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Testing exponentiality has long been an interesting issue in statistical inferences. In
this article, we introduce a new measure of distance between two distributions that is
similar Kullback–Leibler divergence, but using the distribution function rather than
the density function. This new measure is based on the cumulative residual entropy.
Based on this new measure, a consistent test statistic for testing the hypothesis of
exponentiality against some alternatives is developed. Critical values for various
sample sizes determined by means of Monte Carlo simulations are presented for
the test statistics. Also, by means of Monte Carlo simulations, the power of the
proposed test under various alternative is compared with that of other tests. Finally,
we found that the power differences between the proposed test and other tests are
not remarkable. The use of the proposed test is shown in an illustrative example.

Keywords Cumulative residual entropy; Kullback–Leibler divergence;
Maximum entropy; Power study; Test for exponentiality.

Mathematics Subject Classification 62G10; 62E10; 94A17; 65C05.

1. Introduction

The notion of entropy is of fundamental importance in different areas such
as physics, probability and statistics, communication theory, and economics. In
information theory, entropy is a measure of the uncertainty associated with a
random variable. This concept was introduced by Shannon (1948). Shannon entropy
represents an absolute limit on the best possible lossless compression of any
communication. For a random variable X the Shannon entropy is defined as

H�X� = −
∫ �

−�
f�x� ln f�x�dx�

where f is the probability density function (pdf) if X is continuous, probability mass
function if X is discrete.

Received May 29, 2010; Accepted November 16, 2010
Address correspondence to S. Baratpour, Department of Statistics, School of

Mathematical Sciences, Ferdowsi University of Mashhad, P.O. Box 91775-1159, Mashhad,
Iran; E-mail: baratpur@math.um.ac.ir

1387

D
ow

nl
oa

de
d 

by
 [

Fe
rd

ow
si

 U
ni

ve
rs

ity
] 

at
 0

4:
53

 1
6 

A
pr

il 
20

12
 



1388 Baratpour and Rad

However, the Shannon entropy has certain disadvantages. For example, it
requires the knowledge of density function for non discrete random variables, the
discrete Shannon entropy dose not converge to its continuous analogous, and in
order to estimate the Shannon entropy for a continuous density, one has to obtain
the density estimation, which is not a trivial task. Rao et al. (2004) introduced a new
measure of information that extends the Shannon entropy to continuous random
variables, and called it cumulative residual entropy (CRE). They showed that it is
more general than the Shannon entropy and possesses more general mathematical
properties than the Shannon entropy. Its definition is valid for both continuous
and discrete cases. It can easily be computed from sample data and its estimation
asymptotically converges to the true value. CRE has applications in reliability
engineering and computer vision, for more details see Rao (2005). This measure is
based on the cumulative distribution function (cdf) F and is defined as follows:

CRE�X� = −
∫
RN+

P��X� > �� lnP��X� > ��d��

where X = �X1� � � � �XN � and � = ��1� � � � � �N � and �X� > � means that, for every i,
�Xi� > �i� and RN

+ = ���1� � � � � �N �� �i ≥ 0� 1 ≤ i ≤ N�� In reliability theory, CRE is
based on survival function �F�x� = 1− F�x�, and is defined as

CRE�X� = −
∫ �

0
F�x� ln F�x�dx�

Testing for exponentiality still attracts considerable attention and is the topic
of a good amount of recent research. Many authors provide test statisics for
detecting departures from the hypothesis of exponentiality against specific or
general alternatives. Alwasel (2001) and Ahmad and Alwasel (1999) used the
lack of memory property of the exponential distribution. Grzegorzewski and
Wieczorkowski (1999) and Ebrahimi and Habibullah (1992) make use of the
maximum entropy principle. Also, since early work by Sukhatme (1937) and later
work by Epstein and Sobel (1953, 1954, 1955) and Epstein (1954, 1960) considerable
attention has been given to testing the hypothesis of exponentiality. Park and
Park (2003) established the entropy-based goodness of fit test statistics based
on the nonparametric distribution functions of the sample entropy and modified
sample entropy, and compare their performances for the exponential and normal
distributions.

The rest of this article is organized as follows. In Sec. 2, we use a new measure
of distance between two distributions that is similar Kullback–Leibler divergence,
but using the distribution function rather than the density function. Based on this
new measure, a consistent test statistic for testing the hypothesis of exponentiality
against some alternatives is developed. In Sec. 3, we consider some power estimates
obtained by the method of Mont Carlo simulation. The use of the proposed test is
illustrated by an example in Sec. 4.

2. Test Statistics and Its Properties

Suppose X and Y be two non negative and absolutely continuous random variables
with cdf F and G and pdf f and g, respectively. As an information distance between
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Testing Exponentiality 1389

two distribution function F and G, Kullback and Leibler (1951) proposed the
following discrimination measure, also known as relative entropy of X and Y :

IX�Y =
∫ �

0
f�x� ln

f�x�

g�x�
dx�

Also, Ebrahimi and Kirmani (1996) defined a measure of discrimination between
two residual lifetime distributions.

To construct a goodness-of-fit test for exponentiality, we first define a new
measure of distance between two distribution that is similar to Kullback–Leibler
divergence (KL), but using the distribution function rather than the density function
and call it cumulative Kullback–Leibler (CKL) divergence.

Definition 2.1. If X and Y be two non negative and absolutely continuous random
variables with, respectively, cdfs F and G, then CKL between these distributions is
defined as

CKL�F 	 G� =
∫ �

0

�F�x� ln �F�x�
�G�x�

dx − 
E�X�− E�Y���

where �F�x� = 1− F�x� and �G�x� = 1−G�x� are, respectively, cumulative residual
distributions.

Lemma 2.1. CKL�F 	 G� ≥ 0� and equality holds if and only if F = G, a.e.

Proof. By the log-sum inequality, we have

∫ �

0

�F�x� ln �F�x�
�G�x�

dx ≥
∫ �

0

�F�x�dx ln
∫ �
0
�F�x�dx∫ �

0
�G�x�dx

= E�X� log
E�X�

E�Y�
�

The proof is complete if we use the inequality x ln x
y
≥ x − y, ∀x > 0 and ∀y > 0 and

note that in the log-sum inequality, equality holds if and only if �F�x� = �G�x�, a.e.
Let X1� X2� � � � � Xn be non negative; independent and identically distributed (iid)

random variables from an absolutely continuous cdf F with order statistics, X�1� ≤
· · · ≤ X�n�, and with finite � = E�X2

1 �

2E�X1�
. Let F0�x� �� = 1− e−

x
� , � > 0, x > 0, denote an

exponential cdf, where � is the unknown mean parameter. The aim of this article is
testing the hypothesis

H0 	 F�x� = F0�x� ��� vs. Ha 	 F�x� �= F0�x� ���

Under the null hypothesis CKL�F 	 F0� = 0 and large value of CKL�F� F0� leads us
to reject the null hypothesis H0 in favor of the alternative hypothesis Ha. Since
evaluation of the integral in CKL�F 	 F0� requires complete knowledge of F and F0,
then CKL�F 	 F0� is not operational. We operationalize CKL�F 	 F0� by developing
a discrimination information statistics. Toward this end, CKL�F� F0� is written as

CKL�F 	 F0� = −CRE�F�−
∫ �

0

�F�x� ln�F0�x� ��dx − E�X�+ �

= −CRE�F�+ 1
�

∫ �

0
x�F�x�dx − E�X�+ �
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1390 Baratpour and Rad

= −CRE�F�+ 1
2�

E�X2�− E�X�+ �

= −CRE�F�+ �� (1)

The last equality is obtained by noting that � = E�X2
1 �

2E�X1�
. An estimator of CRE�F� is

the CRE of the empirical distribution Fn�x� =
∑n−1

i=0
i
n
I
x�i��x�i+1��

. Thus,

ĈRE�F� = −
∫ �

0

�Fn�x� ln��Fn�x��dx

= −
n−1∑
i=1

n− i

n

(
ln
n− i

n

)
�X�i+1� − X�i���

where �Fn�x� = 1− Fn�x�� By replacing CRE�F� by ĈRE�F� and � by �̂ =
∑n

i=1 X
2
i

2
∑n

i=1 Xi
in

(1), an estimator of CKL�F 	 F0� is obtained as follows:

ĈKL�F 	 F0� =
n−1∑
i=1

n− i

n

(
ln
n− i

n

)
�X�i+1� − X�i��+

∑n
i=1 X

2
i

2
∑n

i=1 Xi

�

Thus, the test statistics is defined as

Tn =
∑n−1

i=1
n−i
n
�ln n−i

n
��X�i+1� − X�i��+

∑n
i=1 X

2
i

2
∑n

i=1 Xi∑n
i=1 X

2
i

2
∑n

i=1 Xi

� (2)

We reject H0 at the significance level � and favor Ha if Tn ≥ Tn�1−�� where Tn�1−� is
100�1− ��−precentile of Tn under H0�

Rao et al. (2004) proved that CRE�Fn� → CRE�F� a.s. Thus, CRE�Fn� is a
consistent estimator for � By consistency of

∑n
i=1 X

2
i

2
∑n

i=1 Xi
for � and applying Slutsky

Theorem, under the null hypothesis, Tn

p→ 0� On the other hand, the exponential
distribution maximizes CRE among all distributions that have the same coefficient
of variation (Rao et al., 2004), so CRE�F� < CRE�F0� = �. Under Ha, CRE�Fn� →
CRE�F� a.e; thus, Tn

p→ −CRE�F�+�

�
> −CRE�F0�+�

�
= 0. This means that the Tn test

is a consistent test. The distribution of Tn under the null hypothesis has not
been obtained analytically. To determine the percentage point Tn�1−�, Monte Carlo
simulations were employed.

A Monte Carlo experiment. In order to obtain the percentiles of the null
distribution of Tn, 100,000 samples of size n were generated from the standard
exponential distribution for selected values n = 1� � � � � 39 and 40 to 60 by 5� For
each sample, the Tn statistics as defined in (1) was calculated. The values were then
used to determine the critical values Tn�0�95 and Tn�0�99� A selection of the 95 and 99%
points is presented in Table 1.

The Type I error control using the 0.95 percentiles of the Tn statistics
was evaluated by simulating random samples from a spectrum of Exponential
populations. A selection of the result is presented in Table 2. It can be seen that the
empirical percentiles given in Table 2 provide an excellent Type I error control.
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Testing Exponentiality 1391

Table 1
Critical values of the test statistic Tn

Tn Tn

n � = 0�01 � = 0�05 n � = 0�01 � = 0�05

1 1 1 23 0.203320 0.145133
2 0.986629 0.930413 24 0.199954 0.140382
3 0.873334 0.716627 25 0.191123 0.136555
4 0.731870 0.568323 26 0.184511 0.1330370
5 0.622731 0.478341 27 0.179066 0.1290080
6 0.546711 0.413322 28 0.177599 0.1246880
7 0.488503 0.365211 29 0.170543 0.1220246
8 0.444109 0.328022 30 0.169259 0.1186599
9 0.407138 0.327022 31 0.164550 0.1165592
10 0.373206 0.274001 32 0.160690 0.1125455
11 0.348556 0.256111 33 0.157976 0.1111602
12 0.325782 0.238452 34 0.153959 0.1082894
13 0.306955 0.224279 35 0.151553 0.1060633
14 0.292023 0.211613 36 0.149443 0.1039062
15 0.277680 0.200307 37 0.146812 0.1015964
16 0.263829 0.191363 38 0.143305 0.0994503
17 0.252797 0.182744 39 0.139728 0.0982132
18 0.244387 0.174967 40 0.138110 0.0959014
19 0.232801 0.166225 45 0.125438 0.0873280
20 0.225033 0.162147 50 0.118886 0.0807222
21 0.217664 0.155650 55 0.110479 0.0748003
22 0.211146 0.150695 60 0.104300 0.0698177

Table 2
Type I error control of Tn test: � = 0�05. (Simulation

estimates based on 100,000 replications)

n

Exp(�) 5 15 25

� = 2 0.04954 0.05015 0.05020
� = 3 0.05026 0.04877 0.04887
� = 4 0.04962 0.05059 0.04942
� = 5 0.05041 0.04995 0.04925

3. Power Comparison

The goodness-of-fit test based on the empirical distribution function is widely
used as a tool for testing distributional hypotheses. Finkelstein and Schafer (1971)
provided the statistics S�∗ that tests the fit to an exponential distribution with
mean unknown and showed that it is more power than a Kolmogorov-Smirnow
type statistics suggested by Lillifors (1969) for the cases tested. Van-Soest (1969)
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1392 Baratpour and Rad

did much the same thing with the Cramer-Von Mises statistics. Recently, Choi
et al. (2004) discussed goodness-of-fit tests of the exponential distribution based
on Kullback–Leibler information. To construct the test statistics, Correas entropy
estimator was used as an estimator of Shannons entropy.

In this section, the performance of the Tn test is investigated using Mont Carlo
simulation to the Van-Soest statistics

W 2 =
n∑

i=1

{
F0�X�i�� ̂�−

2i− 1
2n

}2

+ 1
12n

and Finkelstein and Schafers statistics

S∗ =
n∑

i=1

max
{∣∣∣∣F0�X�i�� ̂�−

i

n

∣∣∣∣�
∣∣∣∣F0�X�i�� ̂�−

i− 1
n

∣∣∣∣
}
�

where ̂ = 1
n

∑n
i=1 Xi = �X and Choi et al. statistics

KLCmn =
exp�Cmn�

exp�ln�X + 1�
�

where Cmn = − 1
n

∑n
i=1 log

{∑i+m
j=i−m�X�j�−�Xi��j−i�

n
∑i+m

j=i−m�X�j�−�Xi�
2

}
and �Xi =

∑i+m
j=i−m

X�j�

2m+1 � which are

proposed for testing H0 against Ha� In KLCmn statistics, the windows size m is a
positive integer smaller than n

2 , X�j� = X�1�, if j < 1 and X�j� = X�n�� if j > n� H0 is
rejected of large value of W2 and S∗ and of small value of KLCmn� As alternative
distributions, the following distributions were selected for power analysis:

(a) a Weibull distribution with density function

f�x� �� �� = �

��
x�−1 exp

(
−
(
x

�

)�)
� � > 0� � > 0� x ≥ 0�

(b) a gamma distribution with density function

f�x� �� �� = x�−1 exp�−� x
�
��

������
� � > 0� � > 0� x ≥ 0�

(c) a lognormal distribution with density function

f�x� �� �2� =
1

x�
√
�2��

exp
{
− 1

2�2
�ln x − ��2

}
� −� < � < �� � > 0� x > 0�

For each distribution we set parameters such that E�X2
1 �

2E�X1�
= 1� i.e., � = 2��1+ 1

� �

��1+ 2
� �

for the

Weibull distribution, � = 2
1+�

for the gamma distribution and �2 = 2
3 �ln 2− �� for

the log-normal case. A total of 100,000 samples of sizes n = 5� 10� 15� 20� 25 were
generated from each distribution. The statistics Tn, W

2, S∗, KLCmn were calculated
for each samples and their powers were recorded in Tables 3–5, by taking the
proportion of rejections.

From the result of Table 3–5, we see that the power differences between Tn

test and other tests are not remarkable. But calculations of Tn is easier than the
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Testing Exponentiality 1393

Table 3
Power comparison for the tests Tn, W

2, S∗, and KLCmn when the alternative
distribution is Weibull, at the significance levels � = 0�01 and � = 0�05 and sample

sizes are n = 5, 10, 15, 20, 25

Tn W 2 S∗ KLCmn

n � � = 0�01 � = 0�05 � = 0�01 � = 0�05 � = 0�01 � = 0�05 � = 0�01 � = 0�05

5 2 0�112 0�345 0�078 0�290 0�074 0�299 0�112 0�368
3 0�334 0�708 0�254 0�642 0�249 0�659 0�340 0�733
4 0�595 0�910 0�483 0�864 0�476 0�879 0�595 0�917

10 2 0�338 0�647 0�288 0�614 0�303 0�631 0�374 0�695
3 0�857 0�978 0�812 0�968 0�831 0�976 0�870 0�981
4 0�990 0�999 0�978 0�999 0�984 0�999 0�989 0�999

15 2 0�550 0�829 0�537 0�828 0�555 0�837 0�615 0�864
3 0�983 0�999 0�978 0�998 0�984 0�999 0�987 0�999
4 0�999 0�999 0�999 1 0�999 1 0�999 1

20 2 0�721 0�919 0�744 0�930 0�764 0�941 0�749 0�924
3 0�998 0�999 0�998 0�999 0�999 0�999 0�998 0�999
4 1 1 1 1 1 1 1 1

25 2 0�834 0�963 0�879 0�976 0�887 0�981 0�842 0�963
3 0�999 1 0�999 0�999 0�999 1 0�999 1
4 1 1 1 1 1 1 1 1

Table 4
Power comparison for the tests Tn, W

2, S∗, and KLCmn when the alternative
distribution is Gamma, at the significance levels � = 0�01 and � = 0�05 and sample

sizes are n = 5, 10, 15, 20, 25

Tn W 2 S∗ KLCmn

n � � = 0�01 � = 0�05 � = 0�01 � = 0�05 � = 0�01 � = 0�05 � = 0�01 � = 0�05

5 5 0.038 0.163 0.024 0.129 0.025 0.133 0.044 0.179
6 0.081 0.291 0.055 0.248 0.058 0.255 0.089 0.325
7 0.131 0.409 0.095 0.364 0.098 0.370 0.148 0.459

10 5 0.086 0.264 0.067 0.243 0.071 0.249 0.112 0.325
6 0.235 0.515 0.213 0.539 0.217 0.544 0.305 0.627
7 0.402 0.710 0.401 0.762 0.404 0.762 0.508 0.820

15 5 0.127 0.329 0.133 0.369 0.143 0.373 0.188 0.443
6 0.373 0.658 0.448 0.763 0.459 0.761 0.516 0.798
7 0.614 0.853 0.734 0.940 0.740 0.937 0.773 0.944

20 5 0.162 0.395 0.213 0.487 0.219 0.496 0.238 0.499
6 0.485 0.762 0.652 0.894 0.654 0.893 0.650 0.874
7 0.757 0.933 0.908 0.987 0.903 0.986 0.893 0.979

25 5 0.203 0.445 0.297 0.589 0.305 0.593 0.285 0.566
6 0.593 0.835 0.803 0.955 0.801 0.953 0.755 0.930
7 0.854 0.968 0.975 0.998 0.972 0.997 0.951 0.993
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1394 Baratpour and Rad

Table 5
Power comparison for the tests Tn, W

2, S∗, and KLCmn when the alternative
distribution is Log-Normal, at the significance levels � = 0�01 and � = 0�05 and

sample sizes are n = 5, 10, 15, 20, 25

Tn W 2 S∗ KLCmn

n � � = 0�01 � = 0�05 � = 0�01 � = 0�05 � = 0�01 � = 0�05 � = 0�01 � = 0�05

5 0.4 0�213 0�519 0�152 0�528 0�151 0�517 0�227 0�611
0.5 0�358 0�712 0�282 0�745 0�277 0�725 0�391 0�811
0.6 0�700 0�946 0�634 0�970 0�613 0�959 0�756 0�983

10 0.4 0�539 0�799 0�664 0�923 0�638 0�904 0�726 0�936
0.5 0�802 0�950 0�913 0�994 0�889 0�989 0�925 0�993
0.6 0�991 0�999 0�999 1 0�999 1 0�999 1

15 0.4 0�733 0�905 0�928 0�993 0�895 0�988 0�926 0�990
0.5 0�943 0�991 0�997 0�999 0�993 0�999 0�995 0�999
0.6 0�999 1 1 1 1 1 1 1

20 0.4 0�845 0�953 0�990 0�999 0�982 0�999 0�983 0�998
0.5 0�985 0�998 0�998 1 0�999 1 0�999 1
0.6 1 1 1 1 1 1 1 1

25 0.4 0�906 0�980 0�999 0�999 0�997 0�999 0�996 0�999
0.5 0�995 0�999 1 1 1 1 1 1
0.6 1 1 1 1 1 1 1 1

other statistics especially KLCmn, thus Tn test needs less time than the other tests
for simulations. It is also remarkable that the power of the all tests against any
alternative shows an increasing pattern for the sample size.

4. An Illustrative Example

In this section we consider one real-life data analysis from Lawless (1982). We
present an example to illustrate the use of the test Tn for testing the validity of
Exponential distribution. The data are given below, it consist of failure times for 36
appliances subjected to an automatic life test.

Data set: 11� 35� 49� 170� 329� 381� 708� 958� 1062� 1167� 1594� 1925� 1990� 2223�

2327� 2400� 2451� 2471� 2551� 2565� 2568� 2694� 2702� 2761� 2831� 3034� 3059� 3112�

3214� 3478� 3504� 4329� 6367� 6976� 7846� 13403�

Table 6
Critical values, test statistics, and the p-values

Exponential dis. Critical value Tn p-value

� = 0�01 0.1474290 0.0495886 0.9996373
� = 0�05 0.1029019 0.0495886 0.9996373
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Testing Exponentiality 1395

Table 6 shows critical values, test statistics and the p-values. Since the values of
Tn are less than the critical values, test accepts the null hypothesis that failure times
follow an exponential distribution at significance levels � = 0�01 and � = 0�05.

5. Concluding Remark

In this article, we construct a consistent goodness-of-fit test for exponential
distribution via maximum cumulative residual entropy property under one
constraint. Other life-time models such as Weibull and Pareto may be used, but we
must prove that they have maximum cumulative residual entropy property under
some constraints. Work in this direction is currently under progress.
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