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1 Introduction

In the late 1990’s, Type Ia supernovae (SNe Ia) were used as distance probes to measure the ho-
mogeneous expansion history of the Universe. The remarkable discovery that the expansion is
accelerating has called into question our basic understanding of the gravitational forces within the
Universe. Either it is dominated by a “dark energy” that is gravitationally repulsive, or General
Relativity is inadequate and needs to be replaced by a modified theory of gravity. It is only appro-
priate that in the upcoming decade, with their sheer numbers, solid-angle coverage, and improved
distance precisions, SNe Ia will provide measurements of the inhomogeneous motions of structures
in the Universe that will provide an unmatched test of whether dark energy or modified gravity is
responsible for the accelerating expansion of the Universe.

In the next decade, SNe Ia will be used as peculiar-velocity probes to measure the influence of
gravity on structure formation within the Universe. Peculiar velocities induce scatter along the red-
shift axis of the SN Hubble diagram, which is pronounced at low redshifts and when the magnitude
scatter (e.g. due to intrinsic magnitude dispersion) is small. The peculiar velocity power spectrum
is sensitive to the growth of structure as Pvv ∝ (fD)2, where D is the spatially-independent
“growth factor” in the linear evolution of density perturbations and f ≡ d lnD

d ln a
is the linear growth

rate where a is the scale factor [12, 7].
The ΛCDM prediction for the z = 0 peculiar velocity power spectrum is shown in Figure 1.

The growth of structure depends on gravity; [18] find that General Relativity, f(R), and DGP
gravity follow the relation f ≈ Ωγ

M with γ = 0.55, 0.42, 0.68 respectively (see [15] for a review
or these models). Using this parameterization to model gravity, peculiar velocity surveys probe γ
through fD, whose γ-dependence is plotted in Figure 2 of [19].

Figure 1: Volume-weighted peculiar velocity power spectrum k3Pvv(z = 0) for µ ≡ cos (k̂ · r̂) =
1, 0.5 (magenta, cyan) where r̂ is the line of sight, as predicted for General Relativity in the linear
regime. Overplotted are peculiar-velocity power-spectrum shot noise (diagonal lines) for various
observing parameters. Red shows the shot noise expected from a 2-year LSST survey while black
shows a 10-year LSST survey. The dotted and dashed lines indicate the assumed intrinsic magni-
tude dispersion, using 0.08 (dashed) or 0.15 mag (dotted). The expected shot noise from TAIPAN
is shown in green (dash-dotted). The bottom solid grey horizontal lines show the approximate
range of k expected to be used in surveys with corresponding redshift depths zmax.

Peculiar velocity surveys have already been used to measure fD (also referred to as fσ8),
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though not to a level where gravity models can be precisely distinguished. [2] use 6dFGS peculiar
velocities using Fundamental Plane distances of elliptical galaxies to estimate absolute magnitudes
with ∼ 0.43 mag precision, yielding a 15% uncertainty in fD at z ≈ 0. The upcoming TAIPAN
survey [6] will obtain Fundamental Plane galaxies with densities of ng ∼ 10−3h3 Mpc−3, and the
WALLABY+WNSHS surveys [17] will obtain Tully-Fisher distances (based on the ∼ 0.48 mag
calibration of absolute magnitude based on the HI 21cm line width) of galaxies with densities
ng ∼ 2 × 10−2 − 10−4h3 Mpc−3 from z = 0 − 0.1 covering 75% of the sky. These surveys
combined are projected to have 3% uncertainties in fD [11]. For reference, DESI projects a 10%
precision of fD at z ≈ 0.3 by looking for signatures (Redshift Space Distortions; RSD) expected
from galaxies infalling toward mass overdensities. Relative to galaxies with Fundamental Plane or
Tully-Fisher distances, SN Ia host galaxies currently have significantly lower number density but
have better per-object peculiar velocity precision. Existing SN Ia samples have been used to test
and ultimately find spatial correlations in peculiar velocities that may be attributed to the growth
of structure [9, 1, 16, 13, 14]. SNe Ia discovered by ASAS-SN, ATLAS, and ZTF [20, 21, 4] over
the next several years will provide first probative measures of fD at z < 0.1.

Two advances in the upcoming decade will make SN Ia peculiar velocities more powerful.
First, the precision of SN Ia distances can be improved. The commonly-used empirical 2-parameter
spectral model yields absolute magnitude dispersion σM & 0.12 mag. However, SNe transmit more
information than just the light-curve shape and single color used in current SN models. Recent
studies indicate that with the right data, SN absolute magnitudes can be calibrated to σM . 0.08
mag [?, see e.g.]]2012MNRAS.425.1007B, 2015ApJ...815...58F. Though not yet established, it is
anticipated that such a reduction in intrinsic dispersion comes with a reduction in the magnitude
bias correlated with host-galaxy properties that is observed using current calibrations. At this
precision the intrinsic velocity dispersion at z = 0.028 is 300 km s−1, i.e. a single SN Ia is of
such quality as to measure a peculiar velocity with S/N ∼ 1. If corrections of all SNe Ia are not
possible, the use of SN Ia subclasses is an option though at the expense of reducing the numbers
of velocity probes. Secondly, in the upcoming decade cadenced wide-field imaging surveys such
as ZTF and LSST will increase the number of identified z < 0.3 Type Ia supernovae from the
hundreds to the hundreds of thousands; over the course of 10-years, LSST will find ∼ 150, 000
z < 0.2, ∼ 520, 000 z < 0.3 SNe Ia for which good light curves can be measured, corresponding
to a number density of n ∼ 5 × 10−4h3 Mpc−3. This sample has comparable number density
and more galaxies at deeper redshifts than projected by WALLABY and TAIPAN. With similar
densities, the (two) ten-year SN Ia survey will have a (6) 29× reduction in shot-noise, σ2

M/n,
relative to the Fundamental Plane survey of TAIPAN.

Given these advances, supernovae discovered by wide-field searches in the next decade will be
able to tightly constrain the growth of structure in the low-redshift Universe. For example, over
the course of a decade a SN survey relying on LSST discoveries plus spectroscopic redshifts can
produce 4–14% uncertainties in fD in 0.05 redshift bins from z = 0 to 0.3, cumulatively giving
2.2% uncertainty on fD within this interval, where at 0 < z < 0.2 most of the probative power
comes from peculiar velocities and at higher redshifts from RSD [10].
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2 Testing Gravity with Peculiar Velocity Surveys

While the growth rate fD can be used to test several aspects of physics beyond the standard
cosmological model (e.g. dark matter clustering, dark energy evolution), our scientific interest is
in probing gravity, so here we focus on the growth index γ. To illustrate the distinction, d(ln fD)

dγ
=

ln ΩM +
∫

Ωγ
M ln ΩM d ln a ≈ −1.68,−0.75,−0.37 at z = 0, 0.5, 1.0 respectively in ΛCDM; two

surveys with the same fractional precision in fD will have different precision in γ, with the one
at lower redshift providing the tighter constraint. In this section, we demonstrate that peculiar
velocity surveys in the upcoming decade can measure γ precisely for a range of survey-parameter
choices.

We project uncertainties on the growth index, σγ for a suite of idealized surveys using a Fisher
matrix analysis similar to that of [10, 11] (there is an alternative approach using an estimator
for the mean pairwise velocity [5]). The “cross-correlation” analysis incorporates both galaxy
overdensities and peculiar velocities. The Fisher information matrix is

Fij =
Ω

8π2

∫ rmax

rmin

∫ kmax

kmin

∫ 1

−1

r2k2Tr
[
C−1 ∂C

∂λi
C−1 ∂C

∂λj

]
dµ dk dr (1)

where

C(k, µ) =

[
Pδδ(k, µ) + 1

n
Pvδ(k, µ)

Pvδ(k, µ) Pvv(k, µ) + σ2

n

]
(2)

and the parameters considered are λ ∈ {γ, bD,ΩM0}. The parameter dependence enters through
fD in the relations Pvv ∝ (fDµ)2, the SN Ia host-galaxy count overdensity power spectrum
Pδδ ∝ (bD + fDµ2)2, and the galaxy-velocity cross-correlation Pvg ∝ (bD + fDµ2)fD, where
b is the galaxy bias and µ ≡ cos (k̂ · r̂) where r̂ is the direction of the line of sight. While the
bD term does contain information on γ, its constraining power is not used here. Both f and D
depend on ΩM =

ΩM0

ΩM0
+(1−ΩM0

)a3
. The uncertainty in γ is σγ =

√
(F−1)γγ . Non-GR models may

also predict a change in the scale-dependence of the growth or non-constant γ, such observations
provide additional leverage in probing gravity but are not considered here.

The uncertainty σγ of a survey depends on its solid angle Ω, depth given by the comoving
distance out to the maximum redshift rmax = r(zmax), duration t through n = εφt where φ is the
observer-frame SN Ia rate and ε is the sample-selection efficiency, and the intrinsic SN Ia magni-
tude dispersion through the resulting peculiar velocity intrinsic dispersion σ ≈ ( 5

ln 10
1+z
z

)−1σM .
We consider SN peculiar velocity surveys for a range of redshift depths zmax for durations

of t = 2 and 10 years. The other survey parameters Ω = 3π, ε = 0.65, σM = 0.08 mag are
fixed. The k-limits are taken to be kmin = π/rmax and kmax = 0.1 hMpc−1. A minimum distance
rmin = r(z = 0.01) is imposed as our analysis assumes that peculiar velocities are significantly
smaller than the cosmological redshift. The sample-selection efficiency ε is redshift-independent,
i.e. the native redshift distribution is not sculpted. The input bias of SN Ia host galaxies is set as
b = 1.2. An independent measurement of ΩM0 = 0.3 ± 0.005 is included and is a non-trivial
contributor to the γ constraint. Number densities are taken to be direction-independent, neglecting
the slight declination-dependence of SN-survey time windows

All the surveys considered provide meaningful tests of gravity. The projected uncertainty in
γ achieved by the suite of surveys are shown in Figure 2. The primary result is for the cross-
correlation analysis that uses overdensities (RSD), peculiar velocities, and their cross-correlations.
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Figure 2: The projected uncertainty in γ, σγ , achieved by two-year (red) and ten-year (black) SN Ia
surveys of varying depth zmax. For each survey uncertainties are based on three types of analyses:
using only peculiar velocities (dashed); using both RSD and peculiar velocities independently
(dotted); using both RSD, peculiar velocities, and their cross-correlation (solid).

The short and shallow, 2-year, zmax = 0.11 survey has σγ ∼ 0.038, which can distinguish between
General Relativity, f(R), and DGP gravities at the > 3σ level. The 10-year survey performance
asymptotes at zmax ∼ 0.2 at a precision of σγ ∼ 0.01. Figure 2 also shows uncertainties based on
two other analyses, one that only uses peculiar velocities, and one that combines independent RSD
and peculiar velocity results. Peculiar velocities alone account for much of the probative power
of the surveys. RSD alone do not provide significant constraints. However, considering RSD and
velocity cross-correlations decreases σγ by ∼ 20%. The implication is that there are important k-
modes that are sample variance limited either in overdensity and/or peculiar velocity who benefit
from the sample-noise suppression engendered by cross-correlations.

Survey performance is examined in more detail by considering how σγ in the cross-correlation
analysis changes with respect to the survey parameters Ω, zmax, t, and σM , and also with respect
to differential redshift bins within a given survey. Though not directly a survey parameter, we also
examine changes with respect to our fiducial choice of kmax.
Solid Angle Ω: The Fisher Matrix F is proportional to the survey solid angle Ω so σγ ∝ Ω−1/2.
Differential Redshift Bin z: Certain redshifts constrain γ more strongly than others. If at a given
moment of a survey we had a set of SNe Ia from which to choose, it turns out the one with the
lowest redshift would be preferred. This is demonstrated to be the case at the end of both 2- and
10-year surveys with zmax = 0.2. The left panel of Figure 3 shows |∂σγ/∂z|, which for both sur-
veys monotonically decreases from z = 0.01 out to z = 0.2. If we had to sculpt the distribution,
the preference would be to cut out the highest redshift bins resulting in a decreased zmax. The
optimal redshift distribution is thus the unsculpted SN-discovery distribution truncated by zmax.
Redshift Depth zmax: Increasing the survey redshift depth increases the γ precision. The differen-
tial improvement in σγ plateaus at zmax ∼ 0.2 as seen in Figure 2.
Survey duration t; Intrinsic Magnitude Dispersion σM : An increased survey duration accumulates
more supernovae, decreasing shot noise and increasing the precision in γ for all the surveys con-
sidered. The surveys we consider have varying relative contributions of sample variance and shot
noise: those that have a larger shot-noise contribution (i.e. shorter surveys and those with higher
zmax) benefit more from extending the survey duration. Like survey duration, intrinsic magnitude

4



Figure 3: Left: σ−1
γ |∂σγ/∂z| after two and ten years for a survey with limiting depth zmax = 0.2.

Right: σ−1
γ |∂σγ/∂ ln t| (red) and σ−1

γ ∂σγ/∂σM (black) each as a function of zmax for two- (dashed)
and ten-year (solid) surveys.

dispersion is related to survey performance through the shot noise and thus has a similar relation-
ship with σγ; the effect of duration and magnitude dispersion are shown in the right-panel plot of
Figure 3 as σ−1

γ |∂σγ/∂ ln t| and σ−1
γ ∂σγ/∂σM as a function of zmax for two- and ten-year surveys.

Minimum length scale, maximum wavenumber kmax: There is a minimum length scale at which
density and velocity distributions are reliably predicted from theory. Changes in this scale engen-
der fractional changes in the γ precision as σ−1

γ ∂σγ/∂kmax = 0.0050 at kmax = 0.1hMpc−1, which
is survey-independent.

3 Conclusions

In the next decade, the high number of SN discoveries together with improved precision in their
distance precisions will make z < 0.3 SNe Ia, more so than galaxies, powerful probes of gravity
through their effect on the growth of structure. Different survey strategies can be adopted to take
advantage of these supernovae, and in this White Paper we present a formalism and code (available
at http:tiny.cc/PVScience) by which their scientific merits can be assessed and present
results for a range of options.

No other probe of growth of structure or tracer of peculiar velocity can alone provide compa-
rable precision on γ in the next decade. At low redshift, the RSD measurement is quickly sample
variance limited (as are the planned DESI BGS and 4MOST surveys) making peculiar velocities
the only precision probe of fD. TAIPAN and a TAIPAN-like DESI BGS will be able to measure FP
distances for nearly all usable nearby galaxies, so at low-z the Fundamental Plane peculiar-velocity
technique will saturate at a level that is not competitive with a 2-year SN survey.

Combined low-redshift peculiar velocity and high-redshift RSD fD measurements are highly
complementary as together they probe the γ-dependent shape of fD(z) (not just its normalization)
and potential scale-dependent influence of gravitational models, since low- and high-redshift sur-
veys are weighted by lower and higher k-modes respectively. SN Ia peculiar velocity surveys are
of the highest scientific interest and we encourage the community to develop aggressive surveys in
the pursuit of testing General Relativity and probing gravity.
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