming a single field dark energy models with opera-
tors up to a given dimension and those that are invariant under spatial diffeomorphisms.
This EFT formulation is also done in the unitary gauge where the foliations of constant
time coincide with the hypersurfaces of uniform scalar field. This gauge allows one
to write the action only in terms of the metric and its derivatives with no scalar field
perturbations appearing there, however it brings limitation of a background-dependent
EFT approach compared with the covariant EFT approach of, e.g., Weinberg (2008)
and Bloomfield and Flanagan (2012). The action satisfying the above restrictions, that
is up to quadratic order in the perturbations, and contains only operators that lead to at
most second-order equations of motion, takes the following form in the Jordan frame
(Gubitosi et al. 2013; Bloomfield et al. 2013; Gleyzes et al. 2013; Creminelli et al.
2009):

S =
∫

d4x
√

−g

{
m2

0

2
Ω(t)R +Λ(t)− c(t)δg00

+ M4
2 (t)

2
(δg00)2 − M̄3

1 (t)

2
δg00δKμ

μ − M̄2
2 (t)

2
(δKμ

μ )
2

− M̄2
3 (t)

2
δK i

jδK
j

i + M̂2(t)

2
δg00δR(3)

+ m2
2(t)

(
gμν + nμnν

)
∂μ(g

00)∂ν(g
00)

}

+ Sm[gμν, χi ] , (84)

where m−2
0 = 8πG is the reduced Planck mass; δg00 is the perturbation of the time-

time component of the inverse metric; δK
μ
ν , δK are the perturbation of the extrinsic

curvature and its trace; δR(3) is the perturbation of the three dimensional spatial Ricci
scalar of constant-time hypersurfaces; nμ is the 4-vector normal to the constant-time
hypersurfaces; and Sm is the action for all matter fields χi minimally coupled to the
metric gμν .

The coefficients M i
j (t) are functions of time and have dimensions of mass. The

functions c(t) andΛ(t) (not to be confused with the cosmological constant) can be re-
expressed in terms of the functionΩ(t) and background functions such as the Hubble
and density parameters by using the FLRW background evolution equations. Thus,
the theories covered by action (84) can be specified by the following 7 functions of
time:
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{
Ω, M̄3

1 , M̄4
2 , M̄2

3 , M4
2 , M̂2,m2

2

}
(85)

plus one function describing the background evolution such as the Hubble function.
It is worth mentioning that the EFT approach covers both the background evolution

and the linear perturbations of the metric so it provides equations and parameterization
that can be compared to the background evolution as well as the growth of large-scale
structure observations. However, in order to compare effectively the whole set to
observations, one needs to do further useful parameterizations of the functions (85).
For example, for Horndeski models (Horndeski 1974), these functions are mapped to
the so-called αx parameterization (Bellini and Sawicki 2014) which is then connected
to the physical aspect of the theory as we discuss in Sect. 7.3.1 further below. See also
another informative reconstruction of Horndeski from EFT of dark energy in Kennedy
et al. (2017).

The EFT action (84) is general enough to include broad classes of dark energy
and modified gravity such as the Horndeski 1974 or generalized Galileons (Deffayet
et al. 2009a), beyond Horndeski models (Zumalacarregui and García-Bellido 2014;
Gleyzes et al. 2015a, b), Hořava–Lifshitz gravity in its low energy limit (Hořava 2009b;
Kase and Tsujikawa 2014), ghost condensate models (Hamed et al. 2004), and DGP
braneworld models (Dvali et al. 2000). We reproduce Table I from Linder et al. (2016)
(Table 1 here) that shows the list of the function parameters (85), the corresponding
terms in the Lagrangian operators of the action (84), and some gravity theories with
the terms they involve from the EFT Lagrangian.

While the EFT approach can be praised for its clear theoretical motivation and
systematic nature, it has the disadvantage of requiring the use of a large number of
parameters and functions. This number overwhelms the limited constraining power of
current cosmological data. Nevertheless, some of the coefficients can be set to zero or
can be shown to be interrelated in the case of some known dark energy or modified
gravity models so one can reduce the number of parameters to a practical one. This of
course affects the primary motivation of the EFT approach in providing a systematics
method but the hope is that as more orthogonal and precise data sets become available
in the future this method will reach its aimed goals. Also, the effectiveness of the EFT
approach was questioned in Linder et al. (2016) stating that the EFT functions used do
not have a simple time dependence that can be fit to observations for different cosmic
eras, but as they state, one can nevertheless gain some general characteristics of such
dependencies for early and late time limits of cosmic evolution.

Most recently, Lagos et al. (2016, 2018) followed on a previous effort of the
Parameterized-Post-Friedmann formalism of Baker et al. (2013) in order to extend
the EFT formalism to cover beyond scalar–tensor theories. The general approach they
proposed recovers the standard α-parameterization of Bellini and Sawicki (2014) for
Horndeski models (see Sect. 7.3.1) but also applies to beyond-Horndeski models,
vector–tensor theories, and tensor–tensor theories. In each of the more complicated
theories, the formalism considers a few additional αx -parameters for up to 12 parame-
ters in the most general case. We refer the reader to their papers for more information.

Due to its broad application, the EFT approach has been implemented in several
Einstein–Boltzmann solvers and Markov-Chain–Monte-Carlo codes to analyze CMB
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and other datasets, see for example Hu et al. (2014b), Bellini et al. (2018) and references
therein, as well as our discussion in Sect. 11.

5.2 Modified growth parameters

We discussed in Sect. 3.2 how the growth of large scale structure can be described
by the two equations (29) and (30) derived from linear perturbations of the Einstein’s
Field Equations. Now, the effect of deviations from GR on the growth of large structure
can be encapsulated in two parameters added to these equations. These are then often
called the modified growth or Modified gravity (MG) equations. Usually, one of the
MG parameters modifies the coupling between the gravitational potential and the
energy-density source while the other parameter quantifies the difference between the
two gravitational potentials. There are various related parameterizations notations and
we review some of the most commonly used ones in the literature.

One pair of such parameters is given by Q(k, a) and R(k, a) as follows, see e.g.,
Caldwell et al. (2007), Amendola et al. (2008) and Bean and Tangmatitham (2010):

k2Φ = −4πGa2
∑

i

ρ̄iδi Q(k, a) (86)

k2(Ψ − R(k, a)Φ) = −12πGa2
∑

i

ρ̄i (1 + wi )σi Q(k, a), (87)

where each matter specie is denoted by the index i , ρ̄i is the corresponding mass-
energy density, δi is the rest-frame overdensity, and σi is the shear stress. Q(k, a) and
R(k, a) are scale and time dependent and both take the value of unity in GR.

The parameter Q(k, a) represents a modification to the “Poisson equation” (29)
(see comments in Dossett et al. 2011b), while the parameter R(k, a) quantifies the
inequality between the two potentials referred to as the gravitational slip (Caldwell
et al. 2007) (at late times, when anisotropic stress is negligible, Eq. (87) gives R =
Ψ/Φ). Caldwell et al. (2007) noted the slip parameter as Ψ = (1 +̟)Φ based on a
cosmological extension to the PPN formalism, see e.g., Will (2014).

In order to avoid a strong degeneracy between the parameters Q(k, a) and R(k, a),
Eqs. (86) and (87) can be combined to introduce another MG parameter as follows
(see, e.g., Amendola et al. 2008):

k2(Ψ +Φ) = −8πGa2
∑

i

ρ̄iδi Σ(k, a) −12πGa2
∑

i

ρ̄i (1+wi )σi Q(k, a), (88)

where

Σ(k, a) ≡ Q(k, a)[1 + R(k, a)]
2

. (89)

The parameter Σ(k, a) enters the equation for the Weyl potential defined earlier (i.e.,
Ψw ≡ (Ψ + Φ)/2) which affects the propagation of light. The parameter is thus
directly constrained by some observations such as weak gravitational lensing. Just
like the parameters Q and R, Σ takes unity in general relativity.
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A second pair of MG parameters often used in the literature is where a modification
to Eq. (29) is done indirectly by defining a modified field equation containing the
parameter μ(k, a) plus a gravitational slip parameter, η(k, a) (Zhao et al. 2009, 2010;
Hojjati et al. 2011; Caldwell et al. 2007; Amendola et al. 2008). The modified growth
equations then read:

k2Ψ = −4πGa2
∑

i

ρ̄iδi μ(k, a). (90)

Φ

Ψ
= η(k, a). (91)

The generalization of these two equations for non-zero shear can be found in, for
example, equations (13) and (14) of Hojjati et al. (2011). Again, Σ(k, a) is defined
from their combination as

Σ(k, a) ≡ μ(k, a)[1 + η(k, a)]
2

(92)

Similarly, these parameters have a scale and time dependencies and take the value of
unity for GR.

A third notation is one that associates MG parameters with effective gravitational
constants in the growth equations (see, e.g., Tsujikawa 2007; Song and Koyama 2009;
Linder 2017) so that the modified Poisson equations take the form

k2Ψ = −4πGΨ
effa2

∑

i

ρ̄iδi (93)

k2(Ψ +Φ) = −8πGΨ+Φ
eff a2

∑

i

ρ̄iδi . (94)

Equation (93) governs the coupling between the gravitational potential for non-
relativistic particles to the source density fluctuation while Eq. (94) governs the
coupling of the gravitational potential for relativistic particles to the source density
fluctuation and affects geodesics of relativistic particles such as light propagation and
gravitational lensing. Often GΨ

eff is dubbed as Gmatter and GΨ+Φ
eff as G light.

It is worth concluding this sub-section by providing the relationships between
the different parametrizations above during matter domination and assuming zero
anisotropic stress

μ = Q R = GΨ
eff

G
= Gmatter

G
, η = 1

R
(95)

Σ = Q(1 + R)

2
= GΨ+Φ

eff

G
= G light

G
μη = Q. (96)

A more extended discussion of the relationship between MG parameters can be found
in Daniel et al. (2010).
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Finally, on super-horizon scales k ≪ aH and for adiabatic perturbations, there are
further useful constraints from coordinates invariance that apply to GR and also MG
theories (Bertschinger 2006). These provide a consistency relation between the two
gravitational potential which reduces the two independent functions (MG parameters)
above to only one parameter. The consistency relation plus the MG parameter η(a)
can be used to characterize deviation from GR at super-horizon scales. In other words,
at these long wavelength, η(a) is the only important degree of freedom for MG gravity
(Bertschinger 2006; Bertschinger and Zukin 2008; Hu and Sawicki 2007b).

5.3 Evolution of MG parameters in time and scale

Departures from general relativity can evolve in time and/or scale and this has been
included in parametrizations and studies. Mainly two approaches have been used in
doing so. The first method employs generic functional forms, while the second uses
binning in redshift and scale. A third method combines the two previous ones into a
hybrid method.

– Functional forms for time and scale evolution: For example, Bean and Tang-
matitham (2010) used:

X(k, a) =
[

X0e−k/kc + X∞(1 − e−k/kc )− 1
]

as + 1, (97)

where X denotes, for example, Q or R. Q0 and R0 are the present-day asymptotic
superhorizon values while Q∞ and R∞ are the present-day asymptotic subhorizon
values of Q(k, a) and R(k, a). kc is a comoving transition scale. The time evolution
is given by as . It was noted though in, for example Zhao et al. (2010), Song et al.
(2011) and Dossett et al. (2011a), that such a functional exponential form causes
a too strong dependence of MG parameters on the exponent s and can exacerbate
tensions between GR and data (Dossett et al. 2011a). It was found in these papers
that a binning method in redshift avoids this problems. The model parameters that
can be used to detect deviations from GR are now: Q0, R0, Q∞, R∞, kc, and s.
The parameters s and kc take the values s = 0 and kc = ∞ in GR and the other
parameters reduce to unity. The constraints on Σ(k, a) can then be derived using
Eq. (89).
In a similar way, the parameters, μ and η have also been allowed to evolve, for
example, in redshift. In Dossett et al. (2011a), the two parameters have a redshift
dependence transitioning to constant values below some redshift, zs , and then take
the GR value of unity following a hyperbolic tangent function with a transition
width, δz:

μ(z) = 1 − μ0

2

(
1 + tanh

z − zs

δz

)
+ μ0, (98)

η(z) = 1 − η0

2

(
1 + tanh

z − zs

δz

)
+ η0. (99)
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The parameter Σ(z) then follows from Eq. (96) above.
Functional forms for MG parameters have been discussed to be less flexible than
binning or hybrid methods in Dossett et al. (2011a) and Daniel et al. (2010).

– Time and scale binning method of MG parameters: An example of binning
MG parameters in time (redshift) and scale is provided in Dossett et al. (2015).
Two scale bins are defined as k ≤ 0.01 h Mpc−1 and k > 0.01 h Mpc−1. These
are crossed with two other bins in redshift defined by 0 < z ≤ 1 and 1 < z ≤ 2.
In order to assure for the transition between the bins to be continuous and for
numerical implementation stability, the following transition functions have been
used:

X(k, a) = 1

2

(
1 + Xz1(k)

)
+ 1

2

(
Xz2(k)− Xz1(k)

)

tanh
z − 1

0.05
+ 1

2

(
1 − Xz2(k)

)
tanh

z − 2

0.05
, (100)

with

Xz1(k) = 1

2

(
X2 + X1

)
+ 1

2

(
X2 − X1

)
tanh

k − 0.01

0.001
,

Xz2(k) = 1

2

(
X4 + X3

)
+ 1

2

(
X4 − X3

)
tanh

k − 0.01

0.001
, (101)

where X takes the values Q or Σ so in this parameterization a total of eight MG
parameters are varied, Σi and Qi , i = 1, 2, 3, 4. Again, all these parameters take
a value of unity in GR.

– Hybrid methods for MG parameters: Finally, the implementation of MG param-
eters can be optimized to take advantage of each of the two methods above. For
that, hybrid methods have been employed in order to keep a functional form for
the scale dependence while using bins of redshift for the time evolution as follows
(Dossett et al. 2015). The redshift bins are similarly given by Eq. (100) above
while the scale dependence is given the form:

Xz1(k) = X1e− k
0.01 + X2

(
1 − e− k

0.01

)
,

Xz2(k) = X3e− k
0.01 + X4

(
1 − e− k

0.01

)
. (102)

This gives again eight MG parameters,Σi and Qi , i = 1, 2, 3, 4 to be constrained
by observations.

– f(R) guided time and scale parametrization: Guided by f (R) formalism (see
Sect. 7.4.1), Bertschinger and Zukin (2008) suggested a phenomenological time
and scale parametrization as follows:

μ(a, k) = 1 + α1k2as

1 + α2k2as
(103)

η(a, k) = 1 + β1k2as

1 + β2k2as
, (104)
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Table 2 The layout of the
binned parametrizations

Redshift bins

Scale bins 0.0 < z ≤ 1, 1.5 1, 1.5 < z ≤ 2, 3

0.0 < k ≤ kx μ1, Σ1 μ2, Σ2

kx < k < ∞ μ3, Σ3 μ4, Σ4

Specifically, for the first two binned methods this involves using
{μ1, Σ1} for the 0 < z ≤ 1 and 0.0 < k ≤ kx bin, {μ2, Σ2} for
the 1 < z ≤ 2 and 0.0 < k ≤ kx bin, {μ3, Σ3} for the 0 < z ≤ 1 and
kx < k < ∞ bin, and {μ4, Σ4} for the 1 < z ≤ 2 and kx < k < ∞
bin, and the third binned method uses {μ1, Σ1} for the 0 < z ≤ 1.5
and 0.0 < k ≤ kx bin, {μ2, Σ2} for the 1.5 < z ≤ 3 and 0.0 < k ≤ kx

bin, {μ3, Σ3} for the 0 < z ≤ 1.5 and kx < k < ∞ bin, and {μ4, Σ4}
for the 1.5 < z ≤ 3 and kx < k < ∞ bin. Table reproduced with per-
mission from Dossett et al. (2015), copyright by APS

To construct such a parameterization, the authors required GR to hold at early times,
so that s > 0. They also noted that this parametrization describes f (R) theories
with | fR | ≪ 1 for α1 = 4

3α2 = 2β1 = β2 = 4 fR R/a
2+s . (α1, α2, β1, β2) are

arbitrary constants with α2 and β2 positive so μ and γ remains finite for all k. α1
must be positive as well to assure that μ is positive and gravity is attractive.

– Using rational functions of k2 and five functions of time: Silvestri et al. (2013)
showed that for local theories of gravity with one scalar degree of freedom with
up to second order equation of motion and in the quasi-static approximation, the
two MG parameter μ(k, a) and η(k, a) can be written as rational functions of k2

with at most 5 functions of time in all generality as follows:

η(a, k) = p1(a)+ p2(a)k
2

1 + p3(a)k2 , (105)

μ(a, k) = 1 + p3(a)k
2

p4(a)+ p5(a)k2 . (106)

They note that even if this parametrization has been derived for the quasi-linear
limit, it is expected to work fine at the near- and super-horizon scales since
η(a, k → 0) = p1(a) �= 1. They also note that μ(a, k → 0) = 1/p4(a) �= 1
should be of no-consequences on observables and that super-horizon perturba-
tions will have an evolution consistent with the background expansion (Silvestri
et al. 2013). See also discussions for this type of rational functions in De Felice
et al. (2011) and for higher order in the wavenumber in Vardanyan and Amendola
(2015).

5.4 The growth index parameter 

Another approach to use the linear growth of structure to constrain deviations from
general relativity is by defining the growth index parameter as follows. In some pio-
neering early work for a matter-dominated universe, the growth function f was shown
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to be well-approximated by the following ansatz (Peebles 1980; Fry 1985; Lightman
and Schechter 1990):

f ≡ Ω
γ
m (107)

where γ is the growth index parameter. Peebles (1980) introduced the approximation
f (z = 0) ≈ Ω0.6

0 for matter dominated models. After that, Fry (1985) and Lightman
and Schechter (1990) proposed more accurate approximations for such a model, i.e.,
f (z = 0) ≈ Ω

4/7
0 .

Later on, the work was extended to dark energy models (GR-wCDM) with a slowly
varying equation of state by Wang and Steinhardt (1998) deriving the following expres-
sion:

γ (Ωm, w) = 3(1 − w)

5 − 6w
+ 3

125

(1 − w)(1 − 3w/3

(1 − 6w/5)2(1 − 12w/5)
(1 −Ωm) (108)

with an asymptotic early value of γwCDM
∞ = 3(1 −w)/(5 − 6w) reducing to the well

known ΛCDM model value of γ LCDM = 6
11 = 0.545.

Linder (2005) extended this growth index approach to modified gravity theories
and pointed out that it can be used as a discriminator between quintessence dark
energy models and modified gravity models. For example, for the DGP model (see
Sect. 7.5.2) has a growth index parameter of γDGP = 11

16 = 0.68 (Lue et al. 2004;
Linder 2005) and thus is clearly distinct from the value of the ΛCDM model. Indeed,
despite some dispersion of γwCDM for various values of w and also some dispersion
of γDGP for various values of Ωm(a), such fluctuations do not overlap and γ remains
a good discriminator for gravity theories, see e.g., Linder and Cahn (2007), Gong
(2008), Polarski and Gannouji (2008) and Ishak and Dossett (2009) for spatially flat
models and Gong et al. (2009) and Mortonson et al. (2009) for curved models.

Moreover, the growth index can be allowed to vary in redshift and provides more
stringent constraints on gravity theories (Polarski and Gannouji 2008; Ishak and Dos-
sett 2009). For example, Polarski and Gannouji (2008) proposed a redshift dependent
parameterization of the form

γ (z) = γ0 + γ ′ z, (109)

where γ ′ ≡ dγ
dz
(z = 0). The study showed the usefulness of a variable growth index

to distinguish between dark energy models and modified gravity models (Polarski and
Gannouji 2008). Ishak and Dossett (2009) and Wu et al. (2009) proposed a redshift
dependent parameterization that covers a wide range of redshift highlighting that the
sign of the slope γ (z) can provide further discrimination between gravity theories.

5.5 The EG-parameter test

Zhang et al. (2007) proposed a measure they called EG to test deviations from GR’s
gravitational potentials in a way that is insensitive to the galaxy bias. The idea is
to use a ratio of the galaxy–galaxy lensing angular cross power spectrum over the
velocity–galaxy cross power spectrum. We use here a mixture of notation from Zhang
et al. (2007) and Leonard et al. (2015) to describe this quantity. The corresponding
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estimator was defined in the original paper (Zhang et al. 2007) as

ÊG(ℓ, δℓ) = Cκg(ℓ, δℓ)

3H2
0 a−1

∑
α

jα(ℓ, δℓ)Pα
vg

, (110)

where Cκg(ℓ, δℓ) is the galaxy–galaxy lensing cross-power spectrum in bins of δℓ;
Pα
vg is the galaxy–velocity cross-power spectrum between kα and kα+1; and fα(ℓ, δℓ)

is a weighting function defined accordingly. The corresponding expectation value is
then given by:

EG(ℓ) =
[

∇2(Ψ +Φ)

3H2
0 a−1 f δM

]

k=ℓ/χ̄,z̄
(111)

where f is the linear growth rate of structure, δM is the matter overdensity field, χ̄ is
the comoving distance corresponding to redshift z̄. For GRΛCDM, EG is independent
of length scale and is given by Zhang et al. (2007)

EG = ΩM (z = 0)

f (z)
. (112)

The scale independence holds for wCDM models with large-sound speed and neg-
ligible anisotropic stress like Quintessence. It also holds for some modified gravity
models like DGP (see Sect. 7.5.2) but not for other MG models. The scale dependence
of EG can be used as a further discriminator between MG models (Zhang et al. 2007).

It is also worth providing a second definition of EG motivated by observations as
given by Reyes et al. (2010)

EG(R) = Υgm(R)

βΥgg(R)
, (113)

where R is the transverse separation from the lens-galaxy; Υgm(R) and Υgg(R) are
the galaxy-matter and galaxy-galaxy annular differential surface densities respectively,
see e.g., Baldauf et al. (2010). By construction, these are correlation functions that do
not include any contribution from length scales smaller than some cut-off R = R0.
This second definition in Eq. (113) provides a ratio that is practically similar to the
information content of Eq. (110) and also factors out the galaxy bias. Most recently,
Leonard et al. (2015) provided further insights on how theoretical uncertainties such
as scale dependence of the bias, projection effects, and cut-off scale can affect mea-
surements of EG using future high precision probes and the conclusions that can be
drawn from them. We present further below in Sect. 6.3 some constraints on the EG

measure from recent data.
We conclude this sub-section with some recent findings about the EG measure

from Amon et al. (2017) using the deep imaging data of KiDS with overlapping
spectroscopic regions from 2dFLenS, BOSS DR12 and GAMA. The authors find that
changing the metric potentials by as much as 10% produces smaller differences in the
EG predictions than changing the value ofΩ0

m between the values prefered by Planck
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and KiDS. They conclude that for this statistic to achieve its aim, the current tensions
in cosmological parameters between Planck and large scale structure must be resolved
first.

5.6 Parameterized post-Friedmann formalism

It appears that the parametrized post-Friedmann (PPF) formalisms at cosmological
scales (Hu and Sawicki 2007b; Baker et al. 2013) has not yet reached the same pop-
ularity that its homologous, the parameterized post-Newtonian (PPN), has received
when testing GR at solar system levels or binary systems (Will 2014). This could
be attributed perhaps to the context and the level of maturity of other methods devel-
oped to deal with the specific problems for which each formalism has been introduced.
There are at least two major developments in PPF formalisms (Hu and Sawicki 2007b;
Baker et al. 2013) but also a number of previous developments such as in Bertschinger
(2006), Caldwell et al. (2007), Amin et al. (2008), Pogosian et al. (2010) and Baker
et al. (2011). It is also worth noting that the PPF work of Baker et al. (2013) was
followed by some of the same authors and others in Lagos et al. (2016, 2018) where
the approach was changed to an EFT one as we comment at the end of this subsection.

While inspired by PPN, PPF needs to be formulated to account for cosmological
Hubble scales where the exact form of the linearized metric is unknown and the redshift
dependence must be taken into account. Therefore, PPF uses rather functions of the
redshift and scale and is based on the parameterization of the perturbed field equations
instead of the spacetime metric (Baker et al. 2013; Amendola et al. 2013a). We provide
a very brief overview below and refer the reader to the original papers (Hu and Sawicki
2007b; Baker et al. 2013).

The first one was proposed in Hu and Sawicki (2007b) where the authors discuss
super-horizon, quasi-static and nonlinear regimes of modified gravity with a partic-
ular attention to the transitions between them. They construct a PPF formalism for
linear perturbations in MG models that joins the super-horizon regime and the sub-
horizon quasi-static regime. They propose PPF functions that make the bridge between
these two regimes at a scale parameterized by the Hubble length. They defined three
functions and one parameter as follows:

– The metric ratio

g(ln a, kH ) ≡ Φ − Ψ

Φ + Ψ
, (114)

where kH ≡ k/aH is the wavenumber in units of the Hubble parameter. Note that
in terms of the post-Newtonian parameter η = Φ/Ψ , g = (η − 1)/(η + 1).
The expansion history H and the metric ratio g define completely super-horizon
scalar metric fluctuations for adiabatic perturbations.

– The function fζ (ln a) expressing the super-horizon relationship between the metric
and density, see Eqs. (16)–(19) in Hu and Sawicki (2007b). As noted there, the
exact form of fζ (ln a) is rarely important for observable quantities. That is the
case, for example, for the galaxy redshift surveys and gravitational lensing. Only
observable quantities that depend on the comoving density scales beyond the quasi-
static regime are affected by fζ (ln a).
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– The function fG(ln a) that parameterizes a possible time-dependent modification
of the Newton constant in the quasi-static regime. It is defined from the Poisson
equation

k2Ψw = 4πG

1 + fG

a2ρ̄mδm, (115)

where Ψw is the Weyl potential defined earlier.
– The parameter cΓ that characterizes the relationship between the transition scale

and the Hubble scale. As shown in Hu and Sawicki (2007b), the interpolation
between the super-horizon regime and the quasi-static regime is given by

(
1 + c2

Γ k2
H

) [
Γ ′ + Γ + c2

Γ k2
H (Γ − fGΨw)

]
= S, (116)

where Γ is added to the modified Poisson equation (115) in order to match the
super-horizon scale behavior

k2[Ψw + Γ ] = 4πGa2ρmΔm, (117)

and where S is the source for the equation of motion ofΓ (Hu and Sawicki 2007b).

For MG models affecting cosmic evolution after matter radiation equality, these 3
functions governing the relations for the metric, the density and the velocity, plus the
usual transfer functions specify fully the linear observables of the model.

They provided two examples, one for a f (R) theory model (see Sect. 7.4.1) and
another for a DGP theory model (see Sect. 7.5.2). We reproduce their example for the
former here. The square of the Compton length (inverse mass) in units of the Hubble
length for f (R) is proportional to

B ≡ fR R

1 + fR

R′ H

H ′ , (118)

where ′ = d/d ln a and fR R = d2 f /d R2. The metric ratio parameter g → −1/3
below the Compton length scale. They determine that the PPF metric ratio as kH → 0
is given by

g(ln a, kH = 0) = gSH(ln a) = Φ − Ψ

Φ + Ψ
, (119)

and
fζ = cζ g (120)

with cζ ≈ −1/3. They take for the transition to the quasi-static regime the interpolating
function

g(ln a, k) = gSH + gQS(cgkH )
ng

1 + (cgkH )
ng

, (121)

where gQS = −1/3. They find that cg = 0.71B1/2 and ng = 2 where they used
Ωm = 0.24 and weff = −1.
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Last, they find that fR is the function that rescales the effective Newton constant
and the quasi-static transition happens near the horizon scale. The two statements
correspond to

fG = fR, cΓ = 1. (122)

The second PPF formalism was proposed in Baker et al. (2013) taking into account
the recent exploding development in the area of dark energy and modified gravity
models. A concise summary of the formalism was also given in Amendola et al.
(2013a) and we follow that presentation here. Baker et al. (2013) start with scalar
perturbations of the Einstein field equations of the form

δGμν = 8πG δTμν + δU metric
μν + δU d.o.f

μν + gauge invariance fixing terms, (123)

where δTμν is the perturbed stress-energy tensor of cosmic fluids. δU metric
μν contains

new terms from metric perturbations due to modified gravity that constitute terms
beyond those coming from δGμν in GR. δU d.o.f.

μν contains terms from scalar pertur-
bations of new degrees of freedom due to modified gravity. For example, such terms
can come from perturbations of the scalar field from scalar–tensor theories or scalar
modes from vector or tensor fields in MG models.

Baker et al. (2013) then considered the expansion of δU metric
μν in terms of two

gauge-invariant perturbation variables. The first is simply the standard gauge-invariant
Bardeen potentials, Φ̂. The second is a combination of the two Bardeen potentials as

follows: Γ̂ = 1/k( ˙̂
Φ + HΨ̂ ). They provided then the equations further below where

δU metric
μν is expressed as a linear combination of Φ̂, Γ̂ and their derivatives keeping

the gauge-invariance of the field equations. The coefficient of such terms are then
part of the PPF function set. They also expressed δU d.o.f.

μν for the new degrees of
freedom in terms of gauge-invariant potentials {χ̂i } with also coefficients providing
other PPF functions. They write then the expanded four components of the perturbed
field equations Eq. (123), where 22 PPF parameters where used as functions of time
(redshift).

The set of PPF parameters covers super-horizon and sub-horizon scales but the set
simplifies significantly in the quasi-static regime reducing to what could be encap-
sulated in one of the pairs of parameters discussed in Sect. 5.2. It was argued in, for
example Amendola et al. (2013a), that in such a regime, which is relevant to weak
lensing surveys and galaxy surveys, such a minimal subset is more practical to com-
pare with observation but Baker et al. (2013) explains that such a PPF formalism can
extend to horizon scales and can serve for comparisons to large-scale CMB modes
contributions to the ISW effect and lensing-ISW cross-correlations, well beyond the
quasi-static approximation (Hu et al. 2013; Hu 2008).

Most recently, some of the authors of Baker et al. (2013) and others commented in
Lagos et al. (2016, 2018) that the expanded four components of the perturbed field
equations with PPF parameters in Baker et al. (2013) contain a lot of free functions
because the parameterization is built directly at the level of the field equations. In other
words, the coefficients PPF parameters are not all independent. To remove some of the
redundancies, Lagos et al. (2016, 2018) built a corresponding parametrization at the
level of the action which they call the EFT of cosmological perturbations. As a result,
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the maximum needed number of parameters drops to 12 in this EFT parameterization
compared to 22 in the EFT formalism above. This provides an extension to the scalar–
tensor EFT approach that we discussed in Sect. 5.1.

Finally, we conclude this section by a most recent work of Clifton and Sanghai
(2018) where the authors proposed a set of 4 parameters to model minimal deviations
from GR (metric theories) that can be used to cover scales at solar systems, galactic,
and cosmological scales all the way to super-horizon. Two of the parameters are
the well-known effective gravitational constant (μ) and the slip parameter (that they
note ζ ). They apply consistency relations in order to connects the behavior of these
parameters between small and large scales. They show that using these conditions, μ
and ζ can be expressed on small and large scales using 4 parameters {α, γ, αc, γc}.
The first two parameters are the same as the PPN parameters but allowed to vary at
cosmological scales while the two other are specific to cosmological evolution and
enters the two Friedmann equations. They refer to the set as PPNC. It will be interesting
to see applications of this set to currently available data.

5.7 Remarks on transition to nonlinear scales

A legitimate question is to ask if the various parametrizations and approaches discussed
above could deal (or be extended to deal) in some way with nonlinear scales. A related
question is if any parametrizations can deal with the nonlinear scales then can they
reflect accurately any screening mechanism (see Sect. 8) at work in models.

First, the phenomenological MG parameterization using μ, η, Σ and other related
parameters have been proposed based on the linearly perturbed Einstein equations
so they are constrained to only linear scales by construction. Most recently, Clifton
and Sanghai (2018) proposed a scheme (or parametrization) that is argued to link
between MG parametrization at small scales and large scales. The idea is based on
two parameters they put between quote marks as the “slip” and the “effective Newton’s
constant” that can be written in terms four functions of time. Two of these four functions
are a direct generalization of the usual α and γ parameters from PPN formalism at
small scales, see e.g., Will (2014). This development uses concepts of averaging small
scales to larger scales. This very recent proposal came in a short paper and is at a
very early stage at the moment of writing this review. It will be interesting to follow
further development of this work and any clarifications on how it could deal with any
screening mechanisms and other relevant questions.

Second, when considering the measure EG at nonlinear scales, it was observed in
Leonard et al. (2015) that there was a difference between EG(ℓ) as given by Eq. (111)
and EG(R) as given by Eq. (113). They state that while EG(ℓ) is defined in Fourier-
space and includes only linear scales, that is not necessarily the case for EG(R)

which is defined in real space and scales are not separated in an easy way. They
found that the inclusion of non-linearities in the correlation function used into EG(R)

do not cause the measure to deviate from the expected GR value at small scales.
They attribute this to fact that nonlinearities enter into Υgm(R) and Υgg(R) (i.e., the
galaxy-matter and galaxy-galaxy annular differential surface densities) via the same
combination of correlation function terms, so they effectively cancel out from the ratio.
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It remains an open question whether such a behavior is also expected for modified
gravity models.

Third, the PPF formalism of Hu and Sawicki (2007b) was proposed with a prescrip-
tion on how to derive the nonlinear matter power spectrum in modified gravity theories
that should in principle capture the screening mechanism as well. The prescription is
based on the assumption that such a nonlinear power spectrum should reduce to that
of GR on small scales. The fitting formula they proposed is as follows

P(k, z) = Pnon−GR(k, z)+ cnlΣ
2(k, z)PGR(k, z)

1 + cnlΣ2(k, z)
, (124)

where PGR is for the nonlinear power spectrum in a GR-ΛCDM model that has the
same expansion history as that of the modified gravity model under consideration.
Pnon−GR is for the nonlinear power spectrum in this modified gravity but without
the screening mechanism necessary to recover GR on small scales. In other words,
the fitting formula corrects the MG power spectrum to fit GR at small scales. The
weighting function,

Σ2(k, z) ≡ k3

2π2 Plin(k, z), (125)

represents the degree of nonlinearity and governs the degree of screening efficiency.
Plin is the linear power spectrum in the modified gravity model. The cnl are coefficient
(but can also be time-dependent) to control the scale of the effect. See, e.g., Hu and
Sawicki (2007b).

Koyama et al. (2009) did further fitting using the PPF formalism with prescription
above and added an exponent n on the right of Eq. (125). They found that n = 1 for
DGP and n = 1/3 for f (R) provide good fits to N-body simulations of the models up
to k ∼ 0.5 h/Mpc. They also determined values for cnl in their fitting work. Zhao et al.
(2011) used an exponent n as a function of k and 3 parameters. They extended the good
fit to N-body simulations up to k = 10 h/Mpc for f (R) models. These two studied
and others found that the Chameleon mechanism at work was accurately reproduced
by the implementation of this prescription.

Lombriser et al. (2014) and Lombriser (2014) combined the spherical collapse
model, the halo model, linear perturbation theory, quasi-nonlinear interpolation moti-
vated by the cnlΣ

2(k, z) above and one-loop perturbations in order to derive a
description of nonlinear the nonlinear matter power spectrum of f(R) gravity with
chameleon screening on scales of up to k ∼ 10 h/Mpc. This encouraged Lombriser
(2016) to push further the method above of combining the perturbative approach with
one-halo contributions obtained from a generalized modified spherical collapse model.
The author proposed a parametrization based on the spherical collapse that enters into
effect as one transitions into the deep nonlinear regime. The formalism he proposed
allows one to encode different screening mechanisms at work in scalar–tensor theo-
ries. This sophisticated parametrization is then combined with generalized perturbative
approaches to give a formalism that constitutes a nonlinear extension to the linear PPF
formalism discussed above. For a detailed description, see Lombriser (2016).
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Finally, there have been some recent proposals of extending the EFT formulation
of the dark energy to nonlinear scales such as in, e.g., Cusin et al. (2018) for the
Vainshtein mechanism, or to develop post-Newtonian–Vainshtein formalism that can
be connected to it, see e.g., McManus et al. (2017) and Bolis et al. (2018). It was
highlighted in Lombriser et al. (2018) that the EFT formulation of dark energy they
explore in their paper can be connected to the nonlinear parameterization developped
in Lombriser (2016). The topic of expanding the EFT formulation of dark energy
to nonlinear regime is a subject of interest in the most recent literature and is to be
followed very closely.

6 Constraints and results onMG parameters (i.e., deviations fromGR)
from current cosmological data sets

In this section we describe current results on testing MG phenomenological parameters
from cosmology. These are only a subset of selected available papers and results in
the literature. We aimed here to focus on some of the recent results, or in some cases,
on less recent constraints but those that helped exclude substantial regions of MG
parameter spaces. We organize this section by the parameterizations described above
and then by probes and surveys.

6.1 Constraints onmodified growth parameters

6.1.1 Constraints from Planck CMB, ISW, CMB lensing, and other data sets

We start with the XIVth paper of the Planck 2015 data release (Ade et al. 2016b)
that was dedicated to dark energy and modified gravity models beyond ΛCDM (we
hereafter refer to the paper as Planck2015MG). The authors used Planck CMB tem-
perature, polarization and CMB lensing data sets combined with several other data sets
as follows. They defined Planck low-ℓ data their temperature and polarization mul-
tipoles with ℓ ≤ 29 (noted therein as “lowP”), and also the high-ℓ temperature-only
data (noted Planck-TT) with 30 ≤ ℓ ≤ 2500. They also used their CMB lensing data
which is sensitive to dynamical dark energy and late-time modification to gravity (Ade
et al. 2016c). Planck2015MG considered BAO as the primary data set to be combined
with CMB in order to break degeneracies among cosmological parameters constrained
by the background evolution and used data from Ross et al. (2015), Anderson et al.
(2014) and Beutler et al. (2011). They used supernova data from the (JLA) compila-
tion (Betoule et al. 2013, 2014). They also used a local measurement of the Hubble
constant, H0 = 70.6 ± 3.3 km s−1 Mpc−1, from Efstathiou (2014) who reanalyzed
the results of Riess et al. (2011). For constraints on the growth-rate of large scale
structure, Planck2015MG used constraints on f σ8 from the RSD data compilation of
Samushia et al. (2014) (see references therein) as well as weak lensing data from the
CFHTLenS survey using the 2D data of Kilbinger et al. (2013) and the tomography
data from only blue-galaxies in order to avoid any intrinsic alignment contamination
present in the red-galaxies (Heymans et al. 2013).
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Fig. 5 Contour plots for marginalized posterior distributions for 68% and 95% C.L for the two parameters
{μ0 − 1, η0 − 1} at the present time with no scale dependence. On the left, time dependence is consid-
ered via the effective dark energy density parameter. On the right panel, time evolution is considered by
direct inclusion of the scale factor. Results discussed in text of Sect. 6.1.1. The label Planck stands for
PlanckTT+TEB. Figure reproduced with permission from Ade et al. (2016b)

For MG parameters, Planck2015MG constrained μ(k, a), η(k, a), and Σ(k, a) as
defined earlier in Eqs. (90), (91), and (92) but added to them specific time and scale
dependencies. They defined a parametrization that is similar to that described in (104)
(Bertschinger and Zukin 2008) for the quasi-static regime but which is more general
and covers a wider range of scales (Ade et al. 2016b). For the time evolution they
considered two cases, one where the dependence is expressed via the effective dark
energy density ΩDE(a), and a second case where the scale factor appears directly in
the parametrization. They also split the time evolution using Ei j constants, i, j − 1, 2
to represent early and late time evolution. The Ei j parameters are constrained from
the data and the parameters μ, ν and Σ are reconstructed from them.

However, Planck2015MG found that the current data can not meaningfully con-
strain the scale dependent MG parameters and that the inclusion scale dependence
have very little effect on the χ2 value of the best fit. Therefore their main MG param-
eter analysis was carried out without scale dependence except for a small illustrative
example.

We reproduce here their Fig. 14 (see Fig. 5 here), their Fig. 15 (see Fig. 6) and their
Table 6 (see Table 3 here) showing constraints on μ(k, a), η(k, a), and Σ(k, a) from
various combinations of Planck and other data sets. Note that Planck2015MG use on
their figures or tables Planck to refer to the combination Planck TT + lowP data. We
expanded that in the header of Table 3 for clarity.

Their reproduced Figs. 5 and 6 show that while, μ(k, a), η(k, a), and Σ(k, a) are
close to their GR value of 1, some tension with GR is present and they provide some
explanations for the source of such tension. This is indicated by the dashed horizontal
and vertical lines in Fig. 5. In case (1) above, with time evolution based on effective
ΩDE(a), the tension is at the 2σ level for Planck TT + lowP data and rises above
2σ when the constraints are tightened by adding the BAO + RSD data. The tension
reaches 3σ level for Planck TT + lowP + WL + BAO + RSD combination. For case
(2), with time evolution depending directly on a, there is less tension. It goes from
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Fig. 6 Contour plots for
marginalized posterior
distributions for 68% and 95%
C.L for the two parameters
{μ0 − 1, η0 − 1} at the present
time with no scale dependence.
The time dependence is
considered via the effective dark
energy density parameter. Σ is
obtained from Eq. (92). Results
discussed in text of Sect. 6.1.1.
In the labels, Planck stands for
PlanckTT+TEB. Figure
reproduced with permission
from Ade et al. (2016b)
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1-σ for Planck TT + lowP data to 2-σ . They commented that the latter increase from
2 to 3-σ in the tension is mainly driven by the additional external data sets and so
is the goodness of the fit of the models with the two additional MG parameters that
show an improvement that ranges from δχ2 = −6.3 when using Planck + lowP to
δχ2 = −10.8 when combining Planck TT + lowP + WL + BAO + RSD, compared
to the ΛCDM.

Planck2015MG comment that the tension above can be understood from their Fig. 1
showing that the best fit power spectrum Planck TT + lowP prefers models with
slightly less power in the CMB at large scales (i.e., ISW effect) and models with a
higher CMB lensing potential when compared to the ΛCDM model. They state that
this point corroborates with the fact that MG parameters departing from GR values
are found to be degenerate with the lensing amplitude parameter AL . This is simply
a non-physical scaling parameter to check how the CMB power spectrum is affected
by lensing. It should be equal to 1 for consistency. Calabrese et al. (2008) found that
AL is not equal to 1 when using the ΛCDM model, but Planck2015MG find that if
MG parameters are allowed to vary then AL becomes consistent with unity again but
then MG parameters move away from their ΛCDM value. However, Planck2015MG
points out that CMB lensing analysis from the 4-point function of Ade et al. (2016c) is
consistent with AL = 1 and in agreement withΛCDM with no requirement of a higher
lensing potential. Therefore, when Planck2015MG use this CMB Lensing data, the
MG parameter confidence contours are shifted to regions where the tensions above are
removed (fall to 1-σ for CMB data only and below 2-σ for all data combined). GR and
ΛCDM provides a good fit then. It is worth noting though that recent work confirms
some tension between Planck temperature and polarization data versus Planck CMB
Lensing data (Motloch and Hu 2018).

Their Fig. 16 and Table 7 provide a summary of the tensions with and without CMB
Lensing where they present the tension using departure from the line of maximum
degeneracy between the two MG parameters.

Their Table 6 (Table 3) shows the corresponding marginalized mean values and the
65% CL errors on the MG parameters for each combination of data sets. This shows the
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explicit constraints on MG parameters and the tensions reported above. As commented
in Planck2015MG, the addition of the BAO + SN + H does not improve significantly
the MG constraints while the RSD data does provide a noticeable improvement, as
expected. Finally, as shown in their Fig. 18, the current available data is not able
to provide useful constraints when the scale dependence of the MG parameters is
included in the analysis.

6.1.2 Constraints on MG parameters frommainly weak lensing data

KIDS-450 + other data sets

Joudaki et al. (2017) conducted a detailed analysis to test extensions to the stan-
dard ΛCDM cosmological model including constraints on deviations from GR using
weak lensing tomography using 450 deg2 of imaging data from the Kilo Degree Sur-
vey (KiDS) (Hildebrandt et al. 2017). The authors also used the Planck temperature
and polarization measurements on large angular scales (ℓ ≤ 29) using low-ℓ (TEB
likelihood) and temperature only (TT) at smaller scales (PLIK TT likelihood) (Ade
et al. 2016a). They explored if any of the extensions to the standard model could
alleviate the tension reported in Hildebrandt et al. (2017) between KiDS and Planck
constraints. The extent and sources of these tensions has been put into question though
by Efstathiou and Lemos (2018).

They used the parameterization Q(k, z) andΣ(k, z) as in (86) and (88), and binned
in scale and redshift similar to Table 2, with transitions at k = 0.05h Mpc−1 and z = 1.
They used as lensing statistics, the correlations functions in Eq. (70). They included in
their analysis all of the key lensing systematics such as intrinsic alignments of galaxies
and baryonic effects by modeling them and adding the corresponding parameters to be
also constrained by the data. They used for the MG part of their analysis the ISiTGR
software (Dossett et al. 2011b) which is a modified version of CosmoMC and CAMB
(Lewis and Bridle 2002; Lewis et al. 2000) (see Sect. 11.1).

We reproduce the right panel of their Fig. 13 (see left panel of Fig. 7 here) showing
the constrains on Q2 andΣ2. As shown on the figure, KiDS constraints are consistent
with GR and are mainly sensitive toΣ2 as expected for lensing constraints. The authors
report that this is also the case for the other 6 Qi andΣi parameters. Furthermore, using
χ2 and other Bayesian tests, they find that the data has no significant preference for
the model with additional MG parameters compared to ΛCDM. The tension between
Planck and KiDS goes away but they attribute that to the weakening in the constraints
due to the additions of 8 MG parameters. They conclude that their data (combined with
Planck) has no preference for a deviation from GR. They found instead that a model
with a dynamical dark energy and a time-evolving equation of state is moderately
preferred by the data and alleviates the tension between their data and Planck.

In a subsequent study (Joudaki et al. 2018), the authors combined KiDS lensing
tomography data and the overlapping areas from two spectroscopic redshift galaxy
clustering surveys: 2dFLenS (Blake et al. 2016a) and BOSS (Dawson et al. 2013;
Anderson et al. 2014). The same Planck data as above was used again. They per-
formed cosmological parameter constraints including MG parameters using three
large-scale structure measurements: cosmic shear tomography, galaxy-galaxy lens-
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Fig. 7 Left: Marginalized posterior contours (inner 68% CL, outer 95% CL) in the Q2 − Σ2 space for
KiDS with fiducial angular scales shown in green (labeled by ‘FS’), KiDS keeping only the largest angular
scales shown in pink (labeled by ‘LS’), and combined with Planck in grey and blue, respectively. The
indices represent the combination of MG bins, such that z < 1 and k > 0.05 h Mpc−1. The intersection
of the dashed lines give the GR prediction (i.e., Q = Σ = 1). Reproduced with permission from Fig. 13
in Joudaki et al. (2017). Right: In addition to the cases described on th left, the constraints include galaxy–
galaxy lensing correlation with cosmic shear in WL and RSD data as described in the text. ’Large-scale cuts’
mean that small scales have been excluded because of no adequate modeling for generic MG deviations in
the nonlinear regime that can be utilized here. Again, the intersection of the horizontal and vertical lines is
the GR prediction (i.e., Q = Σ = 1)

ing tomography, and redshift-space distortions (RSD) in the form of redshift-space
multipole power spectra (Taylor and Hamilton 1996). This provided the analy-
sis with significantly more constraining power and tightening of constraints on all
parameters. However, this tightening of constraints also made the tension between
large-scale constraints and Planck at the 2.6σ level. They found that models with
MG parameters could resolve the discordance in the linear/large-scale case, but are
not favored by model selection. The same result stands for extended models with
massive neutrinos, curvature or evolving dark energy. The big plus for constraints
on MG parameters in their analysis comes from the complementarity between cos-
mic shear that is sensitive to the sum of the two potentials via light deflection, i.e.,
Ψ + Φ, and the redshift space distortions that are sensitive to the potential Ψ via
the matter growth of large scale structure. They use the same bins in redshift and
scale for MG parameters as above and keep the background cosmology as a ΛCDM
one.

We reproduce the right panel of their Fig. 11 (in the right panel of our Fig. 7) show-
ing the new constraints in Q2 − Σ2 plane. These two parameters are in the second
bin in redshift (i.e., z < 1) and second bin in length-scale (i.e., k > 0.05 h Mpc−1).
One can see a significant improvement in the constraints in the right panel com-
pared to the left which highlights the importance of adding the RSD data and the
galaxy-galaxy lensing correlation to cosmic shear data, as the authors stress in their
conclusion.

For this WL + RSD combined analysis, they find Q2 = 2.8+1.1
−2.0 and Σ2 =

1.04+0.11
−0.14, while for KiDS only in Joudaki et al. (2017) Σ2 = 1.23+0.34

−0.70 and uncon-
strained Q2 within its prior range. These and all other constraints on the six other
modified gravity parameters are all consistent with the GR values of unity. The tight-
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est constraints in this analysis come from combining cosmic shear, galaxy–galaxy
lensing correlation, RSD and Planck Q2 = 1.28+0.41

−1.00 and Σ2 = 0.90+0.14
−0.18. As they

comment, these are conservative results since only large-scale cuts are used which are
found consistent with Planck. This is a good improvement from the previous analysis
above with large-scale ‘KiDS cosmic shear +Planck’ constraints where Q2 > 2.2
(restricted by the upper bound prior) and Σ2 = 2.13+0.58

−1.10. The authors conclude that
as we will have more overlap between KiDS and 2dFLenS/BOSS, we will be able to
obtain more stringent constraints using the data combination used here.

CFHTLenS + other data sets

Some years earlier, Simpson et al. (2013) used combined structure growth data from
the CFHTLenS tomographic cosmic shear survey (Heymans et al. 2013; Benjamin
et al. 2013), the WiggleZ Dark Energy Survey (Blake et al. 2012), and redshift space
distortions from the 6dFGS (Beutler et al. 2012) to constrain MG parameters and
deviations from the Newtonian potentials. They also used background data for H0
from Riess et al. (2011), BAO data from Anderson et al. (2012), and Padmanabhan
et al. (2012), as well as CMB temperature (TT) and polarization (TE) with data from
WMAP7 (Komatsu et al. 2011).

They used a slightly modified parametrization so that our μ(k, a) and Σ(k, a) in
(91) and (92) are replaced by [1 + μ(k, a)] and [1 + Σ(k, a)] respectively and now
taking 0 value in the GR case instead of 1. They modeled the time-evolution of the
MG parameter to scale with the background effective dark energy density as:

Σ(a) = Σ0
ΩΛ(a)

ΩΛ

, μ(a) = μ0
ΩΛ(a)

ΩΛ

, (126)

where ΩΛ ≡ ΩΛ(a = 1) is today’s value so that μ0 and Σ0 represent today’s values
of μ(a) and Σ(a) as well, respectively.

They used measurements constraints on ( f σ8, F) from the WiggleZ and 6dFGS
surveys where F(z) represents the amplitude of the Alcock–Paczynski effect degen-
erate with the RSDs as we discussed in Sect. 4.3. These measurements are from three
effective redshift slices from the WiggleZ z = 0.44, 0.60, and 0.73, with σ8(z) =
(0.41±0.08, 0.39±0.06, 0.44±0.07) and F = (0.48±0.05, 0.65±0.05, 0.86±0.07)
plus a fourth data point of f σ8 = 0.423 ± 0.055 at a lower redshift z = 0.067 from
the 6dFGS with negligible sensitivity to the Alcock–Paczynski distortion.

In their analysis they considered theΛCDM, the flat and non-flat wCDM models all
augmented with the MG parameters μ0 and Σ0. In all cases, they found no indication
of departure from general relativity on cosmological scales. They put the following
limits on MG parameters: μ0 = 0.05 ± 0.25 and Σ0 = 0.00 ± 0.14 for a flat ΛCDM
background model. They note that these correspond to deviations in the present-day
Newtonian potential and spatial curvature potential of δΨ /ΨGR = 0.05 ± 0.25 and
δΦ/ΦGR = −0.05±0.3 respectively, with significant correlations between the errors.
When they allow for w to vary for the background, these constraints change to μ0 =
− 0.59 ± 0.34 and Σ0 = − 0.19 ± 0.11. They also constrained the growth index
parameter to γ = 0.52 ± 0.09 for a ΛCDM background model, thus in agreement
with the GR value of 6/11 = 0.545.
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6.1.3 Constraints on MG parameters from various probes and analyses

Peirone et al. (2017b) perform an extensive analytical and numerical analysis of the MG
parametersΣ andμ or equivalently G light/G and Gmatter/G. They consider Horndeski
models that are broadly consistent with background and perturbation tests of gravity
and the cosmic expansion history with late time acceleration. They also take into
account the recent result from GW170817 and its counterpart GRB170817A, setting
cT = c. They confirm a conjecture they made in their earlier work (Pogosian and
Silvestri 2016) about MG parameters in Horndeski models, that is (Σ−1)(μ−1) ≥ 0
(that is the two factors must be of the same sign) must hold in viable Horndeski
models in the quasi-static approximation. They also discussed in their previous work
(Pogosian and Silvestri 2016) consistency relations between the two MG parameters
that, if broken would exclude some sub-classes of Horndeski models (e.g., Σ �= 1
would rule out all models with a canonical form of kinetic energy). They remark that
while the results of Ade et al. (2016b) indicate μ < 1 and Σ > 0 are not statistically
significant, however, if such values will hold in more precise experiments in the future
that would rule out all Horndeski models. In the latter paper, they show that requiring no
ghosts and no gradient instabilities prevents from having values within theΣ − 1 > 0
and μ − 1 < 0 range. They also examined the conjectured condition versus the
Compton wavelengths considered. They also found that observations from background
expansion also put constraints on gravitational coupling which in turn re-enforces
the conjecture limits. They also test the validity of the quasi-static approximation in
Horndeski models finding that it holds well at small and intermediate scales but fails at
k ≤ 0.001 h/Mpc. They conclude in their analysis that despite the stringent result from
GW, there remain Horndeski models with non-trivial modifications to gravity at the
level of linear perturbations and large scale structure. They stress the complementarity
of different approaches used to constrain modification to GR and the practicality of
using the phenomenologicalΣ andμ parameterization and their consistency relations,
see also Pogosian and Silvestri (2016).

Another analysis of these self-consistency relations between MG parameters and
growth rate in Horndeski models was performed by Perenon et al. (2017). They con-
sidered accelerating Horndeski models with −1.1 ≤ weff ≤ − 0.9 and classified them
according to their early or late time effects as follows. Late-time dark energy where
both dark energy energy momentum tensor and non-minimal gravitational couplings
are negligible at early times. Early-time dark energy where the dark energy momen-
tum tensor is at work even at early times but non-minimal coupling happens at late
time only. Finally, they call early modified gravity where both dark energy momentum
and non-minimal gravitational couplings are also present at early time during matter
domination. They proposed a convenient way to represent the viability of the models
using two diagnostic planes: the μ(z)−Σ(z) and the f (z)σ8(z)−Σ(z) planes. They
derived the following conclusions from their detailed analysis in the first plane. If
model-independent measurements find either (i) Σ − 1 < 0 at redshift zero or (ii)
μ − 1 < 0 with Σ − 1 > 0 at high redshifts (z > 1.5) or (iii) μ − 1 > 0 with
Σ − 1 < 0 at high redshifts, Horndeski theories are ruled out. In the second plane,
they found that: (i) If f σ8 is found to be larger than that of ΛCDM model at z > 1.5
then early dark energy models are ruled out. On the opposite case (for f σ8), (ii) mea-
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Fig. 8 Contour plots for 68% and 95% CL on MG parametersΣ andμ combining Planck CMB data (TT +
lowP + CMB lensing), RSD data from BOSS DR12 and 6dFGS, and cosmic shear data from CFHTLenS in
blue and DES-SV in red. The cross point represent the GR values (0,0) according to the authors’ definitions
and show that GR is consistent with the data sets used. The combination for the contours in blue gives
among the tightest current constraints on MG parameters as: Σ = −0.01+0.05

−0.04 and μ = −0.06 ± 0.18 (68
% confidence level). Figure reproduced with permission from Ferté et al. (2017)

suring Σ < 1 will rule out late dark energy models, while, (iii) Σ > 1, it is the early
modified gravity case as described earlier in this paragraph that is allowed.

Ferté et al. (2017) performed an analysis to constrain the two MG parameters but
using the definitions [1 + μ(a)] and [1 + Σ(a)] to enter in the Poisson and lensing
equations instead of μ(a) and Σ(a) so taking 0 values in the GR case instead of 1.
They also used Eq. (126) to model their time evolution scaling with the effective dark
energy density parameter with no scale dependence since current data cannot constrain
their scale dependence. They use CMB measurements from Planck, cosmic shear from
CFHTLenS and DES science verification data, and RSD from BOSS DR12 and the 6dF
galaxy survey. They derived constraints using this combination of probes but including
either CFHTLenS or DES-SV separately for weak lensing finding the results shown
in their Fig. 10 (reproduced here as Fig. 8). The constraining power of CFHTLens
is larger leading to tighter constraints. In the DES-SV data, they also marginalized
over the amplitude intrinsic alignment of galaxies finding a positive value leading to
a higher value of Σ as shown on the figure. The constraints found using CMB Planck
(TT + lowP + CMB Lensing), RSD data (BOSS DR12+), and CFHTLenS cosmic
shear are: Σ = −0.01+0.05

−0.04 and μ = −0.06 ± 0.18 (68 % confidence level) which
are among tightest current constraints on MG parameters. GR is consistent with these
tightened bounds, although there is still room for deviations from it, in particular, for
the μ parameter. The authors then perform some forecast analysis for improvement
using five years of DES and LSST data showing substantial improvement on the
parameters and in particular Σ that we present in Sect. 13.
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6.2 Constraints on f�8 from galaxy surveys and RSDmeasurements

Alam et al. (2017a) presented cosmological constraints from galaxy clustering data
of the completed SDSS-III BOSS survey. The study used combined galaxy samples
with 1.2 million galaxies. The spectroscopic survey used BAO methods to measure
the angular diameter distance and the Hubble parameter. Most relevant to testing
gravity, the survey constrained the growth of structure using the combination f σ8 from
RSD measurements. In this concluding analysis of SDSS-III BOSS, they combined
individual measurements from seven previous companion SDSS papers into a set of
consensus values for the angular diameter distance, the Hubble parameter and f σ8 at
3 redshifts: z = 0.38, 0.51, and 0.61.

The method they employed to test deviations from GR was not based on using
directly any MG parameters. They instead defined two parameters that rescale f σ8 as
follows:

f σ8 → f σ8[A f σ8 + B f σ8(z − z p)] (127)

with a redshift pivot z p = 0.51 (Alam et al. 2017a). GR will have A f σ8 = 1 and
B f σ8 = 0.

They combined their RSD and BAO measurements along with temperature and
polarization data from Planck-2015 (Ade et al. 2016a). For a ΛCDM background
model and a redshift independent rescaling, they find A f σ8 = 0.96 ± 0.06, so a
growth amplitude value that is consistent with GR. When they allow for a redshift-
dependent variation, they find A f σ8 = 0.97 ± 0.06 and B f σ8 = −0.62 ± 0.40. This
is a 1.5-σ deviation from a zero GR-value so they considered this as not statistically
significant and concluded that their results are consistent with GR. They also found
very little changes in these values when they allow for the equation of state w and the
spatial curvature parameter to vary. We reproduce their Fig. 20 (as Fig. 9 here) showing
consistency with GR of the two rescaling parameters (on the left). They also provide
there (on the right panel) 11 measurements of f σ8 from their work and other surveys
as listed in the caption. We note that they used only BOSS RSD data in the results
for f σ8 above as they state other data come from a variety of analysis and modeling
approaches but are nevertheless consistent with those of BOSS within the error bars
shown. The authors note that the current growth measurements of f σ8 reaffirm the
validity of GR. It is worth noting though that some other MG models such as nDGP
(see Sect. 7.5.2) or RR non-local gravity are still also consistent with RSD data due to
the large error bars.

Another recent analysis in de la Torre et al. (2016) used RSD and galaxy-galaxy lens-
ing from the final data set of VIMOS Public Extragalactic Redshift Survey (VIPERS)
(de la Torre et al. 2013) combined with CFHTLenS data (Heymans et al. 2013) at
a redshift range of at 0.5 < z < 1.2. The joint analysis obtained measurements
of f σ8(0.6) = 0.48 ± 0.12 and f σ8(0.86) = 0.48 ± 0.10. The galaxy-galaxy
lensing does not add any improvement in constraining these values but alleviates
the degeneracies with galaxy bias and σ8. This allows the constraints to be sepa-
rated as [ f (0.6), σ8(0.6)] = [0.93 ± 0.22, 0.52 ± 0.06] and [ f (0.86), σ8(0.86)] =
[0.99 ± 0.19, 0.48 ± 0.04] in consistency with GR but again with errors bars large
enough to allow for other MG models.
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Fig. 9 68% and 95% confidence contours on modification of the growth function in theΛCDM cosmological
model using the form f σ8 → f σ8[A f σ8 + B f σ8 (z − z p)] with a redshift pivot z p = 0.51. The results are
consistent with the predictions of general relativity: A f σ8 = 1, B f σ8 = 0 (dashed grey lines). As explained
in the text, the analysis used temperature and polarization data from Planck 2015, and a set of consensus
values for BAO and RSD using full shape measurements (FS) from SDSS DR12. Figure reproduced with
permission from Alam et al. (2017a)

Most recently, Okumura et al. (2016) made a high redshift (z ∼ 1.4) measure-
ment of f σ8 using the FastSound survey using the Subaru Telescope. They obtained
f (z)σ8(z) = 0.482±0.116 at z ∼ 1.4 after marginalizing over the galaxy bias param-
eter b(z)σ8(z). The background expansion was fixed to that of a ΛCDM model and
using the RSD measurements on scales above 8 h−1Mpc. This is a first measurement
above redshift 1 and corresponds to 4.2σ detection of RSD. As shown in their Fig. 17
(Fig. 3 here), this high redshift measurement is consistent with GR but models such
as covariant or extended Galileons (see Sect. 7.3.1), f (R) (see Sect. 7.4.1) and other
MG models with varying gravitational constant were all found outside the 1-σ bound.
The figure shows the importance of high redshift RSD measurement in strongly con-
straining these models in the future. They note the combination of low-z and high-z
RSD measurements will be useful in constraining gravity models without relying on
CMB data.

Nesseris et al. (2017) gathered a compilation of 34 data points where they made cor-
rections for model dependence. In order to avoid overlap and maximize independence
of the data-points, they also constructed a sub-sample from this compilation that they
call the ‘Gold’ growth data set with 18 data-points. They determine the best fitwCDM
from the growth evolution equation using the gold data set and find it in 3-σ tension
with the best fit Planck-15/ΛCDM model parameters w, Ω0

m and σ8. They found that
the tension disappears if they allow for the evolution of the effective gravitational
constant.

Finally, Kazantzidis and Perivolaropoulos (2018) constructed an extended compi-
lation of 63 data points of f σ8 published between 2006 and 2013, They correct the
data for the fiducial model and find that using the whole set gives a best fit Ω0

m − σ8
that is in a 5-σ tension with the Planck-2015ΛCDM parameter values. However, they
show that the tension drops to below 1-σ when they use the 20 most recent values
while using the 20 earliest data gives a 4.5-σ tension. They find that the drop in the
tension using the recent data is due to the fact that these are at high redshift with large
enough errorbars that accommodate GR and many other theories. They argue that it
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Fig. 10 EG parameter as function of scale in redshift range 0.5 < z < 0.7 (top panel) and 0.7 < z < 1.2
(bottom panel) as measured in de la Torre et al. (2016). In the two panels, the solid curves and shaded areas
around them correspond to the prediction and the 68% uncertainty (thin grey) band for GR with a ΛCDM
background set to the best fit model of TT + lowP + lensing Planck 2015 (Ade et al. 2016a). In the top panel,
the horizontal (light brown) stripe shows the averaged EG over the range 3 h−1Mpc < r p < 50 h−1Mpc
from Blake et al. (2016b) at redshift 0.43 < z < 0.7. Figure reproduced with permission from de la Torre
et al. (2016). As they comment there, this measurements of EG are slightly lower (1−2σ ) than expected for
the standard ΛCDM model of GR and one way to remedy to this is to lower the matter-density parameter.
Figure reproduced with permission from Alam et al. (2017a)

is more effective to obtain more data at redshift below 1 and with higher precision to
be able to distinguish more effectively between gravity theories.

6.3 Constraints on EG

Reyes et al. (2010) provided one of the first measurements of EG at redshift z = 0.3
finding EG = 0.39 ± 0.06 in agreement with GR-ΛCDM value of 0.408 ± 0.029
although the uncertainties did not exclude some other possible alternative gravity
theories such as f (R) (see Sect. 7.4.1) that predict a range of EG between 0.328
and 0.365. Nevertheless, the measured value was in a 2.5-σ tension with the TeVeS
models. The authors used 70,205 luminous red galaxies (LRGs) from the SDSS survey
(Eisenstein et al. 2005) and the RSD measurement from this sample from Tegmark
et al. (2006) of β = 0.309 ± 0.035 on large scales and at z = 0.32. The authors used
galaxy-galaxy lensing and galaxy clustering of the LRG sample on Mpc scales and
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at this effective redshift. They used the slightly different version of EG as present in
Eq. (113).

A more recent measurement of EG was achieved in Blake et al. (2016b) using deep
and overlapping imaging and spectroscopic datasets by combining the Red Cluster
Sequence Lensing Survey (RCSLenS) (Hildebrandt et al. 2016), the Canada-France-
Hawaii Telescope Lensing Survey (CFHTLenS) (Heymans et al. 2013), the WiggleZ
Dark Energy Survey (Blake et al. 2011c) and the Baryon Oscillation Spectroscopic
Survey (BOSS) (Font-Ribera et al. 2014). They converted their measurements of
galaxy-galaxy lensing, galaxy clustering and redshift space distortions into galaxy-
matter annular differential surface densities ready to be used for the second definition of
EG as given by (113). They found EG = 0.48±0.10 at z = 0.32 and EG = 0.30±0.07
at z = 0.57 when averaging over scales 10 < R < 50 h−1Mpc. These are both
consistent with the perturbed GR-ΛCDM values of EG = 0.41 and 0.36 at these
respective redshifts. This confirms again GR but the uncertainties are still wide enough
to allow for other MG theories. Next, a high-redshift measurement of EG came from
de la Torre et al. (2016) who combined redshift space distortions from VIPERS and
galaxy–galaxy lensing using the same portion of the sky from CFHTLenS. They found
EG(z = 0.6) = 0.16 ± 0.09 and EG(z = 0.86) = 0.09 ± 0.07, when EG is averaged
over scales above 3 Mpc/h. We reproduce their figure 17 as Fig. 10 here. As they com-
ment, this measurements of EG gives values that are slightly lower than expected for
the standardΛCDM model of GR, but the results are consistent with GR within 1−2σ .

Another interesting value of EG comes from Pullen et al. (2016) where the authors
combined measurements of CMB lensing and galaxy velocity field. Unlike previous
measurements of EG , this one used CMB lensing instead of galaxy–galaxy lensing.
The authors state that this will be less sensitive to contamination by intrinsic alignments
of galaxies and will allow for the largest scale measurement of EG averaging over
scales up to 150 h−1 Mpc. They used cross-correlations of the Planck CMB lensing
map with the SDSS III CMASS galaxy sample along with the CMASS galaxy auto-
power spectrum and RSD. They used a definition of EG adapted to these probes [see
their Eqs. (3) and (15)]. They find EG(z = 0.57) = 0.243 ± 0.060 (stat) ±0.013
(sys) The authors note that this measurement is in tension with GR at a level of 2.6-
σ . Taking cosmological values from Planck-2015 and BOSS BAO, the GR value at
z = 0.57 is 0.402 ± 0.012. The authors noted that small tensions with GR start only
when considering scales above 80 Mpc/h. They also comment that some deficit at very
large scale in the CMB-Lensing galaxy cross power spectrum is present so they do
not consider this as an indication of significant deviation from GR.

Alam et al. (2017b) combined data from BOSS CMASS sample DR11 galaxy
clustering, CFHTLenS lensing and RSD of β measurement from BOSS. They found
EG(z = 0.57) = 0.42±0.056 which is in agreement (at 13% level) with the prediction
of GR, EG(z = 0.57) = 0.396 ± 0.011, using the Planck 2015 cosmological param-
eters. They corrected their results for systematics effects including scale dependence
bias affecting its complete cancellation, difference in lensing and clustering windows
and redshift weighting, intrinsic alignment of galaxies on lensing, cosmic variance,
calibration bias in lensing, and limitations due to the choice of cutoff scale R0. They
run simulations and found that these theoretical observational systematic errors are
smaller than the statistical errors in the measurement.
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Amon et al. (2017) used the deep imaging data of the KiDS survey combined with
overlapping spectroscopic areas from 2dFLenS, BOSS DR12 and GAMA surveys.
They found EG(z = 0.267) = 0.43 ± 0.13 from using GAMA, EG(z = 0.305) =
0.27 ± 0.08 from using (BOSS LOWZ + 2dF Low Z) and EG(z = 0.554) = 0.26 ±
0.07 from using (CMASS + 2dF High Z). The results are consistent with GR with
a ΛCDM background and linear perturbations. However, they found that their result
and other measurements of EG favor a lower value of the matter density Ω0

m than the
one preferred by Planck. They caution that the statistic EG is very sensitive to such a
tension in the cosmological parameters which can have more effect than a deviation
in GR and a change of as much as 10% in the gravitational potentials.

Most recently, Singh et al. (2018) used galaxy clustering from BOSS LOWZ sample
with galaxy lensing from SDSS finding 〈EG〉 = 0.37+0.036

−0.032 (statistical) ±0.026 (sys-
tematic) which is consistent with the GR predicted value (0.46) using Planck ΛCDM
parameters and when both statistical and systematic errors are considered. Then they
used BOSS LOWZ and Planck CMB lensing finding 〈EG〉 = 0.43+0.068

−0.073 (stat). This
is statistically consistent with SDSS galaxy lensing result and also with GR predic-
tions. They found 〈EG〉 = 0.39+0.05

−0.05 (stat) when using the CMASS sample and CMB
lensing. The result is consistent with the GR prediction of 0.40 at the higher redshift
of the CMASS sample. They also split the LOWZ sample into two redshift samples
and found results on EG that are consistent with GR predictions at 2.5σ level (stat)
or better. They found that nonlinear corrections and systematic effects can introduce
errors ∼ 1–2% so below the statistical errors while shear calibration and photometric
uncertainties add another ∼ 5% error for the SDSS galaxy lensing.

7 Types of modifications to GR at cosmological scales and
correspondingMGmodels

7.1 Cartan–Weyl–Lovelock theorem

General relativity is based on well-defined principles and physical requirements dis-
cussed in Sect. 2, most of which, are encapsulated in the structure of the Einstein tensor
and field equations. Einstein used guidance from such principles and requirements to
shape and propose his theory (Einstein 1915). After that, Cartan (1922a), Weyl (1922),
Vermeil (1917), and Lovelock (1971, 1972) worked on a succession of assertions and
theorems about the uniqueness of Einstein’s tensor and the field equations. These led
ultimately to the Lovelock theorem (Lovelock 1971, 1972) that can be summarized
as follows, e.g., Ishak (2007) and Berti et al. (2015):

In a spacetime of four dimensions, the only divergence free tensor of valence two

that is constructed only from the metric tensor and its derivatives up to second order,

and preserves diffeomorphism invariance, is the Einstein tensor plus a cosmological

constant term.

Theories that deviate from GR can, in most cases, be delineated into categories
according to what principle or requirement they violate. A modification to GR can
thus happen by allowing (i) extra fields, (ii) higher-order metric derivatives, (iii) extra
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Fig. 11 Various categories of modified gravity (MG) theories according to the principle or requirement they
violate. It is worth noting that some models can belong to more than one category here like for example
some higher dimensional models that have extra fields

dimensions, (iv) non-locality or violation of Lorentz-invariance, see Fig. 11. Accord-
ingly, MG models can be classified into the sub-categories described in the sub-sections
that follow.

However, as mentioned already in the introduction, the scope of this review is to
give an overview of the current status of testing GR at cosmological scales rather
than providing a review of MG models. Therefore, we only provide some outlines
of models of interest or models making a good illustrative case for a given category,
while we refer the reader in each case to other specialized reviews in the literature.
We refer the reader to some of the thorough reviews of MG models including (Clifton
et al. 2012; Joyce et al. 2015; Berti et al. 2015) and references therein.

7.2 Modified gravity versus dark energy

A question that keeps coming back in the community is what is the distinction between
dark energy and modified gravity models. How to distinguish between the two as a
cause of cosmic acceleration. There is more than one answer to this question but with
some possible clear guidelines and prescriptions that can be set.

Joyce et al. (2016) and possibly others, propose to use the strong equivalence
principle (SEP) (see Sect. 2.1) to draw a distinction between GR + dark energy models
versus MG models. They suggest to call any model that satisfies the SEP as a dark
energy model and any model that violates SEP to be an MG model. They state that,
heuristically, the SEP forbids the presence of a fifth force which motivates the use
of such a discriminant. They state that using the SEP to make this distinction can be
motivated further by the conjecture that GR is the only metric theory that satisfy the
SEP, see Will (2014). They then state that a more pragmatic distinction is to rather
use directly the presence (or not) of a fifth force to identify a model as being an MG
model (or not) but with some grey zone as observed in for example Kunz and Sapone
(2007).

Next, Amendola et al. (2013a) provided a phenomenological prescription to this
question. First, they point to the simple case of quintessence that is straightforwardly
referred to as dark energy model. In such a model, the scalar field is minimally coupled
to curvature (see Sect. 7.3.1). In quintessence models, the scalar field also has a standard
kinetic energy and the scalar potential represents the only functional degree of freedom.
However, things get more ambiguous when moving beyond quintessence. The diffi-
culty is that different models can have the same observables (Kunz and Sapone 2007).
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Also, some modified field equations can be recast into GR with extra source terms.
Additionally, some scalar field dark energy models such as k-essence can have per-
turbations and clustering that can change the Poisson equation and induce a modified
gravity parameter Q(k, a) signaling a deviation from GR. Therefore, they suggested
and used the following prescription:

– Standard dark energy models: the scalar field here is non-minimally coupled to
curvature in the Einstein’s equations and has standard kinetic energy. The dark
energy has no clustering on sub-horizon with a sound speed equal to the speed of
light. Quintessence is a well-known example or perhaps definition.

– Clustering dark energy: In this case dark energy has fluctuations and can cluster
on sub-horizon scales. These perturbations in the dark energy modify the Poisson
equation (86) by inducing an MG parameter Q(k, z) �= 0. But in this case, no
gravitational slip is allowed. That is η(k, a) = 0 and the clustering dark energy
does not cause any anisotropic shear. A good example is k-essence (Armendáriz-
Picón et al. 2000, 2001). This is also the case for the no-slip gravity (Linder 2018).

– Modified gravity models: These are models where the Field equations are changed
leading to changes in the Poisson equations with non vanishing slip parameter
η(k, a). These are characterized by the presence of fifth force and violate the SEP.
Particles and bodies do not follow geodesics of the physical metric in the Einstein
frame. This includes for example f (R) (see Sect.7.4.1), DGP (see Sect. 7.5.2), non-
minimal coupled scalar–tensor theories and “dark energy” models with anisotropic
clustering.

Amendola et al. (2013a) chose to follow the common practice of calling modified
gravity models where GR is modified or where dark energy clusters. In other words,
the last two items above. So models with Q = η = 1 are dark energy models while
if any of them departs from unity then it is an MG model. Of course, as they stress,
this is not meant to be a fundamental classification but rather a convenient and useful
phenomenological prescription.

7.3 Modified gravity theories with extra fields

In this category, the modification comes from adding scalar, vector or tensor field(s)
to the metric. Figure 12 provides examples of models for each sub-category and we
provide below some illustrative examples for each sub-category.

7.3.1 Theories with extra scalar field

Scalar–tensor theories have been extensively studied in the literature from a theoretical
point of view as well as comparison to observations, see for example Fujii and Maeda
(2007) and references therein. Here a dynamical scalar field is added to the metric
tensor hence the popular name. Let’s survey the following examples.

Illustrative example 1: Generalized Jordan–Fierz–Brans–Dicke (GJFBD)

The GJFBD models have been very popular as scalar–tensor theories of gravity
physics at various regimes, see e.g., the reviews Will (2014), Clifton et al. (2012)
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Fig. 12 Extra-fields modified gravity models. Purple color is for Horndeski models and orange is for models
with torsion. This table follows the models as listed in Clifton et al. (2012)

and Koyama (2016). In cosmology, the interest recently shifted to Galileon (see
Sect. 7.3.1) and Horndeski models because they can provide self-accelerating models.
The Lagrangian for the GJFBD models can be written as,

L = 1

16π

√
−g

[
φR − ω(φ)

φ
∇μφ∇μφ − 2Λ(φ)

]
+ Lm(ψm, gμν), (128)

where ω(φ) is a coupling function, Λ(φ) is a potential or a function generalizing the
cosmological constant, and Lm(ψm, gμν) is the Lagrangian of the matter field ψm.

Variation of (128) with respect to the metric gives the first set of field equations,

φGμν +
[
�φ + 1

2

ω

φ
(∇φ)2 +Λ

]
gμν − ∇μ∇νφ − ω

φ
∇μφ∇νφ = 8πTμν . (129)
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while variations with respect to the scalar field provides, after some steps, the remaining
equations,

(2ω + 3)�φ + ω′(∇φ)2 + 4Λ− 2φ
dΛ

dφ
= 8πT . (130)

The action (128) is written in the Jordan frame where the scalar field is non-
minimally coupled to the Ricci curvature scalar. It is assumed that there exist in this
frame a metric gμν to which all matter species are universally coupled and the particles
follow geodesics of this metric. The scalar field does not couple directly to the matter
fields.

One can transform (128) to the Einstein frame using a conformal transformation
gμν = A(φ)2 ḡμν and by redefining the scalar field. In such an Einstein frame the
scalar field is now minimally coupled to the Ricci scalar of ḡμν . However, the scalar
field is directly coupled to the matter fields and test particles do not follow geodesics
of ḡμν . The scalar field acts as an effective potential and isolated test particles feel a
universal 4-acceleration.

A popular sub-case of the theory is the Jordan–Fierz–Brans–Dicke (JFBD) theory
(Brans and Dicke 1961; Will 1994) obtained by setting ω as a constant noted as the
Brans–Dicke coupling parameter ω

BD
and setting Λ = 0, so (128) reduces to

L = 1

16π

√
−g

[
φR − ωBD

φ
∇μφ∇μφ

]
+ Lm(ψm, gμν) (131)

where the Brans–Dicke field gives an effective gravitational constant. The theory
approaches general relativity when ω → ∞.

Exact solutions for spherically symmetric vacuum in Brans–Dicke theory have been
derived and compared to solar system observations, see for example Will (2014). The
Cassini–Huygens mission (Bertotti et al. 2003) sets the constraints ωBD > 40, 000
so Brans–Dicke must be very close to GR. Unless there is a successful screening
mechanism at work at small scales, this bound makes it difficult for Brans–Dicke
theories to depart from GR at cosmological scales. For example, Bisabr (2012) discuss
Chameleon screened Generalized Brans–Dicke cosmology. However, as we discuss
in Sect. 8.1, Wang et al. (2012) showed that such Chameleon screened models cannot
explain cosmic acceleration unless we add a cosmological constant to them.

As for the cosmology of JFBD, the field equations for an FLRW metric and a perfect
fluid source give, the following Friedmann equations:

H2 = 8πρ̄

3φ
− k

a2 − H
φ̇

φ
+ ω

6

φ̇2

φ2 (132)

φ̈

φ
= 8π

φ

(ρ̄ − 3P̄)

(2ω + 3)
− 3H

φ̇

φ
, (133)

where over-dots are for derivatives with respect to proper time. The general solutions
to the Brans–Dicke equations above have been fully explored in e.g., Gurevich et al.
(1973) and Barrow (1993).
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In addition to the background equations, linear perturbations have been worked out
in Nariai (1969), Wu et al. (2010), Nagata et al. (2002) and Chen and Kamionkowski
(1999) so the theory can be compared to large scale structure and CMB data. For the
perturbed FLRW metric (28) in the Newtonian conformal gauge, a dust source, scalar
field perturbation φ = φ0 + δφ, and assuming the quasi-static approximation, the
following scalar perturbation equations are obtained, e.g., Koyama (2016):

∇2Ψ = 4πGa2δρ − 1

2
∇2δφ, (134)

(3 + 2ωBD)∇2δφ = −8πGa2δρ, (135)

Φ − Ψ = δφ. (136)

The perturbations of the scalar field act as an effective anisotropic stress producing a
slip between the two potentials. Inserting (135) into (134) shows that the presence of
the second term in Eq. (134) is equivalent to a modification to the Newton gravitational
constant.

Illustrative example 2: Galileon and Covariant Galileon models

Galileon models were introduced by Nicolis et al. (2009) with some inspiration
from DGP models (see Sect. 7.5.2) and aiming to go beyond their limitations. The
models are constructed such that their action in flat spacetime is invariant under the
following Galilean shift symmetry for the scalar field (Nicolis et al. 2009)

∂μφ → ∂μφ + cμ, (137)

where cμ is a constant vector. It turns out that with such conditions, the most general
Lagrangian, that gives second order derivative equations of motion, has only 3 terms,
in addition to the scalar field term and its canonical kinetic term. The terms are Nicolis
et al. (2009), Deffayet et al. (2009b):

L
gal
1 = φ, (138)

L
gal
2 = −1

2
(∂φ)2, (139)

L
gal
3 = −1

2
(∂φ)2�φ, (140)

L
gal
4 = −1

2
(∂φ)2

[
(�φ)2 − (∂μ∂νφ)

2
]
, (141)

L
gal
5 = −1

4
(∂φ)2

[
(�φ)3 − 3�φ(∂μ∂νφ)

2 + 2(∂μ∂νφ)
3
]
. (142)

The corresponding equations of motion can be found in Nicolis et al. (2009). A
concise discussion on how this Lagrangian or other equivalent forms give only second
order derivative equations of motion plus other properties of the models can be found in
Koyama (2016), Clifton et al. (2012) and Nicolis et al. (2009). Galileon models can also
result from conformal invariance (Nicolis et al. 2009; Creminelli et al. 2013) or from
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the action of a brane in a higher dimensional spacetime (de Rham and Tolley 2010).
Galileon models can also be constructed with more than one scalar field (Trodden
and Hinterbichler 2011; Trodden 2015; de Rham 2012), or in terms of vector fields
(Tasinato 2014; Heisenberg 2014; Hull et al. 2014).

The next logical thing that was considered in literature was to convert Galileon
models to curved spacetime. It was shown though that simply turning partial deriva-
tives into covariant derivatives (covariantization) causes the appearance of third order
derivatives in the equation of motion with the associated ghost fields (Deffayet et al.
2009a). To eliminate such higher order terms, Deffayet et al. (2009b) introduced
counter terms to write the covariant Galileon action as:

L3 = −1

2
(∇φ)2�φ, (143)

L4 = 1

8
(∇φ)4 R − 1

2
(∇φ)2

[
(�φ)2 − (∇μ∇νφ)2

]
, (144)

L5 = −3

8
(∇φ)4Gμν∇μ∇νφ

−1

4
(∇φ)2

[
(�φ)3 − 3�φ(∇μ∇νφ)2 + 2(∇μ∇νφ)3

]
. (145)

Models from Lagrangian up to L3 are referred to as Cubic Galileons, up to L4 as
Quartic, and up to L5 as Quintic. The models are self-accelerating with no need for a
cosmological constant. An example of a concise practical formulation of the models
to compare to cosmological data can be found in for example Barreira et al. (2014b).

The covariant Galileon equations of motion are second and only second order
derivatives. They are considered to be a subclass of the Horndeski models. A further
generalization of the covariant Galileons to include zeroth and first order derivative
equations of motion was carried out in Deffayet et al. (2009a) leading to the Horndeski
action (147) (Horndeski 1974).

It is worth mentioning that Gleyzes et al. (2015a, b) have shown that the addition of
the counter terms in the covariantization of Galileon action is not strictly necessary to
obtain healthy models. The equations of motion can thus be still cast into second order
due to further constraints. In fact, these led to the proposal of the so-called beyond
Horndeski models (Zumalacarregui and García-Bellido 2014; Gleyzes et al. 2015a, b).

Illustrative example 3: Horndeski models and beyond (αx parameterization)

This is the most general single-field scalar–tensor theory with second-order deriva-
tive equations of motion in (3+1) dimensions. A while ago, Horndeski (Horndeski
1974) derived the corresponding general Lagrangian and field equations but such
work went quiet for sometime until their re-discovery within studies of generalized
Galileon models, e.g. Deffayet et al. (2009a, b, 2011) and Kobayashi et al. (2011),
finding that the generalized covariant Galileon models are equivalent to Horndeski
models. Most recently, Horndeski models have been extensively studied analytically
and phenomenologically but fully constraining them observationally remains a chal-
lenge, e.g. Ade et al. (2016b) due to their large number of parameters.
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The Horndeski action is given by, e.g., Horndeski (1974), Deffayet et al. (2011)
and Kobayashi et al. (2011)

S =
∫

d4x
√

−g

[
5∑

i=2

Li + LM (gμν, ψm)

]
(146)

where

L2 = K (φ, X),

L3 = −G3(φ, X)�φ,

L4 = G4(φ, X) R + G4X [(�φ)2 − (∇μ∇νφ) (∇μ∇νφ)],
L5 = G5(φ, X)Gμν (∇μ∇νφ)

− 1

6
G5X [(�φ)3 − 3(�φ) (∇μ∇νφ) (∇μ∇νφ)

+ 2(∇μ∇αφ) (∇α∇βφ) (∇β∇μφ)] , (147)

where K and G3–G5 are functions of the scalar field φ and that of its kinetic energy,
X = −∂μφ∂μφ/2, R is the Ricci scalar, Gμν is the Einstein tensor. Gi X and Giφ are
the partial derivatives of Gi with respect to X andφ, respectively. The four functions, K

and G3–G5 characterize completely this class of theories. The corresponding equations
of motion can be found in Bellini and Sawicki (2014), Deffayet et al. (2011) and
Kobayashi et al. (2011). It is worth noting that there are no a-priori mass or energy
scales that are associated with the functions G3–G5 that would put them in some
hierarchical order. When a model is specified, these functions may feature a mass scale
that will determine at what scale they contribute to the dynamics. This mass scale is
usually chosen so the terms have an effect at cosmological scales. The appearance of
such mass scales differ though from one model to another within the Hordeski models.
A brief discussion for Galileon models can be found after Eq. 3 in Baker et al. (2018).

A physically meaningful parameterization for the Horndeski models was introduced
by Bellini and Sawicki (2014) from applying and specializing the EFT approach
discussed in Sect. 5.1 to this class of models. First, for Horndeski models, the following
relations between the functions of the EFT action (84) must hold:

m2
2 = 0; 2M̂2 = M̄2

2 = −M̄2
3 . (148)

Consequently, the nine EFT functions can be replaced by four functions of time
only noted as αM , αK , αB and αT plus the effective Planck mass M2

∗ and an additional
function of time for the background such as for example H(a) (Bellini and Sawicki
2014). These 5 functions of time and the effective Planck mass fully characterize the
linear dynamics of the Horndeski models.

The relationships between the αx parameters and the set of EFT functions of (85)
have been provided in Bellini and Sawicki (2014) and can be summarized as follows:

M2
∗ = m2

0Ω + M̄
2
2; (149)
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M2
∗ HαM = m2

0Ω̇ + ˙̄M2
2; (150)

M2
∗H2αK = 2c + 4M4

2; (151)

M2
∗HαB = −m2

0Ω̇ − M̄
3
1; (152)

M2
∗αT = −M̄

2
2. (153)

The authors also provided a connection between the physical properties of the
theory and the αx parameters as follows:

– αK : quantifies the kineticity of the scalar field originating from the presence of its
kinetic energy term in the Lagrangian. For example, minimally coupled models
such as quintessence or k-essence all have a scalar field kinetic term and thus
αK �= 0. On the other hand f (R) (see Sect. 7.4.1) or f (G)models have no such a
term and thus αK = 0. In the general Horndeski models, αK receives contributions
from the Lagrangian functions K , G3, G4 and G5, see Appendix A in Bellini and
Sawicki (2014).

– αT : quantifies the excess of tensor (gravity waves) speed from the speed of light
(i.e., c2

T −1) and thus the deviation of gravitational waves speed from that of light.
This also affects the coupling between the matter and the Newtonian potential
resulting in anisotropic stress regardless of scalar perturbations. In the general
Horndeski models, αT receives contributions from the functions G4 and G5.

– αB : quantifies the braiding or mixing of the kinetic terms of the scalar field and the
metric. Can cause dark energy clustering. αB = 0 for minimally coupled models
of dark energy such as quintessence and k-essence but non-zero for all modified
gravity models, i.e., all models where a fifth force is present (Pogosian and Silvestri
2016). αB receives contributions from the functions G3, G4 and G5 in Horndeski
models.

– αM : quantifies the running rate of the effective Planck mass. It is generated by a
restricted non-minimal coupling. It creates anisotropic stress. αM = −αB �= 0 for
f (R)models. αM = 0 for minimally coupled models of dark energy models such
a quintessence and k-essence.

It is worth noting that because the αx -parameterization can be connected very well
to physical properties of the of the models, it can then serve well the task of assessing
the stability criteria of the models, see for example a recent discussion in Kennedy
et al. (2018) and references therein.

Later on, Gleyzes et al. (2015b, a) added to Eqs. (149)–(153) and the αx parame-
terization the following relation

M2
∗αH = 2M̂2 − M̄2

2 , (154)

where the authors introduced αH �= 0 to parameterize a deviation from Horndeski
models. Their formalism thus included viable models with a single scalar field but
with higher-order equations of motion referred to as beyond-Horndeski models. How-
ever, the authors showed how internal constraints in the theory assures that it is free of
Ostrogradski instabilities. Some of beyond Horndeski models are obtained by a dis-

123



1 Page 76 of 204 M. Ishak

formal transformation. However, see some reservation and discussion in Crisostomi
et al. (2016a) about the beyond-Horndeski characterization.

It is worth recalling here the definitions of conformal and disformal transformations
of the metric given by

ḡαβ = A(φ, X) gαβ + B(φ, X) ∂αφ ∂βφ (155)

where X ≡ − 1
2 gαβ∂αφ ∂βφ. The first term on the right of (155) represents a confor-

mal transformation rescaling the metric tensor. The second term is a pure disformal
transformation stretching the metric in the direction given by ∂αφ.

Further efforts continued to explore models beyond Horndeski. Remarkably, Lan-
glois and Noui (2016a, b) identified the degeneracy conditions that assure that the
theory is free from Ostrogradsky ghost even if their equations of motion have higher
order derivatives. This allowed Langlois and Noui (2016a) and Crisostomi et al.
(2016a) to identify viable beyond-Horndeski theories and even new classes of ghost
free degenerate higher order theories in Langlois and Noui (2016a), Crisostomi et al.
(2016b), Ben Achour et al. (2016a, b) and Crisostomi et al. (2017). The models intro-
duced in Langlois and Noui (2016a) are now known as the degenerate higher derivative
theories beyond Horndeski (DHOST), as dubbed in Langlois et al. (2017a) and the
concise review (Langlois 2017). They generalize Horndeski and beyond-Horndeski
models and are the most general class of ghost-free scalar–tensor theories. In these
theories, it was shown in the vacuum in absence of matter coupling that the presence of
a special degeneracy of the Lagrangian ensures the absence of ghosts even if the equa-
tions of motion are higher order. Also, if the matter coupling is disformal then it can
not break this degeneracy but that is not the case for minimal coupling of matter. This is
an interesting class of models that remain to be studied and compared to cosmological
observations. We discuss some constraints on these models from neutron-star-merger
event GW170817 and GRB170817A in Sect. 10.

If the coupling of matter is disformal (it can be minimal of course), then it could
not break the degeneracy, and the ghost is indeed absent.

We reproduce for illustration purposes, Table 1 from Bellini and Sawicki (2014)
where the αx functions are given for known dark energy or modified gravity models
(Table 4).

Other scalar–tensor theories

An interesting scalar–tensor theory is that of Mimetic gravity that was originally
proposed as mimetic dark matter in Chamseddine and Mukhanov (2013), see special-
ized review (Sebastiani et al. 2016). It was extended to produce inflation and late-time
cosmic acceleration as well as to address cosmological or astrophysical singularities
(Chamseddine et al. 2014; Chamseddine and Mukhanov 2017a, b; Ben Achour et al.
2017). The theory and its extensions can be constructed from the action, e.g., Langlois
et al. (2018)

S[g̃αβ , φ] =
∫

d4x
√

−g L(φ, ∂αφ,∇α∇βφ ; gαβ) , (156)
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where the variation must be taken with respect to scalar field φ and the auxiliary metric
g̃αβ which is related to the physical metric by a non-invertible disformal transforma-
tion,

gαβ = Ã(φ, X̃) g̃αβ + B̃(φ, X̃) ∂αφ ∂βφ , X̃ ≡ g̃αβ∂αφ ∂βφ. (157)

The original mimetic dark matter theory had the Einstein–Hilbert term for gαβ as
Lagrangian so in (156) it would depend only on gαβ and not on φ explicitly. We
refer the reader to the review Sebastiani et al. (2016) for various formulations and
discussions.

Dutta et al. (2018) performed a dynamical analysis of the theory showing that
Mimetic Gravity can have successive radiation and matter dominated epochs followed
by an accelerating phase. Interestingly, the dark matter and dark energy parameter have
the same order of magnitude thus addressing the cosmic coincidence problem. These
and other features were also stressed in Chamseddine et al. (2014) and references
therein. Mirzagholi and Vikman (2015) introduced a novel simple mechanism to pro-
duce mimetic DM during radiation epoch. Perhaps the most interesting overall feature
of Mimetic Gravity is that of a possible unified scenario for inflation, dark matter and
dark energy.

However, a very recent study Langlois et al. (2018) showed that mimetic gravity the-
ories can be viewed/formulated as degenerate higher-order scalar theories (DHOST)
(Langlois and Noui 2016a) with an extra local gauge symmetry. They study linear
perturbations about a homogeneous and isotropic background for all mimetic theories
and find that they have either gradient instabilities or an Ostrogradsky type of instabil-
ity in the scalar sector coupled to matter. The matter they included was in the form of
k-essence scalar field. It will be interesting to see further development on this particular
point and if there are ways around it in this unifying scenario of the dark sector.

Another interesting scalar–tensor theory is the ghost condensation model as pro-
posed by Hamed et al. (2004). A scalar ghost field is added but the theory is kept stable
because the terms in the action push the kinetic terms to a fixed condensation value
avoiding instability. The theory has spontaneous breaking of Lorentz invariance. In
such a theory, the ghost condensate field plays a role in the gravitational sector that
is similar to that of the Higgs field in particle physics. That is gravitational fields
propagating through the ghost condensate scalar field acquire a mass just like parti-
cles acquire mass while propagating through the Higgs field. The ghost condensate
field fills space in the universe and is equivalent to a fluid with the same equation of
state, w = −1, as a cosmological constant, and thus can drive the observed cosmic
acceleration. But, such a ghost condensate fluid has physical scalar excitations and
can be described as an effective field theory. The theory has interesting features such
as attractive or repulsive gravity and has been used for problems in inflation, dark
matter and cosmic acceleration (Hamed et al. 2004). The models lead to an interesting
cosmological phenomenology including Friedmann equations that can be fit to obser-
vations and scalar perturbations that lead to a growth equation with additional terms
that can be compared to large scale structure observations (Mukohyama 2006; Krause
and Ng 2006).
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Charmousis et al. (2012) proposed what they called the Fab four scalar–tensor
theory and its cosmology in Copeland et al. (2012). Interestingly, this theory proposed
a self-tuning mechanism that screens the contribution of the cosmological constant
to curvature through phase transition. The name is given because the theory is based
on 4 specific terms from the Horndeski action they call Fab Four (in analogy with
the Beatles, they named the terms as John, Paul, George, and Ringo). The fabulous
aspect is the self-tuning screening of the cosmological constant with a way around
Weinberg’s no-go theorem (Weinberg 1989) by allowing the scalar field to break
Poincaré invariance on the self-tuning vacua. However, it was argued in Appleby et al.
(2012) and Linder (2013) that such models fail to provide a viable cosmic evolution
for the whole cosmic history. Furthermore, these models have been ruled out by the
requirement of cT = c from the neutron star merger event GW170817/GRB170817A.

Afshordi et al. (2007a, b) introduced a scalar–tensor model they call Cuscuton that
is based on the infinite sound speed limit of k-essence model fluid (Armendáriz-
Picón et al. 1999). k-essence is a model where the late-time acceleration is caused
by the kinetic energy of the scalar field and not its potential energy as is the case in
quintessence dark energy models (this the special case of Eq. (147) where only the
second is present and the function K depends only on X there). k-essence field has
perturbations which cause a change in the GR Poisson Eq. (86) (i.e., Q(k, z) �= 0)
but no gravitational slip, i.e., η(k, z) = 1. Afshordi et al. (2007a) show that Cuscuton
model is causal and perturbations do not introduce any additional dynamical degree
of freedom but just obey only a constraint equation. They state that the model can be
viewed as an effective modification of gravity on large scales. They also remark that
this is the only modification of Einstein gravity that does not introduce any additional
degrees of freedom and is not conformally equivalent to GR. They studied two models
with specific potentials finding that one can mimic ΛCDM expansion history but has
some early time departure from it. The second model has an expansion history similar
to that of DGP (see Sect. 7.5.2) but is consistent with ISW effect from WMAP data.
Cuscuton modes have a free potential and constraining them using observations will
depend on the choice of such a potential.

Finally, it is worth including a different type of scalar–tensor theory known as the
Einstein–Cartan–Sciama–Kibble theory. It constitutes an interesting development in
gravity theories in which the torsion tensor is not vanishing and the affine connection is
not symmetrical (Cartan 1922b, 1923, 1924; Sciama 1962, 1964; Kibble 1961). The
torsion is related to the angular momentum (spin) of matter and the theory differs from
GR only when the spin effects are important. Hehl and Von Der Heyde (1973) evaluated
that for electron the density that will make the spin effect relevant is ∼ 1338 Kg/m3

and ∼ 1345 Kg/m3 for neutrons. These high densities can exist in the dense early
universe but not any later during cosmic evolution. We refer the reader to the reviews
(Hehl et al. 1974; Trautman 2006; Desai and Poplawski 2016).

7.3.2 Extra vector field(s)

Illustrative example: Generalized Einstein-Aether theories

In this theory, a unit timelike vector is added to the tensor metric. The vector field
provides a preferred reference frame and constitutes an Aether-like field making the
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violation of Lorentz invariance. Gasperini (1987) first revived the idea of an Aether-
like theory with the use of a scalar field and a preferred reference frame. Kostelecky and
Samuel (1989) developed framework for spontaneous Lorentz-symmetry breaking in
higher dimensions that served for many purposes later. Jacobson and Mattingly (2001,
2004) and Eling et al. (2004) followed a decade later by proposing a theory where
in addition to the metric, a unit timelike vector field is added to the theory providing
a direction of time and a preferred frame breaking Lorentz invariance under boosts.
This was then generalized further by Zlosnik et al. (2007, 2006). We outline some
aspects of the field equations and cosmology in this theory following Zlosnik et al.
(2007, 2006) and Meng and Du (2012).

The action for Generalized Einstein-Aether theory is given by

S =
∫

d4x
√

−g

[
R

16πG
+ LA + LM

]
, (158)

where the additional LA term is the Lagrangian for the vector field, Aα given by
Zlosnik et al. (2007, 2006):

LA = M2

16πG
F(K)+ 1

16πG
λ(AαAα + 1)

K = M−2
K
αβ
γσ∇αAγ∇β Aσ

K
αβ
γσ = c1gαβgγ σ + c2δ

α
γ δ

β
σ + c3δ

α
σ δ

β
γ − c4 AαAβgγ σ , (159)

where ci are dimensionless constants and M is a coupling constant with mass dimen-
sion and typical scale value of the order of H0 for cosmological purposes. λ is a
Lagrange multiplier to ensure the vector field is unit time-like, i.e., AαAα = −1. The
F(K) is a free function. For the case of linear Einstein-Aether theory it is simply equal
to K.

Variation of the action (158) with respect to gαβ and Aβ respectively gives

Gαβ = T̃αβ + 8πGT matter
αβ (160)

∇α(F ′ Jαβ) = 2λAβ , (161)

where T̃αβ is the energy-momentum tensor for the vector field, F ′ = dF
dK

, and Jασ =
2K

αβ
σγ∇β Aγ . For K

αβ
γσ given by (159), T̃αβ is given by Zlosnik et al. (2007, 2006)

T̃αβ = 1

2
∇σ

[
F

′
(

J σ
(α Aβ) − Jσ(αAβ) − J(αβ)A

σ
)]

−F
′Y(αβ)+

1

2
gαβM2

F+λAαAβ ,

(162)
where the (... ) denotes symmetry with respect to the indices. Yαβ is given for the
particular choice of (159) (but setting c4 = 0) by

Yαβ = −c1
[
(∇ν Aα)(∇ν Aβ)− (∇αAν)(∇β Aν)

]
. (163)
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Next, we outline some aspects of the cosmological evolution in the theory. We
consider the general FLRW metric (5), the unit time-like vector

Aα = (1, 0, 0, 0). (164)

For the matter source, we consider a perfect fluid with velocity field uα and energy
momentum tensor given by

T matter
αβ = ρuαuβ + p(uαuβ + gαβ). (165)

The results are as follows (Zlosnik et al. 2007):

∇β Aβ = 3H

K = 3α
H2

M2 , (166)

where α ≡ c1 + 3c2 + c3 and H ≡ ȧ/a is the usual Hubble parameter. As shown in
Zlosnik et al. (2007, 2006), the energy momentum tensor, (162), also takes the form
of a perfect fluid with effective state variables given by

ρ̄A = 3αH2
(

F
′ − F

2K

)
(167)

and

p̄A = 3αH2
(

−2

3
F

′ + F

2K

)
− αḞ

′H − αF
′ ä

a
, (168)

satisfying the energy conservation equation ρ̇A + 3H(ρA + pA) = 0.
Next, the field equations give the modified Friedmann equations (Zlosnik et al.

2007, 2006)

(
1 − αF

′ + 1

2

αF

K

)
H2 + k

a2 = 8πG

3
ρ̄ (169)

d

dt
(−2H + αF

′H)+ 2k

a2 = 8πG(ρ̄ + p̄). (170)

We can see that additional terms are present from the function F(K) and its derivatives
that can be encapsulated to play the role of an effective cosmological constant due to
the presence of the Aether field vector. The theory also contains a modified effective
gravitational constant. Specific examples can be found in Zlosnik et al. (2006), Zuntz
et al. (2010) and Lim (2005) where specific choices of F(K) = γ (−K)n can lead to
late time acceleration with n = 0 corresponding to a ΛCDM model. Meng and Du
(2012) proposed other models leading to other effective dark energy models. Battye
et al. (2017b) also developed a designer approach to generalized Einstein-Aether to
mimic any wCDM background. Instead of specifying a specific F(K) function, other
parameters such as w and Ωde can be specified to find a functional form for F(K).
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This essentially amounts to solving the generalized Friedmann equations (169) and
(170).

Linear perturbations for generalized Einstein-Aether theory have been worked out
in, e.g., Zuntz et al. (2010), Armendáriz-Picón et al. (2010) and Battye et al. (2017b)
taking into account perturbations of the metric and the vector field. This gives modified
Poisson equations where the vector field leads to a different source for the Poisson
equations and also induces a slip between the two gravitational potentials. This pro-
vides a means to test the models using large scale structure as well as CMB and to
distinguish them from the ΛCDM model.

Other vector–tensor theories

Some of the first vector–tensor theories were those of Will and Nordtvedt (1972)
where the authors derived and explored the models within an extended PPN formal-
ism. Other vector–tensor theories include the recent generalized Proca theories where
the vector field is promoted to a Proca massive vector field with ghost free models
and accelerating cosmologies (Heisenberg 2014; De Felice et al. 2016a, c; Beltrán
Jiménez and Heisenberg 2017; Heisenberg et al. 2016). A number of other develop-
ments on vector–tensor theories can be found in Beltrán Jiménez et al. (2013, 2016a,
2017), Heisenberg (2014), Tasinato (2014), Allys et al. (2016a), Beltrán Jiménez and
Heisenberg (2016, 2017), Heisenberg et al. (2016), Kimura et al. (2017), De Felice
et al. (2016a, b), Emami et al. (2017), Hull et al. (2014, 2016), Allys et al. (2016b)
and Nakamura et al. (2017). A concise review on generalized Proca theories can be
found in Heisenberg (2017).

7.3.3 Extra vector and scalar fields

Illustrative example: TeVeS theory

A Tensor–Vector–Scalar theory known as TeVeS in the literature was introduced
by Bekenstein in Bekenstein (2004) as a relativistic generalization of Modified-
Newtonian-Dynamics (MOND) theory (Milgrom 1983a, b). MOND and TeVeS both
aim at addressing some observations such as the flat rotation curves of galaxies without
the need for Dark Matter. MOND has been criticized for not fitting other astrophysical
observations but see discussion and debate in for example Scott et al. (2001), Foreman
and Scott (2012) and McGaugh (2011).

TEVES provides a more complex theory where the additional vector field could for
example cause a stronger gravitational infall of baryons during the early universe epoch
and thus alleviates the need for dark matter to create strong gravitational potential
wells, see e.g., Dodelson and Liguori (2006).

The TeVeS action is commonly written in two frames and we follow that here (a
single frame formulation can be found in Zlosnik et al. 2006). The gravitational fields
are written in the Einstein frame (sometime also referred to as the Bekenstein frame
for this specific theory) while the matter fields are written in the frame of the physical
metric, gμν . The three gravitational fields of the theory are the Bekenstein metric
tensor, g̃μν , the Sanders vector field, Aμ, and the scalar field, φ. The matter metric is
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related to the Bekenstein metric by Bekenstein (1993)

gμν = e−2φ g̃μν − 2 sinh(2φ)AμAν . (171)

The TeVeS theory is defined by the sum of the following four actions:

1. For the metric field,

Sg̃ = 1

16πG

∫
d4x

√
−g̃ R̃, (172)

where G is the bare gravitational constant related to Newton’s constant, G N , via
the solution to the quasistatic spherically symmetric solution of the TeVeS field
equations (Bekenstein 1993). See also Clifton et al. (2012) for a concise discussion.

2. For the vector field,

SA = − 1

32πG

∫
d4x

√
−g̃[K B FμνFμν − 2λ(AμAμ + 1)], (173)

where Fμν ≡ 2∇̃[μAν], Fμν = g̃μα g̃νβFαβ , Aμ = g̃μν Aν , λ is a Lagrange
multiplier to ensure g̃μν AμAν = −1, and K B is a dimensionless constant related
to the vector field. K B constitutes one of the additional parameters of the TeVeS
models.

3. For the scalar field,

Sφ = − 1

16πG

∫
d4x

√
−g̃[μ(g̃μν − AμAν)∇̃μφ∇̃νφ + V (μ)], (174)

where μ is a dimensionless non-dynamical scalar field. V (μ) is a free function
which typically depends on a scale lB (this is a second parameter of the TeVeS
model). The action for the scalar field is constructed such that TeVeS theory has a
MOND non-relativistic limit, under some conditions and for some specific forms
of the function V (μ). For example, the function in Bekenstein (2004) is given by

dV

dμ
= − 3

32πl2
Bμ

2
0

μ2(μ− 2μ0)
2

μ0 − μ
, (175)

whereμ0 is a dimensionless constant (the third parameter of the TeVeS model) and
leads to a MOND limit. Similarly, other more general functions leading to MOND
can found in Bourliot et al. (2007), Sanders (2006) and Angus et al. (2006).

4. For the matter fields, ψm,

Sm =
∫

d4x
√

−gL[g, ψm, ∂ψm]. (176)

where here the matter frame metric is used. We note that if arbitrary matter fields
(including for instance fermions) are allowed and a Lagrangian that can depend
on the matter field derivative, then by covariance that Lagrangian would also need
to involve the derivative of the metric as well.
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The corresponding field equations for the metric tensor, the vector field and the
scalar field are given respectively by:

G̃μν = 8πG
[
Tμν + 2(1 − e−4φ)AαTα(μAν)

]

+μ
[
∇̃μφ∇̃νφ − 2Aα∇̃αφ A(μ∇̃ν)φ

]
+ 1

2

(
μV ′ − V

)
g̃μν

+ K

[
Fα
μFαν − 1

4
FαβFαβ g̃μν

]
− λAμAν, (177)

K ∇̃αFα
μ = −λAμ − μAν∇̃νφ∇̃μφ + 8πG(1 − e−4φ)AνTνμ, (178)

and

∇̃μ
[
μĝμν∇̃νφ

]
= 8πGe−2φ

[
gμν + 2e−2φ AμAν

]
Tμν . (179)

In addition to the field equations, the theory has two constraints. The first is the usual
timelike constraint on the vector field, i.e., AαAα = −1. This is obtained by varying
the action with respect to the Lagrange multiplier, λ. The second constraint fixes the
non-dynamical field ,μ, in terms of the other fields in the theory. It derives from varying
the action with respect μ. The above field equations and constraints are all used in
what follows.

Next, we proceed to describe some aspects of the cosmology of TeVeS. Some studies
based on the homogeneous and isotropic FLRW metric can be found in Bekenstein
(2004), Diaz-Rivera et al. (2006), Bourliot et al. (2007), Ferreira et al. (2008), Zhao
(2007) and Hao and Akhoury (2009). We follow here (Xu et al. 2015; Clifton et al.
2012) and give some key cosmological equations for a spatially flat FLRW background.
The metric in conformal time and the matter frame reads

ds2 = a2(τ )(−dτ 2 + dr2), (180)

while in the Einstein frame,

ds̃2 = b2(τ )(−e−4φdτ 2 + dr2). (181)

The two scale factors a and b are related by the disformal relation a = be−φ .
The Friedmann equation in the Einstein frame is given by Skordis (2006):

3

(
b′

b

)2

= a2
[

1

2
e−2φ

(
μ

dV

dμ
+ V

)
+ 8πGe−4φ ρ̄

]
, (182)

where ρ̄ is the matter energy density. It should be noted that the vector field does not
contribute to the dynamic of an FLRW background which is then completely described
by the scalar field evolution equation

φ′′ = φ′
(

a′

a
− φ′

)
− 1

U

[
3μ

b′

b
φ′ + 4πGa2e−4φ(ρ̄ + 3P̄)

]
, (183)
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where U ≡ μ + 2 dV
dμ
/ d2V

dμ2 and P̄ denotes the pressure from the matter sources (but
not the scalar field).

In the matter frame, the physical Hubble parameter is defined as usual as H ≡ a′

a2 .
The corresponding equivalent of the Friedmann equation is then given by, see e.g.
Skordis (2006)

3H2 = 8πGeff(ρ̄ + ρ̄φ), (184)

where the effective gravitational constant is given by

Geff = G
e−4φ

(
1 + dφ

d ln a

)2 , (185)

the energy density of the scalar field is given by

ρ̄φ = 1

16πG
e2φ

(
μ

dV

dμ
+ V

)
(186)

and its pressure by

P̄φ = e2φ

16πG

(
μ

dV

dμ
− V

)
. (187)

An effective density fraction can be defined as Ωφ = ρ̄φ
ρ̄+ρ̄φ . When the function V

takes the form of Eq. (175), the scalar field energy density is found to track the matter
energy density (Dodelson and Liguori 2006; Skordis et al. 2006; Skordis 2009) with

Ωφ = (1 + 3w)2

6(1 − w)2μ0
, (188)

where w is the equation of state of the background matter field and the scalar field
contribution is always subdominant since μ0 is of the order of 102.

Adding a constant to the free function V , is equivalent to adding a cosmologi-
cal constant to the effective Friedmann equation (184) and thus producing cosmic
acceleration.

Finally, a concise description of the perturbation equations in TeVeS can be found
in, e.g., Skordis (2006, 2008) and Skordis et al. (2006) and we refer the reader to those.
Mainly, the matter overdensity and velocity field keep the same evolution equations as
in GR but are supplemented by perturbation equations for the scalar and vector fields
(Skordis 2006, 2008; Skordis et al. 2006). However, an important difference exists in
the processes of growth of structures betweenΛCDM and TeVeS. InΛCDM, baryons
fall after decoupling into deeper potential wells caused by dark matter. But in TeVeS,
it is rather the rapidly growing perturbations of the vector field that drives the growth
of perturbations. Such a difference in the processes leads to differences in the growth
rate of baryon perturbations as well as the amplitude of their peculiar velocity power
spectrum, see Skordis et al. (2006), Dodelson and Liguori (2006) and Xu et al. (2015).
Unlike theΛCDM model, the growth rate in TeVeS is scale dependent which provides
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a further test to constrain the models (Skordis 2006, 2008; Skordis et al. 2006; Xu
et al. 2015).

TeVeS shows how adding a scalar and vector field to the metric tensor can add further
complexity and sophistication to gravity, However, the theory has been recently found
to be in tension with latest large scale structure and CMB data sets, e.g., Reyes et al.
(2010) and Xu et al. (2015), although often disputed by its proposers, e.g., Bekenstein
and Sanders (2012) and Milgrom (2017).

Other scalar–vector–tensor theories

Moffat (2006) proposed a scalar–tensor–vector gravity (STVG) theory, also referred
to as MOG that allows the gravitational constant G, a vector field with couplingω, and
the vector field mass μ to vary in space and time. This theory has modified equations
of motion for test particles that have a modified gravitational acceleration law that can
fit rotation curves of galaxies and also data from clusters of galaxies without the need
for dark matter. The theory is consistent with solar system tests of gravity and is ghost
free. Gravitational waves and electromagnetic waves both travel on null geodesics of
the metric with equal speeds so the theory is not ruled out by the GW event GW170817
and its electromagnetic counterpart GRB170817A (Green et al. 2017). The theory is
reported in Moffat and Toth (2011) to fit gravitational lensing of observations and to be
consistent with some cosmological observations with no need of dark matter, however
oscillations of the matter power spectrum in MOG are not suppressed (Moffat and
Toth 2011). It remains to be tested against full LSS data or CMB data.

7.3.4 Extra tensor fields

Last but not least, it turned out that adding an extra metric tensor to GR can be a
very lucrative extension. For example, a first accomplishment in doing so was to
achieve a gravity theory where the graviton has an effective mass or a resonance
(massive gravity) (Fierz and Pauli 1939; de Rham and Gabadadze 2010; de Rham
et al. 2011; Hassan and Rosen 2012a). Moreover, some of such theories can provide
self-accelerating cosmological models with no need for a cosmological constant. These
massive gravity theories change the coupling between curvature of spacetime and its
source and the idea behind generating cosmic acceleration is that gravity is weakened
at the graviton’s mass Compton wavelength which is comparable to Hubble scales.

On more point which is worth highlighting is that such massive gravity theories
allow for proposals of degravitation mechanisms of the cosmological constant (Arkani-
Hamed et al. 2002; Dvali et al. 2003b). The idea is that the massive graviton acts as
a high-pass filter with filter scale, L , set by the inverse of the mass of the graviton.
Sources with wavelengths ≪ L pass the filter and gravitate normally. However, sources
with wavelengths ≫ L , like the cosmological constant, are filtered out leading to their
degravitation (Dvali et al. 2007). This and other related ideas are very interesting but
unfortunately so far there is no realistic realization of such a degravitation mechanism.

We outline below some selected aspects of two illustrative examples of these
tensor–tensor or bimetric theories, list some other models, and refer the reader to
the specialized reviews (de Rham 2014; Hinterbichler 2017; Clifton et al. 2012).
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Illustrative example 1: massive gravity

The idea goes back at least to the early attempts of Fierz and Pauli (Fierz and Pauli
1939) in simply deriving a theory of gravity with a massive graviton. Fierz and Pauli
considered a non-dynamical background flat metric ηαβ (Minkowski) and a dynamical
linear perturbation, hαβ resulting in the dynamical metric

gαβ = ηαβ + hαβ . (189)

They derived and added a (PF)-term at linear order to the Einstein–Hilbert action that
generates the massive graviton as follows (Fierz and Pauli 1939)

LF P = m2
[
hμνhμν − (ημνhμν)

2
]
, (190)

where m is the mass parameter. They showed that this term is the only linear-order
term that leads to no-ghost mode at this order. Therefore, the Fierz–Pauli is the unique
consistent linear theory of massive gravity.

However, at nonlinear order, the story is different. The action with an FP term can
be generalized to nonlinear order as (Boulware and Deser 1972)

S = 1

16πG

∫
d4x

√
−gR(g)+ m2

4

√
−g

[
gμνgαβ − gμαgνβ

]
hμνhαβ . (191)

It was shown by Boulware and Deser (1972) that the Fierz–Pauli theory at nonlinear
order acquires a scalar ghost mode and is thus unstable. Another problem with the
theory is known as the van Dam, Veltman, and Zakharov (vDVZ) discontinuity, see van
Dam and Veltman (1970) and Zakharov (1970). Namely, that solutions to the theory
cannot be continuously connected to their analog GR solutions when the graviton
mass is taken to the zero limit, as one would naively expected from the action. To
explain, let’s consider the spherically symmetric vacuum solution representing the
gravitational field around a concentric mass such as the Sun. Then, taking the limit
of the graviton mass going to zero does not give back a solution analog to the GR
Schwarzschild solution and is thus inconsistent with local observations such as the
deflection angle of light, precession of planets, or light travel time delays.

To deal with these two problems, some possible solutions were proposed in Vain-
shtein (1972) and Arkani-Hamed et al. (2003) where one could solve two problems
with one stratagem. First, in order to deal with ghost modes appearing at higher
orders, one would introduce tuned higher order interaction terms that would remove
the ghost terms order by order. Second, Vainshtein (1972) suggested his mechanism
(see Sect. 8.3) where such higher order interaction terms would serve at small scales to
shield additional-field interactions and lead to observations indistinguishable from GR.

A tour de force came from de Rham, Gabadadze and Tolley (dRGT) (de Rham and
Gabadadze 2010; de Rham et al. 2011) who succeeded in generalizing Fierz–Pauli
theory and formulating a stable massive gravity. For that, they considered gμν and fμν
as the dynamical and non-dynamical metrics, respectively, and wrote the action:
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S =
∫

d4x

√−g

16πG
R(g)− m2

∫
d4x

√−g

8πG

4∑

n=0

βnen (X)+ SM (gμν, ψm), (192)

where the first part is the usual Hilbert–Einstein term and the third part is the matter
action term, while the middle part gives the dRGT terms with βn as arbitrary constants
and en are functions defined by,

e0 (X) = 1,

e1 (X) = [X] ,

e2 (X) = 1

2

(
[X]2 −

[
X

2
])
,

e3 (X) = 1

6

(
[X]3 − 3 [X]

[
X

2
]

+ 2
[
X

3
])
,

e4 (X) = det X, (193)

where X ≡
√

gαβ fβγ and [X] is its trace (i.e., (X2)α γ = gαβ fβγ ).
The equations of motion can be found in de Rham and Gabadadze (2010) and de

Rham et al. (2011). Interestingly, massive gravity can have cosmological solutions that
can self-accelerate, however, the cosmological solutions have to be Minkowski type
open FLRW with strongly coupled perturbations making them not analyzable by stan-
dard methods. There are other cosmological solutions with well-behaved perturbations
but they require non-isotropy or preferred directions making them cosmologically less
attractive, see e.g., Hinterbichler (2017) and de Rham (2014). It was then realized soon
after that it would be interesting to have the second metric to be a non-Minkowski and
dynamical like an FLRW metric (Hassan and Rosen 2011, 2012a).

From a cosmological point of view, it turned out that adding a dynamical metric
provides a richer phenomenology and the possibility to have stable and viable self-
accelerating solutions (Akrami et al. 2015), although in this case there are also bounds
and conditions that must hold to avoid further instabilities as we discuss in the next
section (Könnig et al. 2014; Lagos and Ferreira 2014; Könnig 2015).

It is worth noting that most recently Heisenberg and Tsujikawa (2017) performed a
thorough analysis of perturbations in massive gravity with SO(3) rotation invariance.
The models violate Lorentz invariance and it was argued there that this makes it
possible to avoid some problems in massive gravity. The models and their cosmology
have been studied and reviewed in Dubovsky (2004), Dubovsky et al. (2005), Bebronne
and Tinyakov (2007), Blas et al. (2009a), Domènech et al. (2017) and Comelli et al.
(2014). It was shown in Dubovsky et al. (2005), Comelli et al. (2014) and Heisenberg
and Tsujikawa (2017) healthy models can have late-time self-acceleration. Heisenberg
and Tsujikawa (2017) worked out perturbations in and FRLW background and with a
perfect fluid source. They found models that have no ghosts nor gradient instabilities
for effective dark energy equation of state wDE > −1 and wDE < −1. They also
derived expressions for the effective gravitational constant and the slip parameter.
Implementation of this formalism into full CMB code and large scale structure will
allow for the comparison of these models to current and future cosmological data.
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Illustrative example 2: Bimetric massive gravity or bigravity

In addition to realizing a massive gravity theory, adding a second dynamical metric
has been shown to provide stable self-accelerating cosmological solutions with no need
for a dark energy component, see e.g. Hassan and Rosen (2011, 2012a, b), Koennig
et al. (2014a, b) and Akrami et al. (2015). These theories have a branch of models that
admit a limit in which the Planck mass associated to the second metric is small and
any scalar instabilities can be pushed to very early times where they are not observable
(Koennig et al. 2014a; Lagos and Ferreira 2014; Cusin et al. 2015a, b, 2016; Akrami
et al. 2015; Schmidt-May and von Strauss 2016). Even if in this limit the background
evolution becomes indistinguishable from that of theΛCDM, Akrami et al. 2015 argue
that it provides a technically natural value for the effective cosmological constant.

The action for bimetric massive gravity reads (Hassan and Rosen 2011, 2012a),

S =
∫

d4x

( √−g

16πG
R(g)+

√
− f

16πG f

R( f )

)

− m2
∫

d4x

√−g

8πG

4∑

n=0

βnen (X)

+SM (gμν, ψm), (194)

where here we note the additional action term with the Ricci scalar, R( f ), built out
of the second metric, f , compared to the action (192). Variation of Eq. (194) with
respect to gμν and fμν gives the field equations,

Gμν +
3∑

n=0

(−1)nβngμλ(Yn)
λ
ν = κ2T M

μν , (195)

Fμν +
3∑

n=0

(−1)nβ4−n fμλ(Yn)
λ
ν = 0, (196)

where m2 has been absorbed into βn , and 8πG f was set to 1, following the notation
of Khosravi et al. (2012), Koennig et al. (2014b) and Geng et al. (2017). Gμν and
Fμν are the Einstein tensors built from the metrics gμν and fμν , respectively. T M

μν is
the matter energy-momentum tensor and (Yn)

λ
ν are matrices defined by

Y0 = I,

Y1 = X − I [X] ,

Y2 = X
2 − X [X] + 1

2
I

(
[X]2 −

[
X

2
])
,

Y3 = X
3 − X

2 [X] + 1

2
X

(
[X]2 −

[
X

2
])

− 1

6
I

(
[X]3 − 3 [X]

[
X

2
]

+ 2
[
X

3
])
.

(197)
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Next, the field equations are applied to the FLRW metrics in, e.g. Koennig et al.
(2014a, b) and Geng et al. (2017),

ds2 = gμνdxμdxν = −dt2 + a(t)2dx i dxi (198)

ds2
f = fμνdxμdxν = − ḃ2

ȧ2 dt2 + b(t)2dx i dxi (199)

to obtain the Friedmann-like equations (Geng et al. 2017)

H2 = 1

3

(
ρ̄M + β0 + 3β1

b

a
+ 3β2

b2

a2 + β3
b3

a3

)
, (200)

Ḣ = −1

2

(
ρ̄M + P̄M + β1

b

a
+ 2β2

b2

a2 + β3b3a3 − β1
ḃ

ȧ
− 2β2

b

a

ḃ

ȧ
− β3

b2

a2

ḃ

ȧ

)
,

(201)

for gμν and

H2 = 1

3

a

b

(
β1 + 3β2

b

a
+ 3β3

b2

a2 + β4
b3

a3

)
, (202)

H2 + 2
H

H f

ä

a
=

(
β2 + 2β3

b

a
+ β4

b2

a2 + β1
ȧ

ḃ
+ 2β2

b

a

ȧ

ḃ
+ β3

b2

a2

ȧ

ḃ

)
, (203)

for fμν , where H = (ȧ/a) while H( f ) = (ḃ/b) is the Hubble constant of fμν ,
ρM = ρr + ρm is the energy density of the radiation and matter and (PM = Pr + Pm)
is the sum of their pressures. κ2 was set to 1. Note that the presence of ȧ in (199)
allows (202) and (203) to be written using H . See also Koennig et al. (2014a, b) where
a compact encapsulation of these equations is given. As can be seen from Eqs. (202)
and (203), and stressed in Koennig et al. (2014a, b), the background dynamics depend
entirely on the Hubble parameter of the metric gμν and the ratio of the two scale
factors.

The β0 term represents a cosmological constant term. Koennig et al. (2014a) per-
formed a stability analysis finding that the only single parameter models without
instabilities at early times are models with β2 or β4. They found there are no self-
accelerating models (i.e., β0 = 0) with a viable background evolution and stable
perturbations on the finite branch. For the infinite branch, they found only models
with non-vanishing β1 and β4 are self-accelerating, viable and stable for all cosmic
evolution and they focused their analysis on those models.

Geng et al. (2017), presented a minimum nontrivial case by settingβ2 = β3 = β4 =
0 that we reproduce here for mere illustration purposes. Consequently, Eqs. (202) and
(203) reduce to

b

a
= β1

3H2 , and Hb ≡ H f

H
= 1 − 2

Ḣ

H2 . (204)
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The authors defined an effective energy density and pressure from (200) and (201)

ρDE = β0 + 3β1
b

a
= ρ

(0)
DE

(
β̄0 + β̄1

H2
0

H2

)
, (205)

PDE = −β0 − β1

(
2

b

a
+ ḃ

ȧ

)
= ρ

(0)
DE

[
−β̄0 + β̄1

H2
0

H2

(
2Ḣ

3H2 − 1

)]
, (206)

that satisfy the continuity equation, ρDE + 3H (ρDE + PDE) = 0 and where they
defined

β̄0 = β0

ρ
(0)
DE

and β̄1 = β2
1

H2
0 ρ

(0)
DE

, (207)

with β̄0 + β̄1 = 1 and ρ(0)DE being the corresponding effective dark energy density at
present. They noted that from Eqs. (205) and (206), e0 (X) with the free parameter β0
in the action plays the role of an effective cosmological constant. They also analyzed
the evolution of the effective dark energy density and found that the model has a
phantom-type equation of state, wDE < −1.

Bimetric massive gravity has branches that are not ruled out by current observations,
see Sect. 9.4. The structure of the theory gives extra terms in the evolution equation
that can be encapsulated as effective dark energy density and negative pressure thus
producing late-time cosmic acceleration without the need for a cosmological constant.
The models fit well background observational data and some growth (see Sect. 9.4)
and constitute a competitor to the ΛCDM GR model. Comparison of these models to
full CMB and large scale structure data is needed.

However, Könnig (2015), Lagos and Ferreira (2014), Koennig et al. (2014a) and
Comelli et al. (2012) pointed out to some further instabilities that must to be avoided
by requiring some conditions to hold. For example, Higuchi instability can occur in
theories with massive spin-2 particles (here the massive graviton) where the mass
must satisfy specific bounds in order to avoid modes with negative norm and the
appearance of a Higuchi ghost (Higuchi 1987, 1989). Higuchi provided mass bounds
for the de Sitter space while Fasiello and Tolley (2012) derived mass bounds for
massive gravity in flat FLRW spacetimes, see also Woodard (2007). Higuchi instability
and scalar gradient instabilities for cosmological solutions in massive gravity are
discussed in Lagos and Ferreira (2014), Cusin et al. (2015a) and Könnig (2015).
Könnig (2015) analyzed general models in singly coupled bimetric gravity around a
FLRW background and found that all models that are not equivalent to ΛCDM suffer
from either gradient or Higuchi instabilities.

Other self-accelerating solutions in massive gravity with inhomogeneous fiducial
metric were discussed in Koyama et al. (2011), Gratia et al. (2012) and Khosravi et al.
(2013). The physical metric in these solutions is an FLRW and can be flat, however,
these solutions were shown to suffer from instabilities as recapitulated in Khosravi
et al. (2013).
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Perturbation and growth of structure equations for bigravity can be found in for
example Koennig et al. (2014a), Kobayashi et al. (2016) and Lagos and Ferreira (2017).
It was shown in Koennig et al. (2014a, b) that bimetric gravity has several classes of
models with unstable linear perturbations. However, they also found that a particular
class of models, named the infinite-branch, has a viable background evolution and
stable linear perturbations. The infinite-branch refers simply to a specific evolution of
the ratio of the scale factors b/a of the two metrics of the theory (Solomon et al. 2014;
Koennig et al. 2014a, b). Further cosmological constraint studies have since focused
on the infinite-branch models of bimetric massive gravity as we discuss those in
Sect. 9.4. However, Könnig (2015) showed that the infinite branch suffers from Higuchi
instability which compromises its viability. Detailed discussions about massive gravity
and bigravity, their phenomenology and cosmology can be found in the following
review papers de Rham (2014) and Schmidt-May and von Strauss (2016).

Other tensor–tensor theories

Models with an extra 2-rank tensor include Rosen’s theory (Rosen 1940, 1973)
with an extra non-dynamical flat metric. The theory is known to pass solar system
tests of GR where it is indistinguishable from it (Lee et al. 1976). However, the theory
has problems when it comes to pulsar and binary pulsar observations (Lee et al. 1976;
Will and Eardley 1977). Namely, the theory allows for states with energy unbound
from below and the emission of gravitational waves with negative energy. This would
cause an increase of the spin of pulsars that is not compatible with observations of
millisecond pulsars as shown in Lee et al. (1976). Similarly, Will and Eardley (1977)
found that such a theory predicts large emission of dipole gravitational radiation that
will increase the orbital period of the binary pulsar system to a level again inconsistent
with observations of such systems.

Another bimetric gravity theory is that of Eddington–Born–Infield (EBI) (Edding-
ton 1924; Bañados 2007, 2008; Banados 2008). It is based on extentions to Eddington
theory of affine connections. It combines the metric tensor plus a connection. It was
shown in Bañados et al. (2009b) that the connection can be replaced by a corresponding
metric and thus expressing the theory as a bimetric gravity with interesting cosmo-
logical features that can account for dark matter and dark energy and thus a possible
unifying theory (Bañados et al. 2009a, b; Hu 1998). It was shown in Bañados et al.
(2009a) that if one wants to keep the unification of dark matter and dark energy in
this model, the integrated Sachs–Wolf effect is thus too large and becomes incon-
sistent with observations. Also, such a theory would also predict an angular power
spectrum and galaxy power spectrum that are not consistent with current observa-
tions.

Next, Drummond (2001) proposed a tensor–tensor theory formulated using two
sets of dynamical tetrads (vierbeins). The theory has a length scale of galactic size.
Below such a length scale, it passes the standard test of GR but beyond such a
scale it acquires an effective gravitational constant larger than Newton’s constant.
The author argues that the transition galactic scale can explain the flat velocity rota-
tion curves of galaxies and can account for an alternative to dark matter. It is not
clear from current literature whether this theory suffer from the same constraints as
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the EBI theory above as very little work has been done on its cosmological con-
straints.

Gabadadze et al. (2012) proposed models to implement Galileons on curved space-
time by coupling a scalar with the galilean symmetry to a massive graviton. The models
can maintain second order equations of motion, maintain the galilean shift symme-
tries, and allow the background metric to be dynamical. The models can be viewed
as an extension of the ghost-free massive gravity, or as a massive graviton-Galileon
scalar–tensor theory. They have higher order equations of motion and infinite powers
of the field, but are ghost-free. We refer the reader to the original paper. Finally, Mil-
grom (2009, 2010) proposed a bimetric extension to MOND that reduces to MOND
on small scales and the low acceleration regime of the theory. Cosmological aspects
of the theory were studied in Clifton and Zlosnik (2010) and Milgrom (2010) finding
that it can reproduce an FLRW evolution in the high acceleration limit. Some solu-
tions can have cosmic acceleration due to a cosmological constant term in the theory
but with some problems. Namely, Clifton and Zlosnik (2010) found that the solutions
that remain in such a high acceleration regime for the entire evolution require either
non-baryonic dark matter or extra terms in the original action, or else they fail obser-
vational constraints of ΩΛ and do not predict the right position of the first peak of the
CMB temperature spectrum.

7.4 Modified gravity theories with higher-order derivatives

Modification to GR can also be realized by allowing for higher order derivatives of
the metric to be present in the equations of motion. Such theories can for example
be derived from higher-order invariants built from the Riemann curvature tensor and
the metric. Shortly after Einstein proposed GR, other theories of gravity using scalar
invariants more general than the Ricci scalar were proposed (Weyl 1918). In addition
to an interesting phenomenology, it has been argued that the models have theoretical
motivations within unification theories of fundamental interactions and within field
quantization on curved space-times (Utiyama and DeWitt 1962; Stelle 1977; Birrell
and Davies 1984). Figure 13 shows some sub-categories of higher-order derivative
theories.

However, the problem with this route is that it leads to theories that have problem-
atic fields with states that admit negative unbound energy when quantized, known as
ghost fields (Stelle 1978; Calcagni et al. 2005; Hindawi et al. 1996a, b; Chiba 2005;
Navarro and Van Acoleyen 2006; DeFelice et al. 2006; Barth and Christensen 1983;

Fig. 13 Higher-order-derivatives modified gravity models
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Nunez and Solganik 2005). This is formulated as Ostrogradski’s instability theorem
stating that for a nondegenerate Lagrangian which depends on higher derivatives, the
Hamiltonian is necessarily unbounded, see Woodard (2007) and Ostrogradski (1850).
Dolgov and Kawasaki (2003), Faraoni (2006a) and Seifert (2007) Other instabilities
for such theories have also been raised in Frolov (2008).

Luckily, there is yet a limited number of higher-order derivative theories that by
some particular construction avoid the presence of ghosts. These include, for example,
the popular f (R), Hořava–Lifschitz, and Gauss–Bonnet theories. Additionally, there
has been most recently some developments in models beyond Horndeski with higher-
order derivatives but some degeneracies making them ghost-free, see Sect. 7.3.1.

We describe below some aspects of f (R) and Hořava–Lifschitz theories as two
illustrative examples for this category and list further below other selected models.

7.4.1 Illustrative example 1: f (R) theories

These theories derive from using a general function f (R) in the action instead of
simply R as is the case in GR. The action reads

S =
∫

d4x
(√

−g f (R)+ 16πG Lm(ψm, gμν)
)
, (208)

where Lm(ψm, gμν) is the Lagrangian of the matter field, ψm. Varying (208) with
respect to the metric gives the field equations

fR Rμν − 1

2
f gμν − fR;μν + gμν� fR = 8πGTμν, (209)

where fR ≡ ∂ f (R)/∂R and � ≡ ∇μ∇μ is the d’Alembertian operator. Obviously,
when f (R) = R, the above reduces to Einstein’s equations. It is worth mentioning
that, unlike the case of GR, variation of the action (208) with respect to the metric and
the connection independently (known as the Palatini approach) leads to a different set
of Field equations and thus different theories.

We have put f (R) in this section but it is fair to mention that f (R) models can
also be classified under scalar–tensor theories due to the equivalence between this
formulation and that involving an additional scalar-field as we show further in this
section.

For an FLRW curved background metric, the field equations above generalized
Friedmann equations read

H2 = 1

3F

[
8πGρ̄ − 1

2
( f − RF)− 3H Ḟ

]
− κ

a2 , (210)

Ḣ = − 1

2F
(8πG(ρ̄ + P̄)+ F̈ − H Ḟ)+ κ

a2 , (211)

where we further note F ≡ fR , the Ricci scalar is given by R = 6(2H2 + Ḣ +κ/a2),
over-dots denote derivatives with respect to cosmic time t , and κ is the curvature of
spatial sections.
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f (R) theories have been shown to exhibit a very interesting cosmological phe-
nomenology as they can have solutions that are self-accelerating and thus produce
early time inflation or late-time observed cosmic acceleration with no requirement for
a cosmological constant (Nojiri and Odintsov 2007b, 2008a, b, c; Bamba and Odintsov
2008). Furthermore, other proposals aim to provide a unifying scenario by producing
early time inflationary acceleration as well as late-time cosmic acceleration (Cognola
et al. 2008; Elizalde et al. 2011). Self-acceleration results from a more complex cou-
pling between matter and curvature in such models that can be expressed, as we write
below, as conditions on the functions f (R) and its derivatives.

In the context of cosmic acceleration, one can re-write the generalized Friedmann
equations (210) and (211) as those of GR plus additional terms that can be recast into
terms associated with state variables of an effective dark fluid as follows

8πGρeff = RF − f − 6H Ḟ

2F
(212)

8πG Peff = 2F̈ + 4H Ḟ + f − RF

2F
. (213)

From the corresponding equation of state,

w = 2F̈ + 4H Ḟ + f − RF

RF − f − 6H Ḟ
, (214)

one can then impose the condition for cosmic acceleration, w < −1/3, and find
the conditions required on the function f (R) and its derivatives to produce late-time
self-accelerating models.

Some limitations of the emergence of cosmic acceleration in f (R) models were
discussed in Clifton and Dunsby (2015).

At least three self-accelerating f (R) models have been popular and compared
extensively to observations. These are the models of Starobinsky (2007) for early
inflation

f (R) = R − μRc

[
1 −

(
1 + R2

R2
c

)−n
]
, (215)

Hu and Sawicki (2007a) with

f (R) = R − μRc

1 + (R/Rc)−2n
, (216)

and Appleby and Battye (2007) with

f (R) = R + Rc log
[
e−μ + (1 − e−μ)e−R/Rc

]
(217)

for late-time acceleration, where μ, n and Rc are positive constants.
It is also worth mentioning the designer approach to models of f (R) as in, for

example, Song et al. (2007a), Pogosian and Silvestri (2008) and Nojiri and Odintsov
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(2006b, 2007a). In this approach, the f (R) model is reconstructed from a predefined
background expansion history such as that given by the Hubble function of theΛCDM.
Using this as a requirement for f (R) Friedmann’s equations gives an inhomogeneous
second-order differential equation that can be solved numerically and using specific
initial conditions, fR0, or a Compton wavelength parameter.

While f (R) models brought some excitements in the community as being serious
contenders to GR, their viable models require the chameleon screening mechanism
in order to pass solar system constraints. However, as we discuss in Sect. 8.1, models
requiring a chameleon-like screening mechanism were shown in Wang et al. (2012)
to fail to produce the observed cosmic acceleration unless added with a cosmological
constant. Thus, the models fail to be properly screened and simultaneously possess a
self-acceleration feature.

It is worth noting that in order to assure well behaved initial conditions in f (R)

models at early epochs when curvature is high, the following condition is required

lim
R→∞

f (R)/R → 0. (218)

In this way, any modification to gravity in f (R) viable models happens well after
radiation is negligible. As we will see further below, f (R) theory can be expressed
as a scalar–tensor theory with a scalaron field. As mentioned above, a second com-
mon practice used for f (R) models is to parameterize them using the dimensionless
Compton wavelength (of the scalaron) in Hubble units given by Song et al. (2007a)
and Hu and Sawicki (2007a)

B ≡ fR R

1 + fR

R′ H

H ′ , (219)

where fR R = d2 f /dR2 and ′ = d/d ln a here. This allows fR R to control the modi-
fication to gravity and solutions with a given expansion history can be characterized
by B0 ≡ B(ln a = 0) (Song et al. 2007a). For GR, B(a) = 0. It is customary for
cosmological analyses to constrain the B0 parameter.

Cosmological perturbations for f (R) have been fully worked out in a number of
studies. See for example the reviews (Clifton et al. 2012; De Felice and Tsujikawa
2010) for a summary and references. Using the flat perturbed FLRW metric in New-
tonian gauge, the following informative relations can be obtained in the quasi-static
approximation (De Felice and Tsujikawa 2010). First, the gravitational potentials are
given by

Ψ ≃ 1

2F

(
δF − a2

k2 κ
2δρm

)
, (220)

and

Φ ≃ − 1

2F

(
δF + a2

k2 κ
2δρm

)
. (221)
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where δF satisfies (k2/a2 + M2)δF ≃ κ2δρm/3 and the mass parameter M is given
by

M2 = F − RFR

3FR

. (222)

The modified Poisson equations are given by

k2

a2Ψ ≃ −κ
2δρm

2F

2 + 3M2a2/k2

3(1 + M2a2/k2)
, (223)

and
k2

a2Φ ≃ −κ
2δρm

2F

4 + 3M2a2/k2

3(1 + M2a2/k2)
. (224)

The Weyl potential Ψw ≡ (Φ + Ψ )/2 that enters observations of for example gravi-
tational lensing and the ISW effect is given by

Ψw ≃ − κ2

2F

a2

k2 δρm . (225)

The difference of the two potentials is given by

Ψ −Φ = −8πa2(ρ̄ + P̄)σ

F
− δF

F
(226)

so that even in absence of shear, there is still a slip parameter between the two potentials
due to modification to gravity.

Before we end this section, it is worth showing how f (R) theories can be formulated
in terms of equivalent scalar field actions and what implications that has. First, we
observe that the action (208) is equivalent to that of a scalar field as

S =
∫

d4x
√

−g

(
f (φ)+ (R − φ)

d f (φ)

dφ

)
+ 16πG Lm(ψm, gμν). (227)

Varying with respect to the scalar field φ gives (R − φ)
d2 f (φ)

dφ2 = 0 so R = φ for all
d2 f (φ)

dφ2 �= 0, showing that the action is indeed equivalent to (208).

Next, one can introduce an auxiliary field, ψ ≡ d f (φ)
dφ

, and define a potential V (ψ)

as the Legendre transform of the function f (φ) given by

V (ψ) = f (φ(ψ))− φ(ψ)ψ (228)

so the action (208) can be written in the Jordan frame as

S =
∫

d4x
√

−g (ψR − V (ψ))+ 16πG Lm(ψm, gμν). (229)
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This action has now taken the well-known form of a non-minimally coupled scalar–
tensor theory as discussed in the Generalized Brans–Dicke theory (Sect. 7.3.1) with
the parameter ωBD = 0. Importantly, the equations of motion of the theory are second
order in the metric derivatives instead of fourth order and no ghost modes are present.

Finally, one can show that the f (R) action can be transformed to the Einstein frame
using a conformal transformation gμν = A(φ)2 ḡμν and by redefining the scalar field.
One can then write

S =
∫

d4x
√

−ḡ
(

R̄ − 1

2
(∂φ)2 − V̄ (φ)

)
+ 16πG

∫
d4x

√
−gLm

(
ψm, A(φ)2 ḡμν

)
.

(230)
Now, the theory appears in this frame as that of a scalar minimally coupled to curvature,
however, the scalar field couples now directly to the matter fields.

We refer the reader to the specialized reviews of f (R) theories and their cosmology
in De Felice and Tsujikawa (2010) and Sotiriou and Faraoni (2010) and references
therein.

7.4.2 Illustrative example 2: Hořava–Lifshitz

Hořava–Lifshitz gravity theory was proposed with the motivation to quantize gravity
(Hořava 2009a, b, c). The idea was to provide an ultraviolet (UV) completion of GR
at the expense of breaking Lorentz invariance. For this, this theory also belongs to the
category of Lorentz breaking theories. Such an invariance is however approximately
recovered (i.e., staying below experimental constraints) in the infrared (IR) regime.
Following early studies of scalar fields by Lifshitz (1941), Hořava proposed to use an
anisotropic scaling between space and time dimensions as

x → lx; t → lz t, (231)

where z is called the dynamical critical exponent and the theory is often referred to
as Hořava’s gravity at a Lifshitz point z. This anisotropic treatment of space and time
allowed the theory to avoid the Ostrogradski’s ghost problem by allowing it to have
higher order spatial derivatives but no time higher order derivatives.

A convenient formalism to express a theory with such a split between time and
space is the Arnowitt–Deser–Misner (ADM) decomposition of spacetime, see e.g.,
Misner et al. (1973), given by

ds2 = −N 2c2 dt2 + gi j (dx i + N i dt)(dx j + N j dt), (232)

where N (t, x i ) is the lapse function and gi j is the 3-space metric. One is restricted to
pick a preferred foliation of spacetime due to the anisotropy discussed above. Another
important feature, but also source of problems, is that the GR invariance under diffeo-
morphisms is replaced by the more restrictive foliation preserving diffeomorphisms
as

t → t̃(t), x i → x̃ i (t, x i ). (233)
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The most general action for such a theory with second-order only time derivatives
is given by

S =
M2

pl

2

∫
d3xdt N

√
g
{

K i j Ki j − λK 2 − V (gi j , N )
}
, (234)

where Mpl is a constant that can be identified with the Planck mass,λ is a dimensionless
running coupling constant, and V is a potential function depending on the spatial
metric, the lapse function and their spatial derivatives. Ki j is the extrinsic curvature
given by

Ki j = 1

2N

{
ġi j − ∇i N j − ∇ j Ni

}
, (235)

where an overdot is for differentiation with respect to the time coordinate and ∇i is
the covariant derivative associated with the spatial metric.

The Hořava–Lifshitz theory can have different versions. One version is said to have a
detailed balance property and is based on specific symmetry properties of the potential
function V (Hořava 2009a, b). Hořava proposed detailed balance to simplify the theory
by reducing the number of curvature invariants needed to describe its formalism. Also,
depending on whether the lapse function, N , is a function of time or a function of
time and space coordinates, the theory is said to be projectable or non-projectable,
respectively, with a number of implications including the cosmological evolution.

The original Hořava–Lifshitz theory had a number of problems and various
improvements have been proposed, see e.g. Blas et al. (2010, 2011b), Hořava and
Melby-Thompson (2010), Zhu et al. (2011, 2012) and Lin et al. (2014). The the-
ory and its improved versions have interesting phenomenological implications in the
infra-red (low-energy) regime where, for example, it was shown that an integration
constant can play the role of dark matter (Mukohyama 2009a). It was also argued in
Appignani et al. (2010) that the presence of a bare geometrical cosmological constant
in Hořava–Lifshitz with detailed balance can be used to address the cosmological con-
stant problem, although still with some fine tuning. They do that by cancellation of the
negative geometrical cosmological constant term from the theory against the vacuum
energy term, leaving only a very small observed value (Appignani et al. 2010).

Cosmology of Hořava–Lifshitz theory has been discussed in a number of other
papers including the reviews (Sotiriou 2011; Calcagni 2009; Gong et al. 2010; Misonoh
et al. 2017) for the projectable case; (Kobayashi et al. 2010a) for non-projectable case;
(Huang and Wang 2011, 2012; Huang et al. 2012) for the projectable case with U (1)
local symmetry Hořava and Melby-Thompson 2010; and Zhu et al. 2013a, b for the
non-projectable case with the same U (1) local symmetry.

For cosmology, we provide a few general illustrative results following Sotiriou
(2011). Under the foliation preserving diffeomorphisms, the theory is written in a
prefered foliation. One can choose

N = 1, N i = 0, gi j = a(t)2δi j , (236)
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so that the ADM line element (232) coincides with the FLRW metric

ds2 = −dt2 + a(t)2
[

dr2

1 − kr2 + r2
(

dθ2 + sin2 θdφ2
)]
. (237)

For the cosmological solution, the difference here between projectable and non-
projectable theory manifests itself on the Hamiltonian constraint which is global in
the projectable theory and local in the non-projectable one. This subtlety needs to be
taken into account when studying the background cosmology dynamics as we delineate
below. Indeed, the Hořava–Lifshitz field equations give two generalized Friedmann
equations as follows.

In the projectable case, the Hamiltonian constraint is global and gives the first
equation as an integral

∫
d3xa3

{
3λ− 1

2

ȧ2

a2 − V (a)

6
− 8πG Nρ

3

}
= 0, (238)

where ρ ≡ −g−1/2δSM/δN and SM is the matter action, Of course, for the FLRW
metric, the integrand in (238) is a function of time only and gets out of the space
integral so it gives Eq. (240) below. But we assume that when Sotiriou (2011) writes
(238) in his review, he meant the case where the universe is not globally isotropic and
homogeneous so the integrand in (238) does depend on spatial coordinates.

The potential above is given by

V (a) = g0 M2
pl + 6g1k

a2 + 12(3g2 + g3)k
2

M2
pl a4

+ 24(9g4 + 3g5 + g6)k

M4
pl a6

. (239)

where the gi are dimensionless couplings from the action (Sotiriou 2011).
In the non-projectable case, the Hamiltonian constraint is local so we can get rid of

the integral to write (Sotiriou 2011)

3λ− 1

2

ȧ2

a2 − V (a)

6
= 8πG N ρ̄

3
. (240)

The second Friedmann equation is the same for the two cases and is given by
Sotiriou (2011)

− 3λ− 1

2

ä

a
= 1

2

3λ− 1

2

ȧ2

a2 − 1

12a2

d[V (a) a3]
da

+ 4πG N p̄, (241)

where p̄ ≡ −gi j (2/N
√

g)δSm/δgi j .
In the non-projectable case, ȧ can be eliminated from (241) by use of (240) to write

− 3λ− 1

2

ä

a
= − 1

12a

d[V (a)a2]
da

+ 4πG N

3
(ρ̄ + 3 p̄). (242)
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Next, differentiating (240) and subtracting it from (242) gives the usual conservation
law as in GR and that will be used further below (Sotiriou 2011)

˙̄ρ + 3
ȧ

a
(ρ̄ + p̄) = 0. (243)

Mukohyama (2009a) argued that the global nature of the Hamiltonian constraints
in the projectable case has some specific implications for cosmic evolution. That is
Eq. (238) is irrelevant locally inside the Hubble horizon. Therefore, one has to work
only with Eq. (241) and ignore (238). Following the argument and integrating Eq. (241)
gives

3λ− 1

2

ȧ2

a2 − V (a)

6
= 8πG N

3

(
ρ̄ + C(t)

a3

)
, (244)

where the form of C(t) depends on the conservation law satisfied by the matter source.
Using (244) in (241) to eliminate ȧ, one writes (Sotiriou 2011)

− 3λ− 1

2

ä

a
= − 1

12a

d[V (a)a2]
da

+ 4πG N

3

(
ρ̄ + C(t)

a3 + 3 p̄

)
. (245)

Interestingly, now the only difference between the two pairs of equations describing
the background cosmological evolution, i.e., [(244) and (245) for the projectable case
versus ((240) and (242)) for the non-projectable case] is the presence of the function
C(t).

In the projectable case, if we suppose that the state variables (ρ and p) satisfy the
conservation equation (243) then C(t) reduces to a constant and the corresponding
term in the Friedmann equations (244) and (245) above play the role of a pressureless
dark matter component as shown in Mukohyama (2009a). Last, it is worth noting
that in the case of spatially curved geometry, two additional terms are present in the
potential V (a) and thus the Friedmann equations. The first of the last two terms in the
potential is referred to as dark radiation and is proportional to a−4 and the very last
term is associated with a stiff matter and is proportional to a−6 (Sotiriou 2011).

Finally, we close the discussion of the Hořava–Lifshitz theory by pointing out to a
recent development of what is now called the healthy extension theory proposed by
Blas et al. (2010). The theory avoids persistent instabilities in the original theory and
remains power-counting renormalizable (Blas et al. 2010). The theory reduces in the
low-energy limit to a scalar–tensor theory with deviations from GR that can be made
small by some choice of the parameter space. This healthy theory admits a solution
around a static mass that has a gravitational potential of the same form as the GR
Schwarzschild solution with Blas et al. (2010)

Ψ = Φ = − m

8πM2
p(1 − α/2)r

(246)

with an effective gravitational constant

G N = [8πM2
p(1 − α/2)]−1. (247)
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For a cosmological homogeneous background, the theory gives dynamical equa-
tions that differ from GR only by the presence of the λ coupling. The first Friedmann
equation is then given by

H2 = 8πGeff−cosmo

3
ρ̄ (248)

with an effective gravitational constant at cosmological scales given by

Geff−cosmo = 2

2πM2
p

(3λ− 1), (249)

so λ = 1 restores GR Friedmannian cosmological evolution.
The observational bound on the deviation from GR is provided from the measure-

ment of the primordial abundance of He4 which gives (Jacobson 2008; Carroll and
Lim 2004)

|Geff−cosmo/G N − 1| ≤ 0.13, (250)

thus putting only mild constraints on the parameters α and λ of the theory.
Perturbations for the Hořava–Lifshitz theory have been worked out in a number

of papers including (Mukohyama 2009b; Gao et al. 2010; Wang et al. 2010a; Wang
2010). The growth equations are different from those of GR and offer the possibility
to test these theories using large-scale structure.

Recent reviews, papers and progress reports on Hořava–Lifshitz gravity and cos-
mology can be found in Wang (2017), Sotiriou (2011), Calcagni (2009) and references
therein. Discussions about the implications of Lorentz symmetry violations in Hořava–
Lifshitz theory can be found in Sotiriou et al. (2009a, b), Visser (2009), Nikolic (2010),
Cai et al. (2009), Charmousis et al. (2009), Li and Pang (2009) and Blas et al. (2009b)
while more about its cosmology can be found in Kiritsis and Kofinas (2009), Bran-
denberger (2009), Mukohyama et al. (2009), Saridakis (2010), Mukohyama (2009a,
2010), Gao et al. (2010), Wang and Wu (2009), Wang and Maartens (2010) and Ferreira
and Brandenberger (2012).

7.4.3 Other higher order derivative theories

Conformal Weyl gravity has been actively pursued and developed by Mannheim and
Kazanas (1991) and Mannheim (2012) but the theory goes way back to the early work
of Weyl (1918). The gravitational action is built solely from the Weyl tensor contracted
with itself as

SCG =
∫

d4x
√

−gCαβγ δC
αβγ δ, (251)

where the Weyl conformal tensor is given by

Cαβγ δ = Rαβγ δ + 1

6
R[gαγ gδβ − gαδgγβ ]

+1

2
[gαδRγβ + gβγ Rδα − gαγ Rδβ − gβδRγα]. (252)
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Even if the theory contains fourth order derivatives in the metric, it has been argued
in Bender and Mannheim (2008), Mannheim (2007) and Pavšič (2013) that it is free
of ghosts, although with some further open discussions in Pavšič (2016).

The theory has an interesting phenomenology with a solution for a spherically
symmetric field that has a metric component potential with two extra terms compared
to that of the GR Schwarzschild’s solution, e.g., Mannheim (2012). It was argued that
one of the additional terms can explain galaxy flat rotation curves as an alternative
to dark matter while the second term can play the role of a cosmological constant
(Mannheim 2006). The theory was often discussed in the context of rotation curves
and as an alternative to dark matter (Mannheim and O’Brien 2013; Mannheim 2006),
however, it was also argued in, for example, Mannheim (1999, 2012) that the theory
could help to address the cosmological constant problem.

Some work has been done showing that the theory passes some solar system tests
such as the bending of light, e.g. Cattani et al. (2013) and Sultana and Kazanas (2010),
although debated in, e.g. Campigotto et al. (2017). It was also claimed in Yoon (2013)
that Mannheim’s conformal gravity potential is problematic as it cannot reduce to a
proper Newtonian limit at short distances without singularities in the mass density
source. This was refuted in an extended response by Mannheim (2016). It was also
found to fit some astrophysical distance tests in Yang et al. (2013) and Diaferio et al.
(2011) but was criticized as its Big Bang Nucleosynthesis predictions are not consistent
with observations (Knox and Kosowsky 1993). Caprini et al. (2018) investigated very
recently the gravitational radiation from Pulsar binary systems in conformal gravity
using the system PSR J1012+5307. They found that when fixing the graviton mass in
conformal gravity so that the theory fits galaxy rotation curves without dark matter,
the gravitational radiation from the system is much smaller than in GR and cannot
explain the orbital decay of the binary system. At the cosmology level, more work
remains to be done to compare conformal gravity to full data of CMB and large scale
structure.

Another theory worth mentioning in this section is that built from the Gauss–Bonnet
invariant,

G = R2 − 4Rαβ Rαβ + Rαβγ δRαβγ δ, (253)

constructed from this specific combination of the Ricci scalar squared, the Ricci tensor
and Riemann tensor contracted with themselves. Albeit being quadratic in the Riemann
and Ricci tensors, the Gauss–Bonnet combination gives equations of motion that are
ghost free, e.g., DeWitt (1965), Li et al. (2007) and Akbar and Cai (2006). Furthermore,
the graviton itself may still become a ghost in the FLRW background, so further
no-ghost conditions must be imposed on the background, see e.g., DeFelice et al.
(2006). Some models have been shown to be also free from other instabilities due to
superluminal propagations and fit cosmological expansion constraints De Felice and
Tsujikawa (2009), Moldenhauer and Ishak (2009) and Moldenhauer et al. (2010). The
action is given by

S =
∫

d4x
√

−g

[
1

2
R + f (G)

]
+

∫
d4x

√
−gLm +

∫
d4x

√
−gL rad, (254)
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where we has set in this sub-section 8πG ≡ 1, Lm and Lrad are the matter and radiation
Lagrangians, respectively. Here, the Gauss–Bonnet term is effective at cosmological
scales.

Varying the action with respect to the metric gives the field equations

8[Rαγβδ + Rγβgδα − Rγ δgβα − Rαβgδγ + Rαδgβγ + 1

2
R(gαβgδγ − gαδgβγ )]∇γ∇δ fG

+ (G fG − f )gαβ + Rαβ − 1

2
gαβ R = Tαβ , (255)

where we use the definition fG ≡ ∂ f
∂G

.
Now using the FLRW flat metric and a universe filled with matter and radiation,

one derives the generalized Friedmann equation

3H2 = G fG − f G − 24H3 ḟG + ρ̄m + ρ̄rad. (256)

where ρ̄m and ρ̄rad are the matter and radiation energy densities, respectively, a dot
represents d/dt . Also, in terms of H ,

R = 6(Ḣ + 2H2) (257)

and
G = 24H2(Ḣ + H2). (258)

Several models were proposed in De Felice and Tsujikawa (2009) and shown to
be consistent with observations of supernova magnitude-redshift data, distance to
the CMB surface, baryon acoustic oscillations (BAO), and Hubble Key project and
age constraints in Moldenhauer and Ishak (2009) and Moldenhauer et al. (2010).
However, it was shown in De Felice et al. (2010b) that f (G) models have generic
divergent modes for matter linear perturbations which ruled them out. However, other
theories based on using the Gauss–Bonnet invariant in higher dimensions known as
Einstein–Gauss–Bonnet models are not ruled out and are still subject to discussions
(see Sect. 7.5).

A third theory worth listing here is the Chern–Simons theory which is also based on
using specific combination of higher order curvature invariants. The theory can arise
from particle physics, string theory or from geometrical considerations. An extensive
review of the theory is given by Alexander and Yunes (2009).

Finally, it is worth saying a few more words about models built from more general
invariants than the Ricci scalar. A revived interest was raised into them in the early
2000s as some models were shown to exhibit late-time self-accelerating expansion
without a dark energy component (Carroll et al. 2005; Easson 2004; Easson et al.
2005). It was also shown in Sotiriou and Liberati (2007), Meng and Wang (2004) and
Nojiri and Odintsov (2003) that they can have early-time inflation as well, thereby
providing a possible unification scenario for the two accelerating phases. See for
example reviews in Lobo (2008), Nojiri and Odintsov (2006a) and references therein.
However, previous studies stressed that the models considered were chosen somewhat
randomly due to the large spectrum of possible curvature invariants (e.g., Carroll et al.
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2005; Dolgov and Kawasaki 2003), and a systematic approach to these models was
highly desirable (Faraoni 2006b; Nojiri and Odintsov 2008b). Accordingly, Ishak and
Moldenhauer (2009) proposed a systematic method to classify such models based on
minimal sets of invariants. They explore an idea based on theorems from the theory
of invariants in GR (Debever 1964; Carminati and McLenaghan 1991; Zakhary and
Mcintosh 1997). The idea was that curvature invariants are not independent from
each other and, for a given algebraic type of the Ricci tensor (see, e.g., the Segre
classification Segre 1884; Stephani et al. 2003) and for a given Petrov type of the
Weyl tensor (i.e., symmetry classification of space-times)—e.g., Petrov (2000), Pirani
(1957), Penrose (1960) and Stephani et al. (2003)—there exists a complete minimal
independent set (basis) of these invariants in terms of which all the other invariants
may be expressed. As an immediate consequence of the connection made and the
proposed approach, the number of independent invariants to consider is reduced from
an infinite number to six in the worst case and to only two independent invariants in
the case of primary interest of cosmology, i.e., all FLRW metrics.

Although this was an interesting idea for classification of this class of models, the
determining factor to limit the number of physically acceptable models came from
considering their quantization. It was quickly recognized that only a small subset of
such models are free of ghost instabilities as we discussed in Sect. 7.4.

7.5 Modified gravity theories with higher-dimensions

This class of models has been popular both in the scientific literature as well as in
the media and public scene since extra dimensions beyond the 3+1 dimensions of
GR has been the subject of much fantasy and fascination. Mathematically, studies of
higher dimensional geometry have a long history going back to Riemannian geometry,
a century and a half ago. Additionally, it is also worth mentioning that unification
theories of physics such as superstring theory and supergravity require such higher
dimensional spaces. Figure 14 shows some sub-categories of gravity theories with
higher dimensions.

Accordingly, a number of MG models have been proposed with higher dimensions
along with their corresponding cosmologies. We provide here a brief overview follow-
ing the presentation of Clifton et al. (2012) and refer the reader to this and other MG
extensive reviews (Berti et al. 2015; Joyce et al. 2015). After outlining some seminal
or major developments on the topic, we present the Dvali–Gabadadze–Porrati (DGP)
theory (Dvali et al. 2000) as an illustrative case.

7.5.1 Theories with compact dimensions versus braneworld models

One of the first developments of higher dimensional theories is that of Kaluza–Klein
that aimed at unifying gravity and electromagnetism by the use of a fifth small (com-
pact) dimension (Nordstrom 2007; Kaluza 1921; Klein 1926a, b). Such an additional
dimension is compactified in a way so that the theory is effectively a four dimensional
one and it does not alter observations in the solar system or at galactic scales but it
may have effects at very tiny scales where it is probed using sub-milliliter gravita-
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Fig. 14 Higher-dimension modified gravity models

tional experiments, or at cosmological scales where it may have some observational
effects. This idea of compactified dimensions is adopted in string theory and super-
gravity that use 10 and 11 dimensions respectively but where the additional dimensions
are compactified to leave only the usual 3+1 standard dimensions of space and time.
Interestingly, Kaluza–Klein theory with one or more additional dimensions generi-
cally corresponds to an effective 4 dimensional theory with extra scalar fields such
as the dilaton field. A dilaton field is scalar field that appears in theories with higher
dimensions and compactification. Also, if the Newton constant or Planck mass are
promoted to a scalar field in a given theory then it is a dilaton. A concise discussion
about compactification and stabilization of such additional dimensions can be found
in Clifton et al. (2012) and references therein.

A second distinct development came from the braneworld approach (Akama 2000;
Rubakov and Shaposhnikov 1983; Arkani-Hamed et al. 1998, 1999; Antoniadis et al.
1994) where the extra dimensions can be large or even infinite. In such a scenario
the usual 3+1 dimensional hypersurface is called the brane and is embedded in a
higher dimensional space called the bulk. The extra large dimensions are said to be
non universal in the sense that particles and fields are now constrained only to the
brane and only gravity is felt through the bulk. The Braneworld approach is well-
motivated by string theory and M-theory and their use of D-branes embedded in
higher dimensional spaces (Hořava and Witten 1996; Lukas et al. 1999; Antoniadis
et al. 1998; Polchinski 1995). This second approach has seen models with interesting
cosmological applications that we discuss next, following Clifton et al. (2012).

A seminal proposal came from Arkani-Hamed et al. (1998) who proposed an extra
dimension to solve the so-called hierarchy problem between the electro-weak scale
and the Planck scale being separated by 16 orders of magnitude. The idea is that such
a hierarchy can be related to the hierarchy between the scale of the new dimension
introduced and the electro-weak scale. The bulk here is a flat 5 dimensional Minkowski
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space. This is commonly referred to ad the ADD model for the initials of its proposers
Arkani-Hamed, Dimopoulos, and Dvali. The ADD model and the alike have been
subject to stringent constraints from solar system tests, see e.g., Overduin (2000).

Following the work of Arkani-Hamed et al. (1998), Randall and Sundrum devel-
oped two braneworld models with an anti-de Sitter space as bulk. The first model
has two branes (Randall and Sundrum 1999b) and the second model with one brane
(Randall and Sundrum 1999a). The first Randal Sundrum model also aimed at solving
the hierarchy problem using two branes separated by a 5-dimensional anti-de Sitter
space and is well motivated by string and supergravity (Hořava and Witten 1996;
Lukas et al. 1999; Duff et al. 2001). However, it is considered incomplete because,
on the two branes, the effective theory of gravity is not GR but rather Brans–Dicke
gravity with a BD parameter related to the branes and is being not consistent with
current observational constraints on the BD parameter (Garriga and Tanaka 2000).
The stabilization of moduli in the Randall–Sundrum model using the mechanism of
Goldberger and Wise (1999) have been discussed in Lesgourgues and Sorbo (2004),
Brümmer et al. (2006) and Dey et al. (2007). The second Randall Sundrum model has
only one brane with a positive tension where GR is recovered as an effective theory
and thus consistent with observations. Other models based on Braneworld construc-
tions include the Karsh-Randal model (Karch and Randall 2001; Kaloper 1999), the
Gregory, Rubakov and Sibiryakov model (Gregory et al. 2000), the asymmetric brane
model (Padilla 2005a, b; Stoica et al. 2000), and the Charmousis, Gregory and Padilla
model (Charmousis et al. 2007).

The cosmology of braneworld scenarios has been discussed in Binetruy and Lan-
glois (2000), Bowcock et al. (2000), Padilla (2005a), Stoica et al. (2000), Shtanov
et al. (2009), Maartens et al. (2001), Niz et al. (2008), Kiritsis et al. (2003), Kirit-
sis (2005), Umezu et al. (2006), Ichiki et al. (2002), Liddle and Smitha (2003) and
cosmological perturbations have been worked out in Maartens (2000), Langlois et al.
(2001), Maartens et al. (2000), Copeland et al. (2001), Sahni et al. (2002), Nunes
and Copeland (2002), Liddle and Ureña-López (2003), Bridgman et al. (2002, 2001),
Gordon and Maartens (2001), Langlois et al. (2000), Gorbunov et al. (2001), Muko-
hyama (2000a, b, 2001, 2002), Hawking et al. (2000, 2001), Kodama et al. (2000),
Langlois (2000), van de Bruck et al. (2000a, b), Koyama and Soda (2000), Kobayashi
et al. (2001, 2003), Kodama (2001), Langlois (2001), Deruelle et al. (2001), Brax
et al. (2001), Dorca and van de Bruck (2001), Chen et al. (2002), Chung and Freese
(2003), Deffayet (2002), Riazuelo et al. (2002), Leong et al. (2002) and Cardoso et al.
(2007).

In braneworlds, the difference between the dimension of the bulk and the dimension
of the brane is called the co-dimension of the brane. The discussions above are all for
a co-dimension of one and that is what has been explored the most in the literature,
however other models with higher co-dimensions have been discussed in Arkani-
Hamed et al. (1998), Cline et al. (2003), Carroll and Guica (2003), Vinet and Cline
(2004), Nilles et al. (2004), Aghababaie et al. (2004), Dvali and Gabadadze (2001),
Dvali et al. (2003a, b), Gabadadze and Shifman (2004), Dubovsky and Rubakov
(2003), Kaloper and Kiley (2007), Kaloper (2008), de Rham et al. (2008a, 2010),
de Rham (2009), de Rham et al. (2009), Minamitsuji (2010), Agarwal et al. (2010),
Corradini et al. (2008a, b), Bostock et al. (2004), Charmousis and Papazoglou (2008,
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2009), Charmousis et al. (2010), Papantonopoulos et al. (2008, 2007) and Cuadros-
Melgar et al. (2009, 2011). Moreover, cascading gravity has been proposed and is
based on scenarios where higher dimensional gravity goes through steps cascad-
ing from (4 + n)D down to 4D gravity, as for example one transitions from larger
scales to smaller and smaller scales, see for example de Rham et al. (2008a, b), de
Rham (2009), Corradini et al. (2008a, b), Kaloper and Kiley (2007) and Kaloper
(2008).

These higher co-dimensional or cascading gravity models have been useful in trying
to address the cosmological constant problem (Carroll and Guica 2003; Cline et al.
2003; Vinet and Cline 2004; Aghababaie et al. 2004; Dvali et al. 2003b; Gabadadze and
Shifman 2004) by for example using a degravitation mechanism for the cosmological
constant leading to a “small” dynamical effect as measured by current cosmological
observations (Arkani-Hamed et al. 2002).

Finally, we mention here briefly another class of higher dimensional theories called
the Einstein–Gauss–Bonnet gravity. It is built in 5 or 6 dimensions and has as an
action the Ricci scalar, a higher-D cosmological constant term (not the same as the
4D one), and a Gauss–Bonnet invariant [see Eq. (253)]. A variation of such an action
with respect to the metric gives the Einstein equations in a higher dimension plus a
Lovelock tensor term (Lovelock 1971; Lanczos 1938). This has found applications
in string theory (Gross and Sloan 1987; Mannheim 2012). A concise discussion with
examples can be found in Clifton et al. (2012).

7.5.2 Illustrative example : Dvali–Gabadadze–Porrati gravity (DGP)

The DGP model is a popular braneworld theory of gravity and is based on a 3+1 brane
embedded in a five dimensional Minkowski space (Dvali et al. 2000) and is known to
have two branches. One is a self-accelerating branch that can produce cosmic accel-
eration without the need for a cosmological constant or brane tension and has been
the subject of much interest earlier in the literature, see extended discussions in Def-
fayet (2001), Deffayet et al. (2002a) and Lue (2006). This branch is however plagued
with instabilities and the presence of ghost degrees of freedom, e.g., Charmousis et al.
(2006) and Luty et al. (2003). It also turned out at the end that this self-accelerating
branch is not consistent with cosmological observations as we discuss further below.
The second normal branch (noted as nDGP) does not self-accelerate but has better
stability properties than the former branch (Charmousis et al. 2006; Padilla 2007; Gre-
gory et al. 2007; Gorbunov et al. 2006). In order to exhibit acceleration this branch
uses a brane tension that leads to a phantom type effective dark energy equation of
state,wEDE < −1. At the perturbation level, the fifth force in these models is screened
by the Vainshtein mechanism, see Sect. 8.3.

We follow here the presentation of Clifton et al. (2012) to describe the model and
its cosmology. The action is given by

S = M3
5

∫
d5x

√
−γR +

∫
d4x

√
−g

[
−2M3

5 K + M2
4

2
R − σ + Lmatter

]
, (259)
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where R is the Ricci scalar built from the bulk metric γab. M4 and M5 are the Planck
scales in the brane and bulk, respectively. gμν is the metric on the brane, R its Ricci
scalar, and K = gμνKμν is the trace of extrinsic curvature, Kμν . σ is the tension or
bare vacuum energy on the brane. Lmatter is the matter lagrangian.

The two different mass scales give rise to a characteristic scale

rc ≈ M2
4

M3
5

. (260)

At scales shorter than rc, gravity is 4 dimensional and reduces to GR but at scales
larger than rc, the 5 dimensional physics is involved and contributes to the dynamics.
The field equations can be found in Clifton et al. (2012).

With an FLRW metric for the brane, a Minkowski metric for bulk and zero tension,
σ , one gets first a modified Friedmann equation from the 4D Einstein’s equations
(Deffayet 2001; Lue 2003; Dick 2001) as

H2 + κ

a2 − ǫ

rc

√
H2 + κ

a2 = 8πG

3
ρ̄, (261)

where ǫ = −1 is for the normal branch, and ǫ = 1 is for the self-accelerating branch.
The other components of the Einstein equations combined with (261) above, give

the second evolution equations as

2
d H

dt
+ 3H2 + κ

a2 = −
3H2 + 3κ

a2 − 2ǫrc

√
H2 + κ

a2 8πG P

1 − 2ǫrc

√
H2 + κ

a2

. (262)

Although clearly a modified gravity model, the DGP can be formulated using state
variables of an effective dark energy

8πGρE = 3ǫ

rc

√
H2 + κ

a2 , (263)

8πG PE = −ǫ
d H
dt

+ 3H2 + 2κ
a2

rc

√
H2 + κ

a2

, (264)

and an effective equation of state,

wDG P = PE

ρE

= −
d H
dt

+ 3H2 + 2κ
a2

3H2 + 3κ
a2

, (265)

satisfying the conservation law.

dρE

dt
+ 3H(ρE + PE ) ≡ 0.

123



1 Page 110 of 204 M. Ishak

During the late time self-accelerating epoch wE → −1 in (265), mimicking a
cosmological constant.

Cosmological linear perturbations for DGP have been worked out in Deffayet
(2002). Koyama and Maartens (2006) assumed the small-scale (quasi-static) approx-
imation k/a ≫ rcH and obtained

− k2Φ = 4πG

(
1 − 1

3β

)
ρ̄a2δM , (266)

and

− k2Ψ = 4πG

(
1 + 1

3β

)
ρ̄a2δM , (267)

where β = 1+2ǫHrcwE . It was shown in a number of studies that, unlike the normal
branch, the self-accelerating branch of the DGP theory suffers from ghost instabilities
(Luty et al. 2003; Charmousis et al. 2006; Gregory et al. 2007; Gorbunov et al. 2006;
Koyama 2007).

It is also informative, for comparison with observations, to note a result from Wei
(2008) and Ferreira and Skordis (2010) that the linear growth rate index parameter for
the DGP model is given by

γ = 11

16
− 7

5632
ΩDGP + 93

4096
Ω2

DGP + O(Ω3
DGP). (268)

Nonlinear growth and simulations in DGP models include the works of Lue et al.
(2004), Koyama et al. (2009), Scoccimarro (2009), Chan and Scoccimarro (2009),
Schmidt (2009a, b), Khoury and Wyman (2009), Wyman and Khoury (2010), Schmidt
et al. (2010), Seahra and Hu (2010), Chan and Scoccimarro (2009), Winther et al.
(2017) and Bose et al. (2018).

While the DGP self-accelerating branch models have been now excluded by obser-
vation (see Sect. 9.6) and have been shown to be plagued by ghost instabilities, interest
continues in the stable normal branch which is often referred to as the nDGP model.
Models in this branch are not self-accelerating since the acceleration is due to the brane
tension term playing the role of a cosmological constant. nDGP are used as benchmark
to develop and test frameworks for MG studies as in for example the nonlinear regime,
e.g., Hellwing et al. (2017) and Bose et al. (2018).

7.6 Non-local modified gravity theories

A different approach to gravity has been undertaken sometime ago with the idea to
introduce some non-locality aspects. A recent class of such theories is where the fun-
damental action of gravity is local, but the corresponding quantum effective action is
not. Non-local gravity in the recent context of cosmic acceleration has been introduced
by Wetterich (1998) with the additional term R�−1 R to the Einstein–Hilbert action.
Despite interesting features and being ghost-free, the model did not have a viable cos-
mological evolution. This was followed by a generalization proposed by Deser and
Woodard (2007) that made the additional term as R f (�−1 R). It is possible to adjust
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their model so it can fit well the background accelerating expansion with no need for a
dark energy component (Woodard 2014), although in a non-predictive way state (Bel-
gacem et al. 2018b). Cosmological perturbations and growth of structure equations
have been worked out and the model compared to large scale structure data (Park and
Dodelson 2013; Nersisyan et al. 2017; Park 2017). It was found in Park and Dodelson
(2013) that the R f (�−1 R) is not in agreement with such large-scale structure data but
Nersisyan et al. (2017) found the opposite and reported that the model are consistent
with such data. This was confirmed in Park (2017) so it is agreed now that the model
is consistent with the growth of large-scale structure data. For the moment, the model
has been compared only to structure formation data and need further comparison to
full CMB and other data sets. As stated in Woodard (2014), their model paved the
road for further developments in non-local gravity. A good discussion of non-local
gravity and its cosmology was also given in Koivisto (2008) where models similar
to Deser and Woodard (2007) were carefully analyzed. The author found that even
simple models can drive late-time cosmic acceleration without affecting early time
cosmology. Furthermore, Barvinsky proposed a theory with an additional term of the
form Rμν�−1Gμν (Barvinsky 2003, 2012a, b). The author connects the theory he
proposed to the paradigms of dark matter and dark energy. It is hoped to see more
detailed developments of these models with observable functions and comparison to
data. Most recently, Maggiore and Mancarella (2014) followed the path of non-local
gravity but with a different approach where a new mass scale is generated in the IR limit
and is associated with the non-local term in the theory. Their theory provides an inter-
esting phenomenology for cosmic acceleration and is found to fit current observations
(Maggiore and Mancarella 2014; Maggiore 2014).

7.6.1 Illustrative example: RRmodel

We use here for illustration, the specific model called “RR” that was proposed in
Maggiore and Mancarella (2014) and was based on their earlier work of Maggiore
(2014). The quantum effective action derived from the fundamental Einstein–Hilbert
action is postulated to have the form

ΓR R = m2
Pl

2

∫
d4x

√
−g

[
R − 1

6
m2 R

1

�2 R

]
, (269)

where the nonlocal term is assumed to capture non-perturbative infrared effects due
to quantum fluctuations, and corresponds, physically, to a dynamical mass generation
for the conformal mode. Here m2

Pl is the reduced Planck mass squared and m is a
mass parameter related to the generated fundamental mass scale ΛR R by Λ4

R R =
(1/12)m2m2

Pl. The model has been reviewed in some detail in Maggiore (2016) and
Belgacem et al. (2018b) with comparison to available cosmological data in Dirian
et al. (2014, 2015, 2016a) and Dirian (2017) as we summarize further below.

Recently, evidence for the emergence of the nonlocal term in (269) has been found
by using nonperturbative results from lattice gravity Knorr and Saueressig (2018).
Also, as pointed out in Maggiore and Mancarella (2014), analogous nonlocal terms,
proportional to m2 Fμν�−1 Fμν , have also been postulated to arise in the quantum
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effective action of QCD, where they reproduce results for the gluon propagator from
lattice simulations (Boucaud et al. 2001; Capri et al. 2005; Dudal et al. 2008).

We present the model dynamics and cosmology following (Maggiore 2016; Bel-
gacem et al. 2018b). The model can be written in a local form by the use of two
auxiliary fields U and S, (Maggiore and Mancarella 2014)

U = −�−1 R , S = −�−1U . (270)

The action can then be re-written by the use of the two Lagrange multipliers ξ1, ξ2 as
follows (Maggiore and Mancarella 2014)

ΓR R = m2
Pl

2

∫
d4x

√
−g

[
R

(
1 − m2

6
S

)
− ξ1(�U + R)− ξ2(�S + U )

]
.

Variation with respect to the metric gives the field equations

Gμν = m2

6
Kμν + 8πGTμν , (271)

where the tensor Kμν is given in terms of the metric and the auxiliary fields as (Mag-
giore and Mancarella 2014)

Kμ
ν ≡ 2SGμ

ν −2∇μ∂νS +2δμν �g S + δμν ∂ρS∂ρU − 1

2
δμν U 2 −

(
∂μS∂νU + ∂νS∂μU

)
.

(272)
Variation with respect to the Lagrange multipliers ξ1, ξ2 gives the further equations
that U and S must satisfy

�U = −R , �S = −U . (273)

This localization thus makes the theory appear as a scalar–tensor theory with two
dynamical fields U and S. However, as discussed in Belgacem et al. (2018b) and
references therein, upon quantization, the theory remains ghost-free because there are
no quanta associated to these two fields. In fact, the classical instability develops rather
on a cosmological timescale producing the late cosmic acceleration with an effective
phantom-like dark energy component that is found to be consistent with cosmological
background and growth of structure observations.

Again following Belgacem et al. (2018b), we summarize some aspects of RR model
cosmology. The field equations (271)–(273) are applied to the flat FLRW metric in
Cartesian coordinates

ds2 = −dt2 + a2(t)dx2 (274)

and the time evolution is parametrized using x ≡ ln a. In addition to U (x) and S(x),
the following dimensionless functions are defined

W (x) ≡ H2(x)S(x), h(x) ≡ H(x)/H0 (275)
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where H(t) = ȧ/a is the Hubble function with H0 its present value. The background
evolution equations are then obtained as (Maggiore and Mancarella 2014)

h2(x) = ΩM e−3x +ΩRe−4x + γY (276)

U ′′ + (3 + ζ )U ′ = 6(2 + ζ ) , (277)

W ′′ + 3(1 − ζ )W ′ − 2(ζ ′ + 3ζ − ζ 2)W = U , (278)

where prime here denotes differentiation with respect to x , γ ≡ m2/(9H2
0 ), ζ ≡ h′/h

and

Y ≡ 1

2
W ′(6 − U ′)+ W (3 − 6ζ + ζU ′)+ 1

4
U 2. (279)

In the modified Friedmann equation (276), an effective dark-energy density is iden-
tified as ρDE = ρ0γY where ρ0 = 3H2

0 /(8πG) is the usual critical density given in
(15).

As discussed in Maggiore and Mancarella (2014) and Belgacem et al. (2018b), a
choice of boundary conditions can be made for the auxiliary fields U and W that can
provide a minimal model with a background evolution that depends on the Hubble
constant, H0 the matter density parameter ΩM , and one additional parameter that
is the mass m that replaces the cosmological constant. So the model has the same
background parameters as the ΛCDM model. Interestingly, just like for ΩΛ in the
ΛCDM model, in the RR model, the flatness condition allows one to derive the mass
parameter m. The authors then proceeded to fit this minimal model to CMB, BAO,
and SN data and foundΩM ≃ 0.299 and h0 ≃ 0.695 (Dirian 2017). With these values
fixed, they then integrated numerically (276)–(278) (Maggiore and Mancarella 2014)
and studied the evolution of the corresponding effective dark energy equation of state,
wDE(x). Translating their results into the common CPL parameterization (Chevallier
and Polarski 2001; Linder 2003), they found that the model has an effective phantom-
like equation of state with w0 ≃ −1.15 and wa ≃ 0.09 (Maggiore and Mancarella
2014).

Belgacem et al. (2018b) followed with an interesting discussion relating the evolu-
tion of the field U to that of the effective dark energy of the model. While it is zero in
the radiation dominated era, the field U grows in the matter dominated era resulting
in the growth of the effective dark energy density as indicated by (279). Moreover,
this implies that both the effective dark energy density and its variation are positive
resulting in a phantom effective equation of state caused by the ghost-like field U .
The good news is that the ghost-like feature of the field in this case is only classical
with no associated quanta nor instability when quantizing the theory. On the contrary,
the classical instability is a plus and would be responsible for the observed late-time
cosmic acceleration.

Belgacem et al. (2018b) compared the comoving distances between the minimal RR

model and the ΛCDM and found that for the same values of a fiducial cosmological
model these can be different by up to 2.5%, however, if each models is fed its best-fit
values of cosmological parameters, the difference can be brought down to below 1%
up to redshift 6 (see Fig. 2 there).
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Discussions of RR models with other initial conditions than the minimal models dis-
cussed above can be found in Maggiore (2016), Belgacem et al. (2016) and Maggiore
(2014). It was found that some models can mimic the background with an equation of
state that is very close to that a cosmological constant and different from it by less than
a 1%, on the phantom side again. This will make it challenging to distinguish such
particular models from the ΛCDM model using observations, although the growth of
structure remain to be explored.

Cosmological perturbations for RR models have been worked out in detail in Dirian
et al. (2014). They have been recapitulated in Maggiore (2016) and Belgacem et al.
(2018b) and we refer the reader to those papers. We provide here a few remarks
following Belgacem et al. (2018b). From using the flat FLRW perturbed metric in
the Newtonian gauge plus linear perturbations of the auxiliary fields U and W , with
adiabatic initial conditions, the resulting perturbation evolutions were found to be
stable (Dirian et al. 2014). They also found in their analysis that, for the minimal RR

model, the perturbations are close to those of the ΛCDM model with a difference
below 10% (Dirian et al. 2014). This makes the comparison to data interesting in a
sense that it is close to the ΛCDM and so it is expected to be found in a viable range,
but it is also distinct from the ΛCDM so a comparison to find which model fits better
the data will be possible and important.

7.6.2 Other non-local gravity theories

Another interesting proposal of non-local gravity is that of Mashhoon, see e.g. Mash-
hoon (1990, 2008) and Hehl and Mashhoon (2009a, b). Recently, the authors applied
the theory to Newtonian cosmology with the aim to model structure formation without
the need for dark matter (Chicone and Mashhoon 2016). It will be interesting to see
this theory tested using large scale structure and CMB data. A review can be found in
Mashhoon (2017).

8 Screeningmechanisms

Most recent developments and proposals of MG models have been motivated by the
problem of cosmic acceleration. Modifications to GR happen in a way to affect cosmo-
logical dynamics at large scales and to produce an accelerating expansion. However,
any such modification at cosmological scales must survive well-established stringent
solar system tests of gravity (Will 2014).

Therefore, MG models must either reduce to GR at small scales, by construction, or
must have a mechanism that suppresses any deviation from GR at small scales. These
are known as screening mechanisms. Some of them are based on ideas that relate the
scalar field potential to the local matter density within planetary systems or galaxies
since it is higher than the average cosmological density.

Most MG models generate a fifth force acting at the level of perturbations due to the
coupling of the scalar field to the matter in the Einstein frame. We use here the behavior
of factors or components of such a fifth force potential to classify the corresponding
screening mechanism following one of the classifications of, e.g., de Rham (2012),
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Jain et al. (2013a) and Joyce et al. (2015). For that, we consider a simplified lagrangian
for a scalar field conformally coupled to matter as

L = −1

2
Zμν(φ, ∂φ, . . .)∂μφ∂νφ − V (φ)+ β(φ)Tμ

μ , (280)

where the components of Zμν contain functions up to second order derivatives asso-
ciated with self-interactions of the field, and β(φ) is a coupling function to the trace
of the energy-momentum tensor, T

μ
μ. We can consider non-relativistic pressure-less

sources and specifically a point source so that T
μ
μ = −ρ = −Mδ3(x). The back-

ground value of the field, φ̄, is determined by this local density. We then consider a
field perturbation, δφ, around the background value, φ̄, with an equation of motion
given by

Z(φ̄)
(

¨δφ − c2
s (φ̄)∇2δφ

)
+ m2(φ̄)δφ = β(φ̄)Mδ3(x), (281)

where cs is an effective sound speed of perturbations, m(φ̄) is the scalar effective
mass. Assuming negligible spatial variations for the background field over the scales
of interest, the corresponding potential is given by Joyce et al. (2015)

V (r) = − β2(φ̄)

Z(φ̄)c2
s (φ̄)

e
− m(φ̄)√

Z(φ̄)cs (φ̄)
r

4πr
M . (282)

This Yukawa potential corresponds to a fifth force. This force is Yukawa-suppressed
(via the exponential) at some large scales but needs to be suppressed at small scales
such as the solar systems and inside galaxies. There are at least three mechanisms to
produce such a screening in high density environments and to produce dynamics that
complies with local tests of gravity and also do not perturb star motions and distribu-
tions in galaxies. We briefly overview them in the next subsections and refer the reader
to specific papers and reviews on each mechanism. The topic of screening is extensively
covered in the reviews Joyce et al. (2015), Khoury (2010), Jain and Khoury (2010)
and Burrage and Sakstein (2018). It was pointed out in (Burrage and Sakstein 2018)
that Eq. (282) captures very well how screening may happen in interactions between
fundamental particles, but is not particularly effective in explaining how screening
happens around more macroscopic sources. For example they explain that the thin-
shell mechanisms of chameleon and symmetron models that we will discuss further
below are much better described in this equation by making curly M in Eq. (282) as a
function of the true mass of the source like in Eq. 2.11 in Burrage and Sakstein (2018).

We use below a classification based on the MG model fifth force, however, other
classifications have been proposed. See the review Joyce et al. (2015) for two other
classifications of screening mechanisms. One they qualify as more phenomenological
and more suited for astrophysical and cosmological observations. It is based on clas-
sifying the screening mechanisms in three types where the screening is set by the field
itself, its first derivatives, or its second derivatives. The last classification they provide
there is based on an effective field theory approach that they present as a unifying
description for these mechanisms. The authors provide a large number of examples
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and organize their review around such screening mechanisms and we refer the reader
to their review and references therein.

8.1 Large-mass based screening

In this case, the scalar field mass, m(φ̄) depends on the environment and causes the
change. In a high density region, the scalar field acquires a large mass so the fifth force
becomes very short range and highly suppressed as can be seen from the potential
(282). At the opposite, in a low density region such as cosmological volume scales,
the scalar field becomes light and the fifth force reaches the strength of the gravitational
force manifesting itself in the growth perturbation equations (see Sect. 3.2). An exam-
ple of a field with such a behavior is the aptly named chameleon field (Khoury and
Weltman 2004b, a). See also the recent review Burrage and Sakstein (2018) and refer-
ences therein. We review some aspects of it following Khoury and Weltman (2004a)
and Koyama (2016).

We consider a class of MG models using the chameleon mechanism and for which
the action can be written in the following form in the Einstein frame

S =
∫

d4x
√

−g

[
1

16πG
R − 1

2
(∇φ)2 − V (φ)

]
+ Sm(A

2(φ)gμν, ψm) (283)

where the field is coupled to the matter via the metric A2(φ)gμν . The matter particles
do not follow geodesics in this frame and feel a fifth force generated by the scalar field
as

F5 = ∇ ln A(φ). (284)

The scalar field dynamics are governed by an effective potential that depends on the
local density T

μ
μ = −ρ as

Veff = V (φ)+ [A(φ)− 1]ρ. (285)

An example of a typical choice of the potential V (φ) and the coupling function A(φ)

for the chameleon mechanisms is given by

A(φ) = 1 + ξ
φ

Mpl
, V (φ) = M4+n

φn
. (286)

where M is the mass scale parameter. The scalar field dynamics are characterized by
the coupling function

β = MPl
d ln A

dφ

∣∣
φ=φ̄ (287)
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and its mass around the minimum of the potential φ = φ̄ given by

m2 = d2Veff

dφ2

∣∣∣∣
φ=φ̄

(288)

Thus the dependence of the scalar field mass on its environment will be determined by
an appropriate choice of the potential V (φ). For example the potential(285) depends
explicitly on the density.

To understand a little bit better how this is implemented, let one recall the equation
of motion of the scalar field given by

∇2φ = Veff,Œ(φ) = V,φ(φ)+ 8πGβρ. (289)

Now, following Khoury and Weltman (2004a), one considers a spherically sym-
metric body with radius Rc and homogeneous density ρc. The body is assumed to be
embedded in a larger environment with homogeneous smaller density ρ∞. This is like
the solar system in the galaxy, or a galaxy in the Hubble volume. For the spherically
symmetric body, the Eq. (289) becomes

d2φ

dr2 + 2

r

dφ

dr
= V,φ(φ)+ 8πGβρ. (290)

with ρ(r) = ρc for r < Rc and ρ(r) = ρ∞ for r > Rc.
A qualitative discussion followed by a quantitative derivation of the solution to

(290) taking into account proper boundary conditions is carried out in some detail in
Khoury and Weltman (2004a) giving

φ(r) = −
(

3δRc

Rc

)
2G Mβ

r
e−m∞r + φ∞, (291)

where
δRc

Rc

= φ∞ − φs

6βMPl|ΨN | ≪ 1, (292)

where φs is the field value which minimizes Veff inside the source, φ∞ is another
minimum outside the source, rscr delimits the screened area, Rc is the radius outside
rscr , and ΨN is the gravitational potential of the source with |ΨN | = G M/Rc.

This solution is valid under the thin shell condition (Khoury and Weltman 2004a),

δRc/Rc ≪ 1. (293)

In such a case, only the mass within the thin-shell defined by δRc contributes to the
fifth force outside the shell because in the interior of the source the scalar field mass
is large and the fifth force is suppressed by the Yukawa exponential realizing the
chamelon mechanism. This brings us to an important point stressed in Khoury and
Weltman (2004a) and Koyama (2016) which is the gravitational potential profile from
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Fig. 15 Thin shell profile of the scalar field for the chameleon screening mechanism. Only the mass of the
thin shell contributes to the fifth force outside the shell while the force is suppressed inside the shell. See
text and Khoury and Weltman (2004a) and Koyama (2016) for discussion

a dense region to a less dense region that matters rather than the dense region alone.
We depict in Fig. 15 the above picture for the chameleon thin-shell mechanism.

We conclude this sub-section by giving some informative constraints on the
chameleon scalar field that can be obtained from applying the screening mechanism
and the thin shell condition to the solar system, galactic scale and cosmic scale fol-
lowing Khoury and Weltman (2004a) and Koyama (2016). In order to compare with
observations though, we need to consider the Jordan frame where the MG parameters
then relate to the coupling parameter β in the thin shell condition as follows:

μ = 1 + 2β2
eff and = 1 − 2fi2

eff

1 + 2fi2
eff

. (294)

where

β2
eff ≡ β2 3δR

R
. (295)

For example, taking the sun density as ρsun = 10 g cm−3 and the Milky way density
as ρgal = 10−24 g cm−3, one can conclude that the scalar field in the vicinity of the sun
is suppressed compared to the galaxy. If one assumes the thin shell condition holds
and uses Eqs. (294) and (295), one can write η − 1 = −4β2

eff . Now, using Eq. (292),
setting ΨNgal ≈ 10−6 for the Milky Way’s potential, and employing the constraints
|η − 1| = (2.1 ± 2.3)× 10−5 (Bertotti et al. 2003), one can derive the constraint on
the galaxy scalar field as

βφgal

MPl
< 10−11. (296)

This is a model independent constraint but see (Khoury and Weltman 2004a; Koyama
2016) for model dependent stringent constraints on the scalar field in a cosmological
environment and many other examples in Khoury and Weltman (2004a). It was also
pointed out in Sakstein (2017) that (296) only applies if one has a point particle and
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that PPN bound on chameleon screening is actually weaker than previously claimed
due to the WEP.

We end this sub-section with a significant result from Wang et al. (2012) who proved
two no-go theorems limiting the cosmological impact on chameleon-like mechanisms
such as one above but also the symmetron (a scalar field that couples to the ambient
matter density) and dilaton (defined in Sect. 7.5.1) mechanisms in the next sub-section.
The first theorem states that the Compton wavelength (effective “range”) of such a
scalar field can be at most of Mpc scale so it limits its impact on large-scale structure
reducing it to nonlinear scales only. So it will have no effect on the linear growth
rate of large scale structure and its observables such as RSD, WL or clustering. The
second theorem states that, in these theories, the conformal factor relating the Einstein
and the Jordan frames and their scale factors is essentially constant in a Hubble time
meaning that such theories cannot provide self-acceleration and rather require a form
of dark energy for that. In other words, a broad class of chameleon, symmetron, and
dilaton screened theories cannot have any significant effect on large scale density
perturbations and cannot explain cosmic acceleration. This was quite a strong result
leaving then only kinetic-terms based screening mechanisms such as Vainshtein and
k-mouflage, discussed further below, for consideration.

8.2 Weak-coupling based screening

In this mechanism, it is the field’s coupling β(φ) in Eq. (282) that depends on the
environment. In a dense region such as the solar system, it becomes weak and causes
the suppression of the fifth force. However, in low density environments such as at
cosmological scales, the coupling strengthens and makes the fifth force of the order
of the gravitational force affecting Poisson equations as in Sect. 3.2.

Examples of fields using this mechanism are the dilaton (Damour and Polyakov
1994; Brax et al. 2011) with a typical choice of the potential and coupling functions
given by

A(φ) = 1 + 1

2M
(φ − φ̄)2, V (φ) = V0e−φ/Mpl (297)

and the symmetron (Hinterbichler and Khoury 2010; Olive and Pospelov 2008) with

A(φ) = 1 + 1

2M2 φ
2, V (φ) = −μ

2

2
φ2 + λ

4
φ4, (298)

where the action and effective potentials are given by Eqs. (283) and (285), respec-
tively. We refer the reader to the original papers above for these mechanisms and the
specialized review (Joyce et al. 2015).

8.3 Large kinetic terms based screening

Another possibility is to make the kinetic function Z(φ̄) in Eq. (282) dependent on
the environment. These are in particular derivatives of the field corresponding to its
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nonlinear interactions. When such terms becomes large, they can effectively suppress
the fifth force as can be seen in (282). Namely, this can happen when the first derivatives
of the field become large as in the case of the k-mouflage mechanism (Babichev
et al. 2009), see also reviews Brax and Valageas (2014, 2016), or when the second
derivatives become important realizing the Vainshtein mechanism (Vainshtein 1972),
see also review Joyce et al. (2015).

A typical choice of action that leads to the k-mouflage mechanism is of the form
of the Horndeski class of models (146) with only

L2 = K (φ, X) = X + α

4Λ4 X2. (299)

If one considers a solution to a spherically symmetric field around a source with a given
gravitational potential then the k-mouflage screening occurs when the first derivative
of the gravitational potential exceeds some critical value Λc. We chose the form of
(299) just for illustrative purposes as it was shown in Barreira et al. (2015) that it does
not pass some solar system and cosmological constraints.

Vainshtein mechanisms can be realized by the typical choice of the Horndeski
action with only

L2 = K (φ, X) = X ,

L3 = −G3(φ, X)�φ = 1

Λ3 X�φ. (300)

The Vainshtein screening occurs when the second derivatives of the gravitational
potential exceed some critical value Λ3

c .
We provide here a simple illustrative example of how the Vainshtein mechanism

works. Following Joyce et al. (2015), we use the cubic Galileon with Lagrangian:

L = −3(∂φ)2 − 1

Λ3 �φ(∂φ)2 + g

MPl
φTμ

μ , (301)

where gravitational strength coupling, g, is taken of the order unity and Λ is the
strong-coupling scale of the theory. The Vainshtein mechanism is realized by the
(∂φ)2�φ/Λ3 term becoming large compared to the term (∂φ)2 near massive objects
so that ∂2φ ≫ Λ3 is achieved. Varying (301) with respect to φ gives the equation of
motion

6�φ + 2

Λ3

(
(�φ)2 − (∂μ∂νφ)

2
)

= − g

MPl
Tμ
μ. (302)

Next, the field is considered around a static point source with T
μ
μ = −Mδ(3)(x) and

assumed to have a static spherically-symmetric profile, φ(r). Equation (302) then
becomes (Nicolis and Rattazzi 2004)

∇ ·
(

6∇φ + r̂
4

Λ3

(∇φ)2

r

)
= gM

MPl
δ(3)(x). (303)
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Upon integration, one obtains

6φ′ + 4

Λ3

φ′2

r
= gM

4πr2 MPl
. (304)

One can then solve this equation algebraically for φ′ and use the stable solution for
which φ′ → 0 at r → ∞. This reads

φ′(r) = 3Λ3r

4

(
−1 +

√
1 + 1

9π

(rV

r

)3
)
, (305)

where

rV ≡ 1

Λ

(
gM

MPl

)1/3

(306)

is the Vainshtein radius.
Again following Joyce et al. (2015), we describe how this profile encodes the

functioning of the Vainshtein screening mechanism:

– r ≫ rV: Far away from the source, the profile goes approximately as 1/r2,

φ′(r ≫ rV) ≃ g

3
· M

8πMPlr2 . (307)

The ratio of the Galileon scalar force to the gravitational force is given by

Fφ

Fgravity

∣∣∣∣
r≫rV

≃ g2

3
. (308)

So the gravitational force is enhanced as well-known for DGP models for example.
– r ≪ rV: close to the source, the profile (305) is given by

φ′(r ≪ rV) ≃ Λ3rV

2

√
rV

r
∼ 1√

r
. (309)

The ratio of the galilean force to the gravitational force is given by

Fφ

Fgravity

∣∣∣∣
r≪rV

∼
(

r

rV

)3/2

≪ 1, (310)

so the fifth force is strongly suppressed at distances much smaller than the Vain-
shtein radius. We provide a schematic picture of the Vainshtein mechanism in
Fig. 16.

It is worth ending this section by pointing out a number of papers that have
used astrophysical constraints on screening mechanisms some practically ruling out
chameleon mechanisms or putting constraints on Vainshtein mechanisms, e.g., Salzano
et al. (2017). Studies also provided forecasts on such constraints from future surveys
and space-missions including (Sakstein 2017).
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Fig. 16 Overall picture of the
Vainshtein screening
mechanism. There are three
regions of interest: (r ≫ rv) far
outside the Vainshtein radius and
away from the source, the fifth
force is not screened; (r ≪ rv)
near the source and below rv ,
the fifth force is suppressed (this
includes Λ−1 ≪ r ≪ rv).
r = Λ−1 represent the cut-off
scale of the theory and is
typically very large compared to
the Schwarzschild radius

9 Constraints onMGmodels from current cosmological data sets

9.1 Constraints on Horndeski and beyond Horndeski models

Planck2015MG used the αx -parameterization of Sect. 7.3.1 in order to put constraints
on Horndeski models with a number of restrictions to reduce the number of parameters.
This is necessary in view of the relatively limited constraining power of current data
sets. They used EFTCAMB (Hu et al. 2014b) so they adapted the parameterization
accordingly.

They considered Horndeski models with αM = −αB , αT = αH = 0, and αK fixed
by setting M2 = 0 in Eqs. (149)–(153). So they simply considered non-minimally
coupled K-essence type models as in Bellini and Sawicki (2014) with the only free
function being αM . As discussed in Sect. 7.3.1, a non-zero αM parameter represents a
non-zero anisotropic stress and a modification of the lensing potential. Additionally,
Planck2015MG used the ansatz,

αM = α
today
M aβ (311)

where αtoday
M is a constant and β > 0 determines its backward time evolution. In the

minimal model they considered, αM is related to the EFT function Ω(a) which after
integration gives (Ade et al. 2016b)

Ω(a) = exp

{
α

today
M

β
aβ

}
− 1. (312)

They called this the exponential EFT model while they called a second model with
β = 1 andΩ(a) = Ω0 a the linear EFT model. In their Table 5, they give their results
from where we extract the following representative constraints:

– For the linear EFT case: αtoday
M < 0.052 (95% confidence level) for the Planck

TT + lowP data set combination and αtoday
M < 0.043 (95% confidence level) for
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the Planck TT + TE + EE + BSH data set combination (BSH standing again for
BAO, SN and local Hubble constraints).

– For the exponential EFT case: αtoday
M < 0.063 and β = 0.870.57

0.27 (95% confidence

level) for the TT + lowP data set combination andαtoday
M < 0.062 andβ = 0.920.53

0.24
(95% confidence level) for the TT + TE + EE + BSH data set combination.

With stringent bounds on the αM and its time evolution index β with theΛCDM values
of 0 and 1, respectively, within those constraints.

We discuss in Sect. 10 how the gravitational-wave (GW) event GW170817 and its
electromagnetic counterpart GRB170817A constrained the speed of propagation of
GW to be practically equal to the speed of light and thus strongly reduced the number
of viable Horndeski models to generalized Brans–Dicke theories and cubic Galileons
although the latter are ruled out by ISW observations (see Sect. 9.7). However, it was
commented in Peirone et al. (2017b) that Horndeski models with non-trivial modifi-
cations to GR remain possible at the level of linear perturbations as they explored it
using MG parameters. Furthermore, models that are beyond Horndeski and in particu-
lar the more general class of degenerate higher order scalar–tensor theories (DHOST)
(see Sect. 7.3.1) provide a much more general class to look for further viable self-
accelerating models (Crisostomi and Koyama 2017a). The latter study found DHOST
models with late-time self-acceleration. They performed perturbations in the quasi-
static limit and showed that the models can satisfy constraints from solar interior
structure (Saito et al. 2015; Sakstein 2015a; Babichev et al. 2016) and the GW orbital
decay of the Hulse–Taylor pulsar (Beltrán Jiménez et al. 2016b). Sakstein et al. (2017b)
studied how the interior of astrophysical bodies and pulsations of stars can be used to
test beyond horndeski models. They found that brown dwarfs and Cepheid stars are
particularly sensitive to such tests. These beyond Horndeski models will be subject to
full cosmological analyses once full CMB analysis tools will become available.

Kreisch and Komatsu (2017) performed a cosmological constraint analysis on Horn-
deski models that were not ruled out by the implication of the gravitational-wave
event GW170817 and its electromagnetic counterpart GRB170817A (i.e., c

GW =c so
αT = 0). They used CMB data from Planck and the joint analysis of the BICEP2/Keck
Array and Planck, galaxy clustering data SDSS LRGs, BOSS BAO data, and RSD
measurements to constrain the remaining parameters. They modeled the evolution of
each parameter with an amplitude (the parameter value today) and an index parameter
for a scale factor power law as follows (see Sect. 7.3.1 for further discussion of the
αx -parameterization):

– Running rate of the effective Planck mass, M2
∗ ,

αM =
d ln

(
M2

∗
)

d ln a
, (313)

which they evolved as

M̃ = M̃0aβ �⇒ αM = M̃0aβ
β

1 + M̃0aβ
, (314)
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where M2
∗/m

2
0 = 1 + M̃ as implemented in the software EFTCAMB they used. m2

0
is the Planck mass so M̃0 is the fractional deviation of M2

∗ from m2
0 today.

– Kinecity of the scalar field due to the presence of its kinetic terms in the action

αK = αK
0 aκ (315)

– Braiding/mixing of scalar and tensor terms

αB = αB
0 aξ (316)

They obtained the following results from using CMB and all the LSS data when
fixing the kinecity to αK = 0.1a3: The friction αM

0 has an upper limit of 0.38 when
αB

0 �= 0 and 0.41 when αB
0 = 0 (all at the 95% confidence level). They found in the

case αB
0 �= 0 that the bound excludes GR but in the αB

0 = 0 case they attributed this to
stability constraints imposed by fixing αK

0 = 0.1. They also conclude that the effects
of Horndeski theory on primordial B-modes are constrained by CMB and LSS data to
be insignificant with 95% confidence.

They caution though that making assumptions on some parameters in Horndeski
models can cause dramatic changes in the results on other parameters, and fixing the
kinecity is one case of this.

They use the Akaike information criterion (AIC) (Akaike 1974) to compare the
two models αB

0 �= 0 versus αB
0 = 0. They found that all the data sets prefer the model

with αB
0 = 0 where the data is then consistent with GR.

It is worth ending this sub-section with some useful remarks about constraining
Horndeski models. Before the measurement of αT ≈ 0 from double Neutron star
merger event (i.e., the GW signal GRB170817 and its electromagnetic counterpart
GRB170817A, see Sect. 10), there was too much freedom in the parameter space
of the Horndeski models. They can produce a ΛCDM background and large-scale
observables while providing self-acceleration with no need for a cosmological con-
stant or dark energy component; see for example Lombriser and Taylor (2015). This
degeneracy has now been broken by the GW170817/GRB170817A event as was antic-
ipated in Lombriser and Taylor (2016) (see Fig. 4 therein). With the constraint aT = 0,
a MG cosmic self-acceleration effect now must manifest itself in LSS observables.
Indeed, Lombriser and Lima (2017) showed that a minimal signature such a model
must produce in LSS provides a 3-σ worse fit thanΛCDM model. They concluded that
αT = 0 will challenge the self-acceleration from a genuine scalar–tensor modification
to GR (i.e., breaking the strong equivalence principle). In beyond-Hordeski models,
other free functions are introduced and bring back further degeneracies between, for
example, cosmic acceleration and LSS from αM . However, Lombriser and Taylor
(2016) discussed how Standard Sirens are not affected by this degeneracy from αM

and should be able to test a self-acceleration at the 5-σ level for both Horndeski and
beyond-horndeski.

123



Testing general relativity in cosmology Page 125 of 204 1

9.2 Constraints on Brans–Dicke theory

The most stringent constraint on Brans–Dicke (BD) theory comes from solar system
tests where the Cassini mission put the bound ωBD > 40, 000 (Bertotti et al. 2003;
Will 2014). However, as argued for example in Avilez and Skordis (2014), the theory
can be a sub-category of a more general theory (e.g., Horndeski) that has a screening
mechanism that makes it very close to GR at small scales and departs from it at cos-
mological scales. It is also interesting to obtain independent constraints on the theory
at very different scales and times. Avilez and Skordis (2014) used CMB data from
Planck, WMAP and SPT and ACT (Ade et al. 2014a; Komatsu et al. 2011; Schaffer
et al. 2011; Dunkley et al. 2013), and constraints from Big-Bang Nucleosynthesis
(BBN) light element abundances (Iocco et al. 2009). They use initial conditions on the
scalar field such that the gravitational constant today on Earth is Newton’s constant,
G N . They find then ωBD > 692 at the 99% CL. They also consider the case where the
scalar is free and allowed to vary as a parameter. They find in this case, ωBD > 890
and 0.981 < Geff/G N < 1.285 at the 99% CL. This provided an order of magnitude
improvement on previous measurements that were reported in the following analyses
(Acquaviva et al. 2005; Wu et al. 2010; Wu and Chen 2010).

9.3 Constraints on vector–tensor and generalized Einstein aether theories

Zuntz et al. (2010) conducted a thorough investigation of Einstein Aether theory
finding that while in principle the vector field can source a dark matter component
and also cause late-time cosmic acceleration, only the latter was found as a viable
possibility. Indeed, they found that using the vector field effective effect as a substitute
to dark matter does not fit large scale structure from SDSS DR6 (Adelman-McCarthy
et al. 2008) and CMB WMAP7 data (Komatsu et al. 2011). They also found physical
problems with such a possibility. On the other hand, an effective dark energy based
on the vector field was found consistent with the data.

Some time earlier, Carroll and Lim (2004) expressed the gravitational constant
appearing in the effective Friedmann equation of a Lorentz-Violating Vector Field
theory as (we follow here the notation of Oost et al. 2018b)

Gcos = Gae

1 + 1
2 (c1 + c3 + 3c2)

(317)

where
Gae = G N

(
1 − 1

2
(c1 + c4)

)
(318)

This results in a decrease in the expansion rate with consequences during the big
bang nucleosynthesis and will result in weak interactions freezing-out later. This leads
to a lower freeze-out temperature and a decrease in the production of the primordial
4He and a lower 4He-to-hydrogen mass ratio (Carroll and Lim 2004). This modifies the
abundance of the primordial helium. In order to be consistent with current observations
(see, e.g., Izotov et al. 2014; Aver et al. 2015), the cosmological gravitational constant
must satisfy the constraint (Oost et al. 2018b)
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∣∣∣∣
Gcos

G N

− 1

∣∣∣∣ �
1

8
. (319)

As we will discuss in Sect. 10, stringent constraints have been obtained on
Einstein-Aether theories from the binary neutron star merger event GW170817 and
GRB170817A by constraining c1 = c3. Oost et al. (2018b) used higher order expan-
sion of the ci parameter and combined this GW constraint with other theoretical and
observational constraints in order to plot allowed regions in the ci parameter spaces.
The constraints from GW170818/GRB170817B can be summarized as (see Oost et al.
2018a)

|c1 + c3| < 10−15 (320)

and
0 � c1 + c4 � 2.5 × 10−5, c4 � 0, 0 � c2 � 0.095. (321)

Other additional constraints from astrophysics and theory within these bounds can be
found in Oost et al. (2018a).

De Felice et al. (2017) worked out perturbations for some specific Proca vector–
tensor models and compared them to current CMB distance data, BAO, SN, and RSD
growth rate data. They found the models to be consistent with the data used and
equally (or slightly more) competitive than the ΛCDM. They found that models fit
the expansion data with an effective dark energy equation of state of wDE = −1 − s

with s = 0.254+0.118
−0.097 at 95 % confidence level (CL). When the growth data is added

to the fit, they obtain, s = 0.16+0.08
−0.08 (95 % CL). It remains interesting to perform a

full CMB and large scale structure analysis of the models.

9.4 Constraints onmassive gravity and bigravity

Koennig et al. (2014a) considered perturbations of bimetric massive gravity and identi-
fied a self-accelerating branch that is consistent with the expansion history and stable
to linear perturbations. They call this the infinite-branch of bimetric gravity (IBB)
based on the behavior of the ratio of the scale factor in the two metrics. They found
that the only models with a stable cosmological evolution are the ones with non van-
ishing β0, β1 and β4 parameters. Since β0 is equivalent to a cosmological constant
and they were rather interested in self-accelerating stable models, they restricted the
analysis to the β1 and β4 IBB models. They compared the models, in the quasi-static
approximation, to available growth rate data in the form of f σ8 from 6dFGS (Beutler
et al. 2012), LRG200, LRG60 (Samushia et al. 2012), BOSS (Tojeiro et al. 2012),
WiggleZ (Blake et al. 2012), and VIPERS (de la Torre et al. 2013) surveys, as well
as the Union 2.1 Compilation of SNe Ia data (Suzuki et al. 2012). They found that
the IBB model fits the data with Ω0

m = 0.18 and an effective dark energy equation of
state w(z) = −0.79 + 0.21z/(1 + z). They also found that growth rate of structure
in IBB is well-approximated at late times by f (z) ≈ Ω .47

m [1 + 0.21z/(1 + z)]. They
found that the combination of growth and supernova data gives the IBB parameter
constraints β1 = 0.48+0.05

−0.16 and β4 = 0.94+0.11
−0.51, although the strongest constraints

come from the supernova data. They also find that the anisotropic stress MG param-
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eter (or slip) in this model tends to 1/2 and the gravitational coupling parameter, as
they defined it, tends to 4/3 at early times and they are different from the GR unity
values. These MG parameters will be then a route to test and distinguish between
these models and ΛCDM. Finally, they also found for these models that the usual
ansatz used in GR for f ≈ Ω

γ
m does not work. It is rather a two-parameter form given

by

f ≈ Ω
γ0
m

(
1 + α

z

1 + z

)
, (322)

that provides good fit to the growth rate with γ0 = 0.47 and α = 0.21 as best-fit
values.

Geng et al. (2017) studied background and linear perturbation evolution for a
minimum nontrivial case by setting only β0 and β1 non-zero so the models are not
self-accelerating, see Sect. 7.3.4. As we reported earlier, they found an effective dark
energy equation of state of a phantom type. They also compared the matter power
obtained to SDSS LRG DR7 finding that it puts stringent constraints on β̄1 from
Eq. (207) to be � O(10−2) at the linear perturbation level. Other seminal papers that
compared bimetric theory to observations include Akrami et al. (2012) and Enander
et al. (2015).

Bigravity models such the IBB above, and others, remain interesting to test using
full CMB and large scale data analysis, however, it is worth mentioning that most of
these solutions have been found to suffer from gradient or Higuchi instabilities in for
example Könnig (2015) which compromises their viability.

9.5 Constraints on f(R)models

Planck2015MG also constrained f (R)models in terms of the scalaron Compton wave-
length today B0 [see Eq. (118)]. When using Planck TT + lowP + BSH, they noted a
degeneracy between B0 and the optical depth τ . This is removed when adding CMB
lensing. They find at 95 % CL: B0 < 0.12 for the Planck TT + lowP + CMB Lensing
and a very tight bound of B0 < 0.79×10−4 when Planck TT + lowP + CMB Lensing
+ BAO + WL + RSD is used. The result are thus close to that of a ΛCDM model
and put very stringent limit on a departure toward f (R) gravity.

Although not among the most recent papers on the subject, Giannantonio et al.
(2010) provided one of the most stringent and clear analysis on constraining f (R)

models using WMAP5 CMB data (Nolta et al. 2009), ISW data from cross-correlating
WMAP maps with six galaxy data sets in different bands (i.e., 2MASS, SDSS main
galaxies, LRGs, and QSOs, NVSS, and HEAO) (Giannantonio et al. 2008). The data
covers a redshift ranging from z̄ = 0.1 to z̄ = 1.5 and thus probes variations of
the gravitational potentials over a large redshift range. They also added the union
compilation of SN data from Kowalski et al. (2008) They used the parameterization
(μ(a, k), γ (a, k)) as in (90) and (91) with time and scale dependencies given by
a refined version of (104) (Zhao et al. 2009). For f(R) models mimicking ΛCDM
expansion, they obtained an upper bound of B0 < 0.4 at the 95% C.L.
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Okada et al. (2013) conducted an analysis using f σ8 RSD data for redshift range
z = 0.06–0.8 from WiggleZ, SDSS LRG, BOSS, and 6dFGRS. They tested the Hu–
Sawicki’s f (R) model finding that only the parameter space that makes the model
practically indistinguishable fromΛCDM is allowed at 95% CL. Dossett et al. (2014)
combined large scale data from WiggleZ, BAO (from 6dF, SDSS DR7 and BOSS DR9),
and Planck-2013 CMB data (and WMAP Polarization data) to find log10 < −4.07 at
95% C.L. thus also putting a tight low bound on the Compton wavelength parameter
B0. They also found that f (R)models cannot explain the tension in the lens amplitude
“parameter” of the CMB spectrum. Again, this reduces the allowed f (R) parameter
space to be very close to ΛCDM. Further recent cosmological constraints on f (R)

models can be found in Nunes et al. (2016), Pérez-Romero and Nesseris (2018) and
Li and Shirasaki (2018).

Other very stringent limits on f (R) and other Chameleon theories came from
astrophysical constraints using distance measurements in the nearby universe (Jain
et al. 2013b). For example, this screening mechanism affects to different levels the
enhanced gravitational force when using Cepheid stars versus when using tip of red
giant branch stars to estimated distances. The screening mechanism leads to opposite
effects on the inferred distances and offers the possibility to test such theories. The
authors found no evidence for an enhancement of the gravitational force and put a
constraint of f

R0 ≤ 5 × 10−7 at 95% C.L. (Jain et al. 2013b). Finally, Sakstein et al.
(2014) made the point that while our galaxy and similar ones are screened but less
dense galaxies may be subject to less or no screening. In that case, stars in such
dwarf galaxies must be hotter, brighter and pulsate with a shorter period. They used
a samples of 25 unscreened galaxies and showed that the chameleon mechanism is
practically ruled out. We note that using star interior physics has become a promising
and effective probe of modification to gravity and associated screening mechanisms
and we refer the reader to further works in Sakstein (2013, 2015a, b), Saltas et al.
(2018) and references therein.

An excellent review of cosmological and astrophysical constraints on Chameleon
fields and in particular f (R)models can be found in Lombriser (2014). The author pro-
vides a thorough compilation of bounds on | fR0| including relevant redshifts and scale
as well as the measurements and probes used (see Table I there). Another very useful
compilation (compendium) of constraints on Chameleon models including astrophys-
ical and laboratory bounds can be found in Burrage and Sakstein (2016).

Most recently, Battye et al. (2017a) used the designer approach to f (R) models to
compare them to Planck CMB temperature anisotropy, polarisation and lensing data
as well as the BAO data from SDSS and WiggleZ. They showed that such approach
based on the equation of state to the dark sector perturbations is numerically stable
and provides analytical insights of the dynamics of such perturbations in the designer
approach to f (R). They put stringent constraints on B0 finding B0 < 0.006 (95%CL)
for the designer models with w = −1, B0 < 0.0045 and |w + 1| < 0.002 (95%CL)
for the designer models with w �= −1. The authors discuss that their results indicate
that for these models,w is strongly constrained to be −1, due to the strong dependence
of σ8 on w. They state that similar results were found in previous works of Raveri
et al. (2014) and Hu et al. (2016) for the designer and Hu–Sawicki models using the
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Effective Field Theory (EFT) approach. They conclude that this hints for the fact that
generic f (R) models with w �= −1 can be ruled out from current cosmological data.

In sum, combining stringent cosmological constraints, astrophysical bounds and
no-go theorems on Chameleon mechanism practically rules out f (R) models and in
particular as a possible explanation for cosmic acceleration.

9.6 Constraints on DGPmodels

Despite being plagued by the presence of ghost fields, the self-accelerating branch
of the Dvali–Gabadadze–Porrati (sDGP) has been compared extensively to various
astrophysical and cosmological observations. Using various distance measurements,
Alcaniz (2002), Jain et al. (2002), Deffayet et al. (2002b) and Fairbairn and Goo-
bar (2006) found that the characteristic scale does verify rc ∼ H−1

0 . Maartens and
Majerotto (2006) used SN-Ia from Riess et al. (2004) and Astier et al. (2006), CMB
shift parameter from Wang and Mukherjee (2006) and BAO data from Eisenstein
et al. (2005) to constrain the self-accelerating branch finding it consistent with the
data at the 2-σ level but the ΛCDM provided a better fit to the data. Some stringent
constraints came from Song et al. (2007b) using the angular diameter distance to sur-
face of last scattering from WMAP Y3 (Spergel et al. 2007), SN data from Riess
et al. (2004) and Astier et al. (2006) and local measurements of Hubble to show that
the flat self-accelerating DGP model is inconsistent with the data at the 3-σ level.
They also found that the curved self-accelerating models remained consistent with
the data but with a poorer fit than the ΛCDM. However, by using BAO data, growth
data from the ISW and ISW-galaxy cross-correlations, they showed that any models
with the same self-acceleration history as a wCDM model are strongly disfavored by
such data. Fang et al. (2008) and Lombriser et al. (2009) used CMB data, galaxy-
ISW cross-correlations data, and distance measurements, to show that both flat and
curved self-accelerating DGP models are much disfavored by the data in comparison
to ΛCDM.

While less appealing due to the lack of self-acceleration, the normal branch (nDGP)
continues to be used to derive benchmark constraints, to run simulation and build mock
data for MG studies in the nonlinear regime; see for example Barreira et al. (2016),
Hellwing et al. (2017) and Bose et al. (2018).

9.7 Constraints on Galileonmodels

Okada et al. (2013) used f σ8 RSD data for redshift range z = 0.06 − 0.8 from
WiggleZ, SDSS LRG, BOSS, and 6dFGRS. They tested covariant Galileon models
with late-time acceleration and found that the model parameter space consistent with
the observed background expansion is excluded by RSD data at more than 8−σ level.
The models they considered have too strong of a growth rate and do not fit the data.
However, they found that the extended Galileons of De Felice and Tsujikawa (2012)
have solutions that are consistent with the RSD data within a 2-σ level. As mentioned
in Sect. 4.3, we recall that one needs to keep in mind that f σ8 data points should
be corrected for any assumptions of the ΛCDM model when reducing/calibrating the
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data. Most recently, Okumura et al. (2016) used their high redshift RSD data point
at z ∼ 1.4 from the FastSound survey using the Subaru telescope as well as lower-z
previous measurements in order to constrain deviations from GR. They used covariant
Galileon models as well as extended covariant Galileons but considered models with
growth less strong than that of models used in Okada et al. (2013). While the models
were found to be within the 1-σ level at low redshifts, they deviate significantly from
the GR-ΛCDM model at high redshift where they fall outside the 1-σ bounds and
possibly outside the 2-σ for the covariant Galileons, see Fig. 3 from Okada et al.
(2013). However, even more stringent constraints have been put now in the way of
Galileons models from ISW measurements and from the gravitational-wave event
GW170817 and its electromagnetic counterpart as we discuss below and further in
Sect. 10.

Barreira et al. (2014a) analyzed cubic Galileon models and found that in the pres-
ence of massive neutrinos, the models provide a very good fit to CMB temperature,
CMB lensing and BAO data. The authors used Planck-2013 (Ade et al. 2014a) temper-
ature data, WMAP9 polarization data (Hinshaw et al. 2013), and Planck-2013 CMB
Lensing (Ade et al. 2014d). They noted these as the PL data set. They added to these
data sets, BAO measurements from the 6dF, SDSS DR7 and BOSS DR9 which they
noted at the PLB data sets. They dubbed the models as νGalileon and νΛCDM that
each having seven cosmological parameters. νΛCDM cosmic acceleration is due to a
cosmological constant while that of νGalileon is due to a different coupling between
curvature and sources. They found that while in the absence of massive neutrino
ΛCDM is clearly favored by the data, the two models have close χ2 when massive
neutrinos are added to the analysis. That is (χ2

P ;χ2
L ;χ2

B) = (9813.5 ; 4.5 ; 1.0) and
(9805.4 ; 8.7 ; 1.4) for νGalileon and νΛCDM respectively and with close total χ2’s.
They noted that the νGalileon best-fit model is also consistent with the local measure-
ments of the Hubble constant, unlike theΛCDM model. However, they noted that the
νGalileon shows a negative ISW effect that is hard to reconcile with current observa-
tions. The models they considered are plotted against CMB, CMB Lensing and BAO
data available at the time of their analysis in Fig. 4 that we reproduce here.

In a most recent analysis, Renk et al. (2017) (including some of the same authors
as above) performed a further thorough analysis of self-accelerating Galileon models
using CMB data from Planck-2015 temperature and polarization (Ade et al. 2016a)
plus CMB lensing (Ade et al. 2016c), BAO (same as above), H0 (Riess et al. 2016)
and ISW data. For ISW, they used CMB temperature maps cross-correlated with
foreground galaxies from the Wide-field Infrared Survey Explorer (WISE) survey
(Wright et al. 2010). They found again that the Cubic Galileon models predict a
negative ISW effect and thus is in a 7.8σ tension with available data which rules
the cubic models out. They also found that the ISW data constrain significantly the
parameter spaces for the quartic and quintic Galileon models but leave regions of the
parameter space where the models provide fits to the data comparable to the ΛCDM.
However, this time the Galileon models are found in some 2-σ tension with the BAO
data. They concluded that the models are likely to be decisively constrained by future
ISW and BAO data. In sum, while the cubic Galileons have been excluded by the
ISW effect here, the quartic and quintic have been excluded by the gravitational-wave
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event GW170817 and its electromagnetic counterpart GRB170817A, as we discuss
in Sect. 10.

Finally, Peirone et al. (2017a) investigated further the effect of neutrino masses
and different mass hierarchies on fitting covariant Galileons to current data. They
use the Planck 2015 temperature and polarization data, BAO from BOSS, local mea-
surements of H0, weak lensing from KiDS, and supernova JLA compilation. This
analyses found that even with neutrinos and considering different mass hierarchies,
the data considered rule out all covariant Galileons including the cubic, the quartic,
and the quintic, in agreement with other previous results from ISW for the cubic and
GW170817/GRB170817A for the quartic and quintic models.

9.8 Constraints on TeVeS

Xu et al. (2015) used the galaxy velocity power spectrum from 6dF survey and the
kinetic Sunayev Zel’dovich (kSZ) power spectrum from ACT/SPT (Hasselfield et al.
2013; Schaffer et al. 2011) to put constraints on TeVeS theory (see Sect. 7.3.3). They
used these two particular probes in order to provide complementary constraints to
those of EG from Reyes et al. (2010) (see Sect. 6.3) since the latter is insensitive to
the amplitude of perturbations. For the TeVeS cosmology they also added one sterile
neutrino and 3 massless neutrinos following the suggestion of Angus (2009) in order
to fit observations of the CMB temperature power spectrum. They found that the linear
kSZ power spectrum is consistent with upper limits of the ACT/SPT data. However,
they found that the nonlinear kSZ TeVeS spectrum is ruled out by SPT observations and
the ACT data put stringent constraints on the model parameters. They also constrained
the models using Ade et al. (2014a) data and allowed for the three parameters K B, lB

and μ0 of the TeVeS model to vary as well as the neutrino physical energy density.
The best fit cosmological parameter for the TeVeS models were found to be difficult
to reconcile with other observations. Namely, the model gives a very small optical
depth indicating that re-ionization would have ended at z=1.2 and an inferred value
of the Hubble constant H0 < 50.8 km s−1 Mpc−1which is hard to reconcile with any
other measurement of this constant. They also performed χ2 goodness of the fit test
and found that the TeVeS models have an excess of δχ2 = 501.36 compared to the
ΛCDM model and concluded that these results from Planck data rule out the TeVeS
models.

This is a good example of how cosmological data can be used to rule out models
that have evaded so far a number of tests such as solar system constraints and galaxy
rotation curves without dark matter. This is a good example to show the promise of
cosmological tests in constraining gravity theories and departures from GR at large
scales.

However, the TeVeS theory structure remains an example of a complex theory that
may have not said its last words as some other developments continue. For example,
there is a general version of TeVeS in Skordis (2008) that has not been constrained
in Xu et al. (2015). Also, the theory has been combined with a Galilean scalar field
(Babichev et al. 2011), although with some continuing but less stringent challenges
(Złośnik and Skordis 2017).
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9.9 Constraints on non-local gravity models

Full comparison of the RR Non-Local gravity model to CMB and other cosmological
data has been performed in Dirian et al. (2014, 2015, 2016a) and Dirian (2017) with
further model exploration in Belgacem et al. (2018b). Cosmological background and
perturbation equations have been put into the Boltzmann-Einstein code CLASS by
Dirian et al. (2016a) allowing for a full comparison to CMB and matter power spectra
data.

We report here results from constraining RR non-local model from Dirian et al.
(2016a), Dirian (2017) and Belgacem et al. (2018b). The authors used the following
data sets. CMB from Planck-2015 (Adam et al. 2016) including: lowTEB data (ℓ ≤ 29)
and the high-ℓ TT,TE,EE (ℓ > 29) of temperature and polarization spectra (Ade
et al. 2016b); temperature plus polarization lensing data in the conservative range
ℓ = 40 − 400 (Aghanim et al. 2016; Ade et al. 2016c). They also used Type Ia
SN from the JLA data of SDSS-II/SNLS3 Betoule et al. (2014); and BAO data from
Beutler et al. (2011), Ross et al. (2015) and Anderson et al. (2014).

First, Belgacem et al. (2018b) explained that the results found in Dirian et al. (2016a)
favoringΛCDM to RR minimal models is mainly due to fixing the

∑
ν mν = 0.06 eV.

When letting this parameter vary, the two models fit the data with practically equal
χ -squares and Bayes’ factors (Dirian 2017). Next, they stressed two particular results
from their use of CMB + BAO + SN analysis. They find constraints on the Hubble
constant of H0 = 69.49 ± 0.80 which is higher than the one from using the ΛCDM.
Compared to the local measurement of H0 = 73.24 ± 1.74 of Riess et al. (2016), this
is only in 2.0σ tension compared to that which they find for the ΛCDM, i.e., 3.1σ .
Second they find neutrino masses with the constraints

∑
ν mν = 0.219+0.083

−0.084 eV,
which they remark falls within the window 0.06 eV<∼

∑
ν mν <∼ 6.6 eV provided by

oscillation and beta-decay experiments and is more consistent than the lower limit in
the ΛCDM. We refer the reader to Belgacem et al. (2018b) for result summary tables
and more discussions.

Next, since the H0 is not in significant tension with the RR minimal model, the
authors of Belgacem et al. (2018b) added the local measurements to use CMB + BAO
+ JLA + H0. They found then H0 = 70.13+0.76

−0.72 and
∑

ν mν = 0.168+0.078
−0.084 eV with

a slightly better χ2 for the RR model compared to ΛCDM, although not statistically
significant. However, the authors finish their analysis by considering comparison of
the RR model and the νΛCDM models to current data of the growth factor, f σ8, data
from 6dF GRS (Beutler et al. 2012), SDSS LRG (Oka et al. 2014), BOSS CMASS
(Samushia et al. 2014), WiggleZ (Blake et al. 2012), VIPERS (de la Torre et al.
2013) and BOSS DR12 (Alam et al. 2017a). They found that χ2 is lower in νΛCDM,
compared to the minimal RR model with δχ2 ≃ 2.01. They state that when this is
combined with the δχ2 = −1.0 from comparison with CMB + BAO + JLA+ H0 the
models are then statistically equivalent. However, they also reported that when H0 is
not considered then overall the difference rises to δχ2

tot ≃ 4.95 which favors weakly
νΛCDM over the RR models. This is certainly to be followed closely with incoming
growth data.
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Finally, the authors concluded their comparison of the RR minimal non-local gravity
models by discussing the effect of the recent results from the GW event from the
neutron star merger GW170817 and its electromagnetic counterpart GRB170817A.
They showed that that gravitational waves in the RR model propagate at the speed
of light and thus comply with the limit cT ≈ 0. However, they pointed out to the
possibility of using standard sirens to distinguish between ΛCDM and the RR model
using third-generation GW interferometers which they discussed in a companion paper
Belgacem et al. (2017). As they stress there, one can define a “GW luminosity distance”
which is different from the standard luminosity distance for electromagnetic signal.
They take advantage of the predictivity of their RR model and provide a concrete
prediction for the ratio of the GW and EM luminosity distances. They found that
the effect due to modified GW propagation is more easily detectable, at future GW
interferometers, than the effect from the dark energy equation of state (Belgacem
et al. 2017). Furthermore, the authors give a much more detailed discussion of how
their model can be tested with modified GW propagation in Belgacem et al. (2018a).
The discussion is more general where they propose a parametrization of the effect
of modified GW propagation that could be used for any modified gravity theory.
They obtain some limits already by comparing the LIGO/Virgo measurement of H0
using standard sirens with that from standard candles, and they compute in detail
the sensitivity of the Einstein Telescope to the parameter related to modified GW
propagation, in generic modified gravity theories. This will be very relevant to future
GW detectors such as LISA and ET. We refer the reader to their papers for more on
this new avenue.

10 Constraints on deviations fromGR andMGmodels from neutron
star merger event GW170817/GRB170817A

The beginning of the 21st century will be remembered for the first detection of gravita-
tional waves (GW) from compact objects. It all started when the Laser Interferometer
Gravitational Observatory (LIGO) detected GW signals from the merger of black hole
event which confirmed the existence of black holes and the prediction of GW (Abbott
et al. 2016a). Almost two years later, LIGO and the VIRGO interferometer made
the detection of GW from a merger of two neutron stars (GW170817) (Abbott et al.
2017a). Incidentally, the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence
Shield for the Spectrometer for the International Gamma-Ray Astrophysics Labo-
ratory observed a gamma-ray burst (GRB170817A) event within the following 1.7
seconds and in a close location to GW170817 (Goldstein et al. 2017; Savchenko et al.
2017). There were no doubts that GRB170817A was the electromagnetic counterpart
of GW170817 (Abbott et al. 2017b). This was a consequential event to test some
aspects of gravity at cosmological scales as one can confront the two completely dif-
ferent types of astrophysical messengers. That is exactly what was done immediately
after the announcement of the event, see for example Baker et al. (2017), Creminelli
and Vernizzi (2017), Ezquiaga and Zumalacárregui (2017), Sakstein and Jain (2017),
Langlois et al. (2017b) and Amendola et al. (2017).
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Indeed, the scientific community was well-prepared to exploit such an event since
a number of papers had already studied the implications that can be drawn from
comparing the propagation of gravitational and electromagnetic waves (Amendola
et al. 2013b, 2014; Nishizawa and Nakamura 2014; Linder 2014; Raveri et al. 2015;
Saltas et al. 2014; Beltrán Jiménez et al. 2016b; Bettoni et al. 2017; Sawicki et al.
2017; Lombriser and Taylor 2016; Lombriser and Lima 2017).

In particular, Lombriser and Taylor (2016) explicitly studied the implications
for scalar–tensor gravity from an electromagnetic counterpart measurement to a
LIGO/Virgo gravitational wave emitted by a neutron star merger. In their Fig. 4, they
predicted a constraint that closely matches that of GW170817/GRB170817A further
below. They also discussed the implications of such a measurement for Horndeski
scalar–tensor gravity (and beyond), and estimated that such a simultaneous measure-
ment should be anticipated within a few years from writing their paper. Their paper
followed a previous analysis by Nishizawa and Nakamura (2014) which also made
predictions close to the constraint below from GW170817/GRB170817A.

In GR, GWs travel at the speed of light, however in MG models, this is not always
the case. As we discussed in Sect. 7.3.1, it is common to parametrize deviations of the
speed of GW, cT , from c = 1 (keeping our notation convention) by using the tensor
speed excess parameter αT (Bellini and Sawicki 2014)

αT = c2
T − 1. (323)

Note that the first term on the RHS is actually (c
T
/c)2 but we kept the notation

convention of setting c = 1.
Baker et al. (2017) discussed the implication of this event using the αx (Sect. 7.3.1)

parameterization while Creminelli and Vernizzi (2017) used directly the EFT formu-
lation of dark energy and modified gravity theories (see Sect. 5.1). Following Baker
et al. (2017), let us note the travel time of GW from GW170817 event to the GW
detectors as

tD − te = ds

cT

, (324)

where tD is the merger time identified in the GW detectors, te is the time of emission
of GW and light from the event, and ds ≃ 40 Mpc is the distance to the source event. It
is worth mentioning that an Euclidean treatment of the distances is used here because
of the relatively short distances involved. Similarly, we note the travel time of light
from GRB170817A to the GRB light detectors as

tL − te = ds, (325)

where tL is the time of arrival (or peak brightness) measured at the GRB detectors.
Taking the difference of the two above equations gives

tG − tL = ds

(
1

cT

− 1

)
. (326)
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Using the arrival time difference of tD − tL ≃ 1.7 seconds and the value of ds into the
above equation and translating the results to (323) gives the stringent bound

|αT | � 1 × 10−15. (327)

It is worth mentioning here that one assumed here that the gamma-ray photons and
GWs are released simultaneously. In reality, there could be a delay of order a few
hours between these two events. Therefore, taking into account such a possible delay
weakens the bound by a few orders of magnitude. However, 10−15 or 10−12 are both
very tight constraints, leading to practically the same outcome.

Incidentally, the bound in (327) is consistent with the bound derived in Moore
and Nelson (2001) and Kimura and Yamamoto (2012) from gravitational Cherenkov
radiation which constrains GW speed to not exceed the speed of light, assuming a
galactic origin for the high energy cosmic rays.

The bound (327) suggests that αT ≃ 0 so a number of papers studied the same
consequences of assuming this is the case in order to constrain deviations from GR and
MG models or, in other cases, propagating the stringent bound to constrain departures
from GR.

10.1 Implications for scalar–ensor theories

10.1.1 Implications for Horndeski models

The Horndeski class of MG models is a large class of scalar–tensor theories that
was discussed in Sect. 7.3.1 and for which the gravitational action was given by (146).
Baker et al. (2017) discussed that the constraint (327) can be realized by a highly tuned
cancellation between the Horndenski action terms G4,X , G5,φ and G5,X that can all
contribute to αT . However, as they stated, a more logical implication of αT ≃ 0 is that
each of the three terms vanishes identically. Furthermore using the Bianchi identity,
the Horndeski action then reduces, besides the potential term and the cubic term, to
(Baker et al. 2017)

L4 = f (φ)R (328)

leaving only conformally coupled theories of the Jordan–Brans–Dicke (JBD) type.
This then eliminates the quartic and quintic Galileons theories. These consequences
on the Hordeski terms were also given prior to this event in McManus et al.
(2016). See also Creminelli and Vernizzi (2017) for the same conclusions from
GW170817/GRB170817A. Sakstein and Jain (2017) combined the constraint (327)
with the lack of violation of the strong equivalence principle in the supermassive black
hole in M87 in order to exclude the quartic Galileon model.

The JDB like models (328) can be divided in two sub-classes as discussed in Baker
et al. (2017). The first sub-class is the generalized JDB where the scalar field does not
evolve significantly on cosmic timescales. However, this sub-class of models requires
the chameleon screening mechanism to pass solar-system tests of gravity and thus
cannot be self-accelerating due to the no-go theorems discussed in Sect. 8.1 (Wang
et al. 2012). In the second sub-class, the scalar field evolves significantly on cosmic
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timescales, for example as caused by terms in G2 and G3, producing self-acceleration.
Thus the event does not exclude cubic Galileons, kinetic gravity braiding models
(Deffayet et al. 2010) and k-essence models (Armendáriz-Picón et al. 2000, 2001).
See more discussion in Baker et al. (2017).

Ezquiaga and Zumalacárregui (2017) considered the implications of the GW170817
and GRB170817A on MG models by starting from the covariant Galileon models and
then moving to their generalizations to Horndeski and beyond Horndeski models. They
translated the stringent bound (327) into bounds on the Galileon model coefficients and
their generalizations. They arrived at similar conclusions as in Creminelli and Vernizzi
(2017), Baker et al. (2017) and Langlois et al. (2017b). They tabulated models explic-
itly indicating that, in the Horndeski general class, Brans–Dicke, f(R), kinetic gravity
braiding (Deffayet et al. 2010) are not affected, while quartic and quintic Galileons
(Nicolis et al. 2009; Deffayet et al. 2009b), Fab Four (Charmousis et al. 2012), de
Sitter Horndeski (Martin-Moruno et al. 2015), and f (φ)Gauss–Bonnet (Nojiri et al.
2005) are all excluded.

10.1.2 Implications for Beyond Horndeski models

The beyond-Horndeski models of Gleyzes et al. (2015a, b) receive almost the same
consequences as Horndeski models except for a specific combination of terms in the
beyond-Horndeski action which can realize αT = 0. The cosmology and motivation
for such a specific combination remains to be explored and it is not clear if such
models have any particular motivation (Baker et al. 2017). Sakstein and Jain (2017)
also excluded the quartic beyond horndeski models. Ezquiaga and Zumalacárregui
(2017) with their approach above found that beyond-Horndeski models with disfor-
mal tuning and the A1 = 0 class of quadratic Degenerate Higher-Order Scalar–Tensor
(DHOST) theories (Langlois and Noui 2016a) are not excluded, while quartic/quintic
beyond-Horndeski models (Langlois and Noui 2016a), quadratic (with A1 �= 0) (Lan-
glois and Noui 2016a) and cubic DHOST models (Ben Achour et al. 2016a) are all
excluded. They showed that only three alternatives (or their combination) are possible
for scalar–tensor theories: (1) restricting Horndeski models to their minimum simplest
terms that keep cT = 1; (2) applying a conformal transformation to these minimal
Horndeski models which preserves the causal structure; (3) using Horndeski models
but compensating the terms that modify the speed of GW to keep it luminal. This is
done by a specific disformal factor to tune away the departure of the speed of GW from
light speed. Langlois et al. (2017b) presented an analysis of the implications of the
event GW170817/GRB170817A using the DHOST framework. For Horndeski and
Beyond Horndeski theories, they came to the same conclusions discussed above from
Creminelli and Vernizzi (2017), Baker et al. (2017) and Ezquiaga and Zumalacárregui
(2017).

10.2 Implications for vector–tensor theories

The constraints αT = 0 imposes on Generalized Einstein-Aether theories (Jacobson
and Mattingly 2001; Zlosnik et al. 2007) the condition c1 = −c3 (see Sect. 7.3.2)
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which makes the effective Planck mass reduce to the GR value, while the cosmo-
logical background evolution remains different from GR (Baker et al. 2017). For the
Generalized Proca theories (Tasinato 2014; Heisenberg 2014), the condition αT = 0
imposes either a fine tuned cancellation of terms in the action or imposes that the terms
related to αT be all identically zero. The latter natural interpretation gives a branch
with a cosmological evolution different from GR with a rescaled Planck mass in the
modified Friedmann equation (Baker et al. 2017). Similar results were obtained in
Oost et al. (2018b) about the Einstein-Aether theories. Since the Generalised Proca
theory has a similar structure to Horndeski, the effects of αT = 0 on Generalised
Proca is similar to the effects on Horndeski, i.e., the quartic and quintic terms are
(effectively) ruled out. The same implication applies to the beyond Generalized Proca
models of Heisenberg et al. (2016).

10.3 Implications for massive gravity and bigravity theories

For massive gravity and bimetric gravity (de Rham et al. 2011; de Rham and Gabadadze
2010; Hassan and Rosen 2012a), the new results from GW170817 and GRB170817A
have no significant cosmological consequences. For massive gravity, one can just
obtain further weak constraints on the mass of the graviton. Similar to bounds obtained
from previous Black Hole merger events (Abbott et al. 2016b), Baker et al. (2017) used
the time delay of the GRB170817A electromagnetic counterpart to find m � 10−22eV
for the graviton mass. This is again much weaker than the solar system bound of the
order of m � 10−33 eV (e.g. de Rham et al. 2017) or galaxy cluster bound of order
m � 10−29 eV (e.g. Desai 2018). This is an independent bound though. More relevant
to our review, the local bounds obtained from GW propagation and the electromagnetic
counterpart have no consequence on the cosmology of massive gravity and bigravity
theory (Lagos and Ferreira 2014; Cusin et al. 2015a; De Felice et al. 2014; Narikawa
et al. 2015; Max et al. 2017). However, see Brax et al. (2017) and Akrami et al. (2018)
for constraints on doubly coupled metrics to matter models.

10.4 Implications for ghost condensates and Hořava–Lifshitz Gravity

For ghost condensates (Hamed et al. 2004), the modification of the GW speed is
given by c2

T − 1 ∼ M2
GC/M2

Pl , where MGC is the typical scale of the model. Now,
experimental bounds on modifications of Newton law give MGC ≤ 10 MeV. So it
is not expected to see any significant changes in the speed of GW and the constraint
(327) does not affect this theory (Creminelli and Vernizzi 2017). This is not the case
for Hořava–Lifshitz theory as stated in Creminelli and Vernizzi (2017) where CT is
expected to deviate from the speed of light.

Gümrükçüoǧlu et al. (2018) argued that the implications of the bound (327) are more
subtle for HL parameters. As they explain, the theory has 3 independent IR parameters
(α, β and γ in their paper). Before the constraint on the speed of GW, the tightest
constraints on HL in IR had come from ppN constraints where one assumes α = 2β.
Papers then normally considered the 2-dimensional sub-region determined by (α = 2β
versus γ ) in the parameter space. But the recent result from GW170817/GRB170817B
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set a constraints of |β| < 10−15) so it is not justified to set α = 2β since it would
requireα and β to be highly fine-tuned to the 10−15 level. Accordingly, they motivated
in their paper to look at the (α, γ ) parameter sub-space, as the current constraints on
α and γ are orders of magnitudes looser compared to β and focus on the β = 0 plane.
In the limit where HL and GR becomes indistinguishable (from IR perspective), HL
becomes strongly coupled and loses its use as a perturbative alternative theory for
GR. As they discussed in the paper, this puts a lower bound on α and γ parameters
set by experiments testing the validity of perturbative GR. This means that future
tighter constraint on HL in IR regime combined with upper energy bounds on the
validity of perturbative GR from future experiments could rule out HL as perturbatively
renormalizable theory of gravity and make HL absolute. See Gümrükçüoǧlu et al.
(2018) for a more detailed discussion.

10.5 Implications for higher dimensionmodels

As we discussed further above, in these models our universe is a 3+1 brane embedded
in a higher dimensional space, for example 4+1 dimensional anti-de-Sitter space
(see Sect. 7.5). In such a universe, gravity is the only force that propagates in the
extra dimension (or the bulk space), while other forces are constrained to the brane
hypersurface. As a consequence, GW and EM signals follow different paths leading
to a time lag between the two signals propagating from a given point to another.
GW170817 and GRB170817A can thus be used to put constraints on such models.

Visinelli et al. (2018) considered the setting where the GW and EM signals travel
at the same speed but where the GW can take a shortcut in the bulk space and thus
arrive ahead of the EM signal. This can be used to put a constraint on the radius of
curvature, ℓ, of the AdS5 bulk space. They used a ΛCDM model and performed a
likelihood analysis to set an upper limit of ℓ � 0.535 Mpc (68% CL). As the authors
mention, this bound is not competitive with current Solar System constraints (e.g.,
Long et al. 2003; Tan et al. 2016), but is the first constraints from multi-messenger
measurements.

Pardo et al. (2018) used the GW170817/GRB170817B result in a different way
to put a constraint on the possible number of spacetime dimensions. They used the
fact that in these higher dimension models, there is gravitational leakage into extra
dimension leading to dumping of the amplitude of GW that reflects on the inferred dis-
tance to gravitational source. They used GW as standard sirens and extracted directly
the luminosity distance, dGW

L , to GW170817. They compared this distance with the
inferred luminosity distance to the EM counterpart, d E M

L . The latter is determined
using the Hubble law at the small redshift from the source, i.e., vH = cz = H0d E M

L

(but taking into account the peculiar velocity of the host galaxy with respect of its
galaxy-group precessing velocity). Following Deffayet and Menou (2007), they used
a dumping parameter γ to write dGW

L = (d E M
L )γ . This parameter is related to the

number of dimension, D, by γ = D−2
2 . From the two distances as inferred above,

they find γ = 1.01+0.04
−0.05 at the 68% CL (using the local value of H0) or γ = 0.99+0.03

−0.05
(using Planck value of H0). This in turn allowed them to put constraints on the space-
time dimension number as D = 4.02+0.07

−0.10 (using local H0) and D = 3.98+0.07
−0.09 (using
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Planck H0). They concluded that their results are in favor of the 3+1 dimensions of
GR.

10.6 Implications for results onMG parameters and large-scale-structure from

GW170817 and GRB170817A

Interestingly, Saltas et al. (2014) and Sawicki et al. (2017) showed that there is
a one-to-one relationship between modification to the propagation of GW and the
gravitational slip parameter when the source is a perfect fluid matter. Amendola
et al. (2017) noted that this result in combination with the constraint cT = c from
GW170817/GRB170817A implies that the presence of a slip MG parameter in scalar–
tensor theories can be attributed to only a conformal coupling to gravity. They also
showed that the surviving vector–tensor theories cannot have any slip at all so detecting
any slip parameter will rule all of them out. They demonstrated then that the growth
rate in the surviving models must be at least as fast as that of GR except possibly for
beyond Horndeski theories. Finally, they showed that if the slip parameter is to have
any scale dependence at all then it should be in a way that the parameter reduces to the
GR unity value at large scales with no-slip and so the model cannot be distinguished
from GR at large scales.

In light of the implication of GW170817/GRB170817A (i.e., αT = 0) and its
consequences for the slip parameter (Saltas et al. 2014; Sawicki et al. 2017), the study
Linder (2018) considered scalar–tensor models where the slip parameter is identically
zero. Linder (2018) noted that with the vanishing of αT , the no slip criterion is simply
given byαB = −2αM . It was then shown that stability conditions for absence of ghosts
and a positive sound speed squared for perturbations impose further restrictions on
(αB, αK ) reducing the independent parameters to only one. So this no slip gravity
can be characterized by one MG parameter. Using some guidance from cosmological
evolution and stability requirements, some forms on the time evolution of the one
parameter (e.g. αM ) was proposed and studied. Linder (2018) then compared the
growth rate data of f σ8 to some of these models and found them to fit the data better
thanΛCDM as they have a lower growth. It was noted that, unlike many other scalar–
tensor theories, no-slip gravity predicts a weaker gravity than GR which explains
the growth fit and, as the author states, could potentially inform the tension in the
low amplitude found in weak lensing studies. The study concludes with forecasts of
constraints from the DESI galaxy redshift survey showing that it could be distinguished
from GR at the 3-σ level.

Peirone et al. (2017b) Performed an extensive analytical and numerical analysis
of the MG parameters Σ and μ or equivalently G light/G and Gmatter/G. They con-
sidered Horndeski models that are consistent with tests of gravity and the cosmic
expansion history with late time acceleration. They also take into account the recent
result from GW170817 and its counterpart GRB170817A, setting cT = c. They con-
firmed a conjecture they made in their earlier work (Pogosian and Silvestri 2016)
about MG parameters in Horndeski models. That is (σ − 1)(μ − 1) ≥ 0 must hold
in viable Horndeski models. They also test the validity of the quasi-static approx-
imation in Horndeski models finding that it holds well at small and intermediate
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scales but fails at k ≤ 0.001 h/Mpc. They concluded in their analysis that despite the
stringent result from GW170817/GRB170817A, there remain Horndeski models with
non-trivial modifications to gravity at the level of linear perturbations and large scale
structure. They stressed the complementarity of different approaches to modifications
to GR and the practicality of using the phenomenological Σ and μ parameterization
and their consistency relations, see also Pogosian and Silvestri (2016).

Finally, Battye et al. (2018) explored the results from GW170817/GRB170817A
using an equation of state approach to modified gravity models. They confirmed the
strong constraints found for Hordeski and Einstein-Aether models. They discuss how
it is possible to construct MG models that evade GW170817/GRB170817A constraint
but still provide cosmologically interesting modifications to gravity. These include
f (R), non-local, and higher order derivative models.

10.7 Implications for Vainshtein screeningmechanism after GW170810 and

GRB170817A

Crisostomi and Koyama (2017b) applied the implication of GW170817 and its coun-
terpart GRB170817A to study the Vainshtein screening mechanism in the very general
class of Degenerate Higher-Order scalar–tensor (DHOST) theories (including Horn-
deski and beyond-Horndeski models). They set cT = c and find that the Vainshtein
mechanism generally works outside a matter source but it fails inside the matter. This
then opens the door to test these theories using astrophysical observations inside mat-
ter sources such as stars, galaxies and clusters of galaxies and large scale structure.
The formalism for such structures in this context depends on 3 parameters and some
astrophysical constraints have already been derived on them (Koyama and Sakstein
2015; Saito et al. 2015; Sakstein 2015a, b; Sakstein et al. 2016, 2017a). Dima and
Vernizzi (2017) found further implications and results on the Vainshtein screening
mechanism from GW170817 and its counterpart that are consistent with the results
above about the breaking of the Vainshtein screening inside astrophysical bodies.
Finally, Langlois et al. (2017b) study the Vainshtein mechanism in the Degener-
ate Higher-Order Scalar–Tensor (DHOST) framework. They derive, for the DHOST
theories satisfying cT = c, the gravitational equations for inside and around a non-
relativistic spherical object. Unlike outside the object, they found that gravity inside
the object deviates from standard gravity. They also found that the deviation from
standard gravity inside the object can be described by 3 parameters that satisfy con-
sistency relations and can be constrained using present and future astrophysical data
(Langlois et al. 2017b). This concurs with the findings above. It is also worth not-
ing that the breaking of the Vainshtein screening mechanism inside matter has been
discussed prior to GW170817 and GRB 170817B; see, for example Beltrán Jiménez
et al. (2016b).

10.8 Further notes or caveats on the implications of GW170817 and GRB170817A

Some caveats were raised in Baker et al. (2017) about the fact that the result αT ≃ 0 is
based on a measurement at very low redshift (zs = 0.01) corresponding to practically
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the present time in cosmic history so it is possible, in principle, that this was not
always the case. Another possible caveat is the limitation that can come from noting
that cosmological gravitational waves have long wavelengths and propagate in a higher
cosmological average density, while GW170817 has short wavelength and propagated
to us in almost empty space. So it will be interesting to see/confirm if gravitational
waves at cosmological scales would travel at the speed of light. See further discussions
in Baker et al. (2017).

11 Computer codes and packages for testing gravity at cosmological
scales

A number of codes and software packages have been developed following the rapid
development of the subject of testing GR and MG models at cosmological scales.
Similar to the theoretical developments, codes have been developed according to two
types. The first type is where a generic parametrization of deviations from GR is
implemented using one of the generic parametrizations of Sect. 5.2. The second type
is where the codes have focused on implementing a specific MG model or a broad
class of models such as those described in Sect. 7.

It is worth noting that most codes that solve Einstein–Boltzmann equations are based
on a modification of two popular codes that solve the Boltzmann and gravitational field
equations to calculate CMB temperature and polarization power spectra as well as the
matter power spectrum. The first is CAMB (Code for Anisotropies in the Microwave
Background) and is available at http://camb.info/, see also Lewis et al. (2000). The
second code is CLASS (Cosmic Linear Anisotropy Solving System) and is available
at http://class-code.net/, see also Lesgourgues (2011) and Blas et al. (2011a). There
are however other codes that are not based on these two systems such as for example
DASh (Kaplinghat et al. 2002) and COOP (Huang 2012a) (available at http://cita.
utoronto.ca/~zqhuang/coop/).

We describe further below two examples of codes of the first type for generic
deviation from GR, i.e., ISitGR (Dossett et al. 2011b) and MGCAMB (Zhao et al.
2009; Hojjati et al. 2011). We also describe two examples of codes of the second
type, i.e., hi_class (Zumalacárregui et al. 2017) and EFTCAMB (Hu et al. 2014a, b;
Raveri et al. 2014) that both deal with broad classes of scalar–tensor MG models, and
we refer the reader to the comparative study of Bellini et al. (2018) for a detailed list
and description of other codes.

Codes of the second type include: Cosmology Object Oriented Package (COOP)
(Huang 2012a, b) which implements an EFT approach to dark energy and modified
gravity theories including the Horndeski broad class of scalar–tensor theories; Davis
Anisotropy Shortcut Code (DASh) (Kaplinghat et al. 2002); CLASSig (Umiltà et al.
2015); a code used in Avilez and Skordis (2014) for Jordan–Bran–Dicke gravity; a
modified version of CMBEASY (Doran 2005) for Einstein-Aether gravity (Zuntz et al.
2008); modified versions of CAMB (Lewis et al. 2000) for f (R)models (Dossett et al.
2014; Bean et al. 2007; Battye et al. 2016, 2017a; Battye and Pearson 2013); a modified
version of CAMB (Lewis et al. 2000) for covariant Galileons (Barreira et al. 2012);
CLASS-LVDM for Hořava–Lifshitz gravity (Ivanov 2017); and modified versions
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of CAMB and CLASS for models of nonlinear gravity with respective references
(Barreira et al. 2014c) and (Dirian et al. 2016b).

We reproduce Table I from Bellini et al. (2018) (as Table 6 here) that provides
a good list of such codes with tested models, to which we added the corresponding
references.

Finally, we do not cover here N-body simulation codes for MG models or implemen-
tation of semi-analytical models but we refer the reader to Winther et al. (2015) (and
references therein) for a recent comparative analysis of MG N-body codes. See also
other recent works using the Comoving Lagrangian Acceleration (COLA) approach
in Valogiannis and Bean (2017) and Winther et al. (2017). The presence of screening
mechanisms in MG models makes the implementation of MG simulations more com-
plicated. A parameterization for modified gravity on nonlinear cosmological scales
was proposed in Lombriser (2016) and a fitting formula for f (R) Hu–Sawicki model
has been derived in Zhao (2014).

11.1 Integrated Software in Testing General Relativity (ISiTGR)

We start with ISiTGR (pronounced Is it GR?) that is publically available at http://
www.utdallas.edu/~jdossett/isitgr/) and described in Dossett et al. (2011b). ISiTGR
is an integrated set of modified modules for the publicly available packages CosmoMC
(Cosmological Monte Carlo) (Lewis and Bridle 2002) and CAMB (Lewis et al. 2000).
CosmoMC software uses a Markov-Chain Monte-Carlo (MCMC) approach to explore
cosmological parameter spaces (see more information at http://cosmologist.info/
cosmomc/).
ISiTGR introduces all the MG modifications to those two packages and com-

bines them to a modified version of the Integrated Sachs–Wolfe (ISW)-galaxy cross
correlations module of Ho et al. (2008) and Hirata et al. (2008) to test GR. It also
includes a modified weak-lensing likelihood module for the refined Hubble Space
Telescope (HST) Cosmic Evolution Survey (COSMOS) lensing tomography analysis
as described in Schrabback et al. (2010) which has also been modified to test GR. It
also includes a new baryon acoustic oscillation (BAO) likelihood module for the Wig-
gleZ Dark Energy Survey BAO measurement data (Blake et al. 2011c). ISiTGR also
has a version tailored specially to constrain f (R)models and is for example described
and used in Dossett et al. (2014) and available at the same website above.
ISiTGR uses the modified growth parameters as described in Eqs. (86), (87), (88),

and (89) as well as their time and scale evolution given by Eqs. (97), (98), (99), (100),
(101), and (102), see also Table 2.

For ISiTGR and other codes discussed further below, it is worth noting that CAMB
is written in the synchronous gauge and uses the metric potentials h and η as described
in Ma and Bertschinger (1995) instead of the potentials Φ and Ψ of the conformal
Newtonian gauge used in Sect. 5.2. In order to give a brief description of the implemen-
tation of ISiTGR (and other software further below), we will outline some common
conversion and implementation steps using CAMB. The metric potentials in the two
gauges are related to one another by, e.g., Ma and Bertschinger (1995)
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Φ = η − Hα, (329)

Ψ = α̇ + Hα, (330)

where

k2α = ḣ

2
+ 3η̇. (331)

Now, CAMB evolves the metric potential η (or kη) as well as the matter perturbations,
δi , heat flux, qi , and the shear stress σi for each matter species in the synchronous
gauge according to the evolution equations given in Ma and Bertschinger (1995).
Furthermore, CAMB uses two other variables noted σCAMB and Z that are defined and
evaluated at each time step as follows

σCAMB ≡ kα = k(η −Φ)

H
, (332)

Z ≡ ḣ

2k
= σCAMB − 3

η̇

k
. (333)

The idea is that these variables allow CAMB to be written in such a way that the
evolution of all other variables is changed simply by adjusting the evolution of the
metric potential η. Thus it is important that one derives an equation for the evolution
of η consistent with the modified growth equations (86) and (88). As described in
Dossett et al. (2011b), after some steps, one obtains

η̇ = −1

2 fQ

{
2(H2 − Ḣ)k2α +

∑

i

ρ̄i (a)
[(

2H
[
D − Q

]
+ Q̇

)
δi − Q(1 + wi )k

2α − Q f1
qi

k

]}
,

(334)

with

fQ = k2 + 3

2
Q
∑

i

ρ̄i (1 + wi ). (335)

Finally, the next necessary change is to redefine the derivatives of the Newtonian metric
potentials, Φ̇ + Ψ̇ , which go into evaluating the ISW effect in the CMB temperature
anisotropy spectrum. This can be done quickly by observing that the quantities δi and
σi are invariant in transformations between the synchronous and conformal Newtonian
gauges. Thus one can simply take the time derivative of (88) and sub in for δ̇ and ˙̄ρi

to get:

Φ̇ + Ψ̇ = 1

k2

∑

i

ρ̄i (a)

{ [
((1 + 3wi )Q + 2D)H − Q̇

] 3(1 + wi )σi

2
− 3Q(1 + wi )σ̇i

2

+(DH − Ḋ)δi + D(1 + wi )
(

k2α − 3η̇
)

+ D f1
qi

k

}
. (336)

Beside these changes other small adaptations, modifications and additions to both
CAMB and CosmoMC are necessary to assure a smooth running and accurate output
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of modified CMB spectra according to the MG parameters. These can be found in
Dossett et al. (2011b).
ISiTGR has been used or cited in over 50 papers. ISiTGR was used in the recent

KiDS survey MG analyses (Joudaki et al. 2017) and KiDS+2dFLenS (Joudaki et al.
2018) as well as CFHTLenS+Planck data analysis including intrinsic alignment of
galaxies as a systematic effect in Dossett et al. (2015).

11.2 Modification of growth with CAMB (MGCAMB) and MGCosmoMC

MGCAMB provides a set of patches to the code CAMB in which the linearized
Einstein equations were modified according to MG Eqs. (90) and (91). The soft-
ware is publically available at http://aliojjati.github.io/MGCAMB/mgcamb.html and
described in Hojjati et al. (2011) and Zhao et al. (2009). As described on its web-
site, there was a major upgrade to MGCAMB in Hojjati et al. (2011) from the
original version of Zhao et al. (2009), making it easier to use with CosmoMC

and working for the entire redshift range. Similarly, Modified Gravity models with
CosmoMC (MGCosmoMC) is a modified version of CosmoMC that allows one to fit
modified gravity parameters to data sets in addition to other cosmological parame-
ters.

The most recent versions of MGCAMB and MGCosmoMC include a wide range of
parametrizations to accommodate MG models such as screened scalar–tensor the-
ories as described in Brax et al. (2012), Symmetron parameterization, generalized
Dilaton parametrization, Hu–Sawicki f (R) gravity, as well as the time and scale
evolution parametrizations of MG parameters (90) and (91). MGCAMB has been
used or cited in over 100 papers and has been used, in for example, Ade et al.
(2016b).

11.3 Horndeski in CLASS (hi_class)

hi_class (Zumalacárregui et al. 2017) is an extension to the Boltzmann solver
code CLASS (Lesgourgues 2011; Blas et al. 2011a) to include modification to GR
based on Horndeski models. hi_class inherits all the functionality of CLASS

and can calculate cosmological distances, CMB, matter, and galaxy number count
power spectra for this class of models. A publicly available version noted as
hi_class teaser can be cloned or downloaded from the repository https://github.com/
miguelzuma/hi_class_public or from the webpage http://miguelzuma.github.io/hi_
class.html. This version is described in Zumalacárregui et al. (2017) and the latter
websites.

The implementation of Horndeski in hi_class code is based on the EFT
parameterization (see Sect. 5.1). CLASS and the hi_class extension are writ-
ten in C programming language but use a class-structure and modularity similar to
that of object-oriented languages such as C++ or Java in order to make the code
more readable while easier to parallelize (see http://class-code.net/ for a discus-
sion).
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Since it encompasses a large class of models,hi_class has been used in a number
of recent analyses including Bellini and Zumalacárregui (2015), Bellini et al. (2016,
2018), Renk et al. (2016, 2017), Alonso et al. (2017), Lorenz et al. (2017) and Ezquiaga
and Zumalacárregui (2017).

11.4 Effective field theory with CAMB (EFTCAMB) and (EFTCosmoMC)

EFTCAMB (Hu et al. 2014a, b) is a set of patches to the code CAMB which implements
the EFT approach to dark energy and modified gravity models of cosmic acceleration as
described in Sect. 5.1. The package comes along with a modified version of CosmoMC,
called EFTCosmoMC, that allows one to use the software with cosmological data sets.
The code description and download are available at http://eftcamb.org/index.html and
the corresponding papers (Hu et al. 2014a, b). A useful flowchart of the code and
models covered is also accessible at http://eftcamb.org/images/EFTCAMB_structure.
pdf.
EFTCAMB implements the evolution of scalar and tensor perturbation equations

including all the second order EFT operators. The implementation takes into account
a consistent inclusion of more than one second order operator at a time and allows the
use of a wide range of equation of state of dark energy for the background evolution.
A number of options are made available to the user and can be found on the website
and the flowchart above.
EFTCAMB has been used in a number of recent cosmological analyses including

Bellini et al. (2018), Liu et al. (2017), Raveri et al. (2017), Peirone et al. (2017c), Hu
et al. (2014a, b, 2015, 2016), Frusciante et al. (2016), Ade et al. (2016b) and Raveri
et al. (2014).

11.5 Recent comparison of Einstein–Boltzmann solver codes for testing general

relativity

A recent careful comparative study of codes that solve Einstein–Boltzmann equations
can be found in Bellini et al. (2018). Motivated by the high precision requirements
from upcoming surveys such as LSST, WFIRST, Euclid, SKA, and Stage IV CMB
experiments, the study aimed at finding at what level of accuracy such codes would
agree with each other in calculating various CMB and matter power spectra.

The study compared codes of the second type as discussed in Sect. 11. They com-
pared EFTCAMB, hi_class and COOP for general scalar–tensor theories. They
found that CMB and matter power spectra from EFTCAMB and hi_class agree
with one with another to a sub-percent level. They also found that COOP has the
required accuracy and agrees with the two other at large scales but needs calibration to
remain in agreement at scales below Mpc. Then they compared these three codes to the
following six codes and found them in good agreement: DASh (Kaplinghat et al. 2002),
BD-CAMB (Avilez and Skordis 2014) and CLASSig (Umiltà et al. 2015) that model
Jordan–Brans–Dicke (JBD) gravity; GalCAMB (Barreira et al. 2012) for Galileon
models; CLASS_EOS_fR (Battye et al. 2016, 2017a; Battye and Pearson 2013) for
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f(R) models; and CLASS-LVDM for Hořava–Lifshitz gravity (Ivanov 2017). Finally,
they also compared the two codes NLCAMB (Barreira et al. 2014c) and NLCLASS

(Dirian et al. 2016b) for non-local gravity and found them in good agreement.
While the comparison was done for some specific points in the cosmological param-

eter space, the authors stated that they expect that their comparison should hold for
other models and parameters in view of the stability found for these codes. However,
the authors clarify that future code comparisons should include more models, the
nonlinear regime and the effect of screening mechanisms.

The authors conclude their analysis with a set of steps and warnings that a user
should take into account when using these codes with various MG models to avoid any
common possible sources of errors due to code versions, untested models, parameter
conversion, initial conditions, and model-dependent precision requirements. We refer
the interested reader to the full paper (Bellini et al. 2018) for detailed discussions and
comparisons.

12 Systematic effects in cosmological probes and degeneracies with
modifications to GR

As we review in Sect. 13, constraining decisively modifications to GR will depend on
how well ongoing and future surveys and experiments can control and mitigate sys-
tematic effects in the data. First, uncertainties on MG parameters will become soon
systematic-error dominated rather than statistical-error dominated. So the precision
needed to distinguish between MG and GR will depend on how well systematic uncer-
tainties will be mitigated down. Second, some systematic effects can mimic physical
effects on observables and therefore introduce a bias (shift) in the corresponding cos-
mological parameters including MG parameters, causing them to deviate from their
GR values. We describe below some of these systematic effects taking weak gravita-
tional lensing and intrinsic alignments as an illustrative example and refer the reader
to corresponding reviews and papers for other probes and effects.

Weak gravitational lensing is a promising probe for measuring MG parameters to
a one-percent precision level as forecast studies show in the next section. However, in
order to reach this potential, one needs to get rid of some systematic effects such as
galaxy intrinsic alignments, baryonic effects, and photometric redshift uncertainties,
see for example the reviews Hoekstra and Jain (2008), Troxel and Ishak (2015), Kirk
(2015), Eifler et al. (2015) and Mandelbaum (2017).

For example, Intrinsic alignments (IA) of galaxies have been recognized as one
of the most serious contaminants to weak gravitational lensing and the cosmological
constraints obtained from it. For example, Bridle and King (2007) found a 50% bias due
to IA on determining the dark energy equation of state from weak lensing. There are
two types of IA correlations. The first is the intrinsic ellipticity correlation, also known
as the II signal, and is due to the fact that two physically close galaxies could be aligned
by the tidal force field of the same dark matter structure surrounding them. The second
type of alignment has been pointed out more recently by Hirata and Seljak (2004) and
is due to the fact that if a matter structure causes the alignment of a nearby galaxy and
also contributes to the lensing signal of a background galaxy, then it produces an (anti-
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)correlation between gravitational lensing and intrinsic ellipticities, also known as the
GI signal. The GI 2-point signal has been measured in SDSS, MegaZ-LRG and other
samples by various groups including Mandelbaum et al. (2006), Hirata et al. (2007),
Okumura et al. (2009) and Faltenbacher et al. (2009). The 3-point IA correlations
follow the same mechanisms and are known as III, GGI, and GII correlations. While the
II and III correlations of IA can be, in principle, greatly reduced with photo-z’s by using
cross-spectra of galaxies in two different redshift bins, so that the galaxies are separated
by large enough distances to assure that the tidal effect is weak, this does not work
for the GI, GGI, and GII types which happen between galaxies at different redshifts
and large separations. Proposed mitigation methods for IA include parametrization–
marginalization Heymans et al. (2013) and Krause et al. (2016), nulling techniques
(Joachimi and Schneider 2008, 2009), or self-calibration methods (Zhang 2010a, b;
Troxel and Ishak 2012a, b, c).

Laszlo et al. (2012) conducted a forecast analysis to study the disentanglement
of cosmic tests of gravity from weak lensing systematics. They considered ongoing
and upcoming photometric stage III surveys such as DES and stage IV such as Euclid,
LSST and WFIRST. They found that using galaxy bias and intrinsic alignment models
that depend on the redshift give figures of merit in constraining modifications to gravity
that are a factor of four weaker than when no redshift dependence is assumed. This
reflects the fact that not accounting for systematics or not properly modeling them
can lead to overestimating the constraints on MG. They also found that adding Planck
CMB data helps in adding a number of parameters to model systematic effect in lensing
without loss of constraining power.

Ferté et al. (2017) constrained MG parameters μ and Σ using weak lensing data
from CFHTLenS and DES-SV, RSD data from BOSS DR 12 and the 6dF galaxy
survey, and CMB data from Planck (see Sect. 6). They included three lensing sys-
tematics in their analysis. First, the shape measurement error that they model with a
multiplicative factor. Second, the calibration bias of the photometric redshift distribu-
tion that they model with another parameter. Third, the intrinsic alignments that they
use with a one amplitude parameter for the IA nonlinear model of Hirata and Seljak
(2004) and Bridle and King (2007). They marginalized in their analysis over these
three systematic parameters and compared the effect of ignoring one systematic at a
time. They found that ignoring the effect of calibration bias or photometric redshift
bias does affect significantly the constraints on MG parameters. However, ignoring
intrinsic alignments shifts the constraints toward lower values of Σ . They found thus
a degeneracy between the amplitude of IA and theΣ MG parameter leading to higher
values of Σ when IA is included. Similar shifts in the dark energy equation of state
parameters as caused by including or not including IA systematics have been studied in
Krause et al. (2016) and Yao et al. (2017). Furthermore, Ferté et al. (2017) also found
when forecasting constraints on MG, using 5 years data of DES, that including IA
increases the uncertainties on MG parameters as shown in their figure 11 (right panel
of Fig. 17 here). This shows that ignoring IA leads to overestimating MG parameter
constraints from lensing.

Dossett et al. (2015) performed a constraint analysis on MG parameters using
binned, functional and hybrid parameterizations including intrinsic alignment sys-
tematic effect. They used data from Planck temperature anisotropies, the galaxy
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power spectrum from WiggleZ survey, weak lensing tomography shear-shear cross
correlations from the CFHTLenS survey, Integrated Sachs Wolfe-galaxy cross cor-
relations, and baryon acoustic oscillation data. They found that the constraints on
the amplitude of intrinsic alignment depend on the MG parametrization used but the
correlation parameters between MG parameters and IA amplitude are weak to mod-
erate.

The lesson to take from this illustrative example is that systematic effects in cos-
mological probes of gravity can be degenerate with MG parameters and also limit the
precision that one can reach in constraining these parameters. This is the case also for
other systematics such as baryonic feedback effects that can enhance growth of struc-
ture and be degenerate with some modifications to gravity as reflected on the matter
power spectrum at smaller scales (Puchwein et al. 2013). The scale dependence of the
β parameter in redshift space distortion measurements, if ignored, can also introduce
bias on determining the growth factor of structure leading to incorrect constraints on
MG theories (Okumura and Jing 2011). We refer the reader to the following review
articles including systematic effects in cosmological probes and their effect on dark
energy or modified gravity models: e.g., Weinberg et al. (2013), Mandelbaum (2017),
Nishizawa (2014) and references therein.

13 Future cosmological constraints on GR andMG parameter
forecasts

There are a number of promising cosmological surveys of large scale structure, CMB
and distance probe experiments that are being built or planned such as (AdvACT,
eBOSS, DESI, Euclid, HSC/PFS, LSST, POLARBEAR, SPT-3G, WFIRST and oth-
ers). These will provide an overwhelming large amount of data with high precision.
As we discussed above, huge efforts are also being made to develop and advance the
mitigation of systematic effects to allow these surveys to reach their full constraining
potential.

We will here provide a brief overview of some parameter forecast analyses that
examined how well we will be able to constrain MG parameters using these future
surveys. The commonly used formalism for such forecasts is the Fisher formalism
(Fisher 1935) or the Markov Chain Monte-Carlo (MCMC) simulated spectra and
likelihoods (Metropolis et al. 1953).

The fisher matrix F can be determined from the theoretical observable functions and
specifications of a survey, e.g., Vogeley and Szalay (1996) and Tegmark et al. (1997).
It can provide a forecasted covariance matrix C since C = F−1. This allows one to
forecast uncertainties on individual cosmological parameters σ(pi ) =

√
Ci i . This also

allows one to calculate the correlations between parameters as Pi j = Ci j/
√

Ci i C j j .
Although, the Fisher formalism has shortcomings, as for example, it does not cover
non-Gaussian constraints, it has been used extensively in the literature for cosmological
parameter forecasts. Another quantity that is worth mentioning here is the Figure
of Merit (FoM) that can be used to determine the constraining power of probes or
combinations of probes, e.g., Albrecht et al. (2006, 2009). FoM is often defined to be
proportional to the reciprocal of the square root of the determinant of the covariance
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Fig. 17 Left: Forecasted 68%
and 95% confidence contours on
MG parameters Σ and μ for a
future DES-Y5 survey in blue
and for an LSST-like survey in
green. No intrinsic alignment
(IA) systematics are assumed
here. While DES-Y5 promises
to make tight constrains on Σ as
expected from a weak lensing
survey, LSST will provide an
order magnitude further
improvement on the two
parameters. Right: A
comparison between
uncertainties for DES-Y5 survey
when ignoring IA in green and
taking them into account in blue.
This means that ignoring IA
leads to underestimating the
uncertainties on the parameters.
This also shows that these
uncertainties will be
systematic-error dominated.
Figure reproduced with
permission from Ferté et al.
(2017)

matrix, i.e.,
√

det(C) since the latter is proportional to the super-volume of the super-
ellipsoides in the parameter hyperspace. Various constants of proportionality have
been used including unity. As the constraints get tighter, the ellipsoid volumes get
smaller and the FoM get stronger: FoM = (det C)−1/2 or FoM = − 1

2 ln(det(C)).
FoM has been used for the dark energy equation of state constraints in, e.g., Albrecht
et al. (2006, 2009), Acquaviva and Gawiser (2010), Mortonson et al. (2010), Wang
et al. (2010b) and for MG parameter constraints in, e.g., Dossett et al. (2011a), Laszlo
et al. (2012) and Casas et al. (2017).

A second approach to parameter forecasting is to use simulated likelihoods using
Markov-Chain-Monte-Carlo methods. This allows one to go beyond the Gaussian
assumptions in the Fisher formalism. While the Fisher analyses can in principle pro-
vide accurate estimates in the vicinity of the best fit points in parameter space, it
becomes less accurate away from such regions and in particular in higher dimensional
spaces where systematic effect parameters are added to the analysis. MCMC simu-
lation methods can be computationally intensive and have been used for dark energy
equation of state forecasts with or without systematic effects, see for example Upadhye
et al. (2005) and Krause et al. (2016).
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Ferté et al. (2017) added to their paper a parameter forecast analysis including
the two MG parameters [1 + μ(a)] and [1 +Σ(a)] in the Poisson and weak lensing
equations taking 0 values in GR. They used the full five-year DES survey and an LSST-
like survey. They marginalized over five other cosmological parameters as defined
previously {AS, ns,Ωm,Ωb, h0} and assumed a ΛCDM fiducial model. They used a
Fisher analysis and used specifications for DES-5Y and LSST-like in the respective
order: 5,000 and 18,000 square degrees of sky coverage; 5 and 10 redshift bins; 10 and
55 galaxies per arc-minutes squared; 0.25 and 0.20 for the intrinsic ellipticity standard
deviation; 0.05(1 + z) and 0.05(1 + z) for the standard deviation of the photo-z
estimation as a function of the redshift z. They first derive results for DES-Y5 and
LSST-like without any use of intrinsic alignment systematics. We display their Fig. 10
(left panel of Fig. 17 here) showing forecasted 68% and 95% confidence contours on
(Σ ,μ) around their GR values for both surveys. They give the projected uncertainties
as

σΣ = 0.019, σμ = 0.20, (337)

for DES-Y5, and

σΣ = 0.0017, σμ = 0.013, (338)

for an LSST-like survey.
An ideal case without IA systematics, the uncertainties on Σ from DES seem

already significant while more uncertainty will persist on μ. However, LSST would
provide a further order of magnitude improvement on the errors and constraining even
μ down to a decisive bound. However, as the authors show, including IA systematics
changes significantly these forecasts. They show the effect only for constraints from
DES-Y5 using an IA nonlinear model that they represent by adding an IA amplitude
parameter in each of the 5 bins, so bringing the number of parameters to 12. Their
Fig. 11 (right panel of Fig. 17 here) shows a comparison between constraints with
and without IA systematics. It indicates that ignoring IA leads to under-estimating
uncertainties. It could also be pointed out that ignoring IA can also falsely shift the
best fit MG parameters in a real-data analysis. Here, the analysis did not even include
complementary probes such as RSD, CMB and BAO and yet the statistical errors
are of the order of a percent or sub-percent level. Clearly, the future of constraining
MG models to such a level will be systematic error dominated. The analysis showed
the promise of future weak lensing surveys in providing decisive answers on any
modification of GR at cosmological scales.

Casas et al. (2017) performed an extended forecast analysis of MG parameters for
the weak lensing and galaxy clustering surveys of Euclid, Square Kilometer Array
1 (SKA1), SKA2, and the dark energy spectroscopic instrument (DESI). They also
combined the above surveys to a prior covariance matrix from Planck CMB constraints.
They used the MG parameters μ(a), η(a) and Σ(a) as defined in Eqs. (90), (91) and
(92) of Sect. 5.2.

First, they employed a binning method where they divided the redshift range 0 ≤
z ≤ 3 into six bins with some smoothed transitions. They did not consider any scale
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dependence and assumed that the two parameters take their GR values of unity at
redshift above 3. They assumed that the background has a flat ΛCDM evolution and
considered 15 parameters θ = {Ωm,Ωb, h, ln 1010 As, ns, {μi }, {ηi }}, with i = 1..5.
All ηi and μi are equal to 1 for GR.

Second, they considered a functional time parametrization for the 2 MG parameters
following Ade et al. (2016b), with no scale dependence again. They considered two
sub-cases:

– case-1 where the time evolution of MG parameters is parameterized via the effec-
tive dark energy density parameter. They call this the late-time parameterization
since it reduces to GR at early times

μ(a, k) ≡ 1 + E11ΩDE(a), (339)

η(a, k) ≡ 1 + E22ΩDE(a); (340)

– case-2 where the time dependence is parameterized directly using a Taylor series
in the scale factor. They call this the early-time parameterization since it allows
for modifications to GR even at early times:

μ(a, k) ≡ 1 + E11 + E12(1 − a), (341)

η(a, k) ≡ 1 + E21 + E22(1 − a). (342)

See Casas et al. (2017) and Ade et al. (2016b) for more discussion about these
parametrizations.

In addition to the five standard cosmological parameters, they added E11 and E22 for
the late-time parametrization and E11, E12, E21, E22 for the early-time case. The Ei j s
are then used to reconstruct μ(a), η(a) and Σ(a). Here all Ei j s are zero in GR.

The fiducial model values used for the binned and the two functional parametriza-
tions were taken as the best fit values to the data Planck+BAO+SNe+H0 (BSH) as
used in Ade et al. (2016b) (unlike the analysis discussed right above where the fiducial
values were taken as the GR ones).

The results of Casas et al. (2017) are summarized in three Tables 7, 8, and 9 that
we reproduce from Casas et al. (2017). They give results for weak lensing, galaxy
clustering for Euclid, SKA1 and SKA2 separating constraints when using linear and
nonlinear scales as well as with and without the combination to Planck CMB constraint
covariance matrix. They used two semi-analytical approximations to include nonlinear
regimes for lensing and clustering. They find that using nonlinear scales reduces and
even breaks degeneracies between MG parameters in different bins and also with the
overall amplitude of the matter power spectrum. They also show in the tables how
much gain is obtained when adding constraints from nonlinear scales. In sum, they
find that future surveys Euclid, SKA1, SKA2 and DESI (in combination with Planck
priors) can constrain the present values (i.e., at z = 0) of the parameters η, μ, and Σ
to 2–3% when only linear scales are used but these reduce to about 1% or less when
nonlinear scales are included. Clearly again, the determining factor for these future
surveys in obtaining decisive answers on deviation from GR will be the successful
mitigation of systematic effects.
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Other relatively recent MG parameter constraint forecast studies include Alonso
et al. (2017), where the authors considered scalar–tensor theories and the αx parame-
terization. They focused on Stage IV CMB-S4 and photometric surveys such as LSST,
and SKA1. They also used a Fisher analysis and the FoM metric. The analysis was
not restricted to the quasi-static approximation and included relativistic effects. They
showed how combinations of probes can constrain redshift and scale evolution. They
found that combination of probes can constrain the MG parameters down to a few
percent level as well. It is even more optimistic to note that these should only improve
now that the event GW170817/GRB170817A has constrained αT to practically zero.
Harrison et al. (2016) determined dark energy and MG parameter constraint forecasts
for weak lensing surveys from SKA1 and SKA2. They find that SKA1 can provide con-
straints similar to stage-II experiments such as DES while SKA2 can provide tighter
constraints than stage-IV experiments such as LSST, WFIRST and Euclid. Further
MG parameters or f σ8 forecast studies can be found in Spurio Mancini et al. (2018),
Beutler et al. (2012) and Majerotto et al. (2012).

14 Concluding remarks and outlook

Cosmological surveys and experiments are increasing in number and sophistication.
Interesting ideas with new theoretical developments in gravity theories continue to
emerge. In the midst of this buildup, general relativity continues to be so far prosperous
and consistent with various cosmological tests and observations. It is worth noting
though that while relativity is found to be consistent with all current data sets, the
constraints are still too large to exclude some other possible theories.

There are some small tensions that appear between different data sets when the
ΛCDM model of general relativity is being used as an underlying theoretical model.
While these tensions are likely due to systematic effects in various data sets, it is worth
following closely how they will evolve with upcoming and future more precise data.

Constraints on modified gravity parameters are quickly tightening up due to increas-
ing statistical power in the data. However, this shows that for upcoming and planned
surveys, the uncertainty in testing general relativity at cosmological scales will be
rather systematic-error dominated. Therefore, understanding and mitigating system-
atic effects in cosmological probes of gravity will play a major role in obtaining
decisive answers from observations.

Progress is also needed in working on modified gravity numerical simulations in
order to exploit nonlinear regimes where probes such as weak lensing and galaxy
clustering can reach more constraining power.

Astrophysical tests at galactic and stellar levels are found to be complementary
to cosmological tests of gravity and will prove to be very useful in testing screening
mechanisms of modified gravity models.

There are some interesting proposed viable theories of gravity that are still consistent
with some cosmological observations and have luminal speed of gravitational waves
(see Table 5). It will be useful to develop frameworks to test them against full large-
scale structure and CMB data.
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Finally, in the next decade or so, upcoming and future surveys or experiments
(e.g. AdvACT, DES, DESI, Euclid, HSC/PFS, LiteBIRD, LSST, PIXIE, SKA, SPT-
3G, WFIRST and others) along with ongoing efforts in mitigating systematic effects
promise to tighten the constraints on MG parameters and provide conclusive answers
on gravity physics at cosmological scales.
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Gümrükçüoǧlu AE, Saravani M, Sotiriou TP (2018) Hořava gravity after GW170817. Phys Rev D
97:024032. https://doi.org/10.1103/PhysRevD.97.024032. arXiv:1711.08845

Gurevich LE, Finkelstein AM, Ruban VA (1973) On the problem of the initial state in the isotropic
scalar–tensor cosmology of Brans–Dicke. Astrophys Space Sci 22:231–242. https://doi.org/10.1007/
BF00647424

Guth AH (1981) Inflationary universe: a possible solution to the horizon and flatness problems. Phys Rev
D 23:347–356. https://doi.org/10.1103/PhysRevD.23.347

Guzzo L, Pierleoni M, Meneux B et al (2008) A test of the nature of cosmic acceleration using galaxy
redshift distortions. Nature 451:541–544. https://doi.org/10.1038/nature06555. arXiv:0802.1944

Hamed NA, Cheng HS, Luty MA, Mukohyama S (2004) Ghost condensation and a consistent infrared
modification of gravity. J High Energy Phys 5:074. https://doi.org/10.1088/1126-6708/2004/05/074.
arXiv:hep-th/0312099

Hamilton AJS (1998) Linear redshift distortions: a review. In: Hamilton D (ed) The evolving universe,
astrophysics and space science library, vol 231, p 185. https://doi.org/10.1007/978-94-011-4960-
0_17. arXiv:astro-ph/9708102

Hamuy M, Phillips MM, Suntzeff NB, Schommer RA, Maza J, Smith RC, Lira P, Aviles R (1996) The
morphology of type Ia supernovae light curves. Astron J 112:2438. https://doi.org/10.1086/118193.
arXiv:astro-ph/9609063

123

https://doi.org/10.3847/2041-8213/aa8f41
http://arxiv.org/abs/1710.05446
https://doi.org/10.1088/1475-7516/2018/04/051
http://arxiv.org/abs/1802.01505
https://doi.org/10.1103/PhysRevD.78.123010
https://doi.org/10.1103/PhysRevD.78.123010
http://arxiv.org/abs/0808.1316
https://doi.org/10.1103/PhysRevD.80.023002
http://arxiv.org/abs/0903.0001
https://doi.org/10.1103/PhysRevD.81.084053
http://arxiv.org/abs/1002.1429
https://doi.org/10.1088/1126-6708/2001/10/015
http://arxiv.org/abs/hep-th/0108017
https://doi.org/10.1103/PhysRevD.73.044016
http://arxiv.org/abs/hep-th/0512097
https://doi.org/10.1103/PhysRevD.63.044022
https://doi.org/10.1103/PhysRevD.63.044022
http://arxiv.org/abs/hep-th/0009010
https://doi.org/10.1086/319055
http://arxiv.org/abs/astro-ph/0006103
https://doi.org/10.1086/591670
http://arxiv.org/abs/0805.3695
https://doi.org/10.1103/PhysRevD.86.061504
http://arxiv.org/abs/1205.4241
http://arxiv.org/abs/1710.11177
https://doi.org/10.1103/PhysRevLett.84.5928
http://arxiv.org/abs/hep-th/0002072
https://doi.org/10.1088/1126-6708/2007/10/069
http://arxiv.org/abs/0707.2666
https://doi.org/10.1016/0550-3213(87)90465-2
https://doi.org/10.1088/1475-7516/2013/02/032
http://arxiv.org/abs/1210.0201
https://doi.org/10.1103/PhysRevD.97.024032
http://arxiv.org/abs/1711.08845
https://doi.org/10.1007/BF00647424
https://doi.org/10.1007/BF00647424
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1038/nature06555
http://arxiv.org/abs/0802.1944
https://doi.org/10.1088/1126-6708/2004/05/074
http://arxiv.org/abs/hep-th/0312099
https://doi.org/10.1007/978-94-011-4960-0_17
https://doi.org/10.1007/978-94-011-4960-0_17
http://arxiv.org/abs/astro-ph/9708102
https://doi.org/10.1086/118193
http://arxiv.org/abs/astro-ph/9609063


1 Page 180 of 204 M. Ishak

Hanson D, Hoover S, Crites A et al (2013) Detection of B-mode polarization in the cosmic microwave
background with data from the south pole telescope. Phys Rev Lett 111:141301. https://doi.org/10.
1103/PhysRevLett.111.141301. arXiv:1307.5830

Hao JG, Akhoury R (2009) A possible late time ΛCDM-like background cosmology in relativistic
MOND theory. Int J Mod Phys D 18:1039–1048. https://doi.org/10.1142/S021827180901490X.
arXiv:astro-ph/0504130
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