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Abstract

We propose goodness of fit tests for testing generalized linear models and
semiparametric regression models against smooth alternatives. The focus is on
models having both, continuous and factorial covariates. As smooth extension
of a parametric or semiparametric model we use generalized varying coefficient
models as proposed by Hastie & Tibshirani (1993). A likelihood ratio statistic
is used for testing, and asymptotic normality of the test statistic is proven.
Due to a slow asymptotic convergence rate a bootstrap approach is pursued.
Asymptotic expansions allow to write the estimates as linear smoothers which
in turn guarantees simple and fast bootstrapping. The test is shown to have
\/n power, but in contrast to parametric tests it is powerful against smooth
alternatives in general.

KeEywoRrDS: Likelihood Ratio, Local Likelihood Fitting, Model Checking,

Semiparametric Models, Smoothing



1 Introduction

In recent years several articles dealt with goodness of fit tests for checking parametric
models against smooth alternatives. The focus has been on testing a generalized

linear regression model of the form

Hy : E(ylu) = h{V(u)3} (1)

with continuous regressors u, design matrix V(u) and known link function h(-)

against the smooth mode

Hy = E(ylu) = h{y(u)}, (2)

where v(u) is an unknown but smooth function in u. Assuming that V'(u) consists
of smooth but known functions in u, model (1) is a proper submodel of (2). A
typical example is the case where V (u) consists of polynomials in . Smooth tests
for testing (1) against (2) can be derived by smoothing the fitted parametric resid-
uals from (1), see e.g. le Cessie & van Houwelingen (1991) or Azzalini & Bowman
(1993). Alternatively one can compare the parametric and the smooth models using
a likelihood ratio type statistic, see for instance Azzalini, Bowman & Hérdle (1989),
Staniswalis & Severini (1991) or Hérdle & Mammen (1993). Another approach was
suggested by Firth, Glosup & Hinkley (1991) who estimate the parametric model
locally and take the improvement of the fit as a measure for goodness of fit. Eubank
& Spiegelman (1990), Eubank, Hart & LaRiccia (1993), Hart & Wehrly (1992) or
Aerts, Claeskens & Hart (1998) extend V' (u) by appropriately chosen basis functions
and assess whether the additional model components improve the fit significantly.

Recently, Stute (1997) suggested a test based on integrated regression functions,



while Dette & Munk (1998) extend nonparametric tests for testing heteroscedastic-
ity in regression models. Further approaches for model checking have been suggested
among others by Raz (1990), Miiller (1992) or Kauermann & Tutz (1998b). A com-

prehensive overview of smooth tests can be found in Hart (1997).

In contrast to most of the papers cited above we consider models with both,
factorial covariates x, say, and continuous regressors u. A parametric model that

jointly includes continuous and factorial regressors is the generalized linear model

E(ylr,u) = MW(z,u)0} (3)

where the design matrix W (z,u) is constructed from both, z and u. The smooth

alternative corresponding to (3) is a varying coefficient model in the sense of Hastie

& Tibshirani (1993), which is given by

E@yle,u) = h{Z(x)y(u)}. (4)

Matrix Z(z) is a design matrix built solely from the factorial regressors x and ~(u)
is a vector valued smooth but unknown function. For instance, if x is a binary
factor, a smooth alternative to the parametric linear interaction model E(y|z, u) =
h(Bo + u By + x By + u x Byy) is the model E(y|x,u) = h{vy(u) + x7v,(u)}. Here
Yo(u) is the smooth main effect and 7,(u) is the effect of x modified by u, i.e. the
smooth interaction between x and u. We consider multivariate parametric inter-
action models by assuming that the design matrix W(z,u) in (3) decomposes into
the matrix product W(z,u) = Z(x)V (u). This ensures that the parametric model
is a proper submodel of the varying coefficient model (4), since y(u) is modeled
parametrically by V(u)3. For identifiability reasons we further assume that V' (u)

has full rank and has a row diagonal structure. This means in each column of V'(u)
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there is only a single non-zero element. Moreover, to ensure that models are nested
each row of V(u) is assumed to have 1 as element. For instance the parametric

model E(y|x,u) = h(By + u By + x By + u x By;) may be written as

1 w 0 0
E(y|lz,u) =h< (1,x) 3
0 0 1 u

with 87 = (8o, Bu, Be, Bew) and obvious definition for Z(x) and V' (u). If the polyno-
mial degrees in the rows of V' (u) coincide, which is the case in this example, we can
also write V' (u) as Kronecker product V(u) = I ® (1,u) with I as identity matrix.

In general however the polynomial degree in the rows of V(u) is allowed to differ.

We propose tests for testing the Hy model (3) against the alternative (4). In
order to avoid the disturbing influence of the smoothing bias (see e.g. Hirdle &
Mammen 1993) and to allow for appropriate bandwidth selection we estimate the
alternative model (4) by locally fitting the parametric model (3). This implies that
under H, the smooth estimates are estimated without the typical smoothing bias,
so that bias consideration can be neglected. Moreover, in a first order expansion
the estimate is obtained by linear smoothing. In particular this provides simple and

numerically fast calculation of the fit .

A related but different testing problem occurs in partial linear or semiparametric

models where effects of the continuous and factorial regressors are modeled additively
by
E(ylz,u) = h{yo(u) + Zu ().}, (5)

see for instance Heckman (1986), Speckman (1988), Severini & Staniswalis (1994) or

Hunsberger (1995). In (5), the design matrix Z,(z) is built from x however without
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the intercept in order to ensure identifiability in (5). The covariates z and u do not
interact, i.e. the smooth effect of the continuous variable 7o (u) is shifted for different
values of the factorial variables . Hirdle, Mammen & Miiller (1998) propose tests
for testing whether the shape of yy(u) can be modeled parametrically (see also Fan &
Li 1996). Bowman & Young (1996) investigate nonparametrically whether smooth
main effects differ in factorial groups, i.e whether 3, = 0. Our focus is on testing

the model assumption that z and v act additively.

We fit the parameters in the semiparametric model (5) by a combination of
profile likelihood and local likelihood estimation (see Cuzick 1992 or Severini &
Wong 1992). For normal response and identity link this approach is equivalent to
Speckman’s (1988) estimate. For testing purposes, the varying coefficient model
(4) is considered as smooth alternative to (5), with Z(z) = {1, Z,(z)} in (4). The
alternative model is again estimated by locally fitting the Hy model (5). This means
locally a semiparametric model is fitted which in turn allows the effects of the factors
to vary. The welcome benefit of this estimation approach is that bias components
of the smooth fit cancel out and hence the typical smoothing bias can again be

neglected.

For both settings, i.e. for parametric and semiparametric models we employ a
likelihood ratio statistic. Asymptotic normality is proven with convergence rate of
order O(\'/?), where ) is the bandwidth of the smooth fit with A — 0. The asymp-
totic rate of convergence is rather slow so that a bootstrap approach is pursued.
Asymptotic approximations are used to provide simple and numerically fast com-
putation. The proposed test is shown to be asymptotically as powerful as classical

parametric likelihood ratio tests. This means it detects general but smooth alter-



natives tending to Hy with order N In contrast to parametric tests however the

smooth test has an omnibus power which also shows in simulations.

2 Testing Generalized Linear Models

2.1 Local Likelihood Fitting

Let the response y for given z and u follow the exponential family distribution
ylz, u ~ exp[{yd — k(0)}/¢], where 6 = () is the natural parameter, yp = E(y|z, u)
is the expectation and () is the log normalization constant. The dispersion param-
eter ¢ is either assumed to be known or taken as nuisance parameter. Let (y;, z;, u;)
denote a random sample for i = 1,...,n and abbreviate Z; = Z(x;), V; = V(u;) and

W; = Z;V;. In the following the objective is to test the generalized linear model
Hy : E(yle,u) = h{Z(x)V(u)5} (6)
against the varying coefficient model
Hy : E(yle,u) = h{Z(z)y(u)}. (7)

The varying coefficient y(u) under H; is estimated by local likelihood (see e.g. Fan,
Heckman & Wand 1995 or Carroll, Ruppert & Welsh 1988). Having in mind that H,
is to be investigated, the local likelihood is based on the Hy model. This means we fit
the Hy model (6) locally by introducing kernel weights wy ;; = K{(u; —u;)/A}/K(0)
with K(-) as unimodal kernel function and A as smoothing parameter. For u = u;

this yields the local likelihood function

Loy (8) = D wnihi (W) (8)



where [;(n) = y,;0—r(6) with 6 = 0{h(n)} is the log likelihood contribution of the jth
observation evaluated at the linear predictor . Maximizing (8) with respect to [3;
yields the local likelihood estimate 7; = 7(u;) = V;/3;. If the matrix V(u) consists of
polynomials in u, estimates of this type are also known as local polynomial estimates,

see e.g. Fan & Gijbels (1996).

When investigating the asymptotic properties of estimates obtained from (8)
we assume standard regularity conditions. For instance we postulate that y(u) is
sufficiently smooth and that locally weighted Fisher matrices have full rank, see
Kauermann & Tutz (1998a) for a technical discussion of these assumptions. Differ-

entiating (8) with respect to [ leads to the local estimating equation
0 = > wni W/l (WiB), (9)
J

where 1, () = 9l;(n)/0n = {0h(n)/On}var(y;)~ {y; — h(n)} is the standard score
contribution. As shown in the appendix, expansion of (9) yields in first order ap-

proximation

Y=y o~ ViFgG {wa,ingrln,j(ﬁj)} + Vib (10)
j
where 7; = Z;v; is the true predictor and F) = 3, wAyijoTFjo is the locally
weighted Fisher matrix with F; = F(n;) = E{-0%I(n;)/(0n)*}. The component
beiy,n contains the smoothing bias which equals
by = F(i)l{ZWA,z‘joTFij(%—%)}-
j

It is useful to give expansion (10) in matrix notation. Let S\ denote the n x n

dimensional generalized smoothing matrix with entries
_ 1y T
S)\;ij = W)\,ijVViF(i) Wj . (11)
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Note that the rows of Sy Diag(F;) sum up to one, with Diag(F;) denoting the di-
agonal matrix with F;, + = 1,...,n, as diagonal elements. Let in the sequel n =
(s osm)t = (2171, -y Zuya) T be the vector of predictors and 1) = (2,71, . . ., Zpn)?
be the corresponding estimate. Moreover, let [, = (I,1,...,l,»)" be the score vector

with [,,; =1, ;(7;) as elements. From (10) one obtains
7/’]\—7’] ~ S)\ln—{—B)\ (12)

where the bias By = (Wibuya, - . .,Wnbw)x) equals By = S\Diag(F;)n — 7. If model
H, holds we have n; = W, which provides S)Diag(F;)n = n. Hence under H, the

smoothing bias B, vanishes.

Local likelihood fitting based on solving (9) typically demands time consuming
computation since locally iterative fitting is required. This can be avoided by making
use of the fit under the Hy model. Let P = W (W' Diag(F;))W)~'W” with W’ =
(W, ...,WTI) be the projection type matrix resulting from fitting the H, model
by standard maximum likelihood. This means under H, one has the first order
approximation 7 — 5 ~ Pl,, where 70 = WB with B as maximum likelihood
estimate under the Hy model. When fitting 7 under H; one can employ expansion
(12) but substitute the unknown predictor n by the fit under Hy. This means we
define the one step estimate 7! := 7% + SAﬂUO) with ZA%O) = {11 (3), .. Ly (O}

denoting the fitted score vector. Making use of SyDiag(F;)7®) = 7(®) and expanding

l:(]O) about 7 gives in first order approximation
7/’]\(1) - = S)\lﬂ + B)\.

This means that 7(!) equals in first order approximation the local likelihood esti-

mate 7j defined in (9). In contrast to the local likelihood estimate however, 7" is

8



calculated as linear smoother in one step, starting from the fit under Hy, and hence

provides simple and fast calculation.

2.2 Likelihood Ratio Testing

We test the Hy model against the alternative H; by use of the likelihood ratio

statistic

A= =23 (L") — L@} (13)

where subscript A indicates the dependence on the smoothing parameter. In first

order approximation under Hj the likelihood ratio is approximated by

A= 23 L@"Y) = L")

200 (7Y —n) — (7™ — )" Diag(£) (7" — n)

Q

=205 (7% — n) + (7 — )" Diag(F;) (7 — n)

Q

17{28\ — S\"Diag(F;)S) — P}1,. (14)

where we made use of the property P = PDiag(F;)P. If model Hy holds, efficient
estimation of y(u) is achieved only for the unsmoothed case A\ — oo. Under Hi,
however, the usual rate for (univariate) smoothing is A — 0 and An — oo, which is
assumed in the following. As shown in the appendix, the quadratic form (14) allows
to easily calculate the moments of Ay. With Sy = {25, — S} Diag(F;)S, }Diag(F;)
one obtains in first order approximation Ey, (Ay) & tr(S)) — ¢, where ¢ is the rank of
W. The term tr(Sy) thereby is frequently called the degree of freedom for smoothing

(see Hastie & Tibshirani 1990). Cornish-Fisher expansion (see e.g. Barndorff-Nielsen



& Cox 1989) leads to

Ay — B(A)) B Cumgz(Ay)
P(mgz) = CD(z)—qﬁ(z)W(z —-1)+... (15)

where ®() and ¢() denote the distribution and density function of a standard normal
distribution. For A — 0 the cumulants of Ay tend to infinity with order A~!. This
implies that Cums(A,) = O(A™!) and Var~'(Ay) = O()), as demonstrated in the
appendix. The latter component in (15) tends to zero with order O(A/?) and
components not explicitly listed are O(\). Hence for A — 0 the likelihood ratio A,
is asymptotically normal, however the rate of convergence is rather slow. Therefore
a bootstrap procedure seems more appropriate for testing purposes. We suggest to

bootstrap directly from (14), i.e.
A3 =1y {25\ — S{Diag(F})S\ — Ps}i; (16)

where It = (I3 ,....13,,) with If; = {0h(i\")) /on}var(y,) ~{y; — h(7")} and y;

drawn from the fitted parametric model with predictor ﬁgo) = VVZB

Power Consideration

We briefly discuss the power properties of the test. We consider alternatives of the
type Hy : y(u) = V(u)B + ¢(u)n™?, with p > 0 and ¢(u) being some arbitrary but
smooth function, bounded and bounded away from zero, i.e. 0 < a < 3% [¢(u;)|/n <
b < oo. Moreover p(u) is assumed to be identifiable, i.e. ¢(u) and V(u) are
orthogonal as explicitly stated in the appendix. It is shown in the appendix that for
p < 1/2, the test detects H; asymptotically with probability one. Hence one achieves
the same order of power as typically met in standard parametric settings. However
in contrast to parametric tests, ¢() is arbitrary but smooth here and therefore the

test has sensible power for general smooth alternatives.
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Choice of the bandwidth

We suggest choosing A from the Akaike criterion
A= arg max{A, — 2 By, (A))}, (17)

where it is advisable to restrict the range of A\ in order to avoid undersmoothing.
For instance one can restrict the degree of freedom of the H; model to exceed the
parametric degree only by a certain amount. In the simulation and example below
we set tr(S’)\) < ¢ + 1 with ¢ as parametric degree of freedom. In general it can be
observed that the significance of A, depends only weakly on the bandwidth A, i.e.
the p value changes rather moderately for different bandwidths. The major reason
for this property is that due to fitting the Hy model locally the smoothing bias
disappears under Hy and in the extreme case of smoothing, i.e. A — oo, the fits of

H, and H, coincide.

2.3 Simulation and Example

Simulation Study:

In a simulation study the main effect logit model Hy, : E(y|lz,u) =
logit ' (B + uB, + x8,) with a balanced binary factor z is tested. The covari-
ate u takes 30 equidistant points in [0, 1] and at each point of u five repetitions of
the binary response y are sampled at + = —1 and x = 1 with the predictor given
by n = —0.5 + u + x. The power of the test is assessed by simulating from the
alternative models Hy , :n=—1+u+z—au; Hyp:n=—1+u—2{0.5—sin(um)}
and Hy.: 1= —2u+ 2u®+ 0.5* zu. Table 4 shows the simulated rejection frequen-

cies based on 500 simulations, each one based on 1000 bootstraps replicates. For
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comparison we also report the rejection probabilities of a parametric likelihood ratio
test obtained from testing the Hy model against the parametric interaction model
H,:n=pFy+ub,+x0;+xuB. The smooth test behaves slightly liberal but shows
omnibus power by indicating lack of fit in all three alternative settings. In contrast,
the parametric test shows power only for model H, ,, which is the correct alternative
model in the likelihood ratio. In settings H;, and H;,. however the power of the

parametric test is disappointing.

(Table 1)

Example:

We investigate a dataset given in Bowman & Azzalini (1997). The data describe the
occurrence of human parasitic worm infestation (y = 1 for yes, 0 for no) of n = 304
citizens of a rural community in China. The explanatory quantities are age, u, and
gender, . We test the main effect logit model E(y|x,u) = logit™ (8o + 26, + uf,)
against the smooth alternative logit™ {(u)+27,(u)} yielding a p-value of 0.03 with
A = 30 chosen by (17). Figure 1 shows the parametric fit and the corresponding
fit under H;. We extend the parametric model by a linear interaction term for «
and z which provides the p-value 0.09 at \ = 55. Modeling an additional quadratic
main effect for age finally gives the p-value 0.35 at A = 70. Hence, the quadratic
interaction model E(y|z,u) = logit™ (8 + 20, + 2ufpu + uBy, + u>By,) can be
considered as an adequate model for the data. This is also seen from Figure 1 where

nonparametric and parametric fits hardly differ.
(Figure 1)
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3 Testing Semiparametric Models

3.1 Profile Likelihood Fitting

In the following section we extend the above testing problem by considering the

semiparametric model

Ho : E(yle,u) = hin(w) + Z(x)6:}, (18)

which is tested against the varying coefficient model
Hy = E(ylr,u) = h{Z(z)y(u)} (19)

with Z(x) = {1, Z,(z)}. In the semiparametric model the regressors x and u act
additively, i.e. yo(u) is the smooth main effect and Z,(z)3, is an additive shift for
the factors. Hence testing (18) against (19) is a test on interaction between the

factorial covariates x and the continuous regressors u.

Estimation of the semiparametric model (18) requires both, local likelihood fit-
ting for the smooth component and profile likelihood fitting for the parametric
component [3,, see Severini & Wong (1992) or Hunsberger (1995). We first con-
sider (3, as known so that 7, = Z,(x)f, serves as given offset in the smooth
model E(y|z,u) = h{v(u) + n,}. We estimate 7o(u) by fitting locally the model
E(y|xz,z) = h{Vh(u)By + 1.} where Vy(u) is a row vector of polynomials in u. For
instance the choice Vj(u) = (1, u) corresponds to local linear fitting of yo(u). Solving
the estimating equation

0 = Y winijVililni (Vo Bos + 1) (20)
i
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yields the estimate 7y,; = Vo,z'Bo,z' for the smooth component, where Vg, = Vj(u;).
One should note that 7,; calculated from (20) depends on the particular value of
parameter [3,, which is however suppressed in the notation. Now the estimates
Mo, are inserted into the likelihood for [, yielding the profile likelihood function
> i li(Yoi + Zy,i3:). Differentiating this profile likelihood with respect to 3, gives the

estimating equation for 3,
with Zm = Zyi + (070,/0BL). The derivative 97,/00% can be calculated by

differentiating (20) with respect to ;. As shown in the appendix in first order

approximation one obtains

-1
—Vo,i {wa,ia“/{f}Fj%,j} {ZWA,M%T,}@Z:BJ} (22)
i i

- _SO,A;ioDiag(E)Zz

o
opr

Q

with F; = F(n;), Z. = (Z},,...Z,,)" and Sy, denoting the ith row of the
generalized smoothing matrix Sy ) with entries
-1
Soxnii = WiV, {wa,z’rvfrﬂ%,r} VOT] (23)
T

For normally distributed response and identity link this estimation procedure was
first suggested by Speckman (1988). Asymptotic investigation of the two estimating
equations (20) and (21) allows to rewrite the fit in matrix notation. Let P =
Z.(ZTDiag(F;) Z,) ' ZT be the projection type matrix for fitting the parametric
component where Z, = Z, — SoDiag(F;)Z,. We show in the appendix, that in first
order approximation, the estimated predictor 77(0) = Yo,i + Zmﬁm obtained from the

)

above routine fulfills
7/’]\(0) —N= (S()’)\ + pIN)\)ln + BO,)\ (24)

14



where I, = {I —Diag(F;)So} and [, denotes the score vector. The component By )

contains the bias due to smoothing which equals By x = Sy Diag(F;)vo — 7o where

Yo = (70,1; .. -’Yo,n)T = {’Yo(?h); cee ,’Yo(un)}T-

The next step is to consider estimation under the alternative model (19). This
could in general be done by a local likelihood approach as suggested in the previous
section. However, for testing purposes it seems more natural to fit the H; model by
locally fitting the Hy model, a concept which has also been pursued in the previous
section. The main advantage there has been that due to local fitting of the Hj
model the smoothing bias could be neglected. We show now that the same property
also holds for the semiparametric setting. Our intention is to construct an estimate
which can be seen as a smooth version of the estimate () found in the Hy model.
This can be achieved by substituting the parametric projection matrix Pin (24) by a
corresponding smooth version. Let therefore gwt denote the generalized smoothing

matrix with entries

-1
Sa:,p;ij = wy,ijZI,i (Z w,u,ing:kaZa:,k> Zg:] (25)
k

where w,,;; denote some kernel weights with p as a second bandwidth. One should
note that for 4 — oo matrix gwt becomes P. For 1 — 0 on the other hand the re-
sulting fit uncovers the smooth structure which is not modeled in the semiparametric

model. Substituting P in (24) by S, , suggests the one step estimate
71 =5 + (Sop + Sl + B (26)

where l:(]O) = {2 @), . La((H)}T and B as estimated bias defined by B =

(Sox+ S'I,uf)\)Diag(F})ﬁ(O) — 7. In the appendix it is shown that under Hy in first

15



order approximation one obtains
7~ n+ (Sop + Suula)ly + Bo. (27)

This shows that 7! and 7(®) have the same first order smoothing bias under Hj.
Moreover, for ;1 — oo both fits coincide in first order approximation, i.e. 70 — 7).
The bandwidth p steers the additional structure in the fit of model H; compared
to model H,, while bandwidth A controls the smoothness of the main effect only.

Hence, 4 is of primary interest for testing purposes.

3.2 Likelihood Ratio Testing

We test the semiparametric model (18) against the smooth alternative (19) using

the likelihood ratio

Ay = =23 {L@") — L)} (28)

where the subscript p here indicates the dependence on the smoothing parameter

p. Expanding (28) permits under H, the first order approximation

Ay =~ 1,7(2S,, — SE Diag(£;) S, — P)l, (29)

where I, = I1,, = (I — Diag(F;)So)l,, see appendix for details. The crucial benefit
of the fit 7(!) in (26) shows in expansion (29) since bias components are cancelling
out. The reason is that (%) and (") have the same smoothing bias under Hy. In
addition it should be noted that A, mainly depends on the bandwidth p as seen from
the components involved in (29). The dependence on A in turn has minor influence.

Finally, it is not difficult to show that A, is asymptotically normally distributed
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for 4 — 0. However, as in the previous section, due to slow convergence we prefer

drawing inference from the bootstrap version

* 7T & o . = ~
AN = l?] (2517,# - Sg:leag(E)Sz,p - P)l

n

with [} = I}l; and /) simulated from the fitted Hy model with predictor 7.

Power Consideration

We assess the power of the test by considering alternative models of the type H; :
E(y|z, u) = hlyo(u) + Zy(x){ s + 1 Pyy(u)}] where o (u) is a bounded, smooth but
arbitrary function. To ensure identifiability ¢, (u) is assumed to have zero mean. We
show in the appendix that for A — 0 and p < 1/2 the proposed test asymptotically
rejects Hy with probability 1. Hence, as in the previous section we achieve a rate of

power which typically holds for parametric tests.

Choice of the Bandwidth

There are two bandwidths involved in this setting. The first, A, steers the smoothness
of the main effect in the semiparametric model. It may be chosen by standard
routines like cross validation or the Akaike criterion. The second bandwidth allows
for variation of the factorial effects and therefore steers the additional structure of

model H; compared to Hy. We suggest the Akaike criterion
fi = arg max{A, — 2Ep,(A,)} (30)

where Ep,(A,) = tr{(2S,,, — ST, Diag(F;)S,, — P)Diag(F;)}. To avoid under-
smoothing it can be helpful to restrict the range of pu, e.g. by postulating i > X with
) as selected bandwidth for A. This means the complexity of the factorial varying
coefficients v, (u) is not allowed to exceed the complexity of the main effect vy(u).

A small simulation will supports this setting as well as the use of (30).
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3.3 Simulation and Example

Simulation:

We consider the semiparametric logit model n = v (u)+2/2 with main effect yo(u) =
—0.5+u+sin(um)/2. As in the previous section we take u from 30 equidistant points
on [0,1] and at each point of u we simulate y as five repetitions of a binary response
for x = —1 and = 1. The power of the test is assessed by drawing y from
the alternative models Hy, : 7 = yo(u) + 0.5 % zu and Hy 4 1 1 = vo(u) + z7y(x).
Table 4 shows the results based 500 simulations each with 1000 bootstrap replicates.
The proposed test shows a powerful behavior and detects non-additive effects of

continuous and factorial regressors.
(Table 4)

Example:

We investigate data taken from the German socio economic panel. The binary
response y describes whether an unemployed person is reemployed (y = 1 for yes).
The covariates investigated are the duration of unemployment, u, and the factorial
quantities gender, 1, and nationality, z5. The focus of interest is to assess whether
gender and nationality effects vary with the duration of unemployment. We test
the semiparametric model Hy : E(y|x1, 72, u) = logit " {vo(u) + 218, + 223} where
all effects act additively against the varying coefficient model Hy : E(y|xy, 22, u) =
logit ™ {~o(u) + z171 () + 2272 (u)}. We choose A = 15 by cross validation and select
f = 15 by (30). This leads to the p-value 0.005. Obviously there is clear evidence
that the factorial effects interact with the duration of unemployment. Figure 2 shows

the fitted semiparametric model and the corresponding fitted varying coefficient

18



model with bandwidth i = 15. As seen from the predictors, additivity of the
effects of gender, nationality and age may be assumed only for the first 20 months.
Afterwards the effect of nationality vanishes and the gender effect decreases. Hence,
the factorial effects interact with the continuous covariate so that the semiparametric

model seems not adequate for the entire range of duration of unemployment.

(Figure 2)

4 Discussion

We suggest tests for testing parametric or semiparametric models with continuous
and factorial regressors against smooth alternatives. We fit the alternative model by
locally fitting the Hy model. In both settings this allows to neglect the smoothing
bias in general. The objective of this fit is on testing and one should keep in mind
that the fit of the H; model is not necessarily a good fit when the objective is
estimation solely. This particularly holds since the bandwidth selection criteria (17)
and (30) used in the paper emphasize the testing problem, i.e. the difference between
the parametric and nonparametric fit, while the bias-variance trade off is a minor

issue here.

19



A Technical Details

A.1 Appendix for §2

Derivation of Expansion (10)

We have
0 = 3 wnigWi lyg(W;Bi) = S wonigWii {lng — Fi(Z;V;Bi = Zimy)}
J J

~ Bz ~ F(_Z)l (Z w,\,ijW]Tln + sz\,ijW]TFij’Yj> (3].)

j j
where Fy = ¥ wn W, F;W; and Iy ; = 1, ;(n;) = 1,;(Z;7;). Since V(u) is sup-
posed to have a row diagonal structure, i.e. in each column there is only a single non-
zero element and 1 is element of each row, one gets V;F(’Z)1 > w,\,ijoTFij = I with
I as identity matrix. This in turn permits to write v; = VZF(’Z)1 > w,\iijoTFij%

which proves (10) with (31).

Moments of the Likelihood Ratio Statistics

Formula (14) gives the first order approximation Ay ~ [JMl, where M = (25 —
S\DiagS! — P). Matrix P is a projection type matrix, i.e. we have PDiag(F;)P = P
or SyDiag(F;)P = P. Let the elements of M be denoted by M;; and set M =
MDiag(F;). Derivation of the expectation of Ay is direct since E(I} Ml,) = tr(M).
The second order moment of Ay equals F(A3) ~ tr(M)? + tr(MM) + tr(MM?)
which yields the variance Var(A,) =~ tr(g,\g,\ + SAgT,\) — 2¢q. In the same fashion
one gets higher order cumulants, e.g. the third cumulant Cums(A,) ~ tr(2§>\§)\§)\ +
65,5,57) —8¢. The definition of Sy given in (11) shows that the diagonal elements of
Sy have order O{(n))~'}, neglecting boundary points, so that Cums(A,) = O(A71).

Moreover, assuming Fj to be bounded away from zero one also has Var(Ay)™%/2 =
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O(N*/?) which in turn proves the asymptotic normality stated in (15).

Power Consideration

Let us assume that H; holds which implies that the bias By in (12) does not vanish.
Moreover, the estimates in the Hy model fulfill ﬁ(o) —n = Pl,, + By, where By, =
limy_,o By = Pn — n is the bias which occurs under H; when fitting the Hy model.

The likelihood ratio now equals

A

Q

[Y MU, + 207 {1 — S)\Diag(F;)} By — 21} {I — PsDiag(F;)} By
— B Diag(F;) By + BL Diag(F}) Bx
= "M, + bias® + Oy(n'/*A")

with bias®* = BL Diag(F;) By, — B} Diag(F;)By and M as defined above. The latter
simplification above holds since {I — PDiag(F;)}Bo = 0 and {I — S)Diag(F;)} B\ =
O(MN)O(B,). Consider now the alternative model with v(u) = V(u)8 + @(u)n"?
with p < 1/2 and 0 < a < 37 [p;]/n < b < oo where ¢; = ¢(u;). For identi-
fiability reasons we also assume that V' (u)f3 and ¢(u) are orthogonal in the sense
Y iW/IF;Zjp; = 0. Reflecting the definition of ~(u) and following standard kernel
smoothing arguments one gets the asymptotic order B} Diag(F;)By = O(\*n'~%)
and BI Diag(F;)By = O(n'~?P). Since Eg,(Ay) = O(A!) we select from (17) an
optimal bandwidth A\ with order A = O(n='*2))/5), This in turn gives bias® of
order O(n'=%). Reflecting now that the variance of A, coincides under H, and
H; with asymptotic order O(A™!) provides biasQ/\/m = O(nU1=220)/10) " This

shift tends to infinity for p < 1/2 so that with

A/\ - EHO (A/\) . A/\ E‘H1 A,\) _ bia32
i ( Var(A,\) S ) " ( wVar A,\ 1/V&I‘(A,\)) (32)

the corresponding test rejects Hy asymptotically with probability one.
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A.2 Appendix for §3

Derivation of Formula (22) and (24)
For asymptotic considerations it is helpful to incorporate the dependence of 7;; on
f, in the notation. Let %, be the solution of (20) for fixed f,. Differentiating

(20) gives in first order approximation,

0o
0~ S wii VL F, <V0,j goﬁ’f“ﬂ 4 Zz,j> (33)
j €T

with BO;“ﬁw as solution of (20) and %5, = %7i307i‘51. Solving (33) for 83072-‘51/855
provides (22). With 7p,; = fAyOZ.'E we denote the final estimate for vy; where B,

solves (21). By expansion we get in first order approximation

~ ~ 0%0,i18. 1 5 ~
’yO,i\EI ~ 70:i|ﬁw + aﬁ7|“ (ﬂl’ - ﬂil?) + Op(ﬁa: - ﬁaz)
T

where (3, denotes the true parameter here. Making use of the definition Za:,i =

Zyi + (070,i15,)/(0BL) one obtains for 772(0) = Yo,i + Za:,iBa: the approximation
(0 PN 7 (B
771( ) - M & Foalpe = Y04+ Zeille = Br)- (34)

We first expand (20) by taking 3, as given true parameter. This gives in first order

approximation

Folse = o+ VoFoo {wa,z’jvoj,}ln,j} + bogi) (35)
j

where Fooi) = 35 w5 Vi F5Vo and bo ) = Vo Fgou 25 wai Vo £ (Y0, —704) occurs
as smoothing bias. With S; \ denoting the generalized smoothing matrix as given
in (23) one may rewrite (35) in matrix form g5, — 70 & Soaly + Box where g =

(Yo, - - > 70.0)7 Vo018, = Fo,118as - - -» Fonis.)” and By = SpDiag(F;)vo — 7o. The
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next step is to expand of the profile estimation function (21) which gives in first

order approximation

Bx - ﬁa: ~ {Z Zg:zEZZ',Z} {Z T,0 777 ’YO,Z'WE + Za:,zﬁa:)}

Q

{;Zfzﬂzwz}_l [Z{ vilni = 24 (Gogip, — Vo,z')}] (36)
e (e)

Q

where 1,; = l,; — FiSoiely With Sg e denoting the ith row of Sp,. The sim-
plification from (36) to (37) holds up to the considered asymptotic order, as gen-
erally proven in Severini & Wong (1992). This implies in particular, that the ef-
fect of smoothing on the parametric fit 3 is only of second order, i.e. E(B - f) =

O(M\) + O(n™"). In particular (37) follows since the component
> ZyFbowy = Z; Diag(F;){SeaDiag(F;)v0 — 70}
= —Z, {1 — So,Diag(F;)}" Diag(F;)(I — So\)Diag(F;)vo
= O(n\Y) (38)
is of negligible asymptotic order, where we made use of the property >, wy;; =
Siwaji{l + O(N\?)}. Inserting(35) and (37) in (34) finally proves (24).

Properties of estimate ") defined in (26)
Let [, =1— Diag(F;)So and define S = Sy + S”a,iﬂf,\. Then in first order approx-

imation

ah = 50 4 Si%o) + SDiag(F;)7®™ — 7

Q

1+ S, — Diag(F) (7 — )} + SDiag(F)7® — 1

Q

1+ Sly + SDiag(F)n —n (39)
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Under Hy we have n = v + Z,3 which allows to simplify the bias component in

. Making use of S, N,\ iag(F;)Z, = S, Diag(F; ~x = ~a, provides
39). Maki f S, I\Diag(F;)Z. Sy uDiag(F;)Z d
SDiag(Fi)n —n = Box + Sy uDiag(F;)Box (40)

with By = SpDiag(Fi)vo — 7. We show now that for A — 0 the component
S,..Diag(Fi) By in (40) has negligible asymptotic order which in turn proves (27).
Assuming p — oo one gets from (38) S, . Diag(F;) By = PDiag(F;)By, = O(\Y).
Let on the other hand p — 0. We define with E(Z,|u;) the mean of the covariates
given u = w;, i.e. we have Sp,Diag(F;)Z, = E(Z,){1 + O(\*)} where E(Z,)" =
{E(Zy|u)¥, ..., E(Zy|u,)T}. Moreover we extract the dominating components of
the bias By, by writing By, = A% + O(A*) where § = (dy,...4,)" with § = O(1)
and boundary effects are neglected. For instance for linear smoothing one has ; =

76 (u;)/2. This notation permits

1 ~ 22
— > Wi ZaiFibogy = > wuiilZeg — E(Za|us)} F36; + O(XY)
5 np

= X0(u*) + O\ (41)
so that S, ,Diag(F;)Byx = O(A\2){O(1?) + O(X?)}. Hence the latter component in

(40) is of negligible order for both, y — oo and p — 0, which proves (27)

Expansion of the Likelihood ratio (29)

Expansion of the likelihood ratio (28) permits

Ay

Q

20, (7D = 7?)
(7" = n)"Diag(F) (0" —n) + (7" — )" Diag(F3) (7 = 1) (42)

208 (Sp — P)i, — {15 (Sox + Supul)™ + Bo} Diag(F;){(So + Sauln)ly + Bo}

Q

+{IL(Sor + PL)T + By}  Diag(F;){(So + PL)l, + By}
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= 1(2S,, — SI Diag(F;)S,, — P)l, + Bf Diag(F;)(P — S,,)l, (43)

with l~77 = IN,\ln. The squared bias components above cancel out since under H, both
estimates 7j(®) and () have the same smoothing bias. Moreover, the later component
in (43) has zero expectation and is of negligible asymptotic order. This yields (29)

as first order approximation for the likelihood ratio.

Power Consideration

Let model H; hold with n; = o, + Z, (8 + n Pps;), where ¢, ; = ¢, (u;) fulfills
the orthogonality condition ), Zf ZFZZ“@Z = 0 to ensure identifiability. We assume
A — 0 and g — 0 and take 3, = 0 for simplicity. With 7, we define the vector
WP Ze1Puis -y LenPen) . Using results from above we can write 7" under H,

as
7V ~n+ Sl, + SDiag(F))n —n ~ 1+ Sl,+ Byx + By,

with bias components By, = SpDiag(F;)v — 7o and Ba:,u = S’x,MDiag(Fi)ﬁx — T
where 7, = {I — SpDiag(F;)}n,. In the same fashion we get 70 (So.x +]51~)\)l,, +
By » +Baz,oo with BI,OO = limlHooBI,u = pDiag(Fi)ﬁI — 1. Standard kernel smooth-
ing arguments allow to derive 7,,; = n*pr,Z-cpx,i{l +O(\)} and ga,,MDiag(E)ﬁm =
{7e + O(*) {1 + O()N?)}, where boundary effects are neglected. This implies the
asymptotic order B, , = n?{O(u?) + O(\?)} and B, . = n?{1 + O(\?)}. Making
use of (38) we find the bias component By, to be orthogonal to Z, in the sense
n~'Z!'Diag(F;) By, = O(\'). Moreover, reflecting (41) one gets S, ,Diag(F;) By =
O(A){O(p?) + O(N?)} which in turn provides that the bias component By is or-
thogonal to B, i.e. we have n~'B Diag(F;)Byy = n?O(A){O(\?) + O(p?)}2.

This orthogonality also holds for B:c,,u substituted by BI,OO. Inserting ") and 7(®
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in (42) shows now by making use of the above orthogonalities
EH1 (A)\) ~ EHO (A)\) + biGSZ

where bias®? = BﬂwDiag(ﬂ)me —Bx,MDiag(E)B%M. The bias components have the
asymptotic order B, ,Diag(F))B,, = O®"){0(u?) + O(\»)}?* and
BT Diag(F;) By o= O(n'=){1 + O(A*)}? and Ey,(Ay) = O(p~"). Since A — 0 is
assumed we can neglect the effect of A in the sequel. The optimal bandwidth u cho-
sen by (30) has order u = O(n(~1*2P)/5) which implies that bias?> = O(n(11=220)/10),
As in Section 2 we get with (32) that the test rejects Hy asymptotically with prob-

ability one, as stated.
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smooth test parametric test
Model | a =5% | a=10% | a =5% | o = 10%
H, 6.3 12.1 4.7 10.0
H, 18.7 29.7 23.7 33.0
Hiyy 20.0 31.7 5.2 10.7
H . 23.0 33.7 7.5 16.5

Table 1: Probability of rejection in a simulation study for testing Hy : n = [y +
uBy + Ty

Model | a =5% | a = 10%
Hy, 5.2 10.2
Hiq 23.7 33.4
H, 92.8 35.2

Table 2: Probability of rejection in a simulation study for testing Hy : 1 = vo(u)+2 3,
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Figure 1: Fitted probability of human parasitic worm infestation. Lines correspond
to the fitted H; model, points ( <&, A) represent the fitted Hy model.
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Figure 2: Estimated probabilities and fitted predictors for unemployment data.
Points (<, A, x, +) show the semiparametric fit and lines represent the locally
fitted semiparametric model.
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