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1. Introduction

Topological data analysis (TDA) provides insights into a variety of datasets by
capturing some of their most salient properties via refined topological features.
Since the mathematical field of topology specializes in describing invariants of
objects independently of the choice of a precise metric, these features are ro-
bust against small perturbations or different embeddings of the object [12, 13].
Among the most classical topological invariants are the Betti numbers. Loosely
speaking, they capture the number of k-dimensional holes of the investigated
structure. TDA refines this idea substantially by constructing filtrations and
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tracing when topological features appear and disappear. In point pattern analy-
sis, simplicial complexes are built so that they are topologically equivalent to a
union of disks with the same radius and centered at the data points, see the first
three panels of Figure 1. As the radius increases, a sequence of simplicial com-
plexes is then defined. Examples of such complexes are the basic Čech complex
or the more elaborate α-complex, which is based on the Delaunay triangula-
tion, see [19]. In that framework, 1-dimensional features correspond to loops in
the simplicial complexes while 0-dimensional features correspond to connected
components. When moving up in the filtration, additional edges appear and
at some point create new loops. On the other hand, more and more triangles
also appear, thereby causing completely filled loops to disappear. Usually, the
filtration is indexed by time, and we refer to the appearance and disappearance
of features as births and deaths. We refer the reader to [19] for a detailed pre-
sentation of these concepts. The persistence diagram visualizes the time points
when the features are born and die, see the bottom-right panel in Figure 1.
Persistent Betti numbers count the number of events in upper-left blocks of the
persistence diagram and are also illustrated in the figure.

Fig 1. Top: Realization of Poisson point process (left) and union of disks centered at the
points of the process (right). Bottom: Alpha-complex corresponding to the union of disks with
alive (blue) and dead (red) loops marked (left). Associated persistence diagram (right).
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In this paper, we leverage persistent Betti numbers to derive goodness-of-fit
tests for planar point processes. Here, the abstract general definition of persis-
tent Betti numbers gives way to a clear geometric intuition induced by a picture
of growing disks centered at the points of the pattern and all having radius r,
corresponding to the index of the filtration. Features of dimension 0 correspond
to connected components in the union of disks, interpreted as point clusters,
whereas boundaries of the complement set can be considered as the loops form-
ing the 1-dimensional features. Since the notion of clusters in the sense of con-
nected components lies at the heart of persistent Betti numbers in degree 0,
they become highly attractive as a tool to detect clustering in point patterns.
Our tests are based on a novel functional central limit theorem (CLT) for the
persistent Betti numbers in large domains in R

2 and outperform in certain cases
tests based on Ripley’s K-function (see e.g. Table 2). We think that investigat-
ing Betti numbers in higher dimension should also provide more efficient tests.
The present work embeds into two active streams of current research.

First, now that TDA has become widely adopted, the community is vig-
orously working towards putting the approach on a firm statistical foundation
paving the way for hypothesis testing. On the one hand, this encompasses large-
sample Monte Carlo tests when working on a fixed domain [7, 10, 14]. Although
these tests are highly flexible, the test statistics under the null hypothesis must
be re-computed each time when testing observations in a different window. In
large domains, this becomes time-consuming. On the other hand, there has been
substantial progress towards establishing CLTs in large domains for functionals
related to persistent Betti numbers [41, 42, 31, 37, 26]. However, these results
are restricted to the null hypothesis of complete spatial randomness – i.e., the
Poisson point process – and establish asymptotic Gaussianity on a multivariate,
but not on a functional level. Our proof of a functional CLT is based on recently
developed stabilization techniques for point processes with exponential decay of
correlations [9]. As explained in the final section of [11], the main technical step
towards a functional CLT are bounds on the cumulants.

Second, the introduction of global rank envelope tests has led to a novel surge
of research activity in goodness-of-fit tests for point processes [36]. One of the
reasons for their popularity is that they rely on functional summary statistics
rather than scalar quantities. Thus, they reveal a substantially more fine-grained
picture of the underlying point pattern. In the overwhelming majority of cases,
variants of the K-function are used as a functional summary statistic, thereby
essentially capturing the relative density of point pairs at different distances.
Here, the persistent Betti numbers offer an opportunity to augment the basic
second-order information by more refined characteristics of the data. Still, even
for classical summary statistics, rigorous limit theorems in large domains remain
scarce. For instance, a functional central limit theorem of the estimated K-
function is proven in detail only for the Poisson point process in [23] and an
extension to α-determinantal point processes is outlined in [24].

The rest of the manuscript is organized as follows. First, in Section 2, we in-
troduce the concepts of M -bounded persistence diagrams and M -bounded per-
sistent Betti numbers. Next, in Section 3, we state the two main results of the
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paper, a CLT for the M -bounded persistence diagram and a functional CLT for
the M -bounded persistent Betti numbers. In Section 4, we provide specific ex-
amples of point processes satisfying the conditions of the main results. Sections
5 and 6 explore TDA-based tests for simulated and real datasets, respectively.
Finally, Section 7 summarizes the findings and points to possible avenues of
future research. The proofs of the main results are deferred to Sections 8 and 9
of the appendix.

2. M-bounded persistent Betti numbers

For a locally finite point set X ⊂ R
2, persistent Betti numbers provide refined

measures for the amount of clusters and voids on varying length scales. More
precisely, we let

Ur(X ) =
⋃
x∈X

Br(x). (1)

denote the union of closed disks of radius r ≥ 0 centered at points in X . A
0-dimensional topological feature is a connected component of this union, cor-
responding to a cluster of points in X , while a 1-dimensional feature can be
thought of as a bounded connected component of the background space, often
identified with its boundary loop, and describes a vacant area in the plane.
As the disks grow, new features arise and vanish; we say that they are born
and die again. The persistent Betti numbers quantify this evolution of clusters
and loops. Henceforth, we consider the persistence diagram only until a fixed
deterministic radius rf ≥ 0.

As r approaches the critical radius for continuum percolation, long-range
phenomena emerge [33]. Thus, determining whether two points are connected
could require exploring large regions in space. While useful quantitative bounds
on cluster sizes are known for Poisson point processes [1], for more general classes
of point processes the picture remains opaque and research is currently at a
very early stage [28, 8]. Recently, a central limit theorem for persistent Betti
numbers has been established in the Poisson setting [31, 26], but for general
point processes the long-range interactions pose a formidable obstacle towards
proving a fully-fledged functional CLT.

From a more practical point of view, these long-range dependencies are of less
concern. Although large features can carry interesting information, we expect
that spatially bounded topological features already provide a versatile tool for
the statistical analysis of both simulated point patterns and real datasets, even
when focusing only on features of a bounded size. For that purpose, we concen-
trate on features whose spatial diameter does not exceed a large deterministic
threshold M .

To define these M -bounded features, we introduce the Gilbert graph Gr(X )
on the vertex set X . The Gilbert graph Gr(X ) has for vertices the points in X
and two points are connected by an edge if the distance between them is at most
2r or, equivalently, if the two disks of radius r centered at the points intersect.
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2.1. M-bounded clusters

The 0-dimensional M -bounded features alive at time r > 0 are the connected
components of Gr(X ) with diameter at most M . Starting at r = 0, all points
belong to separate connected components that merge into larger clusters when
r increases. We thus say that all components are born at time 0.

To define the death time of a component, let Cr(x) denote the connected
component of x ∈ X in Gr(X ). The components of x, y ∈ X meet at time

R(x, y) = inf{r > 0 : Cr(x) = Cr(y)}.

Then, the death time of x ∈ X is the smallest R(x, y) such that the spatial
diameter of Cr(x) exceeds M or such that Px is lexicographically smaller than
Py, where Px, Py are the points of Cr(x)∩X and Cr(y)∩X whose associated disks
meet at time R(x, y). This ordering determines which component dies when two
of them meet. See Figure 2.1a for an illustration.

Fig 2. a. The point z is already dead, while x is still alive, because z is lexicographically
smaller than x. The point x will die when the balls around x and y meet because x is the
lexicographically smaller of the two. b. A hole is formed when the two lower balls meet. The
size of the hole is the diameter of the polygon formed by the centers of balls touching the hole
at this time point. If this is smaller than M , we say that the hole is born. Otherwise, we wait
until two balls merge to split the hole in two smaller pieces and recompute the size. The hole
is identified with the point p(H) which is covered last by the balls.

2.2. M-bounded loops

Next, we introduce 1-dimensional features. At time r > 0, these correspond
to holes, i.e., bounded connected components in the vacant phase Vr(X ) =
R2 \ Ur(X ). In contrast to the clusters, there are no holes at time 0, so that
both birth and death times must be specified. Moreover, it needs to be defined
how holes are related for different radii r.

The death time of a hole Hs in Vs(X ) is the first time r > s when the hole
is completely covered by disks, i.e., Hs ⊆ Ur(X ). We identify a hole H with the
point p(H) that is covered last. Thus, holes Hs in Vs(X ) and Hr in Vr(X ), are
identified if p(Hr) = p(Hs).
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New holes in Vr(X ) can only be formed when two balls merge, which corre-
sponds to including a new edge in Gr(X ). A new hole can appear in two ways:
either a finite component is separated from the infinite component, or an exist-
ing hole is split in two. In both cases, we define the size of the newly created
piece(s) as follows: Let x1, . . . , xk ∈ X be the points in X such that the disks
of radius r around the points intersect the boundary of the hole H in Vr(X ).
Then, the size of H is the diameter of the set {x1, . . . , xk}. The size remains
unchanged until the next time the hole is split into smaller pieces. Then the
size is recomputed for both new pieces. This definition ensures that the size
decreases when the balls grow and only changes when a new edge is added to
Gr(X ).

The birth time of a hole H is the minimal s such that there is a hole Hs in
Vs(X ) with p(H) = p(Hs) and size less than M . By an M -bounded loop, we
mean a loop with size lower than M . Figure 2.1b illustrates this definition.

2.3. The persistence diagram

We now adapt the definition of the persistence diagram in [26] to only include
M -bounded features. That is, we define the qth M -bounded persistence diagram,
q ∈ {0, 1}, as the empirical measure

PDM,q(X ) =
∑

i∈IM,q(X )

δ(BM
i ,DM

i ), (2)

where IM,q(X ) is an index set over all M -bounded q-dimensional features that
die before time rf and BM

i , DM
i are the birth and death times of the ith feature.

Then, the qth M -bounded persistent Betti numbers

βM,q
b,d (X ) = PDM,q(X )([0, b]× [d, rf ])

are the number of M -bounded features born before time b ≥ 0 and dead after
time d ≤ rf . When q = 0, all features are born at time 0, so that only death
times are relevant. Hence, we write βM,0

d instead of the more verbose βM,0
b,d .

3. Main results

Henceforth, P denotes a simple stationary point process in R
2 with intensity

ρ > 0. We think of P as a random variable taking values in the space of lo-
cally finite subsets N of R2 endowed with the smallest σ-algebra N such that
the number of points in any given Borel set becomes measurable. Throughout
the manuscript, we assume that the factorial moment measures exist and are
absolutely continuous. In particular, writing x = (x1, . . . , xp) ∈ R2p, the pth
factorial moment density ρ(p) is determined via the identity

E

[∏
i≤p

P(Ai)
]
=

∫
A1×···×Ap

ρ(p)(x)dx (3)
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for any pairwise disjoint bounded Borel sets A1, . . . , Ap ⊂ R
2, where P(Ai)

denotes the number of points of P in Ai. Moreover, as we rely on the framework
of [9], we also require that P exhibits exponential decay of correlations. Loosely
speaking this expresses an approximate factorization of the factorial moment
densities and is made precise in Section 4 below. Many of the most prominent
examples of point processes appearing in spatial statistics exhibit exponential
decay of correlations [9, Section 2.2].

Our first main result is a CLT for the persistence diagram built on the re-
striction Pn = P ∩ Wn of the point process P to a large observation window
Wn = [−√

n/2,
√
n/2]2. With a slight abuse of notation, we write P ∪ x =

P∪{x1, . . . , xp}. To prove the CLT, we impose an additional condition concern-
ing moments under the reduced p-point Palm distribution P

!
x. We recall that

this distribution is determined via

E

[ ∑
(X1,...,Xp)∈Pp

�=

f(X1, . . . , Xp;P)
]
=

∫
R2p

E
!
x[f(x;P ∪ x)]ρ(p)(x)dx, (4)

for any bounded measurable f : R
2p × N → R, where Pp

�= denotes p-tuples
of pairwise distinct points in P . In the following, Px denotes the unreduced
Palm measure characterized via Ex[f(P)] = E

!
x[f(P ∪ x)] for any non-negative

measurable f : N → [0,∞). Then, we impose the following moment condition.

(M) For every p ≥ 1

sup
l≤p

x∈R
2l

E
!
x[P(W1)

p] < ∞.

To state the CLT for the persistence diagram precisely, we let

〈f,PDM,q(Pn)〉 =
∫
[0,rf ]2

f(b, d)PDM,q(Pn)(db, dd) =
∑

i∈IM,q(Pn)

f
(
BM

i , DM
i

)

denote the integral of a bounded measurable function f : [0, rf ]
2 → R with

respect to the measure PDM,q(Pn).

We first recall the definition of exponential decay of correlations from [9]. To
this end, we define the separation distance between x = {x1, . . . , xp} ⊂ R

2 and
x′ = {xp+1, . . . , xp+q} ⊂ R

2 as in [9, Formula (1.3)] via

dist(x,x′) = inf
i≤p
j≤q

|xi − xp+j |. (5)

Definition 3.1. Let P be a stationary point process in R
2, such that the k-

point correlation function ρ(k) exists for all k ≥ 1. Then, P exhibits exponential
decay of correlations if there exist a < 1, φ : [0,∞) → [0,∞) such that

1. limt→∞ tnφ(t) = 0 for all n ≥ 1,
2. lim inft→∞ log φ(t)/tb < 0 for some b > 0,
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3.

|ρ(p+q)(x ∪ x′)− ρ(p)(x)ρ(q)(x′)| ≤ (p+ q)a(p+q)φ(dist(x,x′))

for any x = {x1, . . . , xp},x′ = {xp+1, . . . , xp+q} ⊂ R
2.

Theorem 3.2 (CLT for persistence diagrams). Let M > 0, q ∈ {0, 1} and
f : [0, rf ]

2 → R be a bounded measurable function. Assume that P exhibits expo-
nential decay of correlations and satisfies condition (M). Furthermore, assume
that lim infn→∞ Var(〈f,PDM,q(Pn)〉)n−ν = ∞ for some ν > 0. Then,

〈f,PDM,q(Pn)〉 − E[〈f,PDM,q(Pn)〉]√
Var(〈f,PDM,q(Pn)〉)

converges in distribution to a standard normal random variable as n → ∞.

In order to derive a functional CLT for the persistent Betti numbers, we add
a further constraint on P , which is needed to establish a lower bound on the
variance via a conditioning argument in the vein of [40, Lemma 4.3]. For this
purpose, we consider a random measure Λ, which is jointly stationary with P and
which we think of as capturing additional useful information on the dependence
structure of P . For instance, if P is a Cox point process, we choose Λ to be
the random intensity measure. If P is a Poisson cluster process, then Λ would
describe the cluster centers. If the dependence structure is exceptionally simple,
it is also possible to take Λ = 0. The idea of using additional information is
motivated from conditioning on the spatially refined information coming from
the clan-of-ancestors construction in Gibbsian point processes [40].

The point process P is conditionally m-dependent if P ∩ A and P ∩ A′

are conditionally independent given σ(Λ,P ∩ A′′) for any bounded Borel sets
A,A′, A′′ ⊂ R2 such that the distance between A and A′ is larger than some
m > 0. Here, σ(Λ,P ∩A′′) denote the σ-algebra generated by Λ and P ∩A′′.

Finally, we impose an absolute continuity-type assumption on the Poisson
point process in a fixed box with respect to P when conditioned on Λ and the
outside points. More precisely, we demand that there exists rAC > 6M ∨3rf with
the following property, where Q denotes a homogeneous Poisson point process
in the window Wr2AC

.

(AC) Let E1, E2 ∈ N be such that mini∈{1,2} P(Q ∈ Ei) > 0. Then,

E
[

min
i∈{1,2}

P
(
Pr2AC

∈ Ei |Λ,P \Wr2AC

)]
> 0.

Although (AC) appears technical, Section 4 illustrates that it is tractable for
many commonly used point processes.

Since the persistent Betti numbers exhibit jumps at the birth- and death
times of features, we work in the Skorokhod topology [6, Section 14]. One of the
main difficulties of this paper is that the functionals are not simple functionals
depending on points or pairs of points but are more complex.
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Theorem 3.3 (Functional CLT for persistent Betti numbers). Let M > 0 and
P be a conditionally m-dependent point process with exponential decay of correla-
tions and satisfying conditions (M) and (AC). Then, the following convergence
statements hold true.

q=0. The one-dimensional process{
n−1/2

(
βM,0
d (Pn)− E[βM,0

d (Pn)]
)}

d≤rf

converges weakly in Skorokhod topology to a centered Gaussian process.
q=1. The two-dimensional process{

n−1/2
(
βM,1
b,d (Pn)− E[βM,1

b,d (Pn)]
)}

b,d≤rf

converges weakly in Skorokhod topology to a centered Gaussian process.

Additionally, proceeding as in [9, Theorem 1.12] we obtain convergence of
the rescaled variances and also an expression for the covariance structure of
the limiting Gaussian process in Theorem 3.3. To be more precise, let f, g :
[0, rf ]

2 → R be bounded measurable functions. Then,

lim
n→∞

1

n
Cov(〈f,PDM,q(Pn)〉, 〈g,PDM,q(Pn)〉) = σ2

f,g,q,

where

σ2
f,g,q := Eo

[
ξf,q(o,P)ξg,q(o,P)

]
ρ+

∫
R2

af,g,q(x)dx. (6)

Here,

af,g,q(x) = Eo,x

[
ξf,q(o,P)ξg,q(x,P)

]
ρ(2)(o, x)− Eo[ξf,q(o,P)]Eo[ξg,q(o,P)]ρ2

and ξf,q, ξg,q denote TDA-related scores, whose precise definition is given in
identity (12) in Section 8.

Furthermore, it would be attractive to replace (AC) by the assumption that

there exists ν > 0 such that n−νVar[βM,q
b,d (Pn)] → σ2(M, b, d) for all b ≤ d ≤

rf , and then establish the functional CLT under the scaling nν/2. Indeed, this
would open the door to studying point processes whose variance grows sub-
volume order. However, the refined variance computations that are needed for
the tightness argument in Section 9.2 are currently tied to having ν = 1. It is an
exciting avenue of further research to think about alternative approaches with
the potential to work for more general ν > 0.

As an application of Theorem 3.3, we obtain a functional CLT for the follow-
ing two characteristics, which are modified variants of the accumulated persis-
tence function from [7]:

APFM,0
r (Pn) =

∑
i∈IM,0(Pn)

DM
i 1{DM

i ≤ r}

and
APFM,1

r (Pn) =
∑

i∈IM,1(Pn)

(DM
i −BM

i )1{BM
i ≤ r}.
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Corollary 3.4 (Functional CLT for the APF). Let M > 0 and P be as
in Theorem 3.3. Then, both

{
n−1/2(APFM,0

r (Pn) − E[APFM,0
r (Pn)])

}
r≤rf

and{
n−1/2(APFM,1

r (Pn)−E[APFM,1
r (Pn)])

}
r≤rf

converge to centered Gaussian pro-
cesses.

Moreover, we can again describe the covariance structure of the limit in
Corollary 3.4. We provide the details only for APFM,1

r , since the expressions
for APFM,0

r are similar. Then,

lim
n→∞

1

n
Cov(APFM,1

r ,APFM,1
r′ ) = σ2

(d−b)1{b≤r},(d−b)1{b≤r′},1,

where the right-hand side is defined in (6).

4. Examples of point processes

In this section, we give examples of point processes which satisfy the assumptions
of our main theorems. More precisely, we show that log-Gaussian Cox processes
with compactly supported covariance functions and Matérn cluster processes
both satisfy the conditions of Theorems 3.2 and 3.3. We also show under which
conditions determinantal point processes, and in particular the Ginibre point
process, exhibit exponential decay of correlations and verify condition (M).
However, checking (AC) for determinantal point processes appears to be very
challenging and will not be addressed in this paper.

Conversely, we do not expect that hard-core point processes satisfy the func-
tional central limit theorem in the generality of Theorem 3.3. Indeed, hard-core
conditions put a strict lower bound on the death time of clusters and the birth
time of loops. We believe that suitable repulsive point processes, where the
hard-core conditions only need to be imposed with a certain probability can be
embedded in the framework of Theorem 3.3.

Note that in most cases, including the examples below, the theoretical Betti
numbers are not known explicitly.

4.1. Log-Gaussian Cox process

Let Y = {Y (x)}x∈R2 be a stationary Gaussian process with mean μ ∈ R and
covariance function c(x, x′) = c(x−x′). Then, the random measure on R

2 defined
as Λ(B) =

∫
B
exp(Y (x))dx, for any Borel subset B ⊂ R

2 has moments of any
order. Let P be a Cox process with random intensity measure Λ, referred to as a
Log-Gaussian Cox process. By [16, Equation (7)], the factorial moment densities
of P are given by

ρ(j)(u1, . . . , uj) = exp

(
jμ+

jc(0)

2

) ∏
1≤i<i′≤j

exp(c(ui − ui′)).

To apply Theorems 3.2 and 3.3, we assume that c is bounded and of compact
support, which ensures that P exhibits exponential decay of correlation.



Goodness-of-fit tests via TDA 1035

We show below that condition (M) is satisfied. Let x = (x1, . . . , xl) ∈ R
2l.

According to [17, Theorem 1], the Log-Gaussian Cox process P under the re-
duced Palm version is also a Log-Gaussian Cox process Px with underlying
Gaussian process Yx(x) = Y (x) +

∑
i≤l c(x, xi). According to [18, Equation

(5.4.5)],

E
!
x[P(W1)

p] = E[Px(W1)
p] =

∑
1≤j≤p

Δj,l,p

∫
W j

1

ρ(j)x (u1, . . . , uj)du1 · · · duj

for suitable coefficients Δj,l,p ∈ R, where ρ
(j)
x (u1, . . . , uj) denotes the jth facto-

rial moment density with respect to Px. Therefore, it is enough to prove that

sup
x∈R2l

∫
W j

1

ρ(j)x (u1, . . . , uj)du1 · · · duj < ∞,

for all j, l ≥ 1. Now, Equation (8) in [16] gives that

ρ(j)x (u1, . . . , uj) = exp
(
jμ+

jc(0)

2
+

∑
1≤i≤j
1≤k≤l

c(ui, xk)
) ∏

1≤i<i′≤j

exp(c(ui−ui′)),

where the right-hand side is bounded as μ and c are bounded independently of
x. This verifies condition (M).

Since conditionally on Λ, the point process P is a Poisson point process, the
conditional m-dependence property holds with Λ = Λ.

It remains to verify condition (AC). By [35, Equation (6.2)], conditionally
on Λ, the distribution of the point process Pr2AC

admits the density with respect
to a homogeneous Poisson point process Q with intensity 1 in Wr2AC

given by

fΛ(φ) = exp(|Wr2AC
| −Λ(Wr2AC

))
∏
x∈φ

exp(Y (x)),

where φ ∈ N. In particular, fΛ(φ) is strictly positive for all φ. Therefore, if
E1, E2 are two events such that mini∈{1,2} P(Q ∈ Ei) > 0, then P(Pr2AC

∈
Ei |Λ = Λ) > 0. This verifies condition (AC).

4.2. Matérn cluster process

Let η be a homogeneous Poisson point process in R
2 with intensity γ > 0. Given

a realization of η, we define a family of independent point processes (Φx)x∈η,
where Φx, x ∈ η, is a homogeneous Poisson point process with intensity 1 in the
disk BR(x) of radius R > 0 centered at x ∈ R

2. The point process P =
⋃

x∈η Φx

is referred to as a Matérn cluster process. Since P is 2R-dependent, it exhibits
exponential decay of correlations.

Next, we verify condition (M). For this purpose, we deduce from [17, Section
5.3.2] that a Matérn cluster process is a Cox process whose random intensity
measure Λ has as density the random field (λ(x))x∈R2 given by

λ(x) = γη(BR(x)).
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Now, let x = (x1, . . . , xl) ∈ R
2l and p ≥ 1 be fixed. From [17, Equations (19)

and (20)] we obtain that

E
!
x[P(W1)

p] =
1

E
[∏

i≤l λ(xi)
] · E

[
P(W1)

p
∏
i≤l

λ(xi)
]
.

Since η(BR(x)) is increasing in η for every x ∈ R
2 in the sense of [32], the

Harris-FKG inequality [32, Theorem 20.4] gives that

E
[∏
i≤l

λ(xi)
]
≥

∏
i≤l

E[λ(xi)] = (γπR2)l,

where we used that λ(xi) = η(BR(xi)) is a Poisson random variable with param-

eter πR2. In order to bound E

[
P(W1)

p
∏

i≤l λ(xi)
]
, we first apply the Hölder

inequality and stationarity, to arrive at

E

[
P(W1)

p
∏
i≤l

λ(xi)
]
≤ E

[
P(W1)

p(l+1)
]1/(l+1)

E[λ(o)l+1]l/(l+1).

First, E[λ(o)l+1] = E[η(BR(o))
l+1] is finite since η is a Poisson point process.

For the remaining part, we note that P(W1) ≤
∑

y∈η∩(W1⊕BR(o)) #Φx, where

W1⊕BR(o) = {x+y : x ∈ W1, y ∈ BR(o)} denotes the Minkowski sum. Hence,

E
[
P(W1)

p(l+1)
]
≤ E

[( ∑
x∈η∩(W1⊕BR(o))

#Φx

)p(l+1)
]

≤ E

[ ∏
x∈η∩(W1⊕BR(o))

ep(l+1)#Φx

]

= exp
(
γ|W1 ⊕BR(o)|(E[ep(l+1)#Φ0 ]− 1)

)
,

where Φ0 is a homogeneous Poisson point process of intensity 1 in the disk BR(o)
[32, Theorem 3.9]. Again, since #Φ0 is a Poisson random variable with param-
eter πR2, the latter expression is finite. Taking the supremum over all x and
all l ≤ p, this verifies condition (M). The point process P is also conditionally
m-dependent, by taking m = 2R and Λ = η.

It remains to prove (AC). By [35, Equation (6.2)], conditional on Λ = η, the
distribution of Pr2AC

admits the density

fη(φ) = γ exp(|Wr2AC
| −Λ(Wr2AC

))
∏
x∈φ

η(BR(x))

with respect to the distribution of a homogeneous Poisson point process. Now,
consider the event

E = {Wr2AC
⊂ η ⊕BR(o)},

the density fη is positive. Therefore, if E1, E2 are such that mini∈{1,2} P(Q ∈
Ei) > 0, then almost surely

min
i∈{1,2}

P(Pr2AC
∈ Ei|η)1E(η) > 0.

Since E occurs with positive probability, this proves condition (AC).
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4.3. Determinantal point process

As mentioned in [9, Section 2.2.2], any determinantal point process with kernel
K verifying for some function φ as in Definition 3.1,

|K(z1, z2)| ≤ φ(|z1 − z2|)

with z1, z2 ∈ C, exhibits exponential decay. According to [22, Theorem 2], for
x ∈ R

2l we have E
!
x [P(W1)

p] ≤ E[P(W1)
p], where the right-hand side is finite

by [27, Lemma 4.2.6]. Hence, we obtain an upper bound for E!
x [P(W1)

p], which
is independent of x, thereby verifying condition (M). In particular, the Ginibre
point process, which is a determinantal point process with kernel

K(z1, z2) = exp(z1z2) exp

(
−|z1|2 + |z2|2

2

)
,

with z1, z2 ∈ C, exhibits exponential decay and verifies condition (M). To apply
Theorem 3.2, it still remains to check that the variance condition is satisfied.

5. Simulation study

We elucidate in a simulation study, how cluster- and loop-based test statistics
derived from Theorem 3.3 can detect deviations from complete spatial random-
ness (CSR) and how effective they are in comparison to classical goodness-of-fit
tests. The simulations are carried out with spatstat and TDA [21, 2].

For the entire simulation study, the null model Poi(2) is a Poisson point
process with intensity 2 in a 10 × 10 observation window. Moreover, we ignore
the constraint of M -boundedness in the simulations. Although the proof of
Theorem 3.3 relies on the M -boundedness, the simulation study illustrates that
it is not critical to impose this condition.

5.1. Deviation tests

As a first step, we derive scalar cluster- and loop-based test statistics.

5.1.1. Definition of test statistics

As a test statistic based on clusters, we use the integral over the number of
cluster deaths in a finite time interval [0, rc] with rc ≤ rf , i.e.,∫ rc

0

PD0(Pn)([0, d])dd.

After subtracting the mean, this test statistic becomes reminiscent of the clas-
sical Cramér-von-Mises statistic except that we do not consider squared devi-
ations. Although squaring would make it easier to detect two-sided deviations,
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it would also require knowledge of quantiles of the square integral of a cen-
tered Gaussian process. Albeit possible, this incurs substantial computational
expenses. Hence, our simpler alternative has the appeal that as an integral of
a Gaussian process, the test statistic is asymptotically normal and therefore
characterized by its mean and variance.

However, this statistic requires that the intensity is known in advance, whereas
in practice we need to estimate it from data. To arrive at an intensity-adapted
version, we note that by scaling and change of variable, we have for every a > 0,∫ rc/a

0

PD0(Qn)([0, d])dd =
1

a

∫ rc

0

PD0((aP)a2n)([0, d])dd.

Moreover, if P = Q is a Poisson point process with intensity λ and if we choose
a =

√
λ, then Q∗ := aQ becomes a Poisson point process with unit intensity.

After dividing both sides by an, the above relation specializes to

1√
λn

∫ rc/
√
λ

0

PD0(Qn)([0, d])dd =
1

λn

∫ rc

0

PD0(Q∗
λn)([0, d])dd.

This computation motivates the intensity-adapted test statistic

TC =
1√

λ|Wn|

∫ rc/
√
λ

0

PD0(Pn)([0, d])dd. (7)

Note that in practice, the intensity λ above is replaced by λ̂, the standard
estimator of the intensity. Of course, one could proceed without this rescaling,
but in the simulation study, we found this statistic to have a better power.

As a test statistic based on loops, we use the accumulated persistence func-
tion, which aggregates the life times of all loops with birth times in a time
interval [0, rL] with rL ≤ rf . That is,∫

[0,rL]×[0,∞)

(d− b)PD1(Pn)(db, dd).

By Corollary 3.4, after centering and rescaling, this statistic converges in the
large-volume limit to a normal random variable. As in the cluster-based test,
we adapt to the intensity to obtain

TL =
1√

λ|Wn|

∫
[0,rL/

√
λ]×[0,∞)

(d− b)PD1(Pn)(db, dd). (8)

The statistics TC and TL are specific possibilities to define scalar characteris-
tics from the persistence diagram. Depending on the application context other
choices, such as APF0 instead of TC could be useful. However, in the simulation
study below, we found the weighting by life times of clusters to be detrimental.

Finally, we compare the TDA-based statistics to a quantity derived from the
classical Ripley L-function. More precisely, we let

TRip =

∫ rRip

0

L̂(r)dr (9)
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denote the integral of the estimated Ripley’s L-function until a radius rRip > 0.

We note that there is no need for a normalization as L̂ already accounts for an
estimated intensity. By existing FCLTs for Ripley’s K-function, we expect that
TRip is also asymptotically normal [23].

5.1.2. Exploratory analysis

As alternatives to the Poisson null hypothesis, we consider the attractive Matérn
cluster and the repulsive Strauss and Ginibre processes. More precisely, the
Matérn cluster process MatC(2, 0.5, 1) features a Poisson parent process with
intensity 2 and generates a Poi(1) number of offspring uniformly in a disk of
radius 0.1 around each parent. The Strauss process Str(4, 0.6, 0.5) has interaction
parameter 0.6 and interaction radius 0.5. The intensity parameter 4 was tuned
so as to match approximately the intensity of the null model. Additionally, we
include the Baddeley-Silverman process that is known for its complex higher-
order interactions [3]. Figure 3 shows realizations of the null model and the
alternatives.

Fig 3. From left to right: Samples from the Poi(2) null model, the MatC(2, 0.5, 1) process, the
Str(4, 0.6, 0.5) process and the Baddeley-Silverman process.

When considering persistence diagrams, we expect loosely speaking that more
regular point patterns can lead to loops with shorter lifetimes and more clustered
point patterns lead to longer lifetimes. Indeed, in a regular point patterns the
points are at similar distances and we see only few exceptionally large holes.
On the other hand, in clustered point patterns the loops connecting different
cluster centers become much larger than the typical distance between points
and therefore live for a substantial amount of time.

For the alternatives introduced above, Figure 4 illustrates the persistence
diagram. From the cluster-based diagrams, it becomes apparent that in com-
parison to the null model, in the Matérn cluster process, there is a pronounced
peak of deaths at early times, whereas this happens very rarely in the Strauss
process. When analyzing loops, we see that loops with long life times appear
earlier in the null model than in the Matérn cluster process. Conversely, while
some loops with substantial life time emerge at later times in the null model,
there are very few such cases in the Strauss model. Due to the complex higher-
order interaction of the Baddeley-Silverman process, its behavior is difficult to
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Fig 4. Persistence diagrams for cluster-based features with density plots (top) and loop-based
features (bottom) for the Poi(2) null model, the MatC(2, 0.5, 1) process, the Str(4, 0.6, 0.5)
process and the Baddeley-Silverman process (from left to right).

predict in advance. However, the samples in Figure 4 show that its topological
characteristics are closer to those of a repulsive than a attractive point pattern.

These observations are not only true for the specific examples of the Matérn
cluster and Strauss process, but extend more generally to attractive and repul-
sive point patterns. For different types of perturbed lattices, this philosophy is
vividly illustrated in [41, Section 1].

5.1.3. Mean and variance under the null model

Now, we determine the mean and variance of TC and TL under the null model
with rf = 1.5. For this purpose, we compute the number of cluster deaths and
accumulated loop life times for 10,000 independent draws of the null model.
Here, we normalize by

√
λ|Wn| as in (7).

Fig 5. Mean normalized number of cluster deaths (top) and accumulated loop life times (bot-
tom) for the null model (red) and the alternatives (green, blue and pink) based on 10,000
realizations.
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Comparing the mean curves for the number of cluster deaths in the null
model with those of the alternatives matches up nicely with the intuition about
attraction and repulsion. For late times, they all approach a common value,
namely the expected number of points in the observation window. However,
Figure 5 shows that for the Matérn model, the slope is far steeper for early
times, caused by merging of components of points within a cluster. In contrast,
for the Strauss process the increase is at first much less pronounced than in the
Poisson model, thereby reflecting the repulsive nature of the pair potential. The
Baddeley-Silverman process is surprisingly similar to the Strauss model.

For the loops, a radically different picture emerges. Here, the curve for the
Strauss process lies above the accumulated loop life times of the null model.
The Strauss model spawns substantially more loops than the Poisson model,
although most of them live for a shorter period. Still, taken together these
competing effects lead to a net increase of the accumulated loop life times in
the Strauss model. A similar picture also emerges for the Baddeley-Silverman
process.

Finally, Table 1 shows the times needed to compute the test statistics for the
10,000 realizations on an AWS (Amazon Web Service) c5.9xlarge instance.

Table 1

Time needed for 10,000 evaluations of the test statistics.

TC TL TRip

4.13s 3.5s 3.4s

5.1.4. Type I and II errors

By Theorem 3.3, the statistics TC and TL are asymptotically normal, so that
knowing the mean and variance allows us to construct a deviation test whose
nominal confidence level is asymptotically exact. For the loops, we can choose
the entire relevant time range, so that rL = 0.5. For the cluster features, this
choice would be unreasonable, as for late times, we simply obtain the number
of points in the observation window, which is not discriminative. Hence, we set
rC = 0.1. We stress that in situations with no a priori knowledge of a good
choice of rC, the test power can degrade substantially.

To analyze the type I and II errors, we draw 1,000 realizations from the null
model and from the alternatives, respectively. Next, Table 2 shows the rejection
rates of this test setup. Under the null model the rejection rates are close to the
nominal 5%-level, thereby illustrating that already for moderately large point
patterns, the approximation by the Gaussian limit is accurate.

Using the mean and standard deviation from the null model, we now compute
the test powers for the alternatives. The mean and deviations are E[TC] = 0.62,
sd(TC) = 0.047, E[TL] = 0.028 and sd(TL) = 0.0035. Since Theorem 3.3 is
designed for the type I error and not the type II error, it makes sense to study
the Strauss process even though it may be very difficult to verify condition (M).
Already an inspection of Figure 3 reveals that the alternatives differ visibly from
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the null hypothesis. This is reflected in the rejection rates when using the L-
function based statistics TRip. More precisely, in the Matérn-cluster and Strauss
process alternatives the null hypothesis is rejected in 92.6% and 86.3% of the
cases. Using the TDA-based statistics TC and TL alone yields smaller rejection
rates. However, Table 2 illustrates that the linear combination TC − 10TL leads
to comparable rejection rates as the L-function. This result based on ad-hoc
coefficients illustrates how worthwhile it can be for future work to think about
more conceptual approaches for choosing an appropriate linear functional.

Although in general, there may be no clear-cut reason why certain deviation
tests work better for specific types of point processes, sometimes more can be
said. For instance, the pair correlation function of the Baddeley-Silverman pro-
cess on infinite sampling windows coincides with that of a Poisson point process.
Consequently, the L-function exhibits a low power as it fails to take into account
higher-order interactions. In this setting, all three TDA-based statistic outper-
form the L-function statistics. We have not included the Ginibre alternative in
the table as all four tests reject at a perfect rate of 100%.

Table 2

Rejection rates for the test statistics under the CSR null model and the alternatives.

Poi MatC Str Badd.− Silv.
TC 4.8% 55.7% 52.0% 65.6%
TL 4.5% 63.0% 54.5% 84.7%

TC − 10TL 4.5% 87.9% 89.2% 88.1%
TRip 5.0% 92.6% 86.3% 59.3%

5.1.5. Null hypothesis of clustering

Section 5.1.4 discusses how to test the null hypothesis of complete spatial ran-
domness via cluster- and loop-based statistics. In the present section, we illus-
trate at the hand of a Matérn cluster process that these test statistics also allow
for testing clustering or regularity of the point patterns. In other words, the null
hypothesis is now a Matérn cluster process MatC(2, 0.5, 1).

Similarly to the Poisson null model, in practice the intensity of the Matérn
cluster process is not known but must be estimated from data. However, for the
Matérn process the issue is more severe, since it is described by three parameters
that all need to be estimated. For this purpose, we resort to the minimum
contrast method [35, Chapter 10].

In addition, now that the null model does not depend any longer on a single
parameter, we cannot apply a simple rescaling to arrive at an intensity-adapted
version of the estimators. Therefore, we need to resort to nested Monte Carlo
simulations. That is, once we estimated the parameters of the Matérn process,
we determine the mean and variance of the test statistics based on nnest = 100
independent samples. Due to the complexity of the parameter estimation, we
should expect substantial effects on the empirical results.

Table 3 summarizes the results of the simulation study of 1,000 simulation
runs when using complete spatial randomness as alternative to the null hypoth-
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esis of clustering. First, all tests are conservative as the rejection rates under
the null hypothesis are far below the nominal 5%-level. This is particularly
pronounced for TC and TRip where the null-hypothesis is never rejected. Re-
garding the type II error with CSR alternative, although the linearly combined
TDA-based test statistic TC − 10TL is outperformed by TRip, it still exhibits a
reasonable rejection rate of 71.2%.

Table 3

Rejection rates for the test statistics under the clustered null model and the alternatives.

MatC Poi
TC 0.0% 39.1%
TL 2.6% 51.1%

TC − 10TL 2.8% 71.2%
TRip 0.0% 82.7%

5.2. Envelope tests

Leveraging Theorem 3.3 shows that the deviation statistics TC and TL are asymp-
totically normal. Using a simulation-based estimate for the asymptotic mean and
variance under the null model allowed us to construct a deviation test whose
confidence level is asymptotically precise.

Recently, global envelope tests have gained widespread popularity, because
they are both powerful and provide graphical insights as to why a null hypothesis
is rejected [36]. The global envelope tests are fundamentally Monte Carlo-based
tests and therefore do not relate directly to the large-volume CLT. However, they
also rely on a functional summary statistic as input. Most of the applications in
spatial statistics use a distance-based second-order functional such as Ripley’s
L-function. In this section, we compare such classical choices with cluster- and
loop-based statistics.

We follow the simulation set-up of Section 5.1.4. That is, the null hypothe-
sis is complete spatial randomness, and we study Matérn-cluster, Strauss and
Baddeley-Silverman process as alternatives. Since the Ginibre process is already
perfectly set apart from complete spatial randomness by the deviation tests, we
do not consider it here further.

For the convenience of the reader, we outline the basic framework of global
envelope tests and refer to [36] for details. Practitioners in spatial statistics
value highly functional summary statistics of the form T = {T (r)}r≥0 that can
describe properties of the process at different scales. Popular examples for T
include Ripley’s L-function and its variants. The idea behind envelopes is to
provide a Monte-Carlo based tool for assessing how well a given point pattern
conforms with a null hypothesis.

More precisely, let T1 = {T1(r)}r≥0 denote the curve associated with an
observed point pattern and T2, . . . , Ts+1 result from s independent samples of
the null model. Then, for each fixed r > 0 and k ≥ 1, we define

T k
low(r) = mink1≤i≤s+1Ti(r)

T k
upp(r) = maxk1≤i≤s+1Ti(r)
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as the kth smallest and kth largest value of the family {T1(r), T2(r), . . . , Ts+1(r)}.
Then, we refer to the curves T k

low = {T k
low(r)}r≥0 and T k

upp = {T k
upp(r)}r≥0 as

lower and upper envelopes.
If we fix k first, then the observed curve {T1(r)}r≥0 leaving the envelope at

some index r is often taken as an indication that the observation does not con-
form with the null hypothesis. However, as the order statistics in the definition
of T k

low and T k
upp are computed separately for each index, we would näıvely only

obtain an exact significance test if we considered only a single index, which has
been fixed in advance.

In order to arrive at a test with exact significance level accounting for several
values of r, the global rank envelope test orders the entire curves T1, . . . , Ts+1

according to their extreme rank measures R1, . . . , Rs+1 given by

Ri := max{k : T k
low(r) ≤ Ti(r) ≤ T k

upp(r) for all r}.

In words, Ri measures the centrality of Ti(r) by determining the largest k such
that kth envelopes contain Ti.

To turn these definitions into a test at a significance level α, we let

kα := max{k : #{i : Ri < k} ≤ (s+ 1)α}

denote the largest integer k such that the number of curves with rank at most k
does not exceed (s+ 1)α. Then, the envelope test rejects the null hypothesis if
the observed statistic T1(r) falls outside the interval [T kα

low , T
kα
upp] for some r ≥ 0.

5.2.1. Power analysis

Next, we analyze the power of the envelope test for the null-hypothesis and
alternatives described in Section 5.1.4. Before presenting the results, we explain
in detail the choice of parameters in the envelope tests in [36]. First, we choose
a significance level of α = 5%. Second, we follow the suggestion in [36, Section
8] and generate s = 2, 499 realizations of the null model. The most delicate pa-
rameter involves the interval from which to select the r-values. To be consistent
with the simulation study of the deviation tests, we take the same values for
rC, rL and rRip. Although other choices may also be of interest, we refer to the
discussion in [36, Section 10] revealing that the envelope tests are highly robust
with respect to changing the interval.

Then, we perform the global envelope test from [36] with four summary
statistics: T env

C , T env
L , T env

C −10T env
L , T env

Rip . These test statistics are defined as the
analogs in Section 5.1, except that we do not compute the averaging integral.

The rejection rates from Table 4 illustrate that while the L-based test benefits
from the functional statistics, this is not the case for the TDA-based tests.
Nevertheless, we still see that for the complex Baddeley-Silverman process the
linearly combined statistics T env

C − 10T env
L achieves an impressive rate of 92.8%

and outperforms the L-based envelope test with rejection rate of 58.5%.



Goodness-of-fit tests via TDA 1045

Table 4

Rejection rates for the envelope test under the CSR null model and the alternatives.

Poi MatC Str Badd.− Silv.
T env
C 6.1% 69.0% 46.6% 64.9%

T env
L 4.3% 41.9% 35.3% 69.8%

T env
C − 10T env

L 5.9% 81.6% 80.0% 92.4%
T env
Rip 4.6% 92.6% 97.6% 73.1%

6. Analysis of the minicolumn dataset

In this section, we explore to what extent the deviation tests from Section 5
provide insights when dealing with real data. For this purpose, we analyze the
minicolumn dataset provided by scientists at the Centre for Stochastic Geometry
and Advanced Bioimaging.

As it should serve only to illustrate the application of Theorem 3.3, the
present analysis is very limited in scope, and we refer to [15] for a far more
encompassing study. For instance, that work considers two datasets and inves-
tigates 3D data together with marks for the directions attached to the neurons.

6.1. Exploratory analysis

The minicolumn dataset consists of 634 points emerging as two-dimensional
projections of a three-dimensional point pattern of neurons. As neurons are be-
lieved to arrange in vertical columns, the projections are expected to exhibit
clustering, see [34, 39]. The projections are taken along z-axis, since neurosci-
entists expect an arrangement in vertical columns. A visual inspection of the
point pattern in Figure 6 supports this hypothesis.

Fig 6. Projected minicolumn point pattern
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As a first step, we explore whether the purported clustering already manifests
in the persistence diagram. Comparing the loop-based persistence diagram of
the minicolumn data with the persistence diagram of a homogeneous Poisson
point process in Figure 7 shows that loops with substantial life times tend to be
born later in the minicolumn model. This suggests clustering since loops formed
by points within a cluster typically disappear rapidly.

Fig 7. Persistence diagram for the minicolumn data (left) and a homogeneous Poisson point
process with the same intensity (right)

Now, we explore whether the impressions from the persistence diagrams are
reflected in the summary statistics from Section 5. When comparing in Figure
8 (left) the number of cluster death at different points in time, we note that
until time 35, the curve for the observed data runs a bit above the curve for the
null model. This provides already a first indication towards clustering. Next, we
proceed to the loop-based features. As shown in Figure 8 (right), the curve for
the observed pattern runs substantially below the one of the null model. This
reflects a property that we have seen already in the persistence diagram: loops
with substantial life time tend to be born earlier in the null model, thereby
leading to a steeper increase of the accumulated life times.

6.2. Test for complete spatial randomness

Under the impression of the previous visualizations, we now test the minicolumn
pattern against the null model. As in Section 5, we deduce from Theorem 3.3
that the statistics are asymptotically normal under the null model, so that we
only need to determine means and variances.

When given a specific dataset, a subtle issue concerns the choice of the
integration interval. The simplest option would be to take the whole inter-
vals shown in Figure 8. For instance, for the loop-based features, this means
rL = rf = 120. However, for the cluster-based features the choice of the interval
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Fig 8. Number of cluster deaths (left) and accumulated loop life times (right) for the Poisson
null model (red) and the minicolumn dataset (green).

is less clear, since taking the whole interval is not discriminatory. Therefore, we
choose rC = 1.

As a general strategy, we propose that visualizations of summary statistics
such as the ones in Figure 8 should guide the choice of rC and rL. If there are
r-regions where the plot for the data differs substantially from that of the null
model, these are good regions for selecting candidates for rC and rL. Since this
is an ad hoc procedure, we strongly advise to study how sensitive the results
are with respect to different choices of rC and rL.

Choosing rC = 1 and rL = 120, both the cluster-based and the loop-based test
reject the null-hypothesis at the 5%-level, since the corresponding p-values are
0.18% and 0.031%. The tests are fairly robust with respect to the choice of the
integration bound. More precisely, when changing the integration domains for
the cluster- and loop-based tests to [0, 2] and [0, 70], then the null hypothesis is
still rejected with p-values 4.55% and 1.4%. However, if we change the intervals
to [0, 2.5] and [0, 60], then the p-value decrease to 10.7% and 5.1% so that the
null-hypothesis is no longer rejected.

7. Discussion

In this paper, we elucidated how to apply tools from TDA to derive goodness-
of-fit tests for planar point patterns. For this purpose, we derived sufficient con-
ditions for a large-domain functional CLT for the M -bounded persistent Betti
numbers on point processes exhibiting exponential decay of correlations. Fol-
lowing the framework developed in [9], the main difficulty arose from a detailed
analysis of geometric configurations when bounding higher-order cumulants.

A simulation study revealed that the asymptotic Gaussianity is already ac-
curate for patterns consisting of a few hundred data points. Additionally, as
functional summary statistics, the persistent Betti numbers can also be used in
the context of global envelope tests. Here, our finding is that TDA-based statis-
tics can provide helpful additional information for point patterns with complex
interactions.

Finally, we applied the TDA-based tests on a point pattern from a neuro-
scientific dataset. As conjectured from the application context, the functional
summary statistics indicate a clustering of points and the tests reject the Pois-
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son null-model. However, the analysis also reveals a certain sensitivity to the
range of birth times considered in the statistics.

In future work, we plan to extend the present analysis to dimensions larger
than 2. On a technical level, the definition of higher-dimensional features re-
quires a deeper understanding of persistent homology groups. Additionally,
when thinking of broader application scenarios, a further step is to extend the
testing framework from mere point patterns to random closed sets involving a
richer geometric structure.
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8. Proof of Theorem 3.2

The main tool to prove Theorem 3.2 is the general CLT [9, Theorem 1.14]. To
make the paper self-contained, we state this theorem and recall the framework
of [9].

Framework and CLT of [9] Let ξ : R2×N → R be a function referred to as
a score function. Given p ≥ 1, we say that the pair (ξ,P) satisfies the p-moment
condition if

sup
n≥1

l≤p,x∈R
2l

Ex[|ξ(x1,Pn)|p] < ∞. (10)

We recall that, given X ∈ N and x ∈ X , the radius of stabilization Rξ(x,X ) is
defined as the smallest r ∈ Z≥0 such that

ξ(x,X ∩Br(x)) = ξ(x, (X ∩Br(x)) ∪ (A ∩Bc
r(x)))

for all A ∈ N . If no such finite r exists, we set Rξ(x,X ) = ∞.

The main CLT of [9, Theorem 1.14] deals with rather general score functions
in the sense that the radius of stabilization is assumed exponentially stabilizing
on the input P . Since we work with M -bounded features, we state the theorem
only for bounded radii of stabilization.

Theorem 8.1 (CLT for score functions). Let (ξ,P) be such that the following
properties hold:

• the p-moment condition (10) holds for all p > 1;
• the point process P exhibits exponential decay of correlation as in Defini-

tion 3.1;
• the radius of stabilization is bounded, i.e., supx∈R2 supX∈N Rξ(x,X ) < ∞;
• the score function ξ satisfies a power growth condition, namely there exists

c ≥ 1 such that for all r > 0, n ≥ 1 and X ∈ N ,

|ξ(x,X ∩Br(x))|1{#(X ∩Br(x)) = n} ≤ cn(1 ∨ rn). (11)

Let f be a bounded measurable functions on W1, and let

μξ
n(f) =

∑
x∈Pn

ξ(x,Pn)f(n
−1/dx).

Assume that lim infn→∞ Var(μξ
n(f))n

−ν > 0 for some ν > 0. Then,

μξ
n(f)− E[μξ

n(f)]√
Var(μξ

n(f))

converges in distribution to a standard normal random variable as n → ∞.
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Score functions in our context To be in the framework of Theorem 8.1,
we need to express the quantity 〈f,PDM,q(Pn)〉 =

∑
i∈IM,q(Pn)

f
(
BM

i , DM
i

)
in

the form
∑

x∈Pn
ξ(x,Pn) for a suitable score function ξ(x,Pn).

In other words, we need to transform the indexing over features into an in-
dexing over the points of the point process Pn. We achieve this goal by assigning
to each feature a point x ∈ Pn that either kills or gives birth to this feature,
depending on whether q = 0 or q = 1.

First, the death of a cluster at time r > 0 is always caused by the merging of
two points x, x′ ∈ Pn at distance 2r. Indeed, when the size of a component has
a jump, this can only appear by attaching to another component. If Cr(x) dies
by this merging, we say that x′ kills Cr(x). This ensures that if two components
both die when they merge, their deaths are caused by different points.

Similarly, if q = 1, then the birth of a hole at time r > 0 is caused by two
points x, x′ ∈ Pn at distance 2r whose connection creates a new hole. If only one
M -bounded feature is born at time r, we choose the lexicographic minimum of
x and x′ and say that it gives birth to this hole. However, if a large hole is split
into two M -bounded pieces, it can happen that two M -bounded pieces H,H ′

are born at the same time. In this situation, we assign one M -bounded piece to
each of x and x′. Hence, we define the score functions as

ξ0(x,Pn)=ξf,0(x,Pn) =
∑

i∈IM,0(Pn)

1{x kills the ith cluster}f(0, DM
i ),

ξ1(x,Pn)=ξf,1(x,Pn) =
∑

i∈IM,1(Pn)

1{x gives birth to the ith hole}f(BM
i , DM

i ).
(12)

Notice that the main difficulty to deal with the score functions ξ0, ξ1 is that
they do not only depend on points or pairs of points. Definition (12) translates
the desired CLT for 〈f,PDM,q(Pn)〉 into the framework of Theorem 8.1. Let
X ∈ N . It remains to verify the conditions stated therein.

Proof of Theorem 3.2. As mentioned above, it is sufficient to check the assump-
tions of Theorem 8.1. The exponential decay of correlations is satisfied since it
is one of our standing assumptions on the point process P . Moreover, the radius
of stabilization is bounded since we work with M -bounded features.

To check the power-growth condition, we note that in the worst case x can
be responsible for the death of all other points of X . Similarly, it can give birth
to at most X (Wr(x))− 1 holes. Hence,

ξq(x,X ∩Wr(x))1{#(X ∩Wr(x)) = n} ≤ |f |∞(n− 1) ≤ (1 + |f |∞)n.

This proves that (11) holds.
It remains to verify the p-moment condition. We explain in detail how this

is achieved if q = 0, noting that the case q = 1 can be deduced after minor
modifications. If x ∈ P is responsible for the death of a component at time r,
then there exists x′ ∈ Pn at distance 2r from x. Since each ball grows for time
at most rf , we see that

|ξ0(x,Pn)| ≤ |f |∞Pn(B2rf (x)).
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Leveraging stationarity and applying condition (M) concludes the proof.

9. Proofs of Theorem 3.3 and Corollary 3.4

In the following, we assume q = 1, since the proofs for q = 0 are similar but
easier. Hence, to simplify notation, we write βb,d(Pn) for β

M,1
b,d (Pn).

Proof of Corollary 3.4. Note that if (X(s))s≤rf is a Gaussian process, then the
process (

∫ r

0
X(s)ds)r≤rf is also Gaussian. The plan is to start from Theorem 3.3

and then apply the continuous mapping theorem [30, Theorem 4.27]. To this
end, we show that {APFM,1

r (Pn)}r≤rf is a continuous functional of the persistent
Betti numbers {βb,d(Pn)}b,d≤rf . We assert that

APFM,1
r (Pn) =

∫ r

0

βb,0(Pn)db+

∫ rf

0

βr,t(Pn)dt− rβr,0(Pn). (13)

The remainder of the proof proceeds in two steps. First, we verify identity (13).
Second, we show that the right-hand side is continuous in β with respect to the
Skorokhod topology.

To prove identity (13), linearity allows us to reduce the claim to the case
where the persistence diagram consists of a single δ-measure at a point (B0, D0)
for some D0 > B0 > 0. If B0 > r, then both sides vanish. If B0 ≤ r, then
βb,0 = 1{b ≥ B0} and βr,t = 1{t ≤ D0}, so that the right-hand side of (13)
gives the asserted

(r −B0) +D0 − r = (D0 −B0).

Let β ∈ D([0, rf ]
2,R), where D([0, rf ]

2,R) is the Skorokhod space of càdlàg
functions from [0, rf ]

2 to R. For any r ≥ 0 put

Φr(β) =

∫ r

0

βb,0db+

∫ rf

0

βr,tdt− rβr,0.

According to (13), it is sufficient to prove that the function Φr : D([0, rf ]
2,R) →

D([0, rf ],R), β �→ (Φr(β))r≤rf is continuous with respect to the Skorokhod topol-
ogy. We prove this for the first integral. The arguments for the second are sim-
ilar. Let β′ : [0, rf ]

2 → R be càdlàg and λ : [0, rf ] → [0, rf ] be an increasing
continuous bijection. Then,

∣∣∣ ∫ λ(r)

0

βb,0db−
∫ r

0

β′
b,0db

∣∣∣ ≤ |λ(r)− r||β·,0|∞ +

∫ r

0

|βb,0 − β′
b,0|db

≤ |λ(r)− r||β·,0|∞ +

∫ r

0

|βλ(b),0 − β′
b,0|db+

∫ r

0

|βλ(b),0 − βb,0|db.

If β′ approaches β in the Skorokhod metric, then by definition of this metric,
we can choose λ such that the first two expressions become arbitrarily small.
Moreover, since β itself is càdlàg, it follows that also the third expression tends
to 0.
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The proof of Theorem 3.3 decomposes into two steps: lower and upper vari-
ance bounds and an upper bound on fourth-order cumulants. In what follows,
we write

β(E,Pn) = βb+,d+(Pn) + βb−,d−(Pn)− βb+,d−(Pn)− βb−,d+(Pn)

for the increment of βb,d in the block E = (b−, b+]× (d−, d+] with b− < b+ and

d− < d+. Notice that this is minus the measure PDM,q(Pn) from (2) evaluated
at the block E. Moreover, β(E,Pn) is the number of holes with birth time before
b− and death time between d− and d+ minus the number of holes with birth
time before b+ and death time between d− and d+. Following [5], two blocks
E,E′ ⊂ [0, rf ]

2 are neighboring if they share a common side.

Proposition 9.1 (Variance lower bound). Let P be a conditionally m-dependent
point process with exponential decay of correlations and satisfies condition (AC).
Moreover, let a1, . . . , ak �= 0 and E1, . . . , Ek ⊂ [0, rf ]

2 be pairwise disjoint blocks
such that each Ei contains some (b, d) ∈ [0, rf ]

2 with d > b. Then,

lim inf
n→∞

1

n
Var

(∑
i≤k

aiβ(Ei,Pn)
)
> 0.

Proposition 9.2 (Variance upper bound). Let P be a conditionally m-dependent
point process with exponential decay of correlations and satisfies condition (M).
Then, there exist n0 ≥ 1 and ε0, C0 > 0 such that

1

n
Var

(
β(E,Pn)

)
≤ C0|E|1/2+ε0

holds for all n ≥ n0 and blocks E ⊂ [0, rf ]
2.

Now, the kth cumulant ck of k ≥ 1 real random variables Y1, . . . , Yk equals

ck(Y1, . . . , Yk) =
∑

{T1,...,Tp}{1,...,k}
(−1)p−1(p− 1)!E

[ ∏
i∈T1

Yi

]
· · ·E

[ ∏
i∈Tp

Yi

]
,

provided that all appearing moments are well-defined [38, Proposition 3.2.1].
Here, the sum ranges over all partitions {T1, . . . , Tp} of the set {1, . . . , k}.
Proposition 9.3 (Cumulant bound). Let P be a conditionally m-dependent
point process with exponential decay of correlations satisfying conditions (AC)
and (M). Then, there exist n′

0 ≥ 1 and ε′0, C
′
0 > 0 such that

1

n
c4
(
β(E,Pn), β(E,Pn), β(E

′,Pn), β(E
′,Pn)

)
≤ C ′

0|E|1/2+ε′0 |E′|1/2+ε′0

holds for all n ≥ n′
0 and neighboring blocks E,E′ ⊂ [0, rf ]

2.

We postpone the proofs of Propositions 9.1–9.3 to Sections 9.1–9.3, respec-
tively. To deduce Theorem 3.3 from these two central auxiliary results, we write

βb,d(Pn) = βb,d(Pn)− E[βb,d(Pn)]

for the centered persistent Betti numbers.



Goodness-of-fit tests via TDA 1055

Proof of Theorem 3.3. Let a′1, . . . , a
′
k′ �= 0 and (b1, d1), . . . , (bk′ , dk′) ∈ [0, rf ]

2

be pairwise distinct, and put

Xn =
∑
i≤k′

a′iβb′i,d
′
i
(Pn).

Then, after suitable regrouping of terms, we can express Xn in the form

Xn =
∑
i≤k

aiβ(Ei,Pn).

as in Proposition 9.1. Now, combining Proposition 9.2 with Theorem 3.2 and the
variance asymptotics [9, Theorem 1.12] shows that the centered and rescaled ran-
dom variable n−1/2(Xn−E[Xn]) converges in distribution to a Gaussian. Hence,
the Cramér-Wold device yields convergence of the finite-dimensional distribu-
tions of n−1/2βb,d(Pn).

Next, [38, Proposition 3.2.1] gives the general cumulant identity

E[X2Y 2] = c4(X,X, Y, Y ) + Var(X)Var(Y ) + 2Cov(X,Y )2

≤ c4(X,X, Y, Y ) + 3Var(X)Var(Y )

for centered random variables X,Y . Hence, by Propositions 9.2 and 9.3,

E
[
n−2β(E,Pn)

2β(E′,Pn)
2
]
≤ (C ′

0/n+ 3C2
0 )|E|1/2+ε′′0 |E′|1/2+ε′′0 ,

for some ε′′0 > 0. In particular, the process
{
n−1/2βb,d(Pn)

}
b,d≤rf

is tight in

Skorokhod topology [25, Lemma 3]. In this context, we note that condition (8.4)
of [25, Lemma 3] follows from the variance upper bound derived in Proposition
9.2 and that similar as in (2.18) [23], we have replaced the equality in (8.5) of
[25, Lemma 3] by an inequality. Combining this property with the convergence
of finite-dimensional distributions yields the asserted weak convergence.

9.1. Proof of Proposition 9.1

To show the variance lower bound, we adapt a conditioning argument that
has already been successfully applied in the setting of Gibbsian point processes
[29, 40]. More precisely, we subdivide the window Wn into blocks of a fixed size
and use the law of conditional variance to obtain a lower bound in the order of
the number of blocks.

Associate with the jth feature Hj in PDM,1(Pn) a center point yj ∈ Wn, for
instance by taking the point p(Hj) as defined in Section 2.2. Then,

νn =
∑
i≤k

ai
∑

j∈IM,1(Pn)

1{(BM
j , DM

j ) ∈ Ei}δyj

defines a signed measure of total mass νn(Wn) = −
∑

i≤k aiβ(Ei,Pn).
In the vein of [40], the key towards proving a lower bound on the variance is

the following non-degeneracy property, where rAC is introduced in Section 3.
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Lemma 9.4 (Non-degeneracy). It holds that

inf
n≥t≥r2AC

E
[
Var

(
νn(Wt)|Λ,P \Wr2AC

)]
> 0.

Before proving Lemma 9.4, we explain how it implies Proposition 9.1. In
essence, the proof follows along the lines of [40, Lemma 4.3]. Nevertheless, since
the details of the conditioning argument differ a bit from the corresponding
picture for Gibbs processes, we explain how to adapt the main steps from [40,
Lemma 4.3] in the present setting.

Proof of Proposition 9.1. The idea of proof is to consider a family of well-
separated blocks in Wn. Then, we leverage the conditional m-dependence of
the point process and the M -boundedness of the features to decompose the
variance of their contributions as the sum of the variances. More precisely, we
apply the assumption of conditional m-dependence with the conditioning set

A′′ = R
2 \

⋃
z∈Z2

(6ρz +Wρ2)

chosen as the complement of the union of well-separated blocks of side length
ρ = m ∨ rAC. Then, the law of total variance yields the lower bound

Var(νn(Wn)) ≥ E
[
Var

(
νn(Wn) |Λ,P ∩A′′)].

Moreover, since ρ > M the statistics νn((A
′′)−) in the smaller domain

(A′′)− = R
2 \

⋃
z∈Z2

(6ρz +W9ρ2)

is measurable with respect to P ∩A′′. We obtain that

E
[
Var

(
νn(Wn)|Λ,P ∩A′′)] = E

[
Var

(
νn(R

2 \ (A′′)−)|Λ,P ∩A′′)]
because νn((A

′′)−) is P∩A′′ measurable. Thanks to the conditionalm-dependence,
we have

E
[
Var

(
νn(Wn)|Λ,P ∩A′′)] = ∑

z∈Z
2

6ρz+W9ρ2⊂Wn

E
[
Var

(
νn(6ρz +W9ρ2) |Λ,P ∩A′′)]

≥
∑
z∈Z

2

6ρz+W9ρ2⊂Wn

E
[
Var

(
νn(6ρz +W9ρ2) |Λ,P \ (6ρz +Wρ2)

)]
.

Now, the number of 6ρ-blocks contained in Wn is of order n, and we conclude
by noting that Lemma 9.4 and ρ > rAC imply that each of the contributions is
bounded away from 0.

To verify non-degeneracy, we rely on the techniques introduced in [40]. In
particular, we make use of [40, Lemma 2.3], which we restate below to render
the presentation self-contained.
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Lemma 9.5. Let Y be a real random variable and A1, A2 be Borel sets of R.
Then,

Var(Y ) ≥ 1

4
min

i∈{1,2}
P(Y ∈ Ai) inf

x1∈A1,x2∈A2

|x1 − x2|2.

Proof of Lemma 9.4. Write

F1 = {P ∩Wr2AC/9
= ∅} and F ′ = {P ∩ (Wr2AC

\Wr2AC/9
) = ∅}

for the events that there are no points in Wr2AC/9
and Wr2AC

\Wr2AC/9
, respectively.

Next, let

F2 = {−β(E1,Pr2AC/9
) = 1} ∩ {β(E2,Pr2AC/9

) = · · · = β(Ek,Pr2AC/9
) = 0}

denote the event that all but the first of the considered persistent Betti numbers
vanish. Now, let I0(Pn) denote the indices of all features entirely contained in
R

2 \Wr2AC
and put

Y =
∑
i≤k

ai#{j ∈ IM,1(Pn) \ I0(Pn) : (B
M
j , DM

j ) ∈ Ei and yj ∈ Wt}.

Then, assuming a1 > 0, by Lemma 9.5 with A1 = {0} and A2 = [a1,∞),

E
[
Var

(
νn(Wt)|Λ,P \Wr2AC

)]
= E

[
Var

(
Y |Λ,P \Wr2AC

)]
≥ a21

4
E
[

min
i∈{1,2}

P(F ′ ∩ Fi|Λ,P \Wr2AC
)
]
,

and it remains to show that the right-hand side is non-zero.
Since E1, . . . , Ek are pairwise disjoint and contain points above the diagonal,

[26, Example 1.8] shows that under the homogeneous Poisson point process the
event F ′ ∩ F2 has positive probability. Also F ′ ∩ F1 is of positive probability.
Hence, an application of condition (AC) concludes the proof.

9.2. Proof of Proposition 9.2

For a block E = (b−, b+]×(d−, d+] ⊂ [0, rf ]
2, we let ξE denote the score function

associated with β(E,Pn). That is,

ξE(x,Pn) = #{(BM
i , DM

i ) ∈ E : x gives birth to the ith hole}

is the number of holes born by x with birth and death times in E. Note that if
x gives birth to the ith hole, then it gets in contact with another point at time
BM

i ∈ (b−, b+]. In particular, P contains a point in the annulus A2b−,2b+(x) =
B2b+(x) \B2b−(x).

Moreover, if the ith hole dies at time DM
i ∈ (d−, d+], then a previously

vacant component is covered completely, which is caused by three disks centered
at points in P meeting at a single point in the plane. The three center points



1058 C. A. N. Biscio et al.

of the disks must form a triangle with no obtuse angle. Otherwise, two of the
disks would meet for the first time in the interior of the third and hence no
connected component in the background was covered by the merging. This could
be interpreted as a feature that is born and dies at the same time, but we chose
to exclude such features in our definition of 1-features.

Henceforth, let B±
d (x, y) ⊂ R

2 denote the two disks of radius d > 0 whose
boundary passes through x, y ∈ R

2. If |x− y|/2 > d, we let B±
d (x, y) be empty.

The points in B+
d (x, y) ∪ B−

d (x, y) are exactly the points z such that the time
when the boundaries of the three disks around x, y, and z meet in one point is
at most d. For d+ > d− ≥ 0, we let

Dd−,d+(x, y) =
(
B+

d+
(x, y) ∪B−

d+
(x, y)

)
\
(
B+

d−∨a(x, y) ∪B−
d−∨a(x, y)

)
,

where a = |x − y|/2. This set consists of all points z such that the boundaries
of the three disks around x, y and z meet at time r with d− < r ≤ d+. Some
z ∈ Dd−,d+(x, y) may still form a triangle having an obtuse angle with x and y,
that is, the disks around x, y, and z already met earlier in an interior point of
one of the disks. However, all z that can cause the death of a hole in E together
with x and y must be contained in Dd−,d+(x, y).

Now,

ξE(x,Pn) ≤ P(BM (x))1Ex , (14)

where Ex denotes the event that for some P ′ ⊂ P with x ∈ P ′ the event
Ex,b(P ′) ∩ Ex,d(P ′) occurs, where

Ex,b(P ′) =
{
x creates an M -bounded hole in {Ur(P ′)}r≥0 with birth and

death time in E by connecting to some x1 ∈ P ′ ∩A2b−,2b+(x)
}

Ex,d(P ′) =
{
∃y1, y2 ∈ P ′ ∩BM (x) such that y1, y2, y3 kill an M -bounded hole

in {Ur(P ′)}r≥0 with birth and death time in E for some

y3 ∈ P ′ ∩Dd−,d+(y1, y2)
}
.

Here, we say that y1, y2, y3 ∈ P ′ kill the hole H if the disks around the points
meet for the first time at p(H). In particular, any three points can kill at most
one hole.

Similarly, for a block E′ = (b′−, b
′
+]× (d′−, d

′
+] ⊂ [0, rf ]

2,

ξE(x,Pn)ξE′(x′,Pn) ≤ P(BM (x))P(BM (x′))1E′′
x,x′ ,

where we let E′′
x,x′ denote the event that for some P ′ ⊂ P with x, x′ ∈ P ′ the

event
Ex,b(P ′) ∩ E′

x′,b(P ′) ∩ Ex,d(P ′) ∩ E′
x′,d(P ′)

occurs.
Using this notation, the proof of the variance upper bound is now based on

the following pivotal geometric moment bound. In the following, Px denotes the
unreduced Palm measure characterized via

We recall from (3) that ρ(p) denotes the pth factorial moment density. In the
following, we adhere to the convention

∫
B0 f(x)dz = f(x).
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Lemma 9.6 (Moment bound). Let P be a stationary point process having fast
decay of correlations and satisfying condition (M). Let p ≥ 0 and K0 > 0.
Then, there exist ε > 0 and Cg > 0 such that for all n > 0 and any ball B ⊂ R2

of radius K > K0,

1.
1

|B|p+1

∫
Bp

Po,z(Eo)ρ
(p+1)(o, z)dz ≤ Cg|E|1/2+ε

holds for all blocks E ⊂ [0, rf ]
2.

2.
1

|B|p+1

∫
Bp

Po,z(E
′′
o,o)ρ

(p+1)(o, z)dz ≤ Cg|E|1/2+ε|E′|1/2+ε

holds for all neighboring blocks E,E′ ⊂ [0, rf ]
2, and

3.

1

|B|p+2

∫
Bp+1

Po,z′,z(E
′′
o,z′)ρ(p+2)(o, z′, z)d(z′, z) ≤ Cg|E|1/2+ε|E′|1/2+ε

holds for all neighboring blocks E,E′ ⊂ [0, rf ]
2.

The proof of Lemma 9.6 relies on a delicate geometric analysis that we defer
to Section 9.4. We now prove Proposition 9.2. As in [9, Equation (1.6)], for
x = (x1, . . . , xp) ∈ R

2p and k1, . . . , kp ≥ 0, we introduce the mixed ξE-moments

m(k1,...,kp)
n (x) = Ex[ξE(x1,Pn)

k1 · · · ξE(xp,Pn)
kp ]ρ(p)(x). (15)

In the rest of the manuscript, we freely use that exponential decay of correlations
implies boundedness of the factorial moment densities [9, Inequality (1.11)].

Proof of Proposition 9.2. To lighten notation, we write ξ instead of ξE . To give
the paper more pleasant to read, we have not attempted to optimize the expo-
nents occurring in the course of this proof. Proceeding as in [9, Equation (4.1)],
the refined Campbell-Mecke formula [9, Equation (1.9)] gives that Var

(
β(E,Pn)

)
equals∫

Wn

m(2)
n (x)dx+

∫
Wn×Wn

(
m(1,1)

n (x, y)−m(1)
n (x)m(1)

n (y)
)
d(x, y). (16)

We derive bounds for the two summands separately.
By stationarity, (14) and Hölder’s inequality, the first expression is at most

nEo[P(BM (o))16]1/8Po(Eo)
7/8ρ = n

(
Eo[P(BM (o))16]ρ

)1/8(
Po(Eo)ρ

)7/8
. (17)

Hence, Lemma 9.6(1) with p = 0 yields the asserted upper bound.
To deal with the double integral in (16), we recall that ξ is a local score

function and that P exhibits exponential decay of correlations. Hence, as in [9,
Equation (3.26)], the factorial moment measure expansion shows that∣∣m(1,1)

n (x, y)−m(1)
n (x)m(1)

n (y)
∣∣ ≤ cφ(|x− y|/2)
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for some c > 0. In particular, choosing a cut-off K = |E|−1/128, we see that

sup
x∈Wn

∫
Wn\BK(x)

∣∣m(1,1)
n (x, y)−m(1)

n (x)m(1)
n (y)

∣∣dy ≤ C|E|

holds for a suitable C > 0 and it suffices to derive an upper bound for∫
BK(x)

m(1,1)
n (x, y) +m(1)

n (x)m(1)
n (y)dy.

For the second summand, we can argue similarly as in (17), so that it remains

to bound the integral involving m
(1,1)
n (x, y). Here, we set z = y − x, note that

ρ(2)(x, y) = ρ(2)(o, z) and combine (14) with Hölder’s inequality to arrive at

m(1,1)
n (x, y) ≤ Eo,z[P(BM (o))16]1/16Eo,z[P(BM (z))16]1/16Po,z(Eo)

7/8ρ(2)(o, z).

We bound Eo,z[P(BM (z))16] thanks to condition (M). Finally, by Jensen’s in-
equality applied to the uniform distribution on BK(o),

1

|BK(o)|

∫
BK(o)

(Po,z(Eo)ρ
(2)(o, z))7/8dz ≤

( 1

|BK(o)|

∫
BK(o)

Po,z(Eo)ρ
(2)(o, z)dz

)7/8

,

(18)

so that applying Lemma 9.6(1) with p = 1 shows that the right-hand side
is of order at most (|E|3/4|BK(o)|)7/8 = |E|7·47/512, thereby concluding the
proof.

9.3. Proof of Proposition 9.3

To prove Proposition 9.3, we take up the idea suggested in [25, Theorem 8]
and [11, Theorem 8.1] and express c4 in terms of cumulant measures induced
by the functional of interest. A slight technical nuisance in the present setting
comes from dealing with a product of two different functionals – one associated
with the block E and the other with E′ – whereas the semi-cluster measure
machinery from [9, Section 4.3] relies on a single score function. However, this
artificial difficulty can be overcome by formally attaching {1, 2}-valued marks

to Pn. Taking up the notation from [20], we let R̆2 = R2 × {1, 2} and P̆n =
Pn×{1, 2} denote the correspondingly marked space and point process. Writing
E′′ = (E,E′), we define an augmented score function ξE′′ , where points with
mark 1 are evaluated with the first score function and points with mark 2 are
evaluated with the second score function. In other words,

ξE′′((x, τ), P̆n) =

{
ξE(x,Pn) if τ = 1,

ξE′(x,Pn) if τ = 2.

We take the concise proof of Proposition 9.2 as a blueprint for the strategy
of the more involved setting laid out in Proposition 9.3. In particular, we need
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to address two main steps: bounds for mixed moments and a reduction of the
integral to the diagonal.

In order to reduce to the diagonal, we decompose the cumulant measure
into semi-cluster measures as in [4, Section 5.1] and [20, Section 3.2]. For the
convenience of the reader, we reproduce the basic definitions. First, the kth
moment measure Mk(μn) is given as

〈f ,Mk(μn)〉 =
∫

f(x̆)Mk(μn)(dx̆) = E[〈f1, μn〉 · · · 〈fk, μn〉],

where f = f1 ⊗ · · ·⊗ fk is non-negative and measurable with each fi defined on
R̆

2, and

μn = μE′′,n = n−1
∑
x̆∈P̆n

ξE′′(x̆, P̆n)δx̆

denotes the empirical measure associated with ξE′′ and P̆n. In terms of mixed
ξ-moments, with x̆Ti the projection of x̆ to the coordinates in Ti, we write

dMk =
∑

{T1,...,Tp}{1,...,k}
m(T1,...,Tp)

n dx̆T1 · · ·dx̆Tp , (19)

where dx̆Ti are the singular differentials determined via∫
R̆2|Ti|

f(x̆Ti)dx̆Ti =

∫
R̆2

f(x̆, . . . , x̆)dx̆

where f : R̆2|Ti| → [0,∞) is any non-negative measurable function [20, Section
3.1]. As in (15), for T1, . . . , Tp � {1, . . . , k}, the mixed ξE′′ -moments are given
as

m(T1,...,Tp)
n (x̆) = Ex[ξE′′(x̆T1 ,Pn)

|T1| · · · ξE′′(x̆Tp ,Pn)
|Tp|]ρ(p)(x),

for every x̆ = ((x1, τ1), . . . , (xk, τk)) ∈ R̆
2k.

Similarly, the kth cumulant measure ckn = ck(μn) equals

〈f , ckn〉 = ck(〈f1, μn〉, . . . , 〈fk, μn〉),

so that

ckn =
∑

{T1,...,Tp}{1,...,k}
(−1)p−1(p− 1)!MT1 · · ·MTp , (20)

where

dMTi =
∑

{T ′
1,...,T

′
p′}Ti

m
(T ′

1,...,T
′
p′ )

n dx̆T ′
1
· · · dx̆T ′

p′

denotes the moment measure with coordinates in Ti.
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Next, the space W̆ 4
n decomposes into a union of subsets according to which

coordinate is most distant from the diagonal [20, Lemma 3.1]. More precisely,
write

D(x̆) = max
{S,T}{1,2,3,4}

dist(x̆S , x̆T )

for the maximal separation of x̆S and x̆T , where dist(x̆S , x̆T ) = dist(xS ,xT ).
Then, put

σ(S, T ) =
{
x̆ = (x̆S , x̆T ) ∈ W̆ 4

n : D(x̆) = dist(x̆S , x̆T )
}
\Δ.

Here, the marks are ignored for the diagonal Δ ⊂ W̆ 4
n . We also put W

(1,2)
n =

(Wn × {1})2 × (Wn × {2})2.

Lemma 9.7 (Off-diagonal bounds). Let S, T denote a non-trivial partition of
{1, 2, 3, 4}. Then, there exist nS,T ≥ 1 and εS,T , CS,T > 0 such that

1

n

∣∣c4n(σ(S, T ) ∩W (1,2)
n )

∣∣ ≤ CS,T |E|1/2+εS,T |E′|1/2+εS,T

holds for all n ≥ nS,T and neighboring blocks E,E′ ⊂ [0, rf ]
2.

Before proving Lemma 9.7, we elucidate how to deduce Proposition 9.3.

Proof of Proposition 9.3. First, integration over the cumulant measure decom-
poses into a diagonal and an off-diagonal part [20, Equation (3.28)]. That is,

1

n
〈f , c4n〉 =

1

n

∫
Δ

fdc4n +
1

n

∑
S,T

∫
σ(S,T )

fdc4n.

where f = 1
W

(1,2)
n

is the indicator function of the domain W
(1,2)
n and the sum is

over all non-trivial partitions S, T . By Lemma 9.7, the off-diagonal contributions
in this decomposition are bounded above by

∑
S,T CS,T |E|1/2+εS,T |E′|1/2+εS,T .

Next, when integrating over the diagonal, we leverage that in the decompo-
sition (20), only p = 1 contributes [20, Lemma 3.1]. Hence,∫

Δ

fdc4n =

∫
Wn

Ex[ξE(x,Pn)
2ξE′(x,Pn)

2]ρdx

≤ nEo[P(BM )2/ε]εPo(E
′′
o,o)

1−ε,

so that applying Lemma 9.6(2) with p = 1 and noting the convention preceding
that result concludes the proof.

To prove Lemma 9.7, we decompose the cumulant measures into semi-cluster
measures [4, Lemma 5.1]. More precisely, as in [4, 20], any two disjoint non-
empty subsets S′, T ′ � {1, 2, 3, 4}, induce a cluster measure

US′,T ′
(A×B) = MS′∪T ′

(A×B)−MS′
(A)MT ′

(B).
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Now, c4n decomposes into semi-cluster measures

c4n =
∑

{S′,T ′,T1,...,Tp}{1,2,3,4}
aS′,T ′,T1,...,TpU

S′,T ′
MT1 · · ·MTp , (21)

for coefficients aS′,T ′,T1,...,Tp ∈ R, where the sum runs over all partitions such
that S′ and T ′ are non-empty subsets of S and T , respectively [20, Lemma 3.2].

Equipped with these ingredients, we now prove Lemma 9.7. Since the basic
structure of the proof parallels that of Proposition 9.2, we only provide details
for the steps that are substantially different.

Proof of Lemma 9.7. Putting DK = {x̆ ∈ W
(1,2)
n ∩ σ(S, T ) : D(x̆) > K} for

K ≥ 1, we first derive an upper bound for∣∣∣ ∫
DK

dUS′,T ′
dMT1 · · · dMTp

∣∣∣ = ∣∣∣ ∫
DK

(dMS′∪T ′ −dMS′
dMT ′

)dMT1 · · · dMTp

∣∣∣.
For this purpose, we decompose the moment measures dMS′∪T ′

, dMS′
and

dMT ′
according to (19). Hence, we need bounds for the absolute value of dif-

ferences of mixed ξ-moments of the form∣∣∣m(S′′
1 ,...,S′′

p′′ ,T
′′
1 ,...,T ′′

r′′ )
n (x̆S′′

1
, . . . , x̆S′′

p′′
, x̆T ′′

1
, . . . , x̆T ′′

r′′
)

−m
(S′′

1 ,...,S′′
p′′ )

n (x̆S′′
1
, . . . , x̆S′′

p′′
)m

(T ′′
1 ,...,T ′′

r′′ )
n (x̆T ′′

1
, . . . , x̆T ′′

r′′
)
∣∣∣, (22)

where {S′′
1 , . . . , S

′′
p′′} and {T ′′

1 , . . . , T
′′
r′′} are partitions of S′ and T ′, respectively.

Since we are working on the set σ(S, T ), as in the proof of Proposition 9.2, the
fast decay of ξ-correlations bounds (22) by cφ(D(x̆S′∪T ′)/2) for a suitable c > 0.

Next, as in [20, Section 3.1] the singular differentials occurring in the expan-
sion (19) of the moment measure Mk can be grouped into a single object. More
precisely, we write d̃x̆ for the measure that equals dx̆T1 · · · dx̆Tp on the subset

of R̆2k consisting of all x̆ = (x̆1, . . . , x̆k) such that x̆i = x̆j if i, j ∈ Tr for some
r ≤ p and x̆i �= x̆j otherwise.

In the setting of the present proof, we note that the bounds on the mixed
moments from (22) only involve coordinates with indices in the set S′ ∪ T ′.
Hence, we need to consider also singular differentials only with respect to these
coordinates, i.e., integrate with respect to d̃x̆S′∪T ′ . In particular, we arrive at
the bound∣∣∣ ∫

DK

dUS′,T ′
dMT1 · · · dMTp

∣∣∣ ≤ c

∫
DK

φ(D(x̆S′∪T ′)/2)d̃x̆S′∪T ′dMT1 · · · dMTp . (23)

Now, setting K = |E|−ε/128|E′|−ε/128, the exponential decay assumption on the
function φ gives control on one integral over the window, while the integrals
with respect to the remaining variables are controlled by the volume of balls.
Then, a repeated application of Hölder’s inequality provides suitable bounds on
the moment measures such that

1

n

∫
DK

φ(D(x̆S′∪T ′)/2)d̃x̆S′∪T ′dMT1 · · · dMTp ≤ C|E||E′|
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holds for some C > 0. Hence, it suffices to provide upper bounds for

1

n

∫
{x̆∈W

(1,2)
n :D(x̆)≤K}

dMT ′
1 · · · dMT ′

p′ ,

where {T ′
1, . . . , T

′
p′} is an arbitrary partition of {1, 2, 3, 4}. We explain how to

proceed for p′ = 1, noting that for p′ > 1 the arguments are similar but easier.
We claim that for some C ′ > 0,

1

n

∫
Wn×{1}

∫
BK(x1)×{1}

∫
(BK(x1)×{2})2

dM{1,2,3,4} ≤ C ′|E|1/2+ε/8|E′|1/2+ε/8.

(24)

To prove this claim, decomposeM{1,2,3,4} according to (19) and let {T ′′
1 , . . . , T

′′
p′′}

be an arbitrary partition of {1, 2, 3, 4}. As in the proof of Proposition 9.2, a re-

peated use of Hölder’s inequality shows that on W
(1,2)
n , the mixed moments of

the form

m
(T ′′

1 ,...,T ′′
p′′ )

n (x̆1, . . . , x̆4)

are bounded above by c′
(
Px(E

′′
x1,xi

)ρ(p
′′)(x)

)1−ε
for a suitable c′ > 0 and some

i ≤ 4. At this point, we may proceed similarly as in (18) by invoking Lemmas
9.6(2) and 9.6(3). As an illustration consider the setting where p′′ = 4 and i = 2.
Then, we set z′ = x2 − x1, z3 = x3 − x1 and z4 = x4 − x1. We combine Jensen’s
inequality with Lemma 9.6(3) to show that

1

|BK |3
∫
B3

K

(
Po,z′,z3,z4(E

′′
o,z′)ρ(4)(o, z′, z3, z4)

)1−ε
dz′dz3dz4

≤
(∫

B3
K

1

|BK |3Po,z′,z3,z4(E
′′
o,z′)ρ(4)(o, z′, z3, z4)dz

′dz3dz4
)1−ε

≤ C1−ε
g |BK ||E|1/2+ε/4|E′|1/2+ε/4.

Hence, inserting the definition of K concludes the proof.

9.4. Proof of Lemma 9.6

We now turn to the proof of Lemma 9.6. The proof is based on the following
four lemmas that are used to bound the probability with which certain point
configurations occur. Throughout we use the notation

E = (b−, b+]× (d−, d+],

E′ = (b′−, b
′
+]× (d′−, d

′
+],

δb = b+ − b−, δd = d+ − d−,

δb′ = b′+ − b′−, δd′ = d′+ − d′−.

The proofs make use of the inequalities

|
√
x−√

y| ≤
√
|x− y| (25)
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| arcsin(x)− arcsin(y)| ≤ C0

√
|x− y|, (26)

where C0 > 0 is some constant. Moreover, we repeatedly use that the volume
of an annulus is given by

|Ab−,b+(o)| = b2+ − b2− ≤ 2b+δb.

Lemma 9.8. Let x, y ∈ R
2 and a = |x− y|/2. There is a constant C > 0 such

that for all 0 ≤ a ≤ d+ ≤ rf ,

|Dd−,d+(x, y)| = 2d2+

(
π − arcsin

(
a
d+

)
+ a

d+

√
1−

(
a
d+

)2)
− 2(d− ∨ a)2

(
π − arcsin

(
a

d−∨a

)
+ a

d−∨a

√
1−

(
a

d−∨a

)2)
≤ Cd+δ

1/2
d .

Proof. Recall that

Dd−,d+(x, y) = (B+
d+

(x, y) ∪B−
d+

(x, y))\(B+
d−∨a(x, y) ∪B−

d−∨a(x, y)).

The line through x and y cuts the disk B+
d (x, y) into two parts. The area of the

larger part is given by

d2
(
π − arcsin(ad ) +

a
d

√
1− (ad )

2
)
.

Dd−,d+(x, y) is the union of two such sets of radius d+ from which we remove
two sets of the same type with radius d− ∨ a from the interior. This yields the
formula for the area.

The inequality follows from

d2+ − (d− ∨ a)2 ≤ 2d+δd,

a(d+ − d− ∨ a)
√

1−
(

a
d−∨a

)2 ≤ d+δd,

and, using (25) and (26),

d2+

(
arcsin

(
a

d−∨a

)
− arcsin

(
a
d+

)
+ a

d+

(√
1−

(
a
d+

)2 −√
1−

(
a

d−∨a

)2))
≤ d2+

(
C0

√
a

d−∨a − a
d+

+ a
d+

√
( a
d−∨a )

2 − ( a
d+

)2
)

≤ C1d
3/2
+ δ

1/2
d .

Lemma 9.9. Let 0 ≤ b− < b+ ≤ rf and 0 ≤ d− < d+ ≤ rf and let BM be a
disk of radius M . Then, there is a constant C > 0 such that∫
B3

M

1(b−,b+]

(
|y1−y2|

2

)
1Dd−,d+

(y1,y2)(y3)dy3dy2dy1 ≤ C|BM |d2+(δb ∨ δd)
1
2 δb ∧ δd.
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Proof. Integration with respect to y3 yields:∫
B3

M

1(b−,b+]

(
|y1−y2|

2

)
1Dd−,d+

(y1,y2)(y3)dy3dy2dy1

≤
∫
B2

M

1(b−,b+]

(
|y1−y2|

2

)
|Dd−,d+(y1, y2)|dy2dy1.

When δb ≤ δd, the claim follows directly from Lemma 9.8. Otherwise, letting
a = |y1 − y2|/2, we split the integral in two terms according to whether a < d−
or a ≥ d−. Applying Lemma 9.8 yields the bound

C1|BM |
(∫ b+∧d−

b−∧d−

a
(
d2+

(
π − arcsin

(
a
d+

)
+ a

d+

√
1−

(
a
d+

)2)

− d2−

(
π − arcsin

(
a
d−

)
+ a

d−

√
1−

(
a
d−

)2))
da (27)

+

∫ b+∧d+

b−∨d−

a
(
d2+

(
π − arcsin( a

d+
) + a

d+

√
1− ( a

d+
)2
)
− a2 π

2

)
da

)
. (28)

To bound (27), we apply the mean value theorem and perform the integration
to obtain the bound

C1|BM |d3+
∫ b+∧d−

b−∧d−

(
1√

1−
(

a
d−

)2

(
a
d−

− a
d+

)
+ a2

d+d−
1√

1−
(

a
d−

)2

(
a
d−

− a
d+

))
da

≤ 2C1|BM |d2+δd
∫ b+∧d−

b−∧d−

a√
d2
−−a2

da

= 2C1|BM |d2+δd
(√

d2− − (b− ∧ d−)2 −
√

d2− − (b+ ∧ d−)2
)

≤ 4C1|BM |rfd2+δdδ
1/2
b .

To bound (28), we bound the integrand using Lemma 9.8 and note that

|b+ ∧ d+ − b− ∨ d−| ≤ δd ∧ δb.

This proves the claim when δd ≤ δb.

Lemma 9.10. Let BM be a disk of radius M > 0. There is a constant C > 0
such that for all b−, b+, b

′
−, b

′
+, d−, d+ ∈ [0, rf ] with d− < d+ and either b− <

b+ = b′− < b′+ or b− = b′− and b+ = b′+,∫
B4

M

1(b−,b+]×(b′−,b′+]×(0,b+∨b′+](
|x1−x2|

2 , |x1−x3|
2 , |x2−x3|

2 )

× 1Dd−,d+
(x2,x3)(y1)dy1dx1dx2dx3

≤ C|BM |δb ∧ δb′(δb ∨ δ′b)
3/4δ

3/4
d .
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Proof. We may assume d+ > 3δd ∨ 8
√

rf(δb + δb′). Indeed, if d+ ≤ 3δd, we can
show the claim by first integrating with respect to y1, then using that by Lemma
9.9,

|Dd−,d+(x2, x3)| ≤ C1d
2
+ ≤ 9C1δ

2
d,

and finally integrating with respect to x2 and x3 to provide a factor |BM |δbδb′ . If
d+ ≤ 8

√
rf(δb + δb′), we first integrate with respect to x1, which yields the area

of A2b−,2b+(x2)∩A2b′−,2b′+
(x3). This is bounded by C2δb∧δb′ , and by Lemma 9.9

the remaining integral is bounded by

C3|BM |d2+δd ≤ 64C3|BM |rf(δb + δb′)δd ≤ 128C3|BM |rf(δb ∨ δb′)δd.

Let a = |x2−x3|/2. We write the integral as a sum of three terms correspond-
ing to whether I: a < d+/4, II: d+/4 ≤ a < b−∧b′−, or III: b−∧b′− ≤ a ≤ b+∨b′+.

Term I: We first integrate with respect to y1. Since

a
d−

≤ d+

4d−
= d−+δd

4d−
≤ 3

4 ,

the mean value theorem applied to the formula in Lemma 9.8 implies that
|Dd−,d+(x2, x3)| ≤ C4δd. We then integrate with respect to x2 and x3 to obtain
the bound C5|BM |δbδb′δd.

Term II: When d+/4 ≤ a ≤ b− ∧ b′−, we first integrate with respect to x1

to obtain the area of A2b−,2b+(x2) ∩ A2b′−,2b′+
(x3). To bound term II, we need

to explicitly compute this area. For this, we first compute the area Aa(b1, b2)
of the intersection B2b1(x2) ∩ B2b2(x3) where b1, b2 ∈ {b+, b−, b′+, b′−}. By the
assumption on d+,

a2 ≥ d2+/16 ≥ 4rf(δb + δb′) ≥ 2(b21 − b22). (29)

This ensures that the line containing the two points where the boundaries of the
disks B2b1(x2) and B2b2(x3) meet separates x2 and x3. The area of B2b1(x2) ∩
B2b2(x3) is

Aa(b1, b2) = 4

(
b21 arccos

(
a2+b21−b22

2ab1

)
+ b22 arccos

(
a2+b22−b21

2ab2

)

− b1
a2+b21−b22

2a

(
1−

(
a2+b21−b22

2ab1

)2)1/2

− b2
a2+b22−b21

2a

(
1−

(
a2+b22−b21

2ab2

)2)1/2
)
.

The area of A2b−,2b+(x2) ∩A2b′−,2b′+
(x3) is given by

Aa(b+, b
′
+) +Aa(b−, b

′
−)−Aa(b+, b

′
−)−Aa(b

′
+, b−)

=

∫ b+

b−

∫ b′+

b′−

∂2

∂b1∂b2
Aa(b1, b2)db1db2. (30)
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It is a straightforward computation to see that ∂2

∂b1∂b2
Aa(b1, b2) is uniformly

bounded by C6/d
2
+ on the set of a, b1, b2 ≤ rf satisfying (29) and d+/4 ≤ a ≤

b1 ∧ b2. In particular, (29) guarantees that

a2 + b21 − b22
2ab1

≤ 3a

4b1
≤ 3

4
,

such that arccos and x �→
√
1− x2 have bounded derivatives for the rele-

vant values of x. It follows that (30) is bounded by C7δbδb′/d
2
+. The remain-

ing integral is of order |BM |d2+δd by Lemma 9.9, which yields the appropriate
bound.

Term III: In this case, we first integrate with respect to x1 providing a factor
δb ∧ δb′ . The remaining integral is bounded using Lemma 9.9.

The fourth lemma allows us to analyze which point configurations can cause
the birth and death of M -bounded features. To state it, we recall the α-complex
associated with a locally finite point set X ⊆ R

2, see e.g. [19, Sec. III.4] for
details. It is built from the Delaunay triangulation, which is a triangulation
of the plane with vertex set X . For r > 0, αr(X ) is the union of all edges
in the Delaunay triangulation with length at most 2r and all triangles such
that the three balls of radius r centered at its vertices cover the triangle. Then
αr(X ) ⊆ Ur(X ) and the inclusion is a homotopy equivalence, i.e. it preserves
the topology.

Lemma 9.11. Let X ⊆ R
2 be locally finite.

(i) Each connected component of R2\αr(X ) contains at most one M -bounded
connected component of R2\Ur(X ).

(ii) If an M -bounded loop is born at time b because two balls centered at x1, x2

meet, then there is an edge of length 2b joining x1, x2 in the α-complex.
(iii) If an M -bounded feature dies at time d because exactly three balls centered

at points y1, y2, y3 meet, then y1, y2, y3 form a triangle with no obtuse angle
in the α-complex.

Proof. The analogous statements hold for unbounded loops by the homotopy
equivalence between the α-complex and the union of balls. (i) follows because
anyM -bounded loop is also an unbounded loop. AnM -bounded feature is either
born the same way as the corresponding unbounded component or when two
balls meet to split off a component. In both cases, some unbounded loop is born
by the merging, and hence an edge is added to the α-complex. This shows (ii).
When an M -bounded loop dies, so does the corresponding unbounded loop,
hence (iii) is clear.

We are now ready to prove Lemma 9.6.
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Proof of Lemma 9.6. Proof of (1). Stationarity and Equation (4) yield∫
Bp

Po,z(Eo)ρ
(p+1)(o, z)dz

=

∫
[0,1]2

∫
(B+x)p

Px,z(Ex)ρ
(p+1)(x, z)dzdx

= E

[ ∑
(x,z)∈Pp+1

�=

1[0,1]2(x)1(B+x)p(z)1Ex

]
.

(31)

In the following, we let y = (y1, y2, y3), and

g(x1, x2,y) = 1(b−,b+]

(
|x1−x2|

2

)
1Dd−,d+

(y1,y2)(y3)

for simplicity. By definition of Ex, (31) is bounded by

E

[ ∑
x1∈P

P(B + x1)
p1[0,1]2(x1)

∑
x2∈P

∑
y∈P3

�=

1BM (x1)3(y)g(x1, x2,y)

]

= E

[ ∑
(x1,x2,y)∈P5

�=

P(B + x1)
p1[0,1]2(x1)1BM (x1)3(y)g(x1, x2,y)

]

+ 3E

[ ∑
(x1,y)∈P4

�=

P(B + y1)
p1[0,1]2(y1)1BM (y1)2(y2, y3)g(x1, y1,y)

]

+ 3E

[ ∑
(x1,y)∈P4

�=

P(B + x1)
p1[0,1]2(x1)1BM (x1)3(y)g(x1, y1,y)

]

+ 6E

[ ∑
y∈P3

�=

P(B + y2)
p1[0,1]2(y2)1BM (y2)2(y1, y3)g(y1, y2,y)

]
.

(32)

Here, we have used that g(x1, x2,y) is symmetric in x1 and x2 and in y1, y2,
and y3. Applying (4) again, we may bound the last term in (32) by

6

∫
B3

M+2

Ey[P(B + y1)
p]g(y1, y2,y)ρ

(3)(y)dy, (33)

since b+ ≤ M . The remaining terms are treated similarly. Now choose a covering

B + x1 ⊆
⋃

i≤� W
(i)
1 , where each W

(i)
1 is a translation of W1 and such that

� ≤ C1|B| for some C1 independent ofK (for instance using that BK ⊆ W4�K�2).
Then, by the moment condition (M) for x = (x1, . . . , xk),

Ex

[
P(BK + x1)

p
]
≤ sup

x∈R2k

Ex

[
P
( �⋃

i=1

W
(i)
1

)p]

≤ �p
∑
i≤�

sup
x∈R2k

Ex

[
P
(
W

(i)
1

)p]
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≤ �p
∑
i≤�

sup
x∈R2k

E
!
x

[(
P
(
W

(i)
1

)
+ k

)p∨k]

≤ C2�
p+1

(
sup

x∈R2k

E
!
x

[
P(W1)

p∨k
]
+ kp∨k

)
≤ C3|B|p+1.

We apply this in (33) together with Lemma 9.9. Since each ρ(k) is bounded
according to the assumption of fast decay of correlations, we obtain the bound
C4|B|p+1|E|1/2+ε.

Proof of (2). In the following, we use the notation

g′(x1, x2,y) = 1(b′−,b′+]

(
|x1−x2|

2

)
1Dd′−,d′

+
(y1,y2)(y3).

Note that since the blocks E and E′ are neighboring, the features in E and E′

are different. Putting x = (x1, x2, x3), we now expand as in (31)∫
Bp

Po,z(E
′′
o,o)ρ

(p+1)(o, z)dz

≤ E

[ ∑
x1∈P∩[0,1]2

(x2,x3)∈P2
�=

∑
y,y′∈P3

�=∩BM (x1)
3

y �=y′

P(B + x1)
pg(x1, x2,y)g

′(x1, x3,y
′)1A(x,y,y

′)

]

≤ E

[ ∑
x,y,y′∈P3

�=∩B3
M+2

y �=y′

P(B + x1)
pg(x1, x2,y)g

′(x1, x3,y
′)1A(x,y,y

′)

]
.

(34)

The condition x2 �= x3 comes from the fact that x1 can give birth to at most one
feature when connecting to another point, and since E and E′ are neighboring,
x2 and x3 correspond to different features. Similarly, y′ �= y comes from the
fact that a triangle can kill at most one feature.

The event A excludes certain point configurations that are not possible. If
the triangles formed by y and y′ share an edge, and the vertices of this edge
coincide with x2 and x3, then |x2 − x3| > 2(b+ ∨ b′+) is not allowed. Indeed, it
follows from Lemma 9.11 that the triangles correspond to the same feature in
the α-complex until x2 and x3 are joined. Thus, this must happen before both
triangles are born, that is, at the latest at time b+ ∨ b′+. Moreover, if the two
triangles share an edge, then the two points in y,y′ not lying on this edge cannot
be equal to x1 and x2 or to x1 and x3, as this would lead to crossing edges in
the α-complex by Lemma 9.11 (since the triangles formed by y,y′ cannot have
any obtuse angles).

We now write the sum in (34) as a sum where each term is a sum over Pk
�=,

4 ≤ k ≤ 9, as in (32). Each such term comes from grouping x,y,y′ into sets of
equal points. Consider for illustration the term corresponding to the situation
x2 = y′1, x1 = y2 = y′2, x3 = y3 = y′3. The sum is handled as in the proof of
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Lemma 9.6(1) by applying (4) and bounding the involved Palm means. For this
special point configuration, it is sufficient to bound 1A by 1.

1

|B|p+1
E

[ ∑
(x,y1)∈P4

�=∩B4
M+2

P(B + x1)
pg(x1, x2, y1, x1, x3)g

′(x1, x2,x)
]

≤ C5

∫
B4

M+2

g(x1, x2, y1, x1, x3)g
′(x1, x3,x)dy1dx.

Now, we apply the Hölder inequality with 1
q1

+ 1
q2

= 1 to obtain the bound

C5

[ ∫
B4

M+2

1(b−,b+]×(b′−,b′+]

(
|x1−x2|

2 , |x1−x3|
2

)
1Dd−,d+

(x1,x3)(y1)dy1dx
] 1

q1

×
[ ∫

B4
M+2

1Dd−,d+
(x1,x3)(y1)1(b′−,b′+]

(
|x1−x3|

2

)
1Dd′−,d′

+
(x1,x2)(x3)dy1dx

] 1
q2
.

(35)

In the first integral, we first integrate with respect to x2 and then apply Lemma
9.9, while in the second integral we first integrate with respect to y1 and use
the bound in Lemma 9.8 and then apply Lemma 9.9 again. Next we use that E
and E′ are neighboring blocks so that either δb = δb′ or δd = δd′ .

When δb = δb′ , we get the bound

C6

(
δb(δb′δd)

3
4

) 1
q1
(
δ

1
2

d (δb′δd′)
3
4

) 1
q2 = C6δ

3
4+

1
q1

b δ
3
4 · 1

q1
+ 1

2 · 1
q2

d δ
3
4 · 1

q2

d′ , (36)

so we take 1/q1 > 1/4 and 1/q2 > 2/3.
When δd = δd′ , we use Lemma 9.9 to get the bound

C7

(
δb(δb′δd)

3
4

) 1
q1
(
δ

1
2

d δ
1
2

b′δd′
) 1

q2 = C7δ
1
q1

b δ
3
4 · 1

q1
+ 1

2 · 1
q2

b′ δ
3
4 · 1

q1
+ 3

2 · 1
q2

d , (37)

so we take 1/q1 > 1/2 and 1/q2 > 1/3.
For a general term, note that there are at least four different points among

y,y′, so one of them, say y1, cannot be equal to any of x. We consider two cases:

I y1 is not among y′1, y
′
2, y

′
3.

II y1 = y′1, y2 = y′2, and y3 = x2 and y′3 = x3.

Since we no longer keep track of which edge kills which triangle, all possible
point configurations allowed by A fall into one of the above cases after possibly
renaming the variables.

In particular, if y1 = y′1 and the points y2, y3, y
′
2, y

′
3 are all different, one of

them cannot be any of x1, x2, x3, and we could have taken this as y1 and be in
Case I. If y1 = y′1, y2 = y′2 and, say, y3 is not any of x1, x2, x3, we could have
chosen y3 as y1 and be in Case I.

We further divide the Case I configurations allowed by A into the following
two sub-cases that have to be treated separately:
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Ia. x3 is not any of y2, y3.
Ib. x2 = y2 = y′2, x3 = y3 = y′3, |x2 − x3|/2 ≤ b+ ∨ b′+.

Again, after renaming the variables, we are always in one of the two sub-cases.
Case Ia: We apply the Hölder inequality to

1(b−,b+]

(
|x1−x2|

2

)
1Dd−,d+

(y1,y2)(y3)1(b′−,b′+]

(
|x1−x3|

2

)
1Dd′−,d′

+
(y′

1,y
′
2)
(y′3)

= 1(b−,b+]

(
|x1−x2|

2

)
1(b′−,b′+]

(
|x1−x3|

2

)
1Dd−,d+

(y1,y2)(y3) (38)

× 1Dd−,d+
(y1,y2)(y3)1(b′−,b′+]

(
|x1−x3|

2

)
1Dd′−,d′

+
(y′

1,y
′
2)
(y′3).

The first factor is integrated with respect to x3 and the remaining integral
is bounded using Lemma 9.9. The second factor is first integrated wrt. y1, the
result is bounded using Lemma 9.8, and the remaining integral is bounded using
Lemma 9.9. The rest of the argument proceeds as in the special case treated
above.

Case Ib: The claim follows by applying the Hölder inequality to (38) and
arguing as in Case Ia using Lemma 9.10 to bound the first integral.

Case II: We apply the Hölder inequality exactly as in (38) and argue as in
Case Ia, except that the second integral is first integrated with respect to y3
rather than y1.

Proof of (3). As in (31), we find∫
Bp+1

Po,z′,z(E
′′
o,z′)ρ(p+2)(o, z′, z)dz′dz

≤ E

[ ∑
(x,z′)∈P2

n �=

P(B + x)p1[0,1]2(x)1B+x(z
′)1E′′

x,z′

]

≤ E

[ ∑
(x1,z′)∈P2

�=

∑
(x2,x′

2)∈P2

∑
y∈P3

�=∩BM (x1)3

∑
y′∈P3

�=∩BM (z′)3

y �=y′

P(B + x1)
p1[0,1]2(x1)

× 1B+x1(z
′)g(x1, x2,y)g

′(z′, x′
2,y

′)1Ã(x1, z
′, x2, x

′
2,y,y

′)

]
.

The set Ã consists of tuples of points (x1, x2, x3, x4,y,y
′) ∈ R

20 and, similar
to A, it excludes certain configurations of the points (x1, x2, x3, x4,y,y

′) that
are not allowed by Lemma 9.11. If the triangles formed by y and y′ share an
edge, then the length of this edge must be at most 2(b+ ∨ b′+). Moreover, if the
two triangles share an edge, then the two points in y,y′ not lying on this edge
cannot be equal to x1 and x3 or to x2 and x4.

The contribution from the cases where two of the points x1, x2, x
′
2, z

′ are
identical is bounded by

E

[ ∑
x,y,y′∈P3

�=∩B3
2M+2

y′ �=y

P(B + x1)
pg(x1, x2,y)g

′(x1, x3,y
′)1Ã(x1, x2, x1, x3,y,y

′)

]
,
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which is handled exactly as in the proof of Lemma 9.6(2). Thus, it remains
to treat the terms where x1, x2, x

′
2, z

′ are all different. Therefore, if we put
x = (x1, x2, x3, x4), we must bound

E

[ ∑
x∈P4

�=
x1∈[0,1]2

∑
y∈P3

�=∩BM (x1)3

∑
y′∈P3

�=∩BM (x2)
3

y �=y′

P(B + x1)
p1B+x1(x2)

× g(x1, x3,y)g
′(x2, x4,y

′)1Ã(x,y,y
′)

]
.

The rest of the proof proceeds as the proof of Lemma 9.6(2) by suitable appli-
cations of the Hölder inequality. We divide into two cases according to whether
all points in y, y′ are one of x or not. After renaming the variables, we may
assume

I y1 = y′1 = x1, y2 = y′2 = x2, y3 = x3, and y′3 = x4, or
II y1 is not any of x.

Notice that in Case I we exclude the case y1 = y′1 = x1, y2 = y′2 = x3, y3 = x2,
and y′3 = x4 because it was excluded by definition of Ã. After renaming variables,
Case II is divided into

IIa y1 is not any of x or y′, and x1 is not any of y2, y3.
IIb y1 = y′1 and y1 is not any of x, y2 = y′2 �= x3, y3 = x1.
IIc y1 = y′1, y2 = x2, y3 = x4, y

′
2 = x1, y

′
3 = x3.

IId y1 = y′1, y2 = x1, y3 = x2, y
′
2 = x3, y

′
3 = x4.

In Case IIa, y1 is not one of y′, while in Case IIb, IIc, and IId it is. Case IIb
corresponds to the situation in which the triangles formed by y,y′ share an
edge, while in Case IIc and IId they share only one vertex. In Case IIc, each
triangle contains one of the edges joining x1 to x3 and x2 to x4, while in Case
IId they do not.

Case I: When δb = δb′ , we first write

1(b−,b+]

(
|x1−x3|

2

)
1Dd−,d+

(y1,y2)(y3)1(b′−,b′+]

(
|x2−x4|

2

)
1Dd′−,d′

+
(y′

1,y
′
2)
(y′3)

= 1(b−,b+]

(
|x1−x3|

2

)
1Dd−,d+

(y1,y2)(y3)1(b′−,b′+]

(
|x2−x4|

2

)
(39)

× 1(b′−,b′+]

(
|x2−x4|

2

)
1Dd−,d+

(y1,y2)(y3)1Dd′−,d′
+
(y′

1,y
′
2)
(y′3). (40)

We then apply the Hölder inequality. Integrating first with respect to x4 and
then y2 in (39) and integrating with respect to y3 first in (40) yields a bound of
order

(δb′(δbδd)
3
4 )

1
q1 (δd(δb′δd′)

3
4 )

1
q2 .

This is the same as (36) since δb = δb′ . When δd = δd′ , we replace 1Dd−,d+
(y1,y2)(y3)

by 1Dd′−,d′
+
(y′

1,y
′
2)
(y′3) in (39), to obtain a bound of order

(δb(δb′δd′)
3
4 )

1
q1 (δ

1
2

d δ
1
2

b′δd′)
1
q2 ,
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which reduces to the same form as (37).
Case IIa: We apply the Hölder inequality to (39)–(40) and integrate first

with respect to x1 and then y1 in (39) and with respect to y1 first in (40). The
remaining argument proceeds as in the proof of Lemma 9.6(2) Ia.

Case IIb: We apply the Hölder inequality to (39)–(40) and integrate first with
respect to x3 and then y1 in (39) and with respect to y3 first in (40) and argue
as in the proof of Lemma 9.6(2) Ia.

Case IIc: In (39), we first integrate with respect to x1. In (40), we first
integrate with respect to y′2 and y′3 to obtain a factor δd′ . Then we integrate

with respect to y1 and x2 and apply Lemma 9.9 to obtain a factor δ
1/2
d δb′ . The

resulting bounds are stricter than (36) and (37).
Case IId: Here we integrate (39) with respect to x3 first and then y1 while

(40) is integrated first with respect to y2 and then y1.
In all cases treated above, a minor difference to (35) is that the integration

domains are slightly more complicated due to the indicator 1B+x1(x2). However,
it contributes at most a factor C7|B| to the bound, and this cancels when we
divide by |B|p+2.
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