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The coalescences of stellar-mass black-hole binaries through their inspiral, merger, and ringdown are among

the most promising sources for ground-based gravitational-wave (GW) detectors. If a GW signal is observed

with sufficient signal-to-noise ratio, the masses and spins of the black holes can be estimated from just the

inspiral part of the signal. Using these estimates of the initial parameters of the binary, the mass and spin

of the final black hole can be uniquely predicted making use of general-relativistic numerical simulations. In

addition, the mass and spin of the final black hole can be independently estimated from the merger–ringdown

part of the signal. If the binary black hole dynamics is correctly described by general relativity (GR), these

independent estimates have to be consistent with each other. We present a Bayesian implementation of such a

test of general relativity, which allows us to combine the constraints from multiple observations. Using kludge

modified GR waveforms, we demonstrate that this test can detect sufficiently large deviations from GR, and

outline the expected constraints from upcoming GW observations using the second-generation of ground-based

GW detectors.

I. INTRODUCTION

The coalescence of black-hole binaries, driven by the emis-

sion of gravitational radiation, is perhaps the most luminous

phenomenon occurring in the Universe after Big Bang. Dur-

ing the final stages of the coalescence, up to ∼ 10% of the

mass-energy of the binary is radiated as gravitational waves

(GWs) over the last few orbits of the inspiral and merger (see,

e.g., [1] for a review). This will allow the second-generation

ground-based GW observatories [2–6] to detect such phenom-

ena up to distances of several gigaparsecs [7], making binary

black hole coalescences some of the most promising sources

of GWs for these observatories. Expected detection rates for

second-generation detectors vary from a handful to several

thousands per year, as predicted by population synthesis mod-

els [8, 9]. Third-generation detectors [10–12] are expected to

extend the range even further.

GW observations of binary black holes will enable us to

test general relativity (GR) in a regime that is currently in-

accessible by astronomical observations and laboratory tests.

Apart from putting bounds on parameters of specific alterna-

tive theories, proposed tests include constraining parametrized

deviations from post-Newtonian gravity, tests of the no-hair

theorem by observing multiple quasi-normal modes or by

constraining deviations from the expected multipolar struc-

ture of black holes, etc. (see, e.g., [13, 14] for reviews).

Here we present a test of GR based on GW observations

of “golden” black-hole binaries [15, 16] – binaries with to-

tal mass ∼ 50M⊙–200M⊙, so that the signals observed by

ground-based GW observatories cover the inspiral, merger

and ringdown (IMR) phases of the coalescence. During the

inspiral, the two black holes spiral-in under gravitational radi-

ation reaction, and eventually merge to form a common hori-

zon. In the ringdown stage, the newly formed horizon settles

into a Kerr black hole with the emission dominated by a spec-

trum of quasi-normal modes. According to the no-hair theo-

rem, the final black hole is fully characterized by its mass and

spin angular momentum.

The idea of the proposed test is that, if a GW signal is ob-

served with sufficient signal-to-noise ratio (SNR), the masses

and spins of the black holes can be estimated just from the

inspiral part of the signal. Given the estimates of the ini-

tial parameters of the binary, the mass and spin of the final

black hole can be uniquely predicted making use of fits to

numerical-relativity (NR) simulations. In the same way, the

mass and spin of the final black hole can be independently

estimated from the merger–ringdown portion of the signal.1

If the binary black hole dynamics is correctly described by

GR, these independent estimates have to be consistent with

each other. The consistency of the parameters estimated from

the highly relativistic post-inspiral regime with those inferred

from the weakly relativistic inspiral regime is a nontrivial test

of the ability of GR in modeling this complex phenomenon.

II. FORMULATION OF THE TEST

The set of parameters λ of the binary, such as the masses

(m1,m2) and spin angular momenta (S1,S2) of the black

holes, are imprinted on the gravitational waveform. Given

data d(t) containing an observed GW signal, and assuming the

GR model hgr, the posterior distribution P(λ|d, hgr) of these

parameters can be estimated making use of Bayes’ theorem

P(λ|d, hgr) = N−1 p(λ)L(d|hgr,λ), (1)

where p(λ) is the prior distribution of λ, N is a normalization

constant (called the evidence) andL(d|hgr,λ) is the likelihood

1 The original test proposed in [15] in the context of LISA makes use of only

the inspiral and ringdown parts. In the case of second-generation ground-

based detectors, the ringdown SNR is unlikely to be large for most events.

Luckily, recent advances in NR have allowed us to model the merger ac-

curately. Hence, our implementation makes use of the merger part as well.

However, it is possible to restrict our test solely to the inspiral and ringdown

parts by appropriate choice of the cutoff frequencies defined in Eq. (2).
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of observing the data d given the signal model hgr and the set

of parameters λ,

L = exp

[

−

∫ fup

flow

|d̃( f ) − h̃gr( f ,λ)|2

S ( f )
d f

]

. (2)

Above, d̃( f ) is the Fourier transform of the data, h̃gr( f ,λ) is

the frequency-domain signal waveform corresponding to the

set of parameters λ, and S ( f ) is the power spectral density of

the detector noise, while flow and fup are the lower and upper

cutoff frequencies used in the calculation. The sampling of

the likelihood function L(d|hgr,λ) over the (typically large

dimensional) parameter space often makes use of stochas-

tic sampling methods such as Markov-chain Monte-Carlo or

nested sampling [17].

First, we estimate the joint posterior probability

Pimr(m1,m2,S1,S2) (marginalized over all other param-

eters of the binary) from the complete observed IMR signal.2

This allows us to infer the posterior Pimr(M f , χ f ) on the

mass M f and dimensionless spin χ f := |S f |/M
2
f

of the final

black hole, using fitting formulas (e.g., [18]) calibrated to NR

simulations

M f = M f (m1,m2,S1,S2), χ f = χ f (m1,m2,S1,S2). (3)

We use these estimates of M f and χ f to split the signal into

an inspiral part and a merger–ringdown part. In this paper,

we define the inspiral [merger–ringdown] part as Fourier fre-

quencies less [greater] than that of the innermost stable circu-

lar orbit (ISCO) of a Kerr black hole with mass and spin equal

to that given by the median value of Pimr(M f , χ f ).
3 However,

this choice is not unique; alternative ways of splitting the sig-

nal are possible, and reasonable alternatives do not have a sig-

nificant effect on the test.

We can now independently estimate the posterior

Pi(m1,m2,S1,S2) from the inspiral part of the signal

and compute the corresponding posterior Pi(M f , χ f ) of the

mass and spin of the final black hole using the fitting formula

Eq. (3). We independently estimate the posterior Pmr(M f , χ f )

from the merger–ringdown part of the signal. In the absence

of any deviations from GR (or significant systematic errors),

we expect the two posteriors Pi(M f , χ f ) and Pmr(M f , χ f ) to

overlap (see, e.g., the top left panel in Fig. 1).

To constrain possible departures from GR, we define two

parameters that describe departures from the GR prediction of

the mass and spin of the final black hole

∆M f := Mif − Mmrf , ∆χ f := χif − χ
mr

f , (4)

whose posterior distribution can be computed as

P∆(∆M f ,∆χ f ) =

"
dM f dχ f Pi(M f , χ f ) ×

Pmr(M f − ∆M f , χ f − ∆χ f ). (5)

2 From here onwards, we drop the explicit reference to the data d and the GR

model hgr in the posteriors, for simplicity.
3 While we split the signal in the Fourier domain, we have checked that

almost all the power below [above] our split frequency indeed comes from

the early [late] portions of the waveform; the effect of the spectral leakage

is negligible.

FIG. 1: Left panels: The top left panel shows the 68% and 95% cred-

ible regions of the posterior distributions Pi(M f , χ f ) and Pmr(M f , χ f )

of the mass and spin of the final black hole estimated from the in-

spiral and merger–ringdown parts of a simulated GR signal, respec-

tively. Also shown is the posterior Pimr(M f , χ f ) estimated from the

full IMR signal. The simulated GR signal is from a non-spinning

black hole binary with m1 = m2 = 50M⊙, producing an optimal SNR

of 25 in the Advanced LIGO Hanford–Livingston network. The cor-

responding value of the final mass and spin is indicated by a black

cross. The bottom left panel shows the posterior P(ǫ, ξ) on the pa-

rameters ǫ := ∆M f /M f and ξ := ∆χ f /χ f that describe the devia-

tion from GR, estimated from the same simulation. The GR value is

marked by a “+” sign; the posterior is consistent with the GR value.

Right panels: Same as the left panels, except that here the injection

corresponds to a modified GR signal with αmodGR = 400, with the

location and orientation of the binary same as that of the left panels,

thus producing an optimal SNR of 18.9. The GR value is well out-

side the 95% credible region. In this example, GR can be ruled out

with confidence≫ 99%.

In the absence of departures from GR, we expect

P(∆M f ,∆χ f ) to be consistent with zero. We define two quan-

tities ǫ := ∆M f /M f and ξ := ∆χ f /χ f that describe the frac-

tional differences in the two predictions of the mass and spin

of the final black hole. The posteriors on these can be com-

puted as

P(ǫ, ξ) =

"
dM f dχ f P∆(ǫM f , ξχ f ) Pimr(M f , χ f ) M f χ f .

(6)

Here, the posterior Pimr(M f , χ f ) denotes our best estimate of

the mass and spin of the final black hole assuming GR, which

is estimated from the full IMR waveform. An example of the

posterior distribution P(ǫ, ξ) from a simulated GR signal is

shown in the bottom left panel of Fig. 1. Finally, the poste-

riors P(ǫ, ξ) from multiple observations of binary black holes

can be combined to construct a single posterior that can better

constrain deviations from GR (see, e.g., Fig. 2).
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III. IMPLEMENTATION

To compute the posterior distributions, we employ the

LALInference [17] stochastic samplers available in the LIGO

Algorithm Library (LAL) [19]. In particular we use the LAL-

InferenceNest code [20], which implements a nested sam-

pling algorithm [21] in the context of GW data analysis. As

the GR signal model we employ the gravitational waveform

family SEOBNRv2 ROM DoubleSpin [22] which describes

the inspiral, merger and ringdown waveform of black-hole

binaries with non-precessing spins. This is a reduced-order

model version [22] of the effective-one-body (EOB) wave-

form family [23] calibrated to NR simulations. We use the

fitting formulas proposed in [18] to compute the mass and

spin of the final black hole from the initial masses and (non-

precessing) spins.

From the (simulated) data containing a GW signal, we com-

pute the posterior distributions of M f and χ f in three different

ways:

1. Pimr(M f , χ f ) is computed from the full data: we set

flow = f0 and fup = fNyq in Eq. (2), where f0 is the low-

frequency cutoff of the detector and fNyq is the Nyquist

frequency of the data. From the median value of the

posterior Pimr(M f , χ f ), we compute the frequency of the

Kerr ISCO ( fISCO). This is used as the characteristic fre-

quency to delineate the inspiral and merger–ringdown

parts of the signal in our current analysis.

2. Pi(M f , χ f ) is computed from the inspiral part of the

data: we set flow = f0 and fup = fISCO in Eq. (2).

3. Pmr(M f , χ f ) is computed from the merger–ringdown

part of the data: we set flow = fISCO and fup = fNyq

in Eq. (2).

All posteriors are computed by assuming a prior distribution

that is uniform in M f and χ f . The posterior P∆(∆M f ,∆χ f )

is computed from Eq. (5) using SciPy’s correlate2d function

and P(ǫ, ξ) is computed by numerically integrating Eq. (6).

IV. GR SIMULATIONS

We have performed simulations where we inject simu-

lated GW signals modelling inspiral, merger and ringdown

of binary black holes (based on GR, as modelled by SEOB-

NRv2 ROM DoubleSpin) into colored Gaussian noise with

the design power spectrum of the Advanced LIGO detectors

in the high-power, zero-detuning configuration [24], with a

low frequency cutoff f0 = 10 Hz. Binaries had component

masses (detector frame) uniformly distributed in the range

m1,2 = [10, 80] M⊙ and non-precessing spins in the range

χ1,2 = [−0.98, 0.98]. Sources were distributed uniformly in

the sky with isotropic orientations in such a way that the ob-

served signals will have a network SNR of ∼ 25. The esti-

mated posterior P(ǫ, ξ) from a single simulated event is shown

in the bottom left panel of Fig. 1. We also combine posteriors

from multiple events; Figure 2 shows the combined posteri-

ors P(ǫ, ξ) as a function of the number of simulated events.

The constraints on the deviation parameters {ǫ, ξ} become nar-

rower when multiple events are combined. The width of the

68% credible region could be as low as a few percent when

∼ 100 observations are combined. This is within the reach of

one year of Advanced LIGO observation, according to several

population synthesis models [8, 9].

V. MODIFIED GR SIMULATIONS

We also test our analysis pipeline using simulated GW sig-

nals that show departures from GR. To obtain waveforms

whose energy and angular momentum loss differs from that

predicted by GR, we have chosen to make kludge waveforms

based on a simple modification of EOB waveforms. Specif-

ically, we take the IHES EOB waveform model described

in [25], which is given as publicly available code at [26],

and modify the GW flux starting at second post-Newtonian

(2PN) order by multiplying the six modes that first enter at

2PN [viz., the (ℓ,m) = (3,±2), (4,±4), and (4,±2) modes] by

a constant factor αmodGR = 400.4 Such a 2PN modification to

the flux is unconstrained by measurements of the GW energy

loss from the double pulsar J0737−3039 [27, 28]. We also

multiply those modes of the waveform by a consistent factor

α
1/2

modGR
. However, only the dominant (2,±2) modes are used

for simulating the observation. As in the original code, we

use the maximum of the orbital frequency (calculated from

the EOB Hamiltonian) to mark the termination of the inspi-

ral (and the start of the matching to the quasi-normal modes

to give the merger and ringdown). The eccentricity of our

modified waveforms remains as small (. 10−5) as for the un-

modified waveforms.

Since the final mass and spin in the original EOB waveform

are set by a fit to NR results, for the modified waveform we re-

place this determination by demanding self-consistency of the

radiated energy and angular momentum. That is, we choose

the final mass and spin by minimizing the difference between

the values we set for the final black hole and those obtained

by energy and angular-momentum balance using the initial

data and the radiated quantities calculated from the waveform

(through ℓ = 7). This treatment assumes that the standard

GR expressions for the radiated energy and angular momen-

tum remain valid for this modified gravity waveform, which

is indeed the case for a large range of modified theories [29].

We have not changed the quasi-normal mode spectrum of the

final black hole, for simplicity.

The right panels of Fig. 1 show the estimated posteriors on

the mass and spin of the final black hole from one modified

GR simulation (equal-mass, non-spinning binary), for which

the final mass and spin are 85.7M⊙ and 0.307, compared to

95.2M⊙ and 0.687 in the analogous GR case.5 We also show

the posterior P(ǫ, ξ) on the parameters describing deviations

from the GR predictions. It can be seen that the GR value

(marked by a “+” sign) is well outside the 95% credible re-

gion of the estimated posterior. In this example, GR can be

ruled out with ≫ 99% confidence. We have verified that this

signal, having an optimal SNR of 18.7, produces a chi-square

4 The corresponding change in the PN phasing coefficients will depend on

the mass ratio. For equal masses, the 2PN term in the frequency domain

phase expression will be modified by a factor of ∼ −13.
5 The GR waveform used in the left panels of Fig. 1 was computed using

the unmodified IHES EOB code, to allow a direct comparison with the

modified GR result, though the differences between SEOBNRv2 and IHES

EOB are very small for this equal-mass, non-spinning case.
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FIG. 2: Left panels: Shaded regions show the 68% and 95% credible intervals on the combined posteriors on ǫ, ξ from multiple observations of

GR signals plotted against the number of observations by Advanced LIGO. The GR value (ǫ = ξ = 0) is indicated by horizontal dashed lines.

The mean value of the posterior from each event is shown as an orange dot along with the corresponding 68% credible interval. Posteriors on

ǫ are marginalized over ξ, and vice versa. Middle panel: The orange contours show the 68% credible regions of the individual posteriors on

the ǫ, ξ computed from the same events while the thick red contour shows the 68% and 95% credible regions on the combined posterior. Right

panel: The width of the 68% credible region in the marginalized posteriors of ∆M f /M f and ∆χ f /χ f from multiple observations.

weighted SNR ≃ 15 when filtering with the best-fit GR wave-

form and would thus likely be detected by a standard detection

pipeline [30].

VI. CONCLUSIONS

The test that we propose assumes the validity of GR and

tests the null hypothesis by computing the posterior distribu-

tion for the parameters (ǫ, ξ) that quantify a deviation from

the result in GR, where both parameters are identically zero.

Multiple observations could be combined to produce better

constraints on the deviation. We have seen that this test is able

to detect deviations from GR that are not constrained by radio

observations of the orbital decay of the double pulsar – the

tightest constraint available. The test is not based on a specific

theory and, consequently, could work in any theory in which

massive compact binaries inspiral, merge, and then ringdown.

Conversely, if the data were inconsistent with the null hypoth-

esis, then they would not be able to give any direct indica-

tion of which modified theory is responsible for the deviation

from GR. We expect this test to complement other GW-based

tests of GR, including those looking for specific modifications

to GR and those looking for generic parametrized deviations,

providing confidence in any statements of whether a given sig-

nal (or population of signals) is consistent with GR.

Although we have used the ISCO frequency of the final

Kerr black hole to delineate between inspiral and merger–

ringdown in this paper, alternative ways of splitting the sig-

nal are possible. We have verified that the main results are

robust against (reasonable) choices of cutoff frequencies. We

have neglected the effect of spin precession and subdominant

modes in this paper. However, they can be readily included

in this method by incorporating these effects in our GR model

hgr and also (in the case of precession) in the fitting formulas

for the final mass and spin. Systematic errors due to waveform

inaccuracies could be mitigated or quantified by using wave-

form models that are better calibrated to NR simulations as

they become available. Methods for mitigating the systematic

errors due to detector calibration errors have been indepen-

dently developed which involve marginalizing the posterior

distributions of the masses and spins over additional parame-

ters that model calibration errors [31]. Studies pertaining to

these aspects are to be reported in a forthcoming paper [32].

The test introduced in this paper has already had its first

application: This was one of the tests used to establish the

consistency of LIGO’s first gravitational wave detection with

a binary black hole signal as predicted by GR [33, 34].
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