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Abstract

We propose goodness of �t tests for testing generalized linear models and

semiparametric regression models against smooth alternatives� The focus is on

models having both� continuous and factorial covariates� As smooth extension

of a parametric or semiparametric model we use generalized varying coe�cient

models as proposed by Hastie � Tibshirani ��		
�� A likelihood ratio statistic

is used for testing� and asymptotic normality of the test statistic is proven�

Due to a slow asymptotic convergence rate a bootstrap approach is pursued�

Asymptotic expansions allow to write the estimates as linear smoothers which

in turn guarantees simple and fast bootstrapping� The test is shown to have
p
n power� but in contrast to parametric tests it is powerful against smooth

alternatives in general�

Keywords� Likelihood Ratio� Local Likelihood Fitting� Model Checking�

Semiparametric Models� Smoothing
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� Introduction

In recent years several articles dealt with goodness of �t tests for checking parametric

models against smooth alternatives� The focus has been on testing a generalized

linear regression model of the form

H� � E�yju� � hfV �u��g ���

with continuous regressors u� design matrix V �u� and known link function h���

against the smooth mode

H� � E�yju� � hf��u�g� �	�

where ��u� is an unknown but smooth function in u� Assuming that V �u� consists

of smooth but known functions in u� model ��� is a proper submodel of �	�� A

typical example is the case where V �u� consists of polynomials in u� Smooth tests

for testing ��� against �	� can be derived by smoothing the �tted parametric resid


uals from ���� see e�g� le Cessie � van Houwelingen ������ or Azzalini � Bowman

����
�� Alternatively one can compare the parametric and the smooth models using

a likelihood ratio type statistic� see for instance Azzalini� Bowman � H�ardle �������

Staniswalis � Severini ������ or H�ardle � Mammen ����
�� Another approach was

suggested by Firth� Glosup � Hinkley ������ who estimate the parametric model

locally and take the improvement of the �t as a measure for goodness of �t� Eubank

� Spiegelman ������� Eubank� Hart � LaRiccia ����
�� Hart � Wehrly ����	� or

Aerts� Claeskens � Hart ������ extend V �u� by appropriately chosen basis functions

and assess whether the additional model components improve the �t signi�cantly�

Recently� Stute ������ suggested a test based on integrated regression functions�

	



while Dette � Munk ������ extend nonparametric tests for testing heteroscedastic


ity in regression models� Further approaches for model checking have been suggested

among others by Raz ������� M�uller ����	� or Kauermann � Tutz �����b�� A com


prehensive overview of smooth tests can be found in Hart �������

In contrast to most of the papers cited above we consider models with both�

factorial covariates x� say� and continuous regressors u� A parametric model that

jointly includes continuous and factorial regressors is the generalized linear model

E�yjx� u� � hfW �x� u��g �
�

where the design matrix W �x� u� is constructed from both� x and u� The smooth

alternative corresponding to �
� is a varying coe�cient model in the sense of Hastie

� Tibshirani ����
�� which is given by

E�yjx� u� � hfZ�x���u�g� ���

Matrix Z�x� is a design matrix built solely from the factorial regressors x and ��u�

is a vector valued smooth but unknown function� For instance� if x is a binary

factor� a smooth alternative to the parametric linear interaction model E�yjx� u� �

h��� � u �u � x �x � u x �ux� is the model E�yjx� u� � hf���u� � x�x�u�g� Here

���u� is the smooth main e�ect and �x�u� is the e�ect of x modi�ed by u� i�e� the

smooth interaction between x and u� We consider multivariate parametric inter


action models by assuming that the design matrix W �x� u� in �
� decomposes into

the matrix product W �x� u� � Z�x�V �u�� This ensures that the parametric model

is a proper submodel of the varying coe�cient model ���� since ��u� is modeled

parametrically by V �u��� For identi�ability reasons we further assume that V �u�

has full rank and has a row diagonal structure� This means in each column of V �u�






there is only a single non
zero element� Moreover� to ensure that models are nested

each row of V �u� is assumed to have � as element� For instance the parametric

model E�yjx� u� � h��� � u �u � x �x � u x �ux� may be written as

E�yjx� u� � h

���������� x�
�BB� � u � �

� � � u

�CCA �

���	��

with �T � ���� �u� �x� �xu� and obvious de�nition for Z�x� and V �u�� If the polyno


mial degrees in the rows of V �u� coincide� which is the case in this example� we can

also write V �u� as Kronecker product V �u� � I � ��� u� with I as identity matrix�

In general however the polynomial degree in the rows of V �u� is allowed to di�er�

We propose tests for testing the H� model �
� against the alternative ���� In

order to avoid the disturbing in�uence of the smoothing bias �see e�g� H�ardle �

Mammen ���
� and to allow for appropriate bandwidth selection we estimate the

alternative model ��� by locally �tting the parametric model �
�� This implies that

under H� the smooth estimates are estimated without the typical smoothing bias�

so that bias consideration can be neglected� Moreover� in a �rst order expansion

the estimate is obtained by linear smoothing� In particular this provides simple and

numerically fast calculation of the �t �

A related but di�erent testing problem occurs in partial linear or semiparametric

models where e�ects of the continuous and factorial regressors are modeled additively

by

E�yjx� u� � hf���u� � Zx�x��xg� ���

see for instance Heckman ������� Speckman ������� Severini � Staniswalis ������ or

Hunsberger ������� In ���� the design matrix Zx�x� is built from x however without

�



the intercept in order to ensure identi�ability in ���� The covariates x and u do not

interact� i�e� the smooth e�ect of the continuous variable ���u� is shifted for di�erent

values of the factorial variables x� H�ardle� Mammen � M�uller ������ propose tests

for testing whether the shape of ���u� can be modeled parametrically �see also Fan �

Li ������ Bowman � Young ������ investigate nonparametrically whether smooth

main e�ects di�er in factorial groups� i�e whether �x � �� Our focus is on testing

the model assumption that x and u act additively�

We �t the parameters in the semiparametric model ��� by a combination of

pro�le likelihood and local likelihood estimation �see Cuzick ���	 or Severini �

Wong ���	�� For normal response and identity link this approach is equivalent to

Speckman�s ������ estimate� For testing purposes� the varying coe�cient model

��� is considered as smooth alternative to ���� with Z�x� � f�� Zx�x�g in ���� The

alternative model is again estimated by locally �tting the H� model ���� This means

locally a semiparametric model is �tted which in turn allows the e�ects of the factors

to vary� The welcome bene�t of this estimation approach is that bias components

of the smooth �t cancel out and hence the typical smoothing bias can again be

neglected�

For both settings� i�e� for parametric and semiparametric models we employ a

likelihood ratio statistic� Asymptotic normality is proven with convergence rate of

order O������� where � is the bandwidth of the smooth �t with �� �� The asymp


totic rate of convergence is rather slow so that a bootstrap approach is pursued�

Asymptotic approximations are used to provide simple and numerically fast com


putation� The proposed test is shown to be asymptotically as powerful as classical

parametric likelihood ratio tests� This means it detects general but smooth alter


�



natives tending to H� with order pn� In contrast to parametric tests however the

smooth test has an omnibus power which also shows in simulations�

� Testing Generalized Linear Models

��� Local Likelihood Fitting

Let the response y for given x and u follow the exponential family distribution

yjx� u � exp�fy������g	
�� where � � ���� is the natural parameter� � � E�yjx� u�

is the expectation and ���� is the log normalization constant� The dispersion param


eter 
 is either assumed to be known or taken as nuisance parameter� Let �yi� xi� ui�

denote a random sample for i � �� � � � � n and abbreviate Zi � Z�xi�� Vi � V �ui� and

Wi � ZiVi� In the following the objective is to test the generalized linear model

H� � E�yjx� u� � hfZ�x�V �u��g ���

against the varying coe�cient model

H� � E�yjx� u� � hfZ�x���u�g� ���

The varying coe�cient ��u� under H� is estimated by local likelihood �see e�g� Fan�

Heckman � Wand ���� or Carroll� Ruppert � Welsh ������ Having in mind that H�

is to be investigated� the local likelihood is based on theH� model� This means we �t

the H� model ��� locally by introducing kernel weights ���ij � Kf�ui�uj�	�g	K���

with K��� as unimodal kernel function and � as smoothing parameter� For u � ui

this yields the local likelihood function

l�i���i� �
X
j

���ijlj�Wj�i� ���

�



where lj�
� � yj������ with � � �fh�
�g is the log likelihood contribution of the jth

observation evaluated at the linear predictor 
� Maximizing ��� with respect to �i

yields the local likelihood estimate b�i � b��ui� � Vi
b�i� If the matrix V �u� consists of

polynomials in u� estimates of this type are also known as local polynomial estimates�

see e�g� Fan � Gijbels �������

When investigating the asymptotic properties of estimates obtained from ���

we assume standard regularity conditions� For instance we postulate that ��u� is

su�ciently smooth and that locally weighted Fisher matrices have full rank� see

Kauermann � Tutz �����a� for a technical discussion of these assumptions� Di�er


entiating ��� with respect to � leads to the local estimating equation

� �
X
j

���ijW
T
j l��j�Wj

b�i�� ���

where l��j�
� � �lj�
�	�
 � f�h�
�	�
gvar�yj���fyj � h�
�g is the standard score

contribution� As shown in the appendix� expansion of ��� yields in �rst order ap


proximation

b�i � �i � ViF
��
�i�

���X
j

���ijW
T
j l��j�
j�

�	
� Vib�i��� ����

where 
j � Zj�j is the true predictor and F�i� �
P

j ���ijW
T
j FjWj is the locally

weighted Fisher matrix with Fj � F �
j� � Ef���l�
j�	��
�
�g� The component

b�i��� contains the smoothing bias which equals

b�i��� � F
��
�i�

���X
j

���ijW
T
j FjZj��j � �i�

�	
 �

It is useful to give expansion ���� in matrix notation� Let S� denote the n 	 n

dimensional generalized smoothing matrix with entries

S��ij � ���ijWiF
��
�i�W

T
j � ����

�



Note that the rows of S� Diag�Fi� sum up to one� with Diag�Fi� denoting the di


agonal matrix with Fi� i � �� � � � � n� as diagonal elements� Let in the sequel 
 �

�
�� � � � � 
n�
T � �Z���� � � � � Zn�n�

T be the vector of predictors and b
 � �Z�b��� � � � � Znb�n�T
be the corresponding estimate� Moreover� let l� � �l���� � � � � l��n�

T be the score vector

with l��i � l��i�
i� as elements� From ���� one obtains

b
 � 
 � S�l� �B� ��	�

where the bias B� � �W�b������ � � ��Wnb�n���� equals B� � S�Diag�Fi�
 � 
� If model

H� holds we have 
j � Wj� which provides S�Diag�Fi�
 � 
� Hence under H� the

smoothing bias B� vanishes�

Local likelihood �tting based on solving ��� typically demands time consuming

computation since locally iterative �tting is required� This can be avoided by making

use of the �t under the H� model� Let P � W �W TDiag�Fi�W ���W T with W T �

�W T
� � � � � �W

T
n � be the projection type matrix resulting from �tting the H� model

by standard maximum likelihood� This means under H� one has the �rst order

approximation b
��� � 
 � P l� where b
��� � W b� with b� as maximum likelihood

estimate under the H� model� When �tting 
 under H� one can employ expansion

��	� but substitute the unknown predictor 
 by the �t under H�� This means we

de�ne the one step estimate b
��� �� b
��� � S�
bl���� with bl���� � fl����b
���� �� � � � � l��n�b
���n g

denoting the �tted score vector� Making use of S�Diag�Fi�b
��� � b
��� and expanding

bl���� about 
 gives in �rst order approximation

b
��� � 
 � S�l� �B��

This means that b
��� equals in �rst order approximation the local likelihood esti


mate b
 de�ned in ���� In contrast to the local likelihood estimate however� b
��� is
�



calculated as linear smoother in one step� starting from the �t under H�� and hence

provides simple and fast calculation�

��� Likelihood Ratio Testing

We test the H� model against the alternative H� by use of the likelihood ratio

statistic

�� � �	
X
i

fli�b
���i �� li�b
���i �g ��
�

where subscript � indicates the dependence on the smoothing parameter� In �rst

order approximation under H� the likelihood ratio is approximated by

�� � 	
X
i

li�b
���i �� li�b
���i �

� 	lT� �b
��� � 
�� �b
��� � 
�TDiag�Fi��b
��� � 
�

�	lT� �b
��� � 
� � �b
��� � 
�TDiag�Fi��b
��� � 
�

� lT� f	S� � S�
TDiag�Fi�S� � Pgl�� ����

where we made use of the property P � PDiag�Fi�P � If model H� holds� e�cient

estimation of ��u� is achieved only for the unsmoothed case � � 
� Under H��

however� the usual rate for �univariate� smoothing is �� � and �n�
� which is

assumed in the following� As shown in the appendix� the quadratic form ���� allows

to easily calculate the moments of ��� With �S� � f	S� � ST
�Diag�Fi�S�gDiag�Fi�

one obtains in �rst order approximation EH�
���� � tr� �S���q� where q is the rank of

W � The term tr� �S�� thereby is frequently called the degree of freedom for smoothing

�see Hastie � Tibshirani ������ Cornish
Fisher expansion �see e�g� Barndor�
Nielsen

�



� Cox ����� leads to

P

���� � E����q
Var����

� z

�A � ��z�� 
�z�
Cum�����

�Var�������
�z� � �� � � � � ����

where ��� and 
�� denote the distribution and density function of a standard normal

distribution� For � � � the cumulants of �� tend to in�nity with order ���� This

implies that Cum����� � O����� and Var������ � O���� as demonstrated in the

appendix� The latter component in ���� tends to zero with order O������ and

components not explicitly listed are O���� Hence for �� � the likelihood ratio ��

is asymptotically normal� however the rate of convergence is rather slow� Therefore

a bootstrap procedure seems more appropriate for testing purposes� We suggest to

bootstrap directly from ����� i�e�

��� � l�
T

� f	S� � ST
�Diag�Fi�S� � P�gl�� ����

where l�
T

� � �l����� � � � � l
�
��n� with l���i � f�h�b
���i �	�
gvar�yi���fy�i � h�b
���i �g and y�i

drawn from the �tted parametric model with predictor b
���i � Wi
b��

Power Consideration

We brie�y discuss the power properties of the test� We consider alternatives of the

type H� � ��u� � V �u�� � ��u�n�p� with p � � and ��u� being some arbitrary but

smooth function� bounded and bounded away from zero� i�e� � � a � Pn
j j��uj�j	n �

b � 
� Moreover ��u� is assumed to be identi�able� i�e� ��u� and V �u� are

orthogonal as explicitly stated in the appendix� It is shown in the appendix that for

p � �		� the test detects H� asymptotically with probability one� Hence one achieves

the same order of power as typically met in standard parametric settings� However

in contrast to parametric tests� ��� is arbitrary but smooth here and therefore the

test has sensible power for general smooth alternatives�

��



Choice of the bandwidth

We suggest choosing � from the Akaike criterion

b� �� arg maxf�� � 	 EH�
����g� ����

where it is advisable to restrict the range of � in order to avoid undersmoothing�

For instance one can restrict the degree of freedom of the H� model to exceed the

parametric degree only by a certain amount� In the simulation and example below

we set tr� �S�� � q � � with q as parametric degree of freedom� In general it can be

observed that the signi�cance of �� depends only weakly on the bandwidth �� i�e�

the p value changes rather moderately for di�erent bandwidths� The major reason

for this property is that due to �tting the H� model locally the smoothing bias

disappears under H� and in the extreme case of smoothing� i�e� � �
� the �ts of

H� and H� coincide�

��� Simulation and Example

Simulation Study�

In a simulation study the main e�ect logit model H� � E�yjx� u� �

logit����� � u�u � x�x� with a balanced binary factor x is tested� The covari


ate u takes 
� equidistant points in ��� �� and at each point of u �ve repetitions of

the binary response y are sampled at x � �� and x � � with the predictor given

by 
 � ���� � u � x� The power of the test is assessed by simulating from the

alternative models H��a � 
 � ��� u� x� xu� H��b � 
 � �� � u� xf���� sin�u��g

and H��c � 
 � �	u� 	u� � ��� � xu� Table � shows the simulated rejection frequen


cies based on ��� simulations� each one based on ���� bootstraps replicates� For

��



comparison we also report the rejection probabilities of a parametric likelihood ratio

test obtained from testing the H� model against the parametric interaction model

H� � 
 � ���u�u�x�x�xu�xu� The smooth test behaves slightly liberal but shows

omnibus power by indicating lack of �t in all three alternative settings� In contrast�

the parametric test shows power only for modelH��a� which is the correct alternative

model in the likelihood ratio� In settings H��b and H��c however the power of the

parametric test is disappointing�

�Table ��

Example�

We investigate a dataset given in Bowman � Azzalini ������� The data describe the

occurrence of human parasitic worm infestation �y � � for yes� � for no� of n � 
��

citizens of a rural community in China� The explanatory quantities are age� u� and

gender� x� We test the main e�ect logit model E�yjx� u� � logit����� � x�x � u�u�

against the smooth alternative logit��f���u��x�x�u�g yielding a p
value of ���
 with
b� � 
� chosen by ����� Figure � shows the parametric �t and the corresponding

�t under H�� We extend the parametric model by a linear interaction term for u

and x which provides the p
value ���� at b� � ��� Modeling an additional quadratic

main e�ect for age �nally gives the p
value ��
� at b� � ��� Hence� the quadratic

interaction model E�yjx� u� � logit����� � x�x � xu�xu � u�u � u��uu� can be

considered as an adequate model for the data� This is also seen from Figure � where

nonparametric and parametric �ts hardly di�er�

�Figure ��

�	



� Testing Semiparametric Models

��� Pro�le Likelihood Fitting

In the following section we extend the above testing problem by considering the

semiparametric model

H� � E�yjx� u� � hf���u� � Zx�x��xg� ����

which is tested against the varying coe�cient model

H� � E�yjx� u� � hfZ�x���u�g ����

with Z�x� � f�� Zx�x�g� In the semiparametric model the regressors x and u act

additively� i�e� ���u� is the smooth main e�ect and Zx�x��x is an additive shift for

the factors� Hence testing ���� against ���� is a test on interaction between the

factorial covariates x and the continuous regressors u�

Estimation of the semiparametric model ���� requires both� local likelihood �t


ting for the smooth component and pro�le likelihood �tting for the parametric

component �x� see Severini � Wong ����	� or Hunsberger ������� We �rst con


sider �x as known so that 
x � Zx�x��x serves as given o�set in the smooth

model E�yjx� u� � hf���u� � 
xg� We estimate ���u� by �tting locally the model

E�yjx� z� � hfV��u��� � 
xg where V��u� is a row vector of polynomials in u� For

instance the choice V��u� � ��� u� corresponds to local linear �tting of ���u�� Solving

the estimating equation

� �
X
j

���ijV
T
��jl��j�V��j

b���i � 
x�j� �	��

�




yields the estimate b���i � V��i
b���i for the smooth component� where V��j � V��uj��

One should note that b���i calculated from �	�� depends on the particular value of

parameter �x� which is however suppressed in the notation� Now the estimates

b���i are inserted into the likelihood for �x yielding the pro�le likelihood functionP
i li�b���i�Zx�i�x�� Di�erentiating this pro�le likelihood with respect to �x gives the

estimating equation for �x

� �
X
i

eZT
x�il��i�b���i � Zx�i

b�x� �	��

with eZx�i � Zx�i � ��b���i	��
T
x �� The derivative �b���i	��

T
x can be calculated by

di�erentiating �	�� with respect to �x� As shown in the appendix in �rst order

approximation one obtains

�b���i

��T
x

� �V��i

���X
j

���ijV
T
��jFjV��j

�	

�����X

j

���ijV
T
��jFjZx�j

�	
 �		�

� �S����i�Diag�Fi�Zx

with Fj � F �
j�� Zx � �ZT
x��� � � � Z

T
x�n�

T and S����i� denoting the ith row of the

generalized smoothing matrix S��� with entries

S����ij � ���ijV��i

�X
r

���irV
T
��rFrV��r

���

V T
��j� �	
�

For normally distributed response and identity link this estimation procedure was

�rst suggested by Speckman ������� Asymptotic investigation of the two estimating

equations �	�� and �	�� allows to rewrite the �t in matrix notation� Let �P �

�Zx� �Z
T
x Diag�Fi� �Zx�

�� �ZT
x be the projection type matrix for �tting the parametric

component where �Zx � Zx�S���Diag�Fi�Zx� We show in the appendix� that in �rst

order approximation� the estimated predictor b
���
i � b���i � Zx�i

b�x obtained from the

above routine ful�lls

b
��� � 
 � �S��� � �P �I��l� �B��� �	��

��



where �I� � fI�Diag�Fi�S���g and l� denotes the score vector� The component B���

contains the bias due to smoothing which equals B��� � S���Diag�Fi��� � �� where

�� � ������ � � � ���n�
T � f���u��� � � � � ���un�gT �

The next step is to consider estimation under the alternative model ����� This

could in general be done by a local likelihood approach as suggested in the previous

section� However� for testing purposes it seems more natural to �t the H� model by

locally �tting the H� model� a concept which has also been pursued in the previous

section� The main advantage there has been that due to local �tting of the H�

model the smoothing bias could be neglected� We show now that the same property

also holds for the semiparametric setting� Our intention is to construct an estimate

which can be seen as a smooth version of the estimate b
��� found in the H� model�

This can be achieved by substituting the parametric projection matrix �P in �	�� by a

corresponding smooth version� Let therefore �Sx�� denote the generalized smoothing

matrix with entries

�Sx���ij � ���ij
�Zx�i


X
k

���ik
�ZT
x�kFk

�Zx�k

���

�ZT
x�j �	��

where ���ij denote some kernel weights with � as a second bandwidth� One should

note that for ��
 matrix �Sx�� becomes �P � For �� � on the other hand the re


sulting �t uncovers the smooth structure which is not modeled in the semiparametric

model� Substituting �P in �	�� by �Sx�� suggests the one step estimate

b
��� �� b
��� � �S��� � �Sx��
�I��bl���� � bB �	��

where bl���� � fl����b
���
� �� � � � � l��n�b
���

n �gT and bB as estimated bias de�ned by bB �

�S���� �Sx��
�I��Diag�Fi�b
���� b
���� In the appendix it is shown that under H� in �rst

��



order approximation one obtains

b
��� � 
 � �S��� � Sx��
�I��l� �B���� �	��

This shows that b
��� and b
��� have the same �rst order smoothing bias under H��

Moreover� for ��
 both �ts coincide in �rst order approximation� i�e� b
��� � b
����
The bandwidth � steers the additional structure in the �t of model H� compared

to model H�� while bandwidth � controls the smoothness of the main e�ect only�

Hence� � is of primary interest for testing purposes�

��� Likelihood Ratio Testing

We test the semiparametric model ���� against the smooth alternative ���� using

the likelihood ratio

�� � �	
X
i

fli�b
���i �� li�b
���i �g �	��

where the subscript � here indicates the dependence on the smoothing parameter

�� Expanding �	�� permits under H� the �rst order approximation

�� � �l�
T �	 �Sx�� � �ST

x��Diag�Fi� �Sx�� � �P ��l� �	��

where �l� � �Il� � �I � Diag�Fi�S����l�� see appendix for details� The crucial bene�t

of the �t b
��� in �	�� shows in expansion �	�� since bias components are cancelling

out� The reason is that b
��� and b
��� have the same smoothing bias under H�� In

addition it should be noted that �� mainly depends on the bandwidth � as seen from

the components involved in �	��� The dependence on � in turn has minor in�uence�

Finally� it is not di�cult to show that �� is asymptotically normally distributed

��



for � � �� However� as in the previous section� due to slow convergence we prefer

drawing inference from the bootstrap version

��� � �l�
T

� �	 �Sx�� � �ST
x��Diag�Fi� �Sx�� � �P ��l��

with l�� � �I�l
�
� and l�� simulated from the �tted H� model with predictor b
����

Power Consideration

We assess the power of the test by considering alternative models of the type H� �

E�yjx� u� � h����u��Zx�x�f�x�n�p�x�u�g� where �x�u� is a bounded� smooth but

arbitrary function� To ensure identi�ability �x�u� is assumed to have zero mean� We

show in the appendix that for �� � and p � �		 the proposed test asymptotically

rejects H� with probability �� Hence� as in the previous section we achieve a rate of

power which typically holds for parametric tests�

Choice of the Bandwidth

There are two bandwidths involved in this setting� The �rst� �� steers the smoothness

of the main e�ect in the semiparametric model� It may be chosen by standard

routines like cross validation or the Akaike criterion� The second bandwidth allows

for variation of the factorial e�ects and therefore steers the additional structure of

model H� compared to H�� We suggest the Akaike criterion

b� � arg maxf�� � 	EH�
����g �
��

where EH�
���� � trf�	 �Sx�� � �ST

x��Diag�Fi� �Sx�� � �P �Diag�Fi�g� To avoid under


smoothing it can be helpful to restrict the range of �� e�g� by postulating b� 
 b� with

b� as selected bandwidth for �� This means the complexity of the factorial varying

coe�cients �x�u� is not allowed to exceed the complexity of the main e�ect ���u��

A small simulation will supports this setting as well as the use of �
���

��



��� Simulation and Example

Simulation�

We consider the semiparametric logit model 
 � ���u��x		 with main e�ect ���u� �

�����u�sin�u��		� As in the previous section we take u from 
� equidistant points

on ��� �� and at each point of u we simulate y as �ve repetitions of a binary response

for x � �� and x � �� The power of the test is assessed by drawing y from

the alternative models H��a � 
 � ���u� � ��� � xu and H��a � 
 � ���u� � x���x��

Table � shows the results based ��� simulations each with ���� bootstrap replicates�

The proposed test shows a powerful behavior and detects non
additive e�ects of

continuous and factorial regressors�

�Table ��

Example�

We investigate data taken from the German socio economic panel� The binary

response y describes whether an unemployed person is reemployed �y � � for yes��

The covariates investigated are the duration of unemployment� u� and the factorial

quantities gender� x�� and nationality� x�� The focus of interest is to assess whether

gender and nationality e�ects vary with the duration of unemployment� We test

the semiparametric model H� � E�yjx�� x�� u� � logit��f���u� � x��� � x���g where

all e�ects act additively against the varying coe�cient model H� � E�yjx�� x�� u� �

logit��f���u��x����u��x����u�g� We choose b� � �� by cross validation and select

b� � �� by �
��� This leads to the p
value ������ Obviously there is clear evidence

that the factorial e�ects interact with the duration of unemployment� Figure 	 shows

the �tted semiparametric model and the corresponding �tted varying coe�cient

��



model with bandwidth b� � ��� As seen from the predictors� additivity of the

e�ects of gender� nationality and age may be assumed only for the �rst 	� months�

Afterwards the e�ect of nationality vanishes and the gender e�ect decreases� Hence�

the factorial e�ects interact with the continuous covariate so that the semiparametric

model seems not adequate for the entire range of duration of unemployment�

�Figure 	�

� Discussion

We suggest tests for testing parametric or semiparametric models with continuous

and factorial regressors against smooth alternatives� We �t the alternative model by

locally �tting the H� model� In both settings this allows to neglect the smoothing

bias in general� The objective of this �t is on testing and one should keep in mind

that the �t of the H� model is not necessarily a good �t when the objective is

estimation solely� This particularly holds since the bandwidth selection criteria ����

and �
�� used in the paper emphasize the testing problem� i�e� the di�erence between

the parametric and nonparametric �t� while the bias
variance trade o� is a minor

issue here�

��



A Technical Details

A�� Appendix for x�

Derivation of Expansion ����

We have

� �
X
j

���ijW
T
j l��j�Wj

b�i� �X
j

���ijW
T
j fl��j � Fj�ZjVj

b�i � Zj�j�g

� b�i � F
��
�i�

��X
j

���ijW
T
j l� �

X
j

���ijW
T
j FjZj�j

�A �
��

where F�i� �
P

j ���ijW
T
j FjWj and l��j � l��j�
j� � l��j�Zj�j�� Since V �u� is sup


posed to have a row diagonal structure� i�e� in each column there is only a single non


zero element and � is element of each row� one gets ViF
��
�i�

P
j ���ijW

T
j FjZj � I with

I as identity matrix� This in turn permits to write �i � ViF
��
�i�

P
j ���ijW

T
j FjZj�i

which proves ���� with �
���

Moments of the Likelihood Ratio Statistics

Formula ���� gives the �rst order approximation �� � lT�Ml� where M � �	S� �

S�DiagS
T
� �P �� Matrix P is a projection type matrix� i�e� we have PDiag�Fi�P � P

or S�Diag�Fi�P � P � Let the elements of M be denoted by Mij and set �M �

MDiag�Fi�� Derivation of the expectation of �� is direct since E�lT�Ml�� � tr� �M��

The second order moment of �� equals E���
�� � tr� �M�� � tr� �M �M� � tr� �M �MT �

which yields the variance Var���� � tr� �S�
�S� � �S�

�ST
�� � 	q� In the same fashion

one gets higher order cumulants� e�g� the third cumulant Cum����� � tr�	 �S�
�S�

�S��

� �S�
�S�

�ST
� ���q� The de�nition of S� given in ���� shows that the diagonal elements of

S� have order Of�n����g� neglecting boundary points� so that Cum����� � O������

Moreover� assuming Fi to be bounded away from zero one also has Var����
���� �

	�



O������ which in turn proves the asymptotic normality stated in �����

Power Consideration

Let us assume that H� holds which implies that the bias B� in ��	� does not vanish�

Moreover� the estimates in the H� model ful�ll b
��� � 
 � P l� � B� where B� �

lim���B� � P
 � 
 is the bias which occurs under H� when �tting the H� model�

The likelihood ratio now equals

�� � lT�Ml� � 	lT� fI � S�Diag�Fi�gB� � 	lT� fI � P�Diag�Fi�gB�

�BT
�Diag�Fi�B� �BT

�Diag�Fi�B�

� lT�Ml� � bias� �Op�n
������

with bias� � BT
�Diag�Fi�B� � BT

�Diag�Fi�B� and M as de�ned above� The latter

simpli�cation above holds since fI�PDiag�Fi�gB� � � and fI�S�Diag�Fi�gB� �

O����O�B��� Consider now the alternative model with ��u� � V �u�� � ��u�n�p

with p � �		 and � � a � Pn
j j�jj	n � b � 
 where �j � ��uj�� For identi


�ability reasons we also assume that V �u�� and ��u� are orthogonal in the sensePn
j W

T
j FjZj�j � �� Re�ecting the de�nition of ��u� and following standard kernel

smoothing arguments one gets the asymptotic order BT
�Diag�Fi�B� � O���n���p�

and BT
�Diag�Fi�B� � O�n���p�� Since EH�

���� � O����� we select from ���� an

optimal bandwidth � with order � � O�n���	�p��
�� This in turn gives bias� of

order O�n���p�� Re�ecting now that the variance of �� coincides under H� and

H� with asymptotic order O����� provides bias�	
q
Var���� � O�n������p������ This

shift tends to in�nity for p � �		 so that with

P

���� � EH�
����q

Var����
� z

�A � P

���� � EH�
����q

Var����
� z � bias�q

Var����

�A �
	�

the corresponding test rejects H� asymptotically with probability one�

	�



A�� Appendix for x�

Derivation of Formula ���� and ����

For asymptotic considerations it is helpful to incorporate the dependence of b���i on
�x in the notation� Let b���ij�x be the solution of �	�� for �xed �x� Di�erentiating

�	�� gives in �rst order approximation�

� �X
j

���ijV
T
��jFj



V��j

� b���ij�x

��T
x

� Zx�j

�
�

�

with b���ij�x as solution of �	�� and b���ij�x � V��i
b���ij�x� Solving �

� for � b���ij�x	��

T
x

provides �		�� With b���i �� b�
��ijb�x we denote the �nal estimate for ���i where b�x

solves �	��� By expansion we get in �rst order approximation

b�
��ijb�x � b���ij�x � �b���ij�x

��T
x

� b�x � �x� � op� b�x � �x�

where �x denotes the true parameter here� Making use of the de�nition �Zx�i �

Zx�i � ��b���ij�x�	���T
x � one obtains for b
���

i � b���i � Zx�i
b�x the approximation

b
���
i � 
i � b���ij�x � ���i � �Zx�i� b�x � �x�� �
��

We �rst expand �	�� by taking �x as given true parameter� This gives in �rst order

approximation

b���ij�x � ���i � V��iF
��
���i�

���X
j

���ijV
T
��jl��j

�	
� b��i� �
��

where F���i� �
P

j ���ijV
T
��jFjV��j and b���i� � V��iF

��
���i�

P
j ���ijV

T
��jFj����j����i� occurs

as smoothing bias� With S��� denoting the generalized smoothing matrix as given

in �	
� one may rewrite �
�� in matrix form b��j�x � �� � S���l� � B��� where �� �

������ � � � � ���n�
T � b��j�x � �b����j�x� � � � � b���nj�x�T and B��� � S���Diag�Fi��� � ��� The

		



next step is to expand of the pro�le estimation function �	�� which gives in �rst

order approximation

b�x � �x �
�X

i

eZT
x�iFi

eZx�i

��� �X
i

eZT
x�il��i�b���ij�x � Zx�i�x�

�

�
�X

i

eZT
x�iFi

eZx�i

��� �X
i

f eZT
x�il��i � eZT

x�iFi�b���ij�x � ���i�g
�

�
��

�
�X

i

eZt
x�iFi

eZ��i

��� 
X
i

eZT
x�i
�l��i

�
�
��

where �l��i � l��i � FiS����i�l� with S����i� denoting the ith row of S���� The sim


pli�cation from �
�� to �
�� holds up to the considered asymptotic order� as gen


erally proven in Severini � Wong ����	�� This implies in particular� that the ef


fect of smoothing on the parametric �t b� is only of second order� i�e� E� b� � �� �

O���� �O�n���� In particular �
�� follows since the component

X
i

�ZT
x�iFib��i� � �ZT

x Diag�Fi�fS���Diag�Fi��� � ��g

� �ZT
x fI � S���Diag�Fi�gTDiag�Fi��I � S����Diag�Fi���

� O�n��� �
��

is of negligible asymptotic order� where we made use of the property
P

i ���ij �P
i ���jif� �O����g� Inserting�
�� and �
�� in �
�� �nally proves �	���

Properties of estimate b
��� de	ned in ��
�

Let �I� � I �Diag�Fi�S��� and de�ne S � S��� � �Sx��
�I�� Then in �rst order approx


imation

b
��� � b
��� � Sbl���� � SDiag�Fi�b
��� � b
���

� 
 � Sfl� � Diag�Fi��b
��� � 
�g� SDiag�Fi�b
��� � 


� 
 � Sl� � SDiag�Fi�
 � 
 �
��

	




Under H� we have 
 � �� � Zx� which allows to simplify the bias component in

�
��� Making use of Sx��
�I�Diag�Fi�Zx � Sx��Diag�Fi� �Zx � �Zx provides

SDiag�Fi�
 � 
 � B��� � �Sx��Diag�Fi�B��� ����

with B��� � S���Diag�Fi��� � ��� We show now that for � � � the component

�Sx��Diag�Fi�B��� in ���� has negligible asymptotic order which in turn proves �	���

Assuming � � 
 one gets from �
�� �Sx��Diag�Fi�B��� � �PDiag�Fi�B��� � O�����

Let on the other hand � � �� We de�ne with E�Zxjui� the mean of the covariates

given u � ui� i�e� we have S���Diag�Fi�Zx � E�Zx�f� � O����g where E�Zx�
T �

fE�Zxju��
T � � � � � E�Zxjun�Tg� Moreover we extract the dominating components of

the bias B��� by writing B��� � ��� � O���� where � � ���� � � � �n�
T with � � O���

and boundary e�ects are neglected� For instance for linear smoothing one has �i �

���� �ui�		� This notation permits

�

n�

X
j

���ij
�Zx�jFjb���j� �

��

n�

X
j

���ijfZx�j � E�Zxjuj�gFj�j �O����

� ��O���� �O���� ����

so that �Sx��Diag�Fi�B��� � O����fO���� � O����g� Hence the latter component in

���� is of negligible order for both� ��
 and �� �� which proves �	��

Expansion of the Likelihood ratio ����

Expansion of the likelihood ratio �	�� permits

�� � 	lT� �b
��� � b
����
��b
��� � 
�TDiag�Fi��b
��� � 
� � �b
��� � 
�TDiag�Fi��b
��� � 
� ��	�

� 	lT� � �Sx�� � �P ��l� � flT� �S��� � �Sx��
�I��

T �B�gTDiag�Fi�f�S��� � �Sx��
�I��l� �B�g

�flT� �S��� � �P �I��
T �B�gTDiag�Fi�f�S��� � �P �I��l� �B�g

	�



� �lT� �	 �Sx�� � �ST
x��Diag�Fi� �Sx�� � �P ��l� �BT

� Diag�Fi�� �P � �Sx����l� ��
�

with �l� � �I�l�� The squared bias components above cancel out since under H� both

estimates b
��� and b
��� have the same smoothing bias� Moreover� the later component

in ��
� has zero expectation and is of negligible asymptotic order� This yields �	��

as �rst order approximation for the likelihood ratio�

Power Consideration

Let model H� hold with 
i � ���i � Zx�i��x � n�p�x�i�� where �x�i � �x�ui� ful�lls

the orthogonality condition
P

i
�ZT
x�iFi

�Zx�i�i � � to ensure identi�ability� We assume

� � � and � � � and take �x � � for simplicity� With 
x we de�ne the vector

n�p�Zx���x��� � � � � Zx�n�x�n�
T � Using results from above we can write b
��� under H�

as

b
��� � 
 � Sl� � SDiag�Fi�
 � 
 � 
 � Sl� �B��� � �Bx���

with bias components B��� � S���Diag�Fi��� � �� and �Bx�� � �Sx��Diag�Fi��
x � �
x

where �
x � fI�S���Diag�Fi�g
x� In the same fashion we get b
��� � �S���� �P �I��l� �

B���� �Bx�� with �Bx�� � lim���
�Bx�� � �PDiag�Fi��
x� �
x� Standard kernel smooth


ing arguments allow to derive �
x�i � n�p �Zx�i�x�if� � O����g and �Sx��Diag�Fi��
x �

f�
x � O����gf� � O����g� where boundary e�ects are neglected� This implies the

asymptotic order �Bx�� � npfO���� � O����g and �Bx�� � npf� � O����g� Making

use of �
�� we �nd the bias component B��� to be orthogonal to �Zx in the sense

n�� �ZT
x Diag�Fi�B��� � O����� Moreover� re�ecting ���� one gets �Sx��Diag�Fi�B��� �

O����fO���� � O����g which in turn provides that the bias component B��� is or


thogonal to �Bx��� i�e� we have n�� �BT
x��Diag�Fi�B��� � n�pO����fO���� � O����g��

This orthogonality also holds for �Bx�� substituted by �Bx��� Inserting b
��� and b
���
	�



in ��	� shows now by making use of the above orthogonalities

EH�
���� � EH�

���� � bias�

where bias� � �BT
x��Diag�Fi� �Bx��� �Bx��Diag�Fi� �Bx��� The bias components have the

asymptotic order �Bx��Diag�Fi� �Bx�� � O�n���p�fO���� � O����g� and

�BT
x��Diag�Fi� �Bx��� O�n���p�f� � O����g� and EH�

���� � O������ Since �� � is

assumed we can neglect the e�ect of � in the sequel� The optimal bandwidth � cho


sen by �
�� has order � � O�n���	�p��
� which implies that bias� � O�n������p������

As in Section 	 we get with �
	� that the test rejects H� asymptotically with prob


ability one� as stated�
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smooth test parametric test
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H� ��
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H��a ���� 	��� 	
�� 

��
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�� 
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Table �� Probability of rejection in a simulation study for testing H� � 
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u�u � x�x
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H��b 		�� 
��	

Table 	� Probability of rejection in a simulation study for testingH� � 
 � ���u��x�x
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Quadratic Interaction Model

Figure �� Fitted probability of human parasitic worm infestation� Lines correspond

to the �tted H� model� points � �� �� represent the �tted H� model�
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Figure 	� Estimated probabilities and �tted predictors for unemployment data�

Points ��� �� 	� �� show the semiparametric �t and lines represent the locally

�tted semiparametric model�
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