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Abstract

Atom interferometers have been developed in the last three decades as new powerful tools to
investigate gravity. They were used for measuring the gravity acceleration, the gravity gradient, and
the gravity-field curvature, for the determination of the gravitational constant, for the
investigation of gravity at microscopic distances, to test the equivalence principle of general
relativity and the theories of modified gravity, to probe the interplay between gravitational and
quantum physics and to test quantum gravity models, to search for dark matter and dark energy,
and they were proposed as new detectors for the observation of gravitational waves. Here I
describe past and ongoing experiments with an outlook on what I think are the main prospects in
this field and the potential to search for new physics.

1. Introduction

Atom interferometers [1–3], as well as atomic clocks [4, 5], are powerful tools for precision measurements

and fundamental tests in physics [6] and for applications [7].

In this paper, I focus on experiments using atom interferometers to investigate gravity for fundamental

physics tests. I describe past and ongoing experiments with an outlook on what I think are the main

prospects in this field and the potential to search for new physics.

The discussion of the experiments is organized in the different sections according to their main

motivation but it is worth emphasizing that the same experiment can have different interpretations and

physical implications depending on the results and on the underlying theoretical model.

2. Measuring gravity with atoms

The first demonstration of a measurement of gravity acceleration using cold atom interferometry was

published about thirty years ago in [8] and later with a higher precision in [9].

The workings of atom interferometers can be understood by analogy with optical interferometers: using

atom optics tools made of material structures or, nowadays more often, laser light, the wave packet of the

atoms entering the system is split, reflected and recombined: at the output, an interference signal can be

observed if no which-way information is available. More generally, atom interferometry can be considered

as an example of quantum interference due to the different paths connecting the initial and the final state of

a system. Any physical effect, such as gravity, acting in a different way for the different paths will lead to a

change of the interference pattern; by measuring this change, the effect can be studied.

Recent experiments are usually based on atom interferometry schemes in which the wavepackets of

freely falling cold atoms are split and recombined with laser pulses [10]; two-photon Raman [8, 9, 11] or

Bragg [12–15] transitions or single-photon transitions on ultranarrow lines [16, 17] are used to prevent

spontaneous emission processes. The gravity acceleration g produces a phase change at the interferometer

output
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∆φ ∝ kgT2, (1)

where k is the effective wavevector of the light splitting and recombining the wavepacket and T is the

free-fall time for the atom between the laser pulses. This corresponds to the free-fall distance measured with

the laser wavelength as a ruler.

Other schemes were demonstrated to measure g with atom interferometry as, for example, in

experiments based on Bloch oscillations [18–20]. In the case of Bloch oscillations, the cold atoms are held

in a vertical optical lattice; the effect of gravity and of the periodical potential due to the laser standing wave

produces oscillations in momentum space with a frequency νBO given by

νBO =
mgλ

2h
, (2)

where m is the atomic mass, λ is the wavelength of the laser producing the lattice and h is Planck’s constant.

By measuring the frequency of the Bloch oscillations, the gravity acceleration g can be determined. This can

be interpreted as the measurement of the difference in the gravitational potential between adjacent lattice

wells which are separated by λ/2. Since just a few wells must be filled with ultracold atoms to observe the

Bloch oscillations, this gravimeter can have a sub-millimeter size down to a few micrometers. For this

reason, it was also proposed and developed as a method to test gravity at micrometric distances [20, 21].

Different schemes, based on Raman, Bragg, and Bloch, can be combined to increase the interferometer

performances [22–25]. Atom interferometry using magnetic pulses instead of light pulses was also

demonstrated [26, 27].

Using atoms as quantum probes to investigate gravity is interesting by itself and offers different

advantages compared to macroscopic masses. The most important is that new experiments are possible

taking advantage of the specific features of atomic sensors: tests can be performed with masses having

well-defined properties such as proton and neutron number, spin, internal quantum state, bosonic or

fermionic nature. For precision measurements, possible systematics can be drastically reduced due to the

well known and reproducible properties of the atoms, the small size and precise control of the position of

atomic samples, the potential immunity from stray field effects, and the possibility of using different states

and different isotopes to reject spurious effects and cross-check the results.

Several physical effects were investigated using atom interferometers. In particular, as described in the

following, atom interferometry can be used in gravitational physics for measuring the gravity acceleration

[9, 11, 20, 25, 28–35], the gravity gradient [15, 31, 36–41] and the gravity-field curvature [42, 43], for the

determination of the gravitational constant G [37, 44–50], for the investigation of gravity at microscopic

distances [20, 21, 51], to search for dark matter [52, 53], dark energy, chameleon and test theories of

modified gravity [54–56]. Atom interferometry was used to test the weak equivalence principle of general

relativity [57] by comparing the free fall of different atoms, 85Rb vs 87Rb [58–61], 39K vs 87Rb [62], the

bosonic 88Sr vs the fermionic 87Sr [63], atoms with different spin orientations [63, 64]. Tests of the weak

equivalence principle using atom interferometers in space were proposed [65–67]. Experiments on

anti-hydrogen are in progress [68, 69]. Atom interferometers, also in combination with optical atomic

clocks, were proposed for the observation of gravitational waves [70–81] and the first prototypes are

presently under construction [82–85].

As can be seen from equation (1), the sensitivity of an atom interferometer as a gravimeter increases

with the square of the interrogation time and with the effective wavevector of the light. This motivated the

development of atom-optical elements based on multi-photon momentum transfer [17, 86–88] and of

large-scale facilities providing a few seconds of free fall time [89–91]. Eventually it will lead to experiments

in space [65–67, 81] for which the technology development is in progress [92], and proof-of-principle

experiments were recently performed [93].

Long interferometer times with freely-falling atoms require atomic samples with temperatures in the pK

range that can be achieved using ultracold atom sources and collimation methods [91, 94–97]. An

alternative approach is using coherent matter-wave guides, either optical [20, 25, 98, 99] or magnetic

[100, 101], which can enable interrogation times of several seconds in compact devices.

For a given momentum transfer and interrogation time, the interferometer sensitivity is limited by the

so-called quantum projection noise. Work is in progress to overcome this limit and potentially reach the

Heisenberg limit by introducing quantum correlations between the individual atoms thus producing

squeezed atomic states [102–106].

In addition to fundamental physics, atomic gravimeters and gravity gradiometers can be used for

applications in geophysics and geodesy [7] on ground [32, 107–112], and for Earth observation and

planetology in future space missions [113–118]. These applications of atom interferometry will not be

discussed here.
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3. Determination of the gravitational constant G

The Newtonian constant of gravity G is a fundamental physical constant which has been measured in

several experiments for long time but it is still the one known with the lowest precision because of large

discrepancies among the values obtained in different experiments. Although this is most probably due to

uncontrolled systematics and underestimated errors, the possibility of yet hidden physical effects cannot be

excluded. An overview of the experimental efforts and open problems to determine the value of G can be

found in the theme issue ‘the Newtonian constant of gravitation, a constant too difficult to measure?’ [119].

G appears in the well-known equation for the gravitational force between two masses:

F(r) = −G
m1m2

r2
r̂. (3)

The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it

very difficult to measure G with high precision keeping systematic effects under control. The difficulty in

getting a precise number for G is then paradigmatic of how difficult it is to measure gravitational effects

precisely.

Since there is no complete theory linking gravity to the other forces of nature, there is no definite

relationship between G and the other fundamental constants and no theoretical prediction for the value of

G against which testing the experimental results.

Despite the numerous measurements performed since the historical experiment by Cavendish in 1798

[120], the uncertainty on G has improved only by less than three orders of magnitude in about two

centuries. In fact, even the results of the most precise measurements reported by different groups show

substantial discrepancies by parts in 104 between each other so that in the 2018 CODATA recommended

values of the fundamental physical constants, the value of the Newtonian constant of gravity is

G = 6.67430(15) ×10−11 m3 kg−1 s−2 with a relative uncertainty of 2.2 ×10−5.

The realization of conceptually different experiments is then important to try and identify the origin of

the discrepancies and improve the confidence in the final result.

Most of the experiments performed so far, including recent ones [121–125], were based on the torsion

pendulum or torsion balance scheme as in the experiment by Cavendish. Some experiments were based on

different schemes: a beam-balance system [126], a laser interferometry measurement of the acceleration of a

freely falling test mass [127], experiments based on Fabry–Perot or microwave cavities [128–130]. They

were all based however on the use of macroscopic masses for the gravity source and for the probe.

In [49, 50], for the first time G was measured with high precision using an atom interferometer as the

probe. The basic idea of the experiment was to use an atom interferometer as gravity sensor and a

well-characterized mass as the source of a gravitational field. From the precise measurement of the gravity

acceleration produced by the source mass and from the knowledge of the mass distribution, the value of the

gravitational constant was determined. A detailed description of the development of the experiment, named

MAGIA as the acronym for ‘accurate measurement of G by atom interferometry’, can be found in [131]. It

was initially proposed in 2001 and the construction of the apparatus started in 2002 [44, 45, 132];

preliminary results were published in [46, 48]. Proof-of-principle results of another conceptually similar

experiment [37] were published in [47]. The MAGIA apparatus was designed with the specific aim of the

accurate determination of G. The challenge was not only reaching a high sensitivity in the detection of the

gravitational effect produced by the source mass but mostly in the control and reduction of possible

systematic effects. This idea guided the design of the atom interferometry sensor and the source mass

configuration. Efforts were therefore devoted to the control of systematic effects related to atomic

trajectories, positioning of source masses, and stray fields. Raman atom interferometry was used to perform

precision measurements of the differential acceleration experienced by two samples of laser-cooled 87Rb

atoms in a vertical gravity gradiometer configuration [38, 133] under the influence of nearby source masses.

The source mass was made of ≈500 kg of tungsten in two sets of cylinders positioned around the vertical

magnetically shielded interferometer tube [134]. During the experiment, they were moved in different

positions in order to modulate the relevant effect and perform a differential detection. The distance of the

source mass from the atoms was kept large enough, at the expense of the signal size, in order to reduce the

sensitivity to the horizontal size of the atomic cloud that would produce a systematic effect. Also, we found

a configuration taking advantage of the high density of tungsten to compensate the Earth’s gravity gradient

thus reducing the sensitivity to the vertical position and size of the atomic clouds. The double differential

configuration drastically reduced numerous common-mode spurious effects. The measurement was

modeled by a numerical simulation taking into account the mass distribution and the evolution of atomic

trajectories. The comparison of measured and simulated data provided the value of the Newtonian

gravitational constant G. The result of the MAGIA experiment was G = 6.67191(99) × 10−11 m3 kg−1 s−2

3



Quantum Sci. Technol. 6 (2021) 024014 G M Tino

with a relative uncertainty ∆G/G = 1.5 × 10−4. This is to date the most precise measurement of G

obtained with atom interferometry and it was included in the CODATA adjustment of the recommended

values of the fundamental constants of physics [135]. The experiment also allowed us to identify limits of

the apparatus and showed possible directions for improvements. The main limits in the accuracy were

indeed the non-negligible atomic velocity distribution and the knowledge of the source mass distribution.

In [49, 131], ideas for a higher precision measurement of G were mentioned based on the following key

features: a highly homogeneous source mass, a high-sensitivity atom interferometer, a better definition of

atomic velocities and a smaller size of the atomic sensor, a scheme to determine accurately the distance of

the atomic source from the source mass, atoms with a small sensitivity to magnetic fields. As far as the

source mass is concerned, a possibility would be to use gold which has a high density and is known to have

a high homogeneity if properly processed; of course, the source mass should be much smaller than the one

used in our experiment. The ‘perfect’ source mass would eventually be silicon that can be produced as

defect-free, ultra-pure monocrystalline samples whose internal structure is extremely regular and can be

accurately characterized; the density in this case is about one order of magnitude smaller compared to

tungsten and gold. A higher sensitivity atomic probe would then be necessary in both cases. The need of a

smaller atomic probe suggests to use ultracold or Bose–Einstein condensed atoms confined in an optical

lattice. The lattice would also allow to set the atoms at a very precise distance from the source mass. Atoms

insensitive to magnetic fields would simplify the experiment, avoiding for example the need of Zeeman

pumping, and could be brought close to the source mass. Our experience to date suggests the choice of Sr

atoms and silicon source mass to satisfy the requirements listed above. Strontium has indeed a special

combination of features: we showed that precise measurements of gravity can be performed with Sr atoms

confined in optical lattices [20, 24, 98]; the possibility of efficient and fast cooling of Sr down to BEC was

demonstrated [136]; we showed in reference [21] how Sr atoms can be positioned at a very well defined

distance from a source mass using an optical lattice; 88Sr has an extremely small collisional cross-section and

no magnetic moment in the ground state, making it a perfect atomic probe. Combining an atomic sensor

based on ultracold Sr atoms in an optical lattice with a high-homogeneity silicon source mass makes it

possible to envisage the possibility of reaching a precision in the ppm range for the measurement of G.

Different new experiments are in progress or planned to determine G using atom interferometry

sensors.

In an experiment in Stanford, the apparatus is based on a horizontal gravity gradiometer atom

interferometer with the source masses placed between the two sensors [137]. This scheme with the

symmetric source mass configuration is expected to reduce the sensitivity to atom-source positioning. Lead

bricks were used as the source mass. The results showed the possibility of reaching a precision

∆G/G ≈ 10−4 with the prospect of further improvement.

An experiment conceptually similar to MAGIA was started in Wuhan [39]. The sensor is a vertical

gravity gradiometer based on Raman interferometry with Rb atoms. Stainless steel spheres symmetrically

placed around the vertical interferometer tube will be used as sources masses. The planned precision is

∆G/G ≈ 10−4.

In Florence, a new experiment started recently. The scheme was proposed in [138]; it is based on an

atomic vertical gravity gradiometer as in the previous experiment but, thanks to colder atomic probes, an

improved design of the source masses, and the implementation of a method for the cancellation of the

gravity gradient phase shift [139, 140], the systematic effects due to the cloud size, temperature and

trajectories will be reduced. The goal is to reach a precision ∆G/G ≈ 10−5 and beyond.

The possibility of a measurement of G based on the gravitational Aharonov–Bohm effect [141] was

discussed in [142]. In this case, the measurement is not based on the force but on the gravitational potential

difference between saddle points. This idea is interesting by itself and has potential advantages in terms of

precision: since at the saddle points the potential is constant up to quadratic terms, errors due to the

uncertainty of the relative position of the source masses and the atoms can be reduced. Also, small source

masses can be used that can be made of highly homogeneous materials.

The construction of the apparatus for an experiment based on the ideas outlined in [49, 131] started

recently at Northwestern University [143]. The plan is to use evaporatively cooled lensed clouds of

strontium atoms and Bragg large-momentum-transfer atom interferometers with macroscopic scale

delocalizations and single crystal silicon proof masses that are horizontally alternated between near and far

configurations. The final goal is a measurement of G at 10 ppm level or better.

As a prospect, it can be expected that in the next decade precision measurements of G with atomic

sensors will lead to a better understanding of yet hidden systematics. They will also provide tests of possible

new physics as for example, a possible deviation from the 1/r2 law that would lead to a dependence of the

value of G on the source-probe distance that was already taken into account in the analysis of some previous

measurements [144]. An interesting topic is also the possible space-time dependence of the value of G
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which is predicted by gravitational theories alternative to general relativity. It should be noted however that

Ġ/G is strongly constrained by astronomical observations at the level of ∼10−13 yr−1 [145].

4. Testing the 1/r
2 Newtonian law and gravity at small distances

Testing the 1/r2 Newtonian law and the investigation of gravity at small spatial scales is an important

challenge for present research in physics in the search for deviations from Newtonian gravity due to physics

beyond the standard model, new boson-exchange forces, extra space-time dimensions, possible connection

with the small observed size of Einstein cosmological constant and as tests of general relativity [146–149].

Possible deviations from Newtonian gravity are usually described assuming a Yukawa-type potential

V(r) = −G
m1m2

r
(1 + αe−r/λ), (4)

where G is Newton’s gravitational constant, m1 and m2 are the masses, r is the distance between them, the

parameter α gives the relative strength of departures from Newtonian gravity, and λ is its spatial range.

Most experiments searching for deviations at small distances used as a sensor a torsion pendulum

[150, 151] or a microcantilever [152]. Experiments with torsion pendula and microcantilevers have set

bounds for α down to micrometer spatial scales. Recent results showed that any gravitational-strength

(|α| = 1) Yukawa interaction must have λ smaller than ∼40 µm [153, 154]. At shorter ranges the

experimental limits are less stringent.

The small size and the high sensitivity of atomic sensors may enable a direct, model-independent

measurement at sub-mm distances down to a few µm from the source mass with no need for modeling and

extrapolation as in the case of macroscopic probes. This would allow us to access directly regions in the

α− λ plane which are still unexplored. Using atom interferometry for the investigation of gravity at

micrometric distances was proposed in references [20, 44, 132, 155]. The possibility of using atoms to study

effects close to a surface, such as Casimir effect, was also investigated in [156–158]. Preliminary results

using atoms as a probe were reported in [159–161] by detecting perturbations of the frequency of the

center-of-mass oscillations of a trapped atomic Bose–Einstein condensate near a surface.

Early experiments with Sr atoms on optical frequency references using visible intercombination lines

[162, 163] and toward Bose–Einstein condensation [164] showed us that strontium is a good choice not

only for optical clocks but also for atom interferometry. In particular, the 88Sr isotope in its ground state

can be an ideal probe for precision gravity measurements, even at small distances, because of its extremely

small collisional cross section [165, 166] and insensitivity to external perturbations due to its null magnetic

moment. This was first proposed and demonstrated in [20] by observing persistent Bloch oscillations of the

atoms in a vertical optical lattice. Bloch oscillations with high visibility for ∼20 s were later reported in [98]

and methods to increase the precision in the measurement of the Bloch oscillation frequency using lattice

modulations to induce tunneling between neighboring sites of the vertical optical lattice were demonstrated

in [167, 168].

All the tools required for an experiment on gravity at micrometric distances were demonstrated in [21]:

the accurate positioning of the atoms at a few micrometers from a surface was obtained by applying a

relative frequency offset to the counterpropagating laser beams producing the lattice thus translating the

atomic sample in a controlled way. For experiments at distances below 10 µm, the atomic sample size was

compressed using an optical tweezer. In order to subtract non-gravitational effects, such as Casimir and Van

der Waals forces, the source mass was covered with a gold conductive screen. The gold coating acted as a

mirror to produce the optical standing wave and as a conductive screen. Common-mode effects would be

subtracted by performing differential measurements with different source masses behind the shield [169].

In a first experiment combining the atom elevator and the lattice modulation method to probe effects close

to a glass surface, a broadening of the resonance and a reduction of the signal was observed when the atoms

were brought to a distance <1 mm from the surface [131]. Tests performed on different glass samples

showed similar results with a dependence of the size of the effect on the glass surface. The observed effect

can be attributed to stray light from the glass sample due to spurious reflections or scattering producing

speckles that affect the optical lattice and lead to decoherence. A related effect might have been observed in

reference [23]. The observed spurious effect is a limitation for the use of Bloch oscillations to investigate

gravity at sub-mm distances from a source mass because the sensitivity of the atomic probe is dramatically

reduced. Further work would be required to understand the origin of the effect and to control it.

A different method to induce coherent tunneling between neighboring sites of a vertical 1D optical

lattice separated by the Bloch frequency using Raman laser pulses was demonstrated with 87Rb in [51, 158]

and proposed as a scheme to measure short-range forces [157]. Preliminary results showing a spatial

resolution of 3 µm with a sensitivity of 5 × 10−6 at 1 s for the measurement of the Bloch frequency was
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reported in [170]. The experiment is in progress, the next main step being the transport of the atoms close

to a surface and the test of the method for the measurement of forces at sub-millimeter/micrometer

distances.

A new strontium atom interferometry experiment that aims to probe the gravitational inverse square

law at length scales of 0.1–1 m is under construction [171]. Previous work has identified atom

interferometry as a promising candidate to study this range of length scales [137]. This project plans to

leverage large momentum transfer atom optics, single-crystal silicon proof masses, and a combination of

ultracold atoms and spatially resolved atom detection to improve sensitivity and reduce systematic errors.

Following the method of reference [43], large momentum transfer atom optics will be used to split an initial

atom cloud into two separated atom clouds in order to form a vertically-oriented gravity gradiometer that

measures the gravitational signal from a local proof mass. To reduce systematic errors arising from

uncertainty in the atomic trajectories, an ultracold atom source [91] and spatially resolved atom detection

[172] will be implemented. As atom interferometric gravitational measurements are further improved,

systematic errors arising from density inhomogeneities in the proof mass will become increasingly

important. As mentioned above, a promising approach to ameliorate this effect is to use single-crystal

silicon, which is highly homogeneous [49, 131]. Atom interferometric gravitational measurements with

single-crystal silicon proof masses have not yet been practical because of the comparatively low density of

silicon which makes it more difficult to measure a gravitational signal with sufficient resolution. To

overcome this limitation, ultrasensitive atom interferometers employing large momentum transfer atom

optics will be employed. The construction of the atom interferometry apparatus as well as the design of the

proof mass system are currently in progress. Ultimately, the experiment aims to probe values of the

coupling strength α for a Yukawa-type force down to the level of 10−5 in the 0.1–1 m length scale range.

This experimental setup will also be used for a new measurement of Newton’s gravitational constant (see

section 3).

The possibility of an experiment with a Cs gravity gradiometer to set constrains for λ ∼ 10 cm was

discussed in [137]. Preliminary results showed that α near 10−5 could be reached with an improvement of

about two orders of magnitude over existing limits.

The schemes developed to measure gravity produced by small source masses with the main motivation

of investigating dark energy [25, 55, 56] might also be used for the investigation of short-range forces.

5. Experimental tests of the weak equivalence principle

The equivalence principle is the basis of general relativity. Testing it corresponds then to testing the validity

of general relativity [145]. Its weak form, the weak equivalence principle of general relativity, namely, the

universality of free fall that corresponds to the equivalence of the gravitational and inertial mass, was

verified to a remarkable accuracy with different kinds of experiments. A recent wide review of the

theoretical background and implications of the equivalence principle and of the experimental tests can be

found in reference [57] from which most of the contents of this section derive.

In general, the experiments testing the weak equivalence principle look for a small differential

acceleration |a1 − a2| between two freely falling test masses of different nature. Possible violations of the

weak equivalence principle are expressed in terms of the Eötvös parameter η:

η = 2

∣

∣

∣

∣

a1 − a2

a1 + a2

∣

∣

∣

∣

. (5)

Different kinds of experiments were performed to test the weak equivalence principle. On Earth, torsion

balances provided so far the best bounds on possible violations with a relative precision of ∼10−13

[150, 173, 174]. In space, the MICROSCOPE mission provided the most accurate test of the weak

equivalence principle with a relative precision of about 10−14 [175, 176]. Stringent bounds were set also by

lunar laser ranging measurements [177, 178]. It is worth noting that other experiments rely on the weak

equivalence principle for their validity. Examples are the measurement of the gravitational constant G with

freely falling samples [49, 127] and the comparison of different gravimeters [179].

Here, the tests performed using atom interferometry and their prospects are discussed. The possibility of

testing the equivalence principle using atom interferometry has been indeed the main motivation for several

experiments and for ongoing efforts to develop ever more sophisticated apparatus.

Compared to experiments with macroscopic masses, the main interest of using atoms is that

qualitatively new tests can be performed thanks to their quantum features by comparing atoms with

different properties like proton and neutron number, spin, internal quantum state, bosonic or fermionic

nature.
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In reference [9], the Raman interferometry gravimeter using Cs atoms was compared with a classical

gravimeter based on a freely falling corner-cube. The results showed that the macroscopic glass mirror falls

with the same acceleration as the Cs atoms to within 7 parts in 109. More recently, mobile Raman atom

gravimeters with 87Rb and classical absolute gravimeters with similar uncertainties were compared for

metrological purposes [179, 180]. In [98], the value of gravity acceleration measured with a gravimeter

based on Bloch oscillations of Sr atoms in a vertical optical lattice was compared with the value measured in

the same lab with a classical gravimeter. The two values agreed within 140 parts in 109.

The weak equivalence principle was tested in experiments with different isotopes of an atomic species.

The similar masses and transition frequencies make the setups and the control of systematics less complex

compared to experiments with different atoms. Several experiments were performed with the two isotopes

of rubidium, 85Rb and 87Rb, mainly because the required experimental tools have been developed for many

years. Gravity acceleration for 85Rb and 87Rb was first compared in [58] with a relative accuracy of ∼10−7

using an atom interferometer based on the diffraction of atoms from standing optical waves. A test for a

possible dependence of the free fall acceleration from the relative orientation of nuclear and electron spin

was also performed with 85Rb atoms in two different hyperfine states. A similar precision was later obtained

in [59] using Raman atom interferometry for the differential free fall of 85Rb and 87Rb. A four-wave

double-diffraction Raman interferometry scheme was used in [60] to compare gravity acceleration for 85Rb

and 87Rb in a simultaneous dual-species atom interferometer. The value obtained for the Eötvös parameter

was η = (2.8 ± 3.0 × 10−8). The optimization of the apparatus and a new test at a level of precision ∼10−10

were reported in [181, 182]. Ongoing experiments with Rb in large-scale interferometers are aiming to a

precision of 10−15 and beyond [89–91]. Possible limits due to the gravity gradients were discussed in [183]

and a solution was proposed in [139] and demonstrated in [140, 184]. In [184], thanks to the compensation

of the gravity gradient in a long-duration and large-momentum-transfer dual-species interferometer, a

relative precision of ∆g/g ≈ 6 × 10−11/shot or 3 × 10−10/
√

Hz was demonstrated showing the feasibility of

this test at the 10−14 level. Recently, a dual-species atom interferometer based on a

large-momentum-transfer sequence of Bragg transitions with 2 s of free-fall time was used to measure the

relative acceleration between 85Rb and 87Rb at the level of 10−12g [61]; this is the best result obtained so far

with atomic sensors approaching the 10−13 precision limit of the methods based on macroscopic probes in

Earth laboratories. The weak equivalence principle was tested also for the 88Sr and 87Sr isotopes of

strontium [63]. Gravity acceleration was measured from the frequency of the Bloch oscillations for the two

isotopes in a vertical optical lattice. The value obtained for the Eötvös parameter was η= (0.2±1.6×10−7).

As discussed in the following, the results reported in [63] have relevance also to the tests of the equivalence

principle for bosons vs fermions and for the investigation of spin-gravity coupling.

Tests of the weak equivalence principle with different atoms were started. The interest of experiments

with different atoms and their sensitivity to violations of the equivalence principle predicted in a dilaton

model and in extensions of the standard-model were discussed in [185–187]. More complex experimental

apparatus and a more difficult control of systematics are required in these experiments compared to tests

with different isotopes of the same element so the precision achieved until now is lower. A test with

rubidium and potassium atoms was discussed in [188] and the first results were reported in [62, 189, 190].

In [190], 39K and 87Rb were compared using two Raman interferometers; the result for the Eötvös ratio was

η = (−1.9 ± 3.2 × 10−7). The work in progress toward a test with rubidium and ytterbium atoms in a

10 m baseline atom interferometer was discussed in [187] with the prospect to reach a precision in the

10−12 to 10−13 range. In Florence, a new atom interferometry apparatus is under construction that will

enable experiments with strontium and cadmium atoms [191, 192].

While some of the tests with atoms described above might be considered as analogous to the ones

performed with macroscopic classical objects, experiments have been proposed and performed in which the

quantum features of the atoms as probes of gravity are essential.

In [193, 194], a quantum test of the equivalence principle was proposed based on the idea that, because

of the mass–energy relation E = mc2 of special relativity, the internal energy of a system affects its mass. In

addition to the interest of testing the equivalence principle for atoms in different energy eigenstates, of

particular importance is in this frame a test with atoms in superpositions of the internal energy states

because this corresponds indeed to a genuine quantum test. A related test was proposed in [195]. The first

test of the equivalence principle in the quantum formulation was reported in [196]. Using Bragg atom

interferometry in a gravity gradiometer configuration, the gravity acceleration values for 87Rb atoms in two

hyperfine states |1〉 = |F = 1, mF = 0〉 and |2〉 = |F = 2, mF = 0〉, and in the coherent superposition

|s〉 = (|1〉+ eiγ |2〉)/
√

2 were compared. An upper bound of 5 × 10−8 was obtained for the parameter

corresponding to a violation of the weak equivalence principle for a quantum superposition state. For

atoms in the |1〉 and |2〉 hyperfine states, an Eötvös ratio η1−2 = (1.0 ± 1.4 × 10−9) was obtained

corresponding to an improvement by about two orders of magnitude with respect to the previous limit
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reported in [58]. A further improvement on the latter test was reported in [182, 197], approaching the

10−10 level. Based on models [185] in which the violations of the equivalence principle are expected to

increase with the separation in energy between the internal levels, in [196] an experiment involving states

with a larger energy separation was proposed as an interesting prospect: in particular, optically separated

levels in strontium were considered for which atom interferometry was already demonstrated [16, 88, 198].

Other tests of the weak equivalence principle with atoms were proposed for which quantum physics is

crucial.

A test of the weak equivalence principle for atoms in entangled states was proposed in [199] and

preliminary results toward a possible experiment were reported in [200].

In [201], the free fall of particles in Schrödinger cat states in configuration space was investigated

theoretically.

A possible difference in the gravitational interaction for fermions and bosons was discussed in [202] and

a first experiment with 87Sr and 88Sr was reported in [63].

A difference in the free fall for different atoms in Bose–Einstein condensates is envisaged in models

considering spacetime fluctuations and the extended wavepackets ([203, 204] and references therein). The

fluctuations would also lead to decoherence. The search for these effects requires high-sensitivity atom

interferometry and a long evolution time so a prospect is to perform such experiments in microgravity

[67, 93, 205–208].

Possible spin-gravity coupling and torsion of space-time were investigated theoretically [209–211] and

the effects were searched for using macroscopic test masses [174, 210, 212], atomic magnetometers

[213, 214], and in the hyperfine resonances in trapped ions [215]. The free-fall experiments with atoms in

different hyperfine states are also important in this frame [58, 196, 197]. Using Bloch oscillations in a

vertical optical lattice, in [63] gravity acceleration was measured for the bosonic 88Sr, which has zero total

spin in its ground state, and for the fermionic 87Sr, which has a half-integer nuclear spin I = 9/2. An Eötvös

parameter (0.2 ± 1.6) × 10−7 was obtained. The analysis of the Bloch resonance spectrum for 87Sr

including the different Zeeman states, allowed to set an upper limit for the coupling of spin to gravity and

for the neutron anomalous acceleration and spin-gravity coupling [210, 213]. In [64], gravity acceleration

for 87Rb in different Zeeman states was compared using a Raman atom interferometer. The resulting Eötvös

parameter was (0.2 ± 1.6) × 10−7. In [216], the prospect of testing the weak equivalence principle for

molecules with opposite chiralities was mentioned.

The production of low-energy antihydrogen atoms [217, 218] opened the way to precision tests of the

weak equivalence principle for neutral antimatter [68, 219–221]. Comparing the gravitational properties of

matter and antimatter allows to test standard model extensions [222] and quantum vacuum [223]. Early

experiments to test gravity for electrically charged particles and antiparticles [224, 225] were generally

limited by stray electric and magnetic field effects [226, 227]. A preliminary measurement of the Earth’s

gravitational effect on magnetically trapped antihydrogen provided an upper bound of 100 times g [228].

Current efforts are mainly devoted to increasing the rate of production of antihydrogen and reducing the

temperature in order to enable precision spectroscopy and gravity measurements using atom

interferometry. Tests of the weak equivalence principle for antimatter could also be performed with

muonium [229, 230] and with positronium [231, 232].

In conclusion, atom interferometry enabled precision tests of the weak equivalence principle that were

previously performed only with macroscopic classical masses. The sensitivity of atomic experiments did not

reach yet that of classical experiments but it can be anticipated that a similar or higher precision will be

obtained. Perhaps more important is that qualitatively new tests of the weak equivalence principle can be

devised with atom interferometry taking advantage of the quantum nature of atomic gravity sensors. In the

future, matter-wave interferometry with molecules might enable tests for systems with different

conformations, internal states, chiralities [216]. The tests of the weak equivalence principle were performed

so far only for systems consisting of particles of the first elementary particle family while direct tests for

particles of the second and third family are missing ([230] and references therein).

The effort to increase the sensitivity for the equivalence principle tests pushed the development of atom

interferometers based on atomic fountains with several meters baseline [90, 172] and others are being

developed in Hannover, Berkeley, Florence. The final precision would be reached in experiments in space as

in the proposed STE-QUEST [67, 92] and space atomic gravity explorer (SAGE) [81] missions (see

section 11).

6. Probing the interplay between gravity and quantum mechanics

Our present understanding of physical phenomena is based on two different theories which are

incompatible with each other: quantum mechanics describes correctly the microscopic world of atoms,
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molecules, elementary particles while general relativity describes gravity and the large-scale behavior of the

Universe. We do not have a quantum theory of gravity.

In this section, experiments performed or proposed with the specific goal of probing the interplay

between gravity and quantum mechanics using atom interferometry are discussed. Section 7 is devoted to

the discussion of related work in the frame of quantum gravity.

The results of experiments measuring g with atom interferometry [9, 19, 20, 167] were reinterpreted in

[233] as measurements of the gravitational redshift. Precise measurements of the gravitational redshift are

important to verify the local position invariance and test the Einstein equivalence principle. The basic

concept of the analysis in [233] is to consider the Compton frequency ωC = mc2/� associated to the atom

mass in the calculation of the phase accumulation in the interferometer. Because of the large value of the

Compton frequency compared to the frequency of microwave and optical atomic clocks (for example

ωC/2π ∼ 3 × 1025 Hz for a Cs atom), an improvement in precision by four orders of magnitude would

result with respect to the best measurements of the gravitational redshift with clocks in space [234]. Also,

the measurement could be performed over extremely small distances ranging from micrometer to

millimeter. The concept was extended in [235] proposing a Compton clock combining an atom

interferometer with an optical frequency comb to link time to a particle’s mass. This interpretation aroused

a controversy [233, 236–244]. This debate was useful not only to clarify the origin of the phase signal in an

atom interferometer in the presence of gravity but also because it stimulated new ideas on possible

experimental tests.

The discovery potential of the analysis proposed in [233] was underlined in [238] in the frame of the

standard model extension [245]; it was shown that data from atom interferometers can be used to set

stringent limits for equivalence principle violating terms.

As already mentioned in section 3, in [141] an experiment was proposed using atom interferometry to

observe a gravitational analog of the Aharonov–Bohm effect [246]. Similarly to other topological phases

induced by electromagnetic potentials that were measured also with atom interferometry (see for example

[247] and references therein), in the case of the gravitational Aharonov–Bohm effect the phase shift is

induced by the gravitational potential due to external source masses even if they do not produce a net

classical force on the atoms. This experiments might be performed using atom interferometry schemes with

confined atoms as the ones demonstrated in [24, 25].

An experiment that would provide a test of the general relativistic notion of proper time in quantum

mechanics was proposed in [248] considering a Mach–Zehnder matter-wave interferometer in a

homogeneous gravitational field. If the particle has an internal degree of freedom acting as a clock and if the

two arms of the interferometer are separated along the direction of the field, according to general relativity

and quantum complementarity the interference visibility will drop because proper time flows at different

rates in different regions of space-time thus providing which-path information [249]. The demonstrated

quantum superposition at the meter scale [91] combined with optical clock states could enable the

investigation of this effect in large-scale atom interferometers (section 11). An experiment along these lines

was recently started in Florence planning to use optical clock transitions of Sr and Cd atoms [191, 192].

The concepts of phase in matter-wave interferometers and proper time and the possibility to use atom

interferometry to measure special-relativistic and general-relativistic time dilation effects were discussed in

[250–253]. Light-pulse atom interferometry configurations were proposed and analyzed in detail that

would allow to detect such effects with feasible experiments.

In this frame, the experiment testing the equivalence principle for atoms in a superposition of internal

states reported in [196] (see section 5) is of relevance; the interesting prospect of performing conceptually

similar experiments with energy gaps larger than the hyperfine splitting, as for example narrow optical

transitions in strontium, was mentioned in the paper.

The intriguing relation of gravity with entanglement was discussed in [27, 199, 254–256] also

considering possible tests with matter wave interferometry.

In the debate about the phase in atom interferometers in the presence of gravity, the experiments with

neutrons that first showed a gravitationally induced phase shift in a matter-wave interferometer [257–259],

for which related issues had been discussed [260], were considered as a reference.

Experiments with neutrons also enabled the first observation of gravitational quantum bound states for

a particle above a horizontal mirror that with the Earth’s gravitational field generates a confining potential

well [261, 262]. The resolution in the probing of the gravitational quantum states was improved using

resonance spectroscopy techniques [263–266]. In addition to its intrinsic interest, this effect was proposed

as a method to investigate gravity at very small distances, dark energy, and dark matter [266, 267]. An

interesting prospect is to perform similar experiments with atoms, using quantum reflection from surfaces

or atom optics tools [268], with the advantage of a much larger flux of the atomic sources compared to

neutron sources. Ultracold light atoms, such as hydrogen, could be used to resolve the energy levels that for
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neutrons are of the order of peV with spatial separations of the order of micrometers. In the future, such

experiments might be performed with antihydrogen atoms [269] and perhaps with exotic atoms.

7. Testing quantum gravity models

Quantum gravity is the research toward a theory merging quantum mechanics and general relativity.

Different directions are followed such as string theory and loop quantum gravity. This might look like a

purely formal effort since the two ranges are disconnected by several orders of magnitudes and relevant

effects might play a role only in extreme conditions, like in black holes, at length scales of the order of the

Planck length lP =
√

�G/c3 ∼ 10−35 m, time scales of the order of the Planck time tP = lP/c =
√

�G/c5

∼ 10−44 s, and energies of the order of Planck energy EP = �/tP = mPc2 =
√

�c5/G ∼ 1028 eV, that will

hardly be directly accessible with lab experiments.

According to some models, however, the quantum structure of spacetime might produce tiny effects that

could be observable in high-precision low-energy experiments [270]. Examples are the precision tests of the

Einstein equivalence principle and the tests of Lorentz and CPT symmetries [271]. Quantum gravity models

predict deviations from these symmetries due to modifications of the metric structure of spacetime

although there are no estimates of the size of the effects at low energies.

The effects of spacetime fluctuations at small scales predicted by quantum gravity could produce

violations of the equivalence principle, modifications of the spreading of wave packets, and losses of

quantum coherence; possible experiments with cold atom sensors were discussed in [203, 272–275]. A

problem for these experiments is how to discriminate the extremely small relevant effects from different

signals and from effects due to technical background noise.

A different approach was proposed in [276]: the results of atom interferometry precise measurements of

photon recoil were reinterpreted to constrain modifications of the energy–momentum dispersion relation

which are expected in quantum gravity models. This analysis in the small speed limit is analogous to the

one performed in the relativistic regime using astrophysical data [277]. Using the data available at the time

from experiments measuring the photon recoil with a relative precision ∼10−8 to determine the value of the

fine-structure constant [278, 279], in [276] it was shown that bounds could be set for the model parameters

that for the leading correction were only one order of magnitude away from the Planck-scale level.

Following this approach, the same data were used in [280] to set experimental bounds on deformations of

the energy–momentum composition rule that appear in models of deformed Lorentz symmetry in some

quantum gravity scenarios. Data from photon recoil experiments were also analyzed in [281] to constrain

parameters in different models of generalized uncertainty principle [282–284]. In view of recent

experimental results on photon recoil with a relative precision of about 10−10 [285, 286] and plans to

achieve 10−11 [287], it can be anticipated that constraints could be placed at the Planck-scale level for the

parameters of the model in [276]. It should be noted, however, that the increase in precision for the

measurement of photon recoil does not necessarily correspond to the same increase in the precision of the

bounds for quantum gravity modifications of the energy–momentum dispersion relation [276, 288]. An

optimization of the atom interferometry scheme for these experiments would be required.

8. Search for dark energy

Cosmological observations of the expansion of the Universe [289] can be interpreted assuming the presence

of a so called dark energy that would account for about 70% of the Universe energy density [290, 291].

In this section, the experiments using atom interferometry with the specific goal to investigate some

form of dark energy are described. Depending on the theoretical model, data from different experiments

described in other sections can be interpreted in terms of dark energy such as tests of the inverse-square law

for gravity, limits in the parametrized post Newtonian metric, and tests of the equivalence principle

[292, 293].

The nature and properties of dark energy are not known. A possibility which is of relevance here is that

it has the form of scalar fields; they should have an interaction with matter of the order of gravity but with a

screening mechanism acting to suppress the effect of dark energy near dense materials in order to comply

with experimental observations. Two such screened fields are the chameleon [294] and the symmetron

[295]. The chameleon dark energy field can be characterized by two parameters, the first one associated to

the self-interaction potential and the second appearing in the term for the interaction with ordinary matter.

Symmetrons can be characterized by three parameters.

A possible scheme to search for dark energy in the form of a chameleon field using atom interferometry

was proposed in [296] and the first experimental results were reported in [54]. The basic idea is to place a
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small source mass inside the vacuum chamber where gravity is measured with the atom interferometer.

Because of the screening, the scalar field is small at the chamber walls, rises to a maximum value inside the

vacuum chamber and goes down near the source mass. Due to the gradient of the field, an atom is attracted

toward the source mass with an acceleration that can be measured by atom interferometry. In order to

discriminate the relevant effect from other effects, the source mass is moved from one position on one side

of the atoms to another position on the other side. The scheme resembles the one used for the measurement

of the gravitational constant G with atoms [49] but in that case the bigger source mass was outside the

vacuum chamber so that, similarly to Faraday shielding, the chameleon field inside would not be affected

significantly [296]. In [54], a Mach–Zehnder Raman interferometer in a vertical cavity with Cs atoms was

used as the probe while the source mass was an aluminum sphere with a radius of 9.5 mm. The results of

the experiment were analyzed in detail in [297]. In [55], thanks to several experimental upgrades, a

sensitivity was obtained high enough to observe the gravitational attraction of the atoms by the source mass

that was a centimetre-sized, 0.19 kg tungsten cylinder. The results, analyzed in terms of chameleons and

symmetrons, led to an improvement by over two orders of magnitude on the limits for the two models with

respect to previous data. The results of this experiment were analyzed in terms of symmetrons in [298].

The results of an experiment conceptually similar to the ones in [54, 55] were reported in [56]. The

main experimental differences were that Rb was used instead of Cs, no cavity was used for the

interferometer light, the force was measured horizontally thus avoiding the large background due to gravity,

and the source mass was a 19 mm-radius aluminum sphere. Results consistent with the ones in [55] were

obtained.

The prospect of performing these experiments in microgravity in order to increase the amount of time

that the atoms spend near the source mass, thus allowing for greater sensitivity, was mentioned in [297].

Experimental configurations for an experiment in the Cold Atom Laboratory (CAL) (see section 11) on the

ISS were discussed in [299]. Experiments could be performed also in drop towers [287].

9. Search for dark matter

Different astrophysical and cosmological observations (rotation curves of galaxies, gravitational lensing,

cosmic microwave background) can be interpreted as the indication of the existence of what is called dark

matter [300]. It would constitute about 27% of the total mass–energy of the Universe with the ordinary

standard model matter being 5% and what is called dark energy 68%. Dark matter would therefore make

up about 84% of the total matter in the Universe. However, we can say very little about its possible nature,

properties, mass, interactions.

Most of the experiments trying to detect dark matter directly are based on particle physics methods;

they search for heavy particles, with mass much larger than an eV, looking for energy deposition by dark

matter particles in detectors [301, 302]. Most of the efforts were on weakly-interacting massive particles

(WIMPs) with masses equivalent in the GeV–TeV range. The lack of detected dark matter in the form of

particles led to alternative theories.

Particle dark matter candidates were proposed which might have masses smaller than an eV down to

10−22 eV and below [303]. Examples are the pseudoscalar QCD axion and axion-like-particles and light

scalar particles such as moduli, dilatons or the relaxion. Such low-energy dark matter candidates would not

be detected with traditional particle detection methods that are limited by their energy thresholds.

New technologies are then required to search for such light dark matter candidates: atomic sensors can

be relevant detectors in this range.

Existing models predict that possible effects of dark matter on standard model particles can be the

precession of nuclear and electron spin, induced currents in electromagnetic systems, acceleration of matter

with violation of the equivalence principle, changes in the value of fundamental constants such as the fine

structure constant and the electron mass [304, 305]. Detection schemes were considered based on models

with dark matter in the form of clumps or oscillating fields. Dark matter would then be detected as a

transient effect if the atomic sensor crosses a dark matter clump [306–308] or as an oscillation effect at

Compton frequencies for non-interacting fields [52], even if stochastic [309]. An overview of existing

models and experimental tests can be found in [6].

The experimental search for axion and axion-like particles was described in [310]. The results of

experiments using NMR spectroscopy to search for ultralight bosons such as axions, axion-like particles, or

dark photons, were published in [311, 312]. Atomic magnetometers [313] have been used for the search of

dark matter. Networks of such magnetometers [306, 314, 315] can search for signals due to the coupling of

dark matter to atomic spins when the Earth goes through a dark matter compact object.

Different papers were published in recent years using data from high precision atomic spectroscopy and

atomic clocks to search for ultralight dark matter. In [316], spectroscopy of two isotopes of dysprosium was
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performed over a two-year span looking for coherent oscillations predicted if ultralight scalar dark matter

with dilaton-like couplings to photons induces oscillations in the fine-structure constant. In [317], limits on

possible oscillations of a linear combination of constants (fine structure, quark mass, quantum

chromodynamics mass scale) that would be produced by a massive scalar field were set using data from 6

years of accurate hyperfine frequency comparison of 87Rb and 133Cs atomic clocks. In [318], 16 years of data

from the GPS global positioning system were analyzed to search for dark matter in the form of clumps. The

motion of the Earth through a galactic dark matter halo would perturb the GPS atomic clocks due to the

interaction with domain walls. Limits on quadratic scalar couplings of ultralight dark matter to standard

model particles were set. In [319], possible effects of dark matter on the atomic clock stability were

investigated. The dark matter was considered in the form of waves of ultralight scalar fields or as topological

defects. The existing data for comparisons of ion clock frequencies allowed to set limits on dilaton dark

matter. Prospects for experiments with microwave and optical clocks in space and with clocks based on

nuclear transitions were discussed. In [320], the consequences of a violation of the Einstein equivalence

principle induced by light scalar dark matter were studied assuming models in which the field couples

linearly or quadratically to the standard model matter fields. Limits on the dark matter coupling parameters

were obtained considering data from experiments testing the universality of free fall with masses made of

different elements and from experiments comparing the frequency of different atomic transitions. The

possibility of using atom interferometers was mentioned as an interesting prospect. In [321], a network of

Yb and Sr optical clocks operated in four laboratories in US, France, Poland, and Japan was used as an

Earth-scale quantum sensor. The data analysis to search for topological defect and massive scalar field

candidates was based on the different susceptibilities to the fine-structure constant between the atoms and

the reference cavities [304, 322]. New bounds on the coupling of ultralight dark matter to standard model

particles and fields in the mass range of 10−16 to 10−21 eV were set in [323] by frequency comparisons

between a strontium optical lattice clock, a cryogenic crystalline silicon cavity, and a hydrogen maser. In

[324], data from a European network of fiber-linked optical atomic clocks was used searching for coherent

variations in the recorded clock frequency comparisons across the network. Considering topological defect

dark matter objects and quadratic scalar interactions with standard model particles, constraints were placed

on the possible interactions of such defects with standard model particles. With the steady improvement of

optical clocks and of the methods to compare different frequency references, it can be anticipated that the

sensitivity with which these effects can be probed will advance significantly. Also, particular transitions with

an expected high sensitivity for searches for ultralight dark matter can be chosen, as the one proposed in

[325].

In [326], it was proposed that new interactions between the electron and the neutrons mediated by light

new degrees of freedom can be probed by precision measurements of the isotope shift for two different

clock transitions and four zero nuclear spin isotopes. The effect of the interactions would be detected as a

deviation from the expected linearity in the so called King plots, that is, in the plot of the measured isotope

shifts for one transitions vs the shift for the other. Recent results of experiments were reported in [327, 328].

In [328], the isotope shifts for the 3d 2D3/2–3d 2D5/2 fine structure transition was measured for the five

stable zero-spin isotopes of Ca+ and combined with measured isotope shifts for the 4s 2S1/2 –3d 2D5/2

transition. No nonlinearity was found in the King plots within the experimental uncertainties. In [327],

instead, the measurement of the isotope shift for the 2S1/2 –2D3/2 and 2S1/2 –2D5/2 narrow optical transitions

for five zero-spin isotopes of Yb+ showed a 3 × 10−7 deviation from linearity at the 3σ uncertainty level.

Further theoretical and experimental investigation is needed to ascertain the origin of the observed

nonlinearity.

The possibility of using atom interferometry for the investigation of dark matter was discussed in [52].

The potential of the 10 m-scale atom interferometers to constrain dilaton coupling parameters was analyzed

in the frame of the model of reference [329]. In [330], the same experimental configuration was considered

for different models of dark matter. As noted above, in [320] the consequences of a violation of the Einstein

equivalence principle induced by light scalar dark matter in certain models were investigated mentioning

also the prospects of experiments based on atom interferometers on ground and in space, although the

required level of precision has not been reached yet.

In [52], the sensitivity to ultralight scalar dark matter waves of future large-scale optical and atomic

gravitational wave detectors in space was discussed. Other possible signatures of dark matter in optical

interferometric gravitational wave detectors were discussed in [331]. The sensitivity to ultralight scalar dark

matter of future atomic gravitational wave detectors on ground and in space was investigated in [332]

considering atom interferometers based on Sr atoms as proposed in [78] and preliminary demonstrated in

[16]. In particular, the advantage of such single-arm atomic detectors over optical interferometers for the

detection of scalar dark matter was pointed out.
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In [333], a new atom interferometry scheme was proposed for the detection of axionlike ultralight dark

matter. In this model, the axionlike particles act as a time-oscillating magnetic field coupling to spin thus

inducing a phase shift as the atoms evolve due to the modified Hamiltonian. The achievable sensitivity was

estimated considering an interferometer operated on the 1S0 –3P0 clock transition of 87Sr which has a

nuclear spin I = 9/2.

In [53], it was proposed to use an apparatus based on two atom interferometers to search for dark

matter composed of virialized ultralight fields considering time-varying phase signals induced by coherent

oscillations of dark matter fields due to changes in the atom rest mass and changes in Earth’s gravitational

field. Configurations with a separation between the interferometers ranging from 1 km on the Earth to

1000–2000 km in space and interferometer sensitivity ranging from that expected to be achievable in the

near term to a projected future prospect were considered.

Data from a network of sensitive superconducting gravimeters were analyzed in [334–336] searching for

time-dependent signals that would be produced when dark matter interacts with the Earth. In this frame,

also atom interferometry gravimeters could be used [337].

In conclusion, experiments based on atom interferometry can contribute to the search for dark matter.

In particular, they are suited to look for ultralight candidates that cannot be detected using particle physics

detectors. Based on the existing proposals, it is clear that in order to search for dark matter, large-scale atom

interferometry detectors are needed as for the detection of gravitational waves. Space detectors would

significantly contribute to the search of dark matter by extending an Earth-based network of quantum

sensors. The distance between the sensors in space and the Earth can allow to discriminate spurious signals.

The past and ongoing activities for the development of large-scale atom interferometers and future

prospects are described in section 11. The search for dark matter depends so much on the models, the

parameter space is so large, and the required setups are usually so complex and expensive that experiments

should be conceived and performed with apparatus developed also for other scientific goals as in MAGIS

[83, 84] and in the proposed SAGE and AEDGE space missions [81, 338]. In these cases, indeed, the search

for dark matter is a major objective; however, even in the case of a null result, the atom interferometers will

enable other important experiments in gravitational physics with extremely high precision.

Finally, it is worth mentioning that models alternative to dark matter were considered to try and explain

the observed dynamics of galaxies. A noticeable example is known as modified Newtonian dynamics

(MOND) where gravity changes at slow accelerations and galactic scales [339, 340]. Although it appears

difficult to conceive experiments to test such models in lab-scale or near-Earth experiments, interpretations

of precision gravity measurements from this point of view were proposed [341, 342].

10. Toward atomic gravitational wave detectors

The interaction of gravitational waves with matter waves was early investigated theoretically in references

[343–346] but the possibility of using atom interferometry to detect gravitational waves became an active

field of theoretical and experimental research starting in the early 2000s. An overview of the initial ideas and

efforts in this field can be found in [75].

After a proposal for a compact atomic detector for gravitational waves [70], that was shown to be flawed

because of some mistakes [71–73], configurations were proposed and analyzed for a single atom

interferometer [71, 73] and for two interferometers in a differential configuration also in combination with

optical atomic clocks [74, 76–81]. In both cases, the calculations showed that such detectors would typically

require large-scale apparatus. The differential configuration is presently considered as the most promising

with a scheme using the ultra-narrow optical clock transition of Sr, or another alkali-earth or

alkali-earth-like atom, as proposed in [76, 78] and preliminary demonstrated in [16].

Ligo and Virgo optical interferometers are now well established observatories for gravitational waves in a

frequency range from about 15 Hz up to a few kHz. After the first detection in 2015 of the signal emitted by

the coalescence of a pair of 36M⊙ + 29M⊙ black holes merging into a 62M⊙ black hole [347], signals were

detected from other such binary black hole coalescences [348], from low-mass compact binary inspiral

[349], that multimessenger data showed to be produced by the merger of a binary neutron star system, and

from the coalescence of a 23M⊙ black hole with a 2.6M⊙ compact object that would be the lightest black

hole or the heaviest neutron star observed in a double compact object system [350]. The observed

gravitational wave strain amplitude is of the order of 10−22 to 10−21. In the future, the proposed

underground Einstein telescope [351] would push the lower frequency limit down to ∼3 Hz while the

proposed space based LISA detector [352] would enable the observation of low frequency gravitational

waves, down to the mHz range, from very massive systems and from the fall of matter into supermassive

black holes.
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Atom interferometers can indeed be designed to detect gravitational waves in the range of frequencies

from a fraction of a Hz to a few Hz that are lower than the ones accessible with present detectors and will

not be accessible even if the future terrestrial and space large optical detectors will be realized. In the case of

a space detector ([81] and references therein), atom interferometers represent an interesting alternative to

optical interferometers with a potential simplification of the configuration; for example, a single arm would

suffice instead of the double arm configuration required by optical detectors and the overall dimensions

might be drastically reduced.

The scientific motivation for the development of new detectors of gravitational waves based on atom

interferometry is the prospect to observe sources that cannot be observed with other detectors [353]. For

example, they would enable the search for the merger phase of possible intermediate mass black holes, that

is, systems of black holes with ∼103M⊙ mass. The detection of signals from such systems would

demonstrate the existence of a ladder of black hole masses, from stellar mass to supermassive ones. The

sensitivity needed to investigate, for example, a 103M⊙ + 103M⊙ binary black hole located at 3 Gpc with

SNR ≃ 5 is about 10−21 Hz−1/2 in the band 1–10 Hz. In the frequency range that would be covered by atom

interferometers, also other effects could be investigated such as type Ia supernova events [354] that are

expected to emit neutrinos and gravitational waves.

As mentioned above, calculations show that atomic detectors for gravitational waves should be km-scale

in size for terrestrial apparatus and have a much longer baseline of thousands of kms and more for

apparatus in space. The prospects for such large-scale atom interferometry apparatus and the work in

progress are described in section 11.

11. From lab-scale to large-scale atom interferometers on ground and in space

As already mentioned, different scientific applications require large-scale atom interferometry apparatus

either on Earth or in space. In this section, proposed and ongoing activities in this direction are described.

By large-scale, here we mean apparatus with a baseline of the order of 100 m and beyond but it is worth

noting that the demonstration of 10 m size interferometers was instrumental to show the feasibility of larger

apparatus.

The matterwave laser interferometric gravitation antenna (MIGA) apparatus [355] in Rustrel, France is

presently under construction. It is based on 150 m-long horizontal optical cavities with an array of Rb atom

interferometers along the optical link to mitigate Newtonian noise [356]. The mid band atomic

gravitational wave interferometric sensor (MAGIS) project [83, 84] in US plans to develop a series of Sr

interferometers with increasing baselines of ∼10 m, ∼100 m, and ∼1 km. The 10 m baseline prototype is

under construction at Stanford; the second, MAGIS-100, will be built at Fermilab in a 100 m vertical shaft

at the NuMI neutrino beam facility. One atomic cloud will be located at the top of the shaft and one

midway down thus allowing for ∼3 s of free-fall and hence measurements at frequencies <1 Hz. The plan is

to use 100–1000�k large-momentum-transfer atom optics and a cold atom flux of 106 to 108 s−1. The third

one would be built in a km-scale vertical shaft at the Sanford Underground Research Facility (SURF). The

ZAIGA (Zhaoshan long-baseline atom interferometer gravitation antenna) is an underground atom

interferometry facility under construction near Wuhan, China. The design for the final apparatus includes a

horizontal equilateral triangle configuration with two atom interferometers separated by 1 km in each arm,

a 300 m vertical shaft with an atom fountain and atomic clocks, 1 km arm-length laser links between optical

clocks [85].

Other large-scale terrestrial apparatus were proposed. MAGIA-advanced is an R & D project for a

large-scale atom interferometer based on ultracold rubidium and strontium atoms. The goal is to build an

underground 100–500 m underground vertical apparatus in an existing shaft in Sardinia [353, 357]. In

addition to the availability of such shafts from previous mines, the interest of Sardinia as a location for high

sensitivity gravitational detectors stems from the extremely low seismic and anthropic noise. The AION

(atom interferometric observatory and network) project in the UK is based on a proposal similar to MAGIS

for a series of ∼10 m, ∼100 m, and ∼1 km baseline atom interferometers [358]. The first stage would be

located in Oxford; eventually, the full-scale detector would be networked with MAGIS. The European

laboratory for gravitation and atom-interferometric research (ELGAR) is a proposed European

underground infrastructure with km-scale baseline [357]. It could include horizontal and vertical arms in

the same location or in different sites.

The terrestrial projects described above will be important to demonstrate the feasibility of large-scale

atom interferometers and develop the necessary technology. Eventually, the km-scale apparatus could reach

the sensitivity required for the detection of gravitational waves and search of dark matter, as described

above.
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The next frontier is to operate cold atom sensors in space. The idea of experiments with cold atoms in

space dates back to the early ’90s with the first proposals and initial activities in France [359] and in Italy

[360]. As is usual for medium-scale and large-scale space missions, it took many years to develop the

technology and to define the goals and the roadmap for gravitational physics tests using cold atom sensors

in space. Here, the main milestones and the first recent experimental demonstrations are summarized as

well as future prospects.

The in-orbit operation of an atomic clock based on cold rubidium atoms was first demonstrated in 2017

in the Chinese atomic clock ensemble in space (Chinese CACES) mission on board China’s Tiangong-2

space laboratory [361]. Atomic clock ensemble in space (ACES) is an ESA project aiming to operating on

the ISS an atomic clock based on cold Cs atoms [362]. It was the first cold atom space mission to be

developed; the ACES payload is completing its qualification before the launch scheduled for mid-2021

[363]. The planned ACES mission duration is 18 months, with the possibility of extending it up to 3 years.

Microwave and optical links will enable space-to-ground clock comparisons that will be used to measure

the clock gravitational redshift with a target precision of 2 ppm. ACES will also search for time variations of

fundamental constants by comparing ground clocks based on different atomic transitions.

The future prospect for cold atom clock experiments in space is to use optical clocks [4, 5] instead of the

microwave clocks used in ACES and CACES. The space optical clock (SOC) ESA R & D activity [364] led to

the demonstration of compact and transportable Sr optical clocks [365] and the development of the

relevant technology for a space mission on the ISS. Similar efforts are ongoing in China [366].

Atom interferometers would reach their ultimate performances in space. As mentioned above, the phase

accumulated in a Mach–Zehnder atom interferometer due to an acceleration depends on the square of the

free evolution time T between the laser pulses of the interferometry sequence. On Earth, the maximum

practical duration is T ∼ 1 s with a free-fall distance of ∼ 5–10 m. In space, since the atoms and the

apparatus are in free fall, an interrogation time T ∼ 10 s can be obtained that on the ground would require

an atomic fountain with hundreds of meters length. Therefore the interferometer sensitivity can be

increased by a factor ∼100 or more in space with respect to a similar instrument on the ground with a

much smaller size of the apparatus. For some experiments, as for the tests of the equivalence principle,

gravity gradients would still represent a limit but, as mentioned above, a method to compensate this effect

has recently been proposed [139] and experimentally demonstrated [140]. The sensitivity of an atom

interferometer operated as a gyroscope also increases with the free evolution time. Atom interferometers in

space can also take advantage of a very quiet environment where vibrations, non-gravitational accelerations

and other perturbations can be reduced to very low levels and the Newtonian noise is absent.

Several activities have been performed and are currently in progress to increase the so-called technology

readiness level and demonstrate the maturity of atom-based sensors for a space mission on the ISS and on

satellites.

The HYPER mission proposal, submitted to ESA in 1999, was based on a Rb atom interferometer

operated as an atomic accelerometer and gyroscope on a satellite orbiting around the Earth with the

primary goal of a precise measurement of the Lense–Thirring gravitomagnetic frame-dragging effect [367].

After an assessment and an industrial study, ESA decided not to continue the development of this mission

because the technology readiness level was considered too low.

An R & D activity for a mission with atom interferometers in space was performed with the space atom

interferometer (SAI) project [65, 368, 369] funded by ESA.

Atom interferometry experiments with a Bose–Einstein condensate were performed in the Bremen drop

tower [97]. The 87Rb condensate was coherently split and the emerging wave packets were separated over

macroscopic scales with the interferometer extending over more than half a second and covering distances

of millimeters. Recently, evaporative cooling with an optical dipole trap in microgravity in the drop tower

was demonstrated [370]. A similar experiment was performed using a smaller size elevator [371]; all-optical

production of a Bose–Einstein condensate was demonstrated.

A preliminary test of the weak equivalence principle for 87Rb and 39K was performed in parabolic flights

[189, 372]. The experiments showed the possibility of reducing the effect of common mode vibrations for a
87Rb–39K differential interferometer [188, 373].

In 2017, a cold atom apparatus was launched to a height of 243 km using a sounding rocket (MAIUS-1)

[93]. During the flight, several experiments were performed on laser cooling and trapping of atoms,

observation of Bose Einstein condensation, and study of the condensate collective oscillations under

weightlessness conditions. Several building blocks were demonstrated for a future atom interferometry

mission in space.

In 2018, NASA launched and installed on board the ISS the CAL. CAL is a multi-user facility developed

by JPL to investigate quantum gases in the microgravity conditions in space. It is designed to study ultracold

and quantum degenerate samples of 87Rb, 39K, and 41K, including dual-species mixtures of Rb and K [374].
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In [375], the first scientific results were reported showing free-space 87Rb BEC expansion times over 1 s in

duration, and decompression-cooled condensates with sub-nK effective temperatures. Prospects include the

investigation of trap topologies enabled by microgravity, few-body physics, atom-lasers, and the test of

techniques for atom interferometry in space. The follow-on of CAL is BECCAL, a collaboration of NASA

and DLR. BECCAL will also operate on the ISS with ultracold rubidium and potassium, different methods

for coherent atom manipulation, and will offer new perspectives for experiments on atom optics and atom

interferometry [376]. The possibility of an atom interferometry precision test of the weak equivalence

principle with 85Rb and 87Rb atoms on the ISS was also discussed in [377].

A precision test of the equivalence principle on a dedicated satellite was the primary scientific goal of the

proposed STE-QUEST (Space-Time Explorer and QUantum Equivalence Space Test) mission that was

originally proposed within the ESA cosmic vision program [67, 92]. STE-QUEST was designed to test

different aspects of general relativity: in addition to the test of the weak equivalence principle using atom

interferometry, major objectives were a measurement of the gravitational redshift and tests of standard

model extensions. A study of STE-QUEST was performed in 2011 at the ESA Concurrent Design Facility at

the European Space Research and Technology Center with the identification of a preliminary design of the

mission and its payload; it was followed by a 1 year industrial assessment study. In parallel, instrument

studies were performed on design, interfaces, resources consolidation, performance budget analysis. A white

paper on STE-QUEST was submitted in 2019 to ESA in response to the call for ideas for the voyage 2050

long-term planning of the ESA science program [378].

The SAGE mission proposal [81] was submitted to ESA in 2016 in response to the call for new science

ideas in ESA’s science program. It is based on a multi-satellite configuration with payload/instruments

including strontium optical atomic clocks, strontium atom interferometers, satellite-to satellite and

satellite-to-Earth laser links. SAGE has the scientific objective to investigate gravitational waves, dark matter,

and other fundamental aspects of gravity such as the weak equivalence principle as well as the connection

between gravitational physics and quantum physics. The atomic experiment for dark matter and gravity

exploration (AEDGE) mission proposal [338] was submitted in 2019 to ESA in response to the call for ideas

for the voyage 2050 long-term planning of the ESA science program. While keeping the same mission

concept of SAGE, the potential for the investigation of dark matter was emphasized.

As for other large-scale missions in space involving different satellites and a complex new technology,

like for the proposed LISA mission, the approval and the development of the required complex technology

can take decades; based on space agencies strategies and available funding, earlier pathfinder smaller

missions might be considered with reduced scientific goals that would allow to test the crucial technology.

The operation in space of a full-scale atomic gravitational observatory such as SAGE cannot be foreseen

before 2040–2050.

12. Conclusions

Atom interferometers have been developed as new tools to investigate gravity. Their sensitivity, precision,

range of applications are increasing steadily. They represent new instruments that we are using to look at

nature.

It is well known from the history of science that new instruments and more precise measurements often

led to discoveries that stimulated a deeper understanding of fundamental physics. Obviously we cannot

anticipate whether this will be the case for atom interferometry and gravitational physics but the ingredients

are there: several aspects of gravity are presently not clear and the theory does not provide a complete

description of experimental observations; two theories, namely general relativity and quantum mechanics,

provide a correct description of different phenomena but are not consistent with each other; atom

interferometers and clocks, precise quantum sensors that were not available until recently, are scrutinizing

new aspects of gravitational physics with increasing sensitivity.

We are committed to take advantage of these new instruments and pursue the investigation of gravity

with higher and higher precision. As described in this review, various are the paths presently investigated

experimentally and planned for the future; possible unexpected results in one or more of these experiments

might indeed point at new physics.
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[242] Wolf P, Blanchet L, Bordé C J, Reynaud S, Salomon C and Cohen-Tannoudji C 2012 Reply to comment on: ‘Does an atom

interferometer test the gravitational redshift at the Compton frequency?’ Class. Quantum Grav. 29 048002

[243] Unnikrishnan C S and Gillies G T 2012 Reexamining the roles of gravitational and inertial masses in gravimetry with atom

interferometers Phys. Lett. A 377 60–3

22

https://doi.org/10.1103/physrevlett.120.043602
https://doi.org/10.1103/physrevlett.120.043602
https://doi.org/10.1038/s41467-019-12192-8
https://doi.org/10.1038/s41467-019-12192-8
https://doi.org/10.1103/physrevd.55.455
https://doi.org/10.1103/physrevd.55.455
https://doi.org/10.1103/physrevd.55.455
https://doi.org/10.1103/physrevd.55.455
https://doi.org/10.1103/physrevd.70.103515
https://doi.org/10.1103/physrevd.70.103515
https://doi.org/10.1088/0264-9381/25/10/105012
https://doi.org/10.1088/0264-9381/25/10/105012
https://doi.org/10.1088/0264-9381/29/18/184003
https://doi.org/10.1088/0264-9381/29/18/184003
https://doi.org/10.1126/science.1189164
https://doi.org/10.1126/science.1189164
https://doi.org/10.1126/science.1189164
https://doi.org/10.1126/science.1189164
https://doi.org/10.1103/physreva.84.033610
https://doi.org/10.1103/physreva.84.033610
https://doi.org/10.1088/1367-2630/16/7/073035
https://doi.org/10.1088/1367-2630/16/7/073035
https://doi.org/10.1016/j.asr.2016.05.017
https://doi.org/10.1016/j.asr.2016.05.017
https://doi.org/10.1016/j.asr.2016.05.017
https://doi.org/10.1016/j.asr.2016.05.017
https://doi.org/10.1103/physrevd.18.2739
https://doi.org/10.1103/physrevd.18.2739
https://doi.org/10.1088/0034-4885/73/5/056901
https://doi.org/10.1088/0034-4885/73/5/056901
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1103/physrevd.78.092006
https://doi.org/10.1103/physrevd.78.092006
https://doi.org/10.1103/physrevlett.68.135
https://doi.org/10.1103/physrevlett.68.135
https://doi.org/10.1002/andp.201300036
https://doi.org/10.1002/andp.201300036
https://doi.org/10.1002/andp.201300036
https://doi.org/10.1002/andp.201300036
https://doi.org/10.1103/physrevlett.67.1735
https://doi.org/10.1103/physrevlett.67.1735
https://doi.org/10.1103/physrevlett.67.1735
https://doi.org/10.1103/physrevlett.67.1735
https://doi.org/10.1088/1367-2630/aaade2
https://doi.org/10.1088/1367-2630/aaade2
https://doi.org/10.1038/419439a
https://doi.org/10.1038/419439a
https://doi.org/10.1038/419439a
https://doi.org/10.1038/419439a
https://doi.org/10.1103/physrevlett.89.213401
https://doi.org/10.1103/physrevlett.89.213401
https://doi.org/10.1023/b:gerg.0000010730.93408.87
https://doi.org/10.1023/b:gerg.0000010730.93408.87
https://doi.org/10.1023/b:gerg.0000010730.93408.87
https://doi.org/10.1023/b:gerg.0000010730.93408.87
https://doi.org/10.1103/physrevlett.112.121102
https://doi.org/10.1103/physrevlett.112.121102
https://doi.org/10.1007/s10751-015-1154-8
https://doi.org/10.1007/s10751-015-1154-8
https://doi.org/10.1007/s10751-015-1154-8
https://doi.org/10.1007/s10751-015-1154-8
https://doi.org/10.1103/physrevd.83.016013
https://doi.org/10.1103/physrevd.83.016013
https://doi.org/10.1007/s10509-010-0387-x
https://doi.org/10.1007/s10509-010-0387-x
https://doi.org/10.1007/s10509-010-0387-x
https://doi.org/10.1007/s10509-010-0387-x
https://doi.org/10.1103/physrevlett.19.1049
https://doi.org/10.1103/physrevlett.19.1049
https://arxiv.org/abs/hep-ph/9509336
https://doi.org/10.1103/physrevb.1.4649
https://doi.org/10.1103/physrevb.1.4649
https://doi.org/10.1103/revmodphys.64.237
https://doi.org/10.1103/revmodphys.64.237
https://doi.org/10.1038/ncomms2787
https://doi.org/10.1038/ncomms2787
https://doi.org/10.3390/atoms6020017
https://doi.org/10.3390/atoms6020017
https://doi.org/10.1126/sciadv.aav7610
https://doi.org/10.1126/sciadv.aav7610
https://doi.org/10.1038/nature08776
https://doi.org/10.1038/nature08776
https://doi.org/10.1103/physrevlett.45.2081
https://doi.org/10.1103/physrevlett.45.2081
https://doi.org/10.1103/physrevlett.45.2081
https://doi.org/10.1103/physrevlett.45.2081
https://doi.org/10.1126/science.1230767
https://doi.org/10.1126/science.1230767
https://doi.org/10.1126/science.1230767
https://doi.org/10.1126/science.1230767
https://doi.org/10.1038/nature09340
https://doi.org/10.1038/nature09340
https://doi.org/10.1038/nature09341
https://doi.org/10.1038/nature09341
https://doi.org/10.1103/physrevlett.106.151102
https://doi.org/10.1103/physrevlett.106.151102
https://doi.org/10.1088/0264-9381/28/14/145017
https://doi.org/10.1088/0264-9381/28/14/145017
https://doi.org/10.1088/0264-9381/28/14/145018
https://doi.org/10.1088/0264-9381/28/14/145018
https://doi.org/10.1088/0264-9381/29/4/048001
https://doi.org/10.1088/0264-9381/29/4/048001
https://doi.org/10.1088/0264-9381/29/4/048002
https://doi.org/10.1088/0264-9381/29/4/048002
https://doi.org/10.1016/j.physleta.2012.11.012
https://doi.org/10.1016/j.physleta.2012.11.012
https://doi.org/10.1016/j.physleta.2012.11.012
https://doi.org/10.1016/j.physleta.2012.11.012


Quantum Sci. Technol. 6 (2021) 024014 G M Tino

[244] Schleich W P, Greenberger D M and Rasel E M 2013 A representation-free description of the Kasevich–Chu interferometer: a

resolution of the redshift controversy New J. Phys. 15 013007

[245] Alan Kostelecký V and Tasson J D 2009 Prospects for large relativity violations in matter-gravity couplings Phys. Rev. Lett. 102

010402

[246] Aharonov Y and Bohm D 1959 Significance of electromagnetic potentials in the quantum theory Phys. Rev. 115 485–91
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