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Abstract

Background: Distance-based methods for analyzing microbiome data are typically restricted

to testing the global hypothesis of microbiome effect, but do not test the contribution of

individual operational taxonomic units (OTUs). Conversely, tests for individual OTUs do not

typically provide a global test of microbiome effect. Without a unified approach, the findings

of a global test may be hard to resolve with the findings at the individual OTU level. In

addition, many existing methods cannot be applied to complex studies such as those with

confounders and correlated data.

Methods: We introduce the linear decomposition model (LDM), that provides a single analysis

path that includes global tests of any effect of the microbiome, tests of the effects of individual

OTUs while accounting for multiple testing by controlling the false discovery rate (FDR), and

a connection to distance-based ordination. The LDM accommodates both continuous and

discrete variables (e.g., clinical outcomes, environmental factors) as well as interaction terms to

be tested either singly or in combination, allows for adjustment of confounding covariates, and

uses permutation-based p-values that can control for correlation (e.g., repeated measurements

on the same individual). The LDM can also be applied to transformed data, and an “omnibus”

test can easily combine results from analyses conducted on different transformation scales. We

also provide a new implementation of PERMANOVA based on our approach.

Results: For global testing, our simulations indicate the LDM provided correct type I error,

even with substantial confounding and/or correlations, and can has comparable power to

existing distance-based methods. For testing individual OTUs, our simulations indicate the

LDM controlled the FDR well. In contrast, DESeq2 often had inflated FDR; MetagenomeSeq

generally had the lowest sensitivity. The flexibility of the LDM for a variety of microbiome

studies is illustrated by the analysis of data from two microbiome studies. We also show that

our implementation of PERMANOVA can outperform existing implementations.

Conclusions: The LDM is a powerful method for global and OTU-specific testing with a

natural connection between the two. The LDM is also capable of handling the confounders

and correlated data that frequently occur in modern microbiome studies.
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Background

Data from studies of the microbiome is accumulating at a rapid rate. The relative ease of

conducting a census of bacteria by sequencing the 16S rRNA gene (or, for fungi, the 18S

rRNA gene) has led to many studies that examine the association between microbiome and

health states or outcomes. Unfortunately, the development of statistical methods to analyze

these data has not kept pace. Many microbiome studies have complex design features (e.g.,

paired, clustered, or longitudinal data) or complexities that frequently arise in medical studies

(e.g., the presence of confounding covariates), while existing methods for analyzing microbiome

data are often restricted to testing only simple hypotheses.

Statistical methods for analyzing microbiome data seem to fall into one of two camps. One

camp comprises methods that test the global effect of the microbiome, such as PERMANOVA

[1, 2] and MiRKAT [3], which can be used to test the hypothesis that variables of interest (e.g.,

case-control status) are significantly associated with overall microbial compositions. However,

these methods do not provide convenient tests of the effects or contributions of individual

operational taxonomic units (OTUs), should a global microbiome effect be found (here we

refer to OTUs, although all our results apply equally to data on amplicon sequence variants

(ASVs) or count data from shotgun sequencing). The other camp is comprised of OTU-by-

OTU tests, often directly using a method developed for RNA-Seq data such as DESeq2 [4], or

a modification thereof such as metagenomeSeq [5], or based on a compositional data approach

such as ANCOM [6, 7]. While these approaches have been widely applied, they generally do

not give a single test of the global null hypothesis. Although test statistics or p-values from

OTU-specific tests can of course be combined to give a global test (e.g., aMiSPU [8]), the

performance of this kind of global test is often poor [9] since many of the OTU-specific tests

only contribute noise.

We introduce here the Linear Decomposition Model (LDM) for analyzing microbial count

data such as that obtained in a 16S rRNA study or a metagenomics sequencing study. The
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LDM gives a unified approach that allows both global testing of the overall effect of the micro-

biome on arbitrary traits of interest, while also providing OTU-specific tests that correspond

to the contribution of individual OTUs to the global test results. It allows for complex fixed-

effects models such as models that include multiple variables of interest (both continuous and

categorical), their interactions, as well as confounding covariates. It is permutation based, and

so can accommodate clustered data and maintain validity for small sample sizes and when data

are subject to overdispersion. Because the permutations are based on the Freedman-Lane ap-

proach [10], we can construct powerful type III or “last variable added” tests like those used in

most linear regression packages [11, 12]. We also provide a new version of the PERMANOVA

test based on our approach that we show outperforms the functions adonis and adonis2 in

the R package vegan, the most commonly used implementations of PERMANOVA for micro-

biome studies. Recent simulation studies suggest that many microbiome analysis methods fail

to control the false discovery rate (FDR) when applied to overdispersed data [13]. We show

that the LDM controls FDR in exactly the kind of situations where other methods fail.

We describe the LDM in detail in the methods section. In the results section, we describe

the simulation studies and the two real datasets that we use to assess the performance of the

LDM, and compare it to results obtained by PERMANOVA, MiRKAT, DESeq2, Metagenome-

Seq [5], and the Wilcoxon rank-sum test. We conclude with a discussion section. Some

technical details are relegated to an Appendix and Supplementary Materials.

Methods

Microbial composition data are usually summarized in an OTU table of read counts, here

denoted by X, which is the n × J data matrix whose (i, j)th element is the number of times

OTU j is observed in sample i. The total counts in each sample (the library size) can vary

widely between samples and this variability must be accounted for. Here we accomplish this

by converting counts to frequencies (i.e., relative abundances) by dividing by the library sizes,

although other normalizations can be used with the LDM if desired. We show that the LDM
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performs well when counts are normalized to frequencies, even with highly overdispersed data.

Although the LDM is not explicitly a compositional data analysis method, compositional

analyses can also be conducted by applying the LDM to appropriately transformed (e.g.,

centered log-ratio) data.

Many reasonable models of the relationship between data in an OTU table and covariates

that describe traits or characteristics of individual samples can be expressed as a linear model.

Because the large number of OTUs is a problem for models in which OTU frequencies predict

traits or covariates when the goal is inference, we consider models in which traits and covariates

are used as predictors of OTU frequencies. As an example of the kind of model we use, consider

a study with n samples and a single binary trait corresponding to presence of a disease we are

studying. Let Yi = 1 if the ith participant has been diagnosed with the disease and Yi = 0 if

not. Define Bi to be the centered and scaled Yi, i.e., Bi = ν−1(Yi−n1/n), where ν =
√
n1n0/n

and n1 and n0 are the numbers of participants with and without disease. Suppose that the

rows of the OTU table X have been scaled to give the OTU frequencies for each sample.

Assume that the frequency of the jth OTU among disease-free participants is (on average)

π0j while that among participants with disease is π1j. Then a reasonable model relating the

observed OTU frequencies Xij and the trait Bi can be written as

E(Xij|Bi) =
(n1

n
π1j +

n0

n
π0j

)
+Biν (π1j − π0j) ,

which is a linear model for the data in the jth OTU, for each OTU. In matrix form we have

E(X|B) = 1
(n1

n
π1 +

n0

n
π0

)T
+Bν(π1 − π0)

T,

where 1 is the n-dimensional column vector with all entries equal to 1, and B, π1, and π0 are

column vectors with elements Bi, π1j, and π0j, respectively. The goal of fitting this model

might be to estimate π0 and π1 or, at least, test hypotheses about π1−π0. These considerations

motivate the general model

E(X|B) = BWT, (1)
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where B is an n×r design matrix that we fix and that contains (potentially multiple) covariates

including confounders, and W is a J × r matrix that we must estimate. In the example just

considered, B has information on the disease status and an intercept that are known, while

W contains the information on OTU frequencies π0 and π1 that we wish to estimate (as well

as the normalization information in ν). Considered as J models for the columns of X, the jth

column of WT has the regression coefficients for the jth regression model. In order to provide

a clean decomposition of the sum of squares of X, we will require that the columns of B are

orthonormal, as they are in the example above. This also aids in the interpretation of some

hypothesis tests, particularly terms that represent interactions with main effect terms that are

also being tested.

The least-squares estimators for the matrix W can be obtained by minimizing

||X − BWT||2F ,

where ||A||2F ≡ Tr(AAT) ≡
∑

i,j A
2
ij is the Frobenius (matrix) norm of matrix A and Tr(.) is the

trace operator. Satten et al. [14] showed that the resulting estimators are W = XTB, which

are also the estimators obtained by fitting the regression model column by column. In some

situations, we may wish to partition covariates into K groups, which we call “submodels”.

For example, we may wish to group several measures of smoking history into a single smoking

“submodel”. Thus, we partition B as (B1, . . . , BK), and re-write (1) as

E(X|B) =
K∑

k=1

BkW
T
k ; (2)

then, the least-squares estimators of Wk are given by Wk = XTBk for each k.

The LDM as a decomposition

A linear model like equation (1) can also lead to a decomposition of the matrix X, if we

choose B so that the columns of B span the column space of X. Then, we can always find W

so that

X = BWT
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holds exactly, corresponding to use of a saturated regression model. If we further write W =

V D, where D is a diagonal matrix with entries given by the norms of the columns of W , so

that the columns of V are normalized, then

X = BDV T. (3)

Thus, the LDM mimics the singular value decomposition (SVD) of X, while differing in two

important ways: first, in (3) we are free to choose the columns of B in any convenient way;

and second, the columns of V are not orthogonal in general.

To connect the decomposition view of the LDM to the regression view and to ordination-

based analyses, we propose a way to construct the matrix B using regression variables (that

are not necessarily orthogonal) and a distance matrix ∆ (which we assume has the same

rank as X). Given the design matrix Mk for each submodel k = 1, . . . , K, we first construct

the hat matrix Hk corresponding to the cumulative design matrix (M1, . . . ,Mk); then define

Hk = I − Hk. We then choose B1 to be the matrix whose columns are the eigenvectors

of H1∆H1 having non-zero eigenvalues and define the residual distance ∆1 = H1∆H1. For

2 ≤ k ≤ K, we take Bk to be the eigenvectors of Hk∆k−1Hk having non-zero eigenvalues

and then set ∆k = Hk∆k−1Hk. Finally, the remaining columns BK+1 are chosen to be the

eigenvectors of ∆K having non-zero eigenvalues. Use of the distance matrix here is primarily to

allow direct comparison of the variability explained by covariates to the variability explained

by the principal components of the distance matrix, described at the end of this section.

Using this partition of the columns of B, we can rewrite (3) as

X =
K+1∑

k=1

BkW
T
k =

K+1∑

k=1

BkDkV
T
k , (4)

which is the decomposition version of the regression model in equation (2); the (K + 1)th

term corresponds to the decomposition of the residual error in (2). As before, Wk = XTBk

for k = 1, . . . , K + 1. To help ensure that the rank of X and ∆ agree, if X has been column-

centered, then we also center ∆ as recommended by Gower [15]. Then, the columns of B are

orthogonal to the vector 1, as are the columns of X.
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The LDM (4) can be used to decompose the total sum of squares Stotal = ||X||2F into parts

explained by each submodel, and the sum of squares that can be assigned to the residual

directions corresponding to the columns of BK+1:

Stotal =
K+1∑

k=1

Sk,

where Sk = ||BkDkV
T
k ||2F . In analogy with Satten et al. [14] we can express Sk in one of two

ways:

Sk = Tr
(
D2

k

)
(5)

or

Sk =
J∑

j=1

|Wk;j·|
2, (6)

where Wk;j· is the jth row of Wk and where |w| is the Euclidean norm of vector w. The first

representation indicates that, as with a standard SVD, the sum of squares for the kth submodel

is given by the sum of the squares of the corresponding singular values (diagonal elements of

Dk). The second representation partitions Sk into contributions from each OTU. These results

only require B has orthonormal columns, not V . If X is centered, the sums-of-squares in (5)

and (6) are proportional to the variance explained by a submodel or an individual OTU in a

submodel; for this reason we sometimes refer to these tests as tests of the variance explained

(VE).

Because the LDM is a decomposition, we can use Sk in (5) and the diagonal elements of

D2
K+1 to construct a scree plot to compare the sum of squares explained by each submodel

with directions related to the eigenvectors of the residual distance matrix ∆K . To accomplish

this, we can plot either the absolute sum of squares (Sk) or average per-component sum of

squares (Sk/Dim(Dk)) for each submodel k = 1, . . . , K, along with the variability explained

by each element of D2
K+1. Because ∆K may be used for ordination if we wish visualize the

observations after removing the (linear) effects of covariates from the distance ∆, this scree

plot is a quick and easy way to see which submodels explain a reasonable fraction of the

variability we would expect to see in an ordination using distance ∆.
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Testing hypotheses using the LDM

We use decomposition of the sum of squares implied by the LDM to test hypotheses about

the effect of individual covariates or sets of covariates grouped into submodels as described in

the previous section. Here, and in the rest of the paper, we let B, W , D and V consist only

of those columns corresponding to the model terms, i.e., we exclude the residual terms BK+1,

WK+1 etc. unless explicitly stated otherwise.

To test hypotheses about the contribution of the jth OTU to the sum of squares for the

kth submodel, we use its contribution given in (6), normalized as an F statistic, to give

Fkj =
|Wk;j·|

2

|X·j|2 −
∑K

k=1 |Wk;j·|2
, (7)

where X·j is the jth column of X and where we have dropped the constant of proportionality

{Rank(X)− Rank(B)} /Rank(Bk) found in a typical F test as we intend to use permutation

to assess significance. The presence of all submodels in the denominator indicates that this is

a type III or “last variable added” test statistic.

To test the global hypothesis we consider the total sum of squares for the kth submodel

given in (5), again normalized as an F statistic. Using (6), this statistic can be constructed

by summing the numerator and denominator of the OTU-specific statistics separately, i.e.,

Fk,global ∝

∑J

j=1 |Wk;j·|
2

∑J

j=1

(
|X·j|2 −

∑K

k=1 |Wk;j·|2
) =

Tr(D2
k)

||X||2F − Tr(D2)
. (8)

Assessing significance by permutation

We assess the significance of our test statistics, Fkj and Fk,global, using a variant of a permu-

tation scheme described by Freedman and Lane [10]. Although the Freedman-Lane procedure

formally permutes residuals, we show in Appendix that it is equivalent to a permutation

procedure in which the residuals are held fixed but the covariates are permuted.
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To describe our permutation approach, define Xk, the residual matrix obtained after fitting

a reduced model to X that excludes the kth submodel term Bk, to be

Xk =


I −

K∑

k′=1
k′ 6=k

Bk′B
T
k′


X

and note that, because of the orthogonality of the columns of B, we can write Wk = XTBk as

Wk = XT
k Bk.

As a result, the test statistics Fkj in (7) can be rewritten as

Fkj =
XT

k;·jBkB
T
k Xk;·j

XT
k;·j

(
I −

K∑
k′=1

Bk′BT
k′

)
Xk;·j

, (9)

where Xk;·j is the jth column of Xk. The analogous result for the global test statistic Fk,global

is obtained by summing numerator and denominator over j. In Appendix, we show that if Pπ

is a permutation matrix corresponding to π, a permutation of the integers 1, . . . , n, then the

Freedman-Lane permutation procedure is equivalent to forming the test statistics

F
(π)
kj =

XT
k;·jB

(π)
k B

(π)T

k Xk;·j

XT
k;·j

(
I −

K∑
k′=1

B
(π)
k′ B

(π)T

k′

)
Xk;·j

, (10)

where B
(π)
k = PπBk is a row-permuted version of Bk. The test statistic for the global test

F
(π)
k,global is obtained by (separately) summing the numerator and denominator of (10) over

OTUs and can be written as

F
(π)
k,global =

Tr
[
XT

k B
(π)
k B

(π)T

k Xk

]

Tr

[
XT

k

(
I −

K∑
k′=1

B
(π)
k′ B

(π)T

k′

)
Xk

] . (11)

Although Freedman and Lane [10] only considered independent residuals, some simple but

important cases involving correlated data can be tested using the Freedman-Lane approach.

Here, we only consider the case of clustered data in which residuals within each cluster can be
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considered as exchangeable. The main requirement for a valid permutation replicate dataset is

that the dataset preserve the correlation found in the original data. Thus, variables that vary

within clusters (sometimes called “plots” in the Ecology literature) can be permuted within

each cluster. For example, if each cluster consists of a “before treatment” observation and an

“after treatment” observation from the same individual, the effect of treatment can be tested

by randomly permuting the “before” and “after” assignment within each cluster (individual).

Note that in this situation, the cluster sizes need not be balanced (i.e., have equal size). For

variables that are constant for all cluster members (i.e., are assigned at or “above” the cluster

level), only permutation replicates that assign the same value to each cluster member are

allowed. For example, in a rodent study of the effect of diet on the gut microbiome, rodents

housed in the same cage should be treated as a cluster, as rodents are coprophagic. Thus,

when permuting diet, rodents in the same cage should always be assigned the same diet. Note

that for datasets with variables assigned at or above the cluster level, the cluster sizes must

all be equal or the data must be stratified by cluster size with all permutations taking place

within strata. Our implementation of the LDM uses the same permutation options available

in the R package vegan, through the R package permute.

Our software implementation of the LDM uses sequential stopping rules to increase com-

putational efficiency. When only the global test is of interest, we adopt the sequential stopping

rule of Besag et al. [16] for calculating the p-value of the global test. This algorithm termi-

nates when either a pre-determined number Lmin of rejections (i.e., the permutation statistic

exceeded the observed test statistic) has been reached or a pre-determined maximum number

Kmax of permutations have been generated. When the OTU-specific results are desired, we use

the algorithm proposed by Sandve et al. [17], which adds a FDR-based sequential stopping

criterion to the Besag et al. algorithm. Note that the Sandve et al. algorithm limits the total

number of needed permutations to J × Lmin × α−1, which is 200 times the number of OTUs

when the nominal FDR α = 10% and Lmin = 20. When testing multiple hypotheses (e.g.,

both the global and OTU-specific hypotheses, or hypotheses corresponding to multiple sets of
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variables), we generate permutations until all hypotheses reach their stopping point.

A Freedman-Lane PERMANOVA test (PERMANOVA-FL)

The operations that lead to the F -statistics for the LDM can also be used to develop an

improved PERMANOVA test statistic. Following [2] we write Euclidean distance ∆ = ZZT,

then write a linear model of the form (2) in which Z replaces X. Here the only tests of interest

are the global tests; the analogues of the OTU-specific tests are tests of the effect of covariates

on the jth component (column) of Z and are only used as intermediate steps. After replacing

X with Z in (8) and using the invariance of the trace to cyclic permutations, the statistic

Fk,global can be rewritten as

Fk,PERMANOVA ∝
Tr
[
BkB

T
k ∆BkB

T
k

]

Tr

[(
I −

K∑
k′=1

Bk′BT
k′

)
∆

(
I −

K∑
k′=1

Bk′BT
k′

)] ,

which is the usual form of the PERMANOVA F statistic. The same argument leading to (9)

yields

Fk,PERMANOVA ∝=
Tr
[
BkB

T
k ∆̃kBkB

T
k

]

Tr

[(
I −

K∑
k′=1

Bk′BT
k′

)
∆̃k

(
I −

K∑
k′=1

Bk′BT
k′

)] ,

where

∆̃k =


I −

K∑

k′=1
k′ 6=k

Bk′B
T
k′


∆


I −

K∑

k′=1
k′ 6=k

Bk′B
T
k′


 .

Thus, for a replicate dataset having covariates B
(π)
k , the Friedman-Lane PERMANOVA test

statistic can be obtained by replacing X by Z in (11):

F
(π)
k,PERMANOVA ∝

Tr
[
B

(π)
k B

(π)T

k ∆̃kB
(π)
k B

(π)T

k

]

Tr

[(
I −

K∑
k′=1

B
(π)
k′ B

(π)T

k′

)
∆̃k

(
I −

K∑
k′=1

B
(π)
k′ B

(π)T

k′

)] . (12)

We refer to this test as PERMANOVA-FL. The same kinds of restricted permutations as in

our implementation of the LDM are available in PERMANOVA-FL.

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/229831doi: bioRxiv preprint 

https://doi.org/10.1101/229831


The permutation scheme implemented in the adonis function in the R package vegan is

similar to (12) except that the ∆̃ks are all replaced by ∆. We further note that our proposed

permutation replicates in (12) have the same advantages as the PERMANOVA replications

implemented adonis, in that they only require functions of the distance matrix ∆ (which,

in our approach, are the projected distance matrices ∆̃k). As a result, our approach, like

other implementations of PERMANOVA, can be computed even if the distance matrix is

non-Euclidean. Further, the distance matrices ∆̃k do not need to be recalculated for each

replicate.

The arcsin-root transformation

The LDM can also be applied to transformed data. Because we consider frequency data, we

show we achieve good results using the arcsin-root transformation, which is variance-stabilizing

for Multinomial and Dirichlet-Multinomial (DM) counts. Thus we write Θij = sin−1
√
Xij/Ni

where Xij are the raw counts and Ni are the library sizes. We can additionally center Θ,

replacing it by
(
I − n−111T

)
Θ if we also plan to center ∆. We can now replace X by Θ in

(1) or (2) and proceed as before. This approach is related to an approach of Berkson [18, 19]

for fitting logistic models to bioassay data. We also had considered a logit-based model using

Haldane’s [20] unbiased logit by forming Θij = ln{(Xij + 0.5)/(Ni − Xij + 0.5)} but found

that the arcsin-root transform performed better in all cases we examined. We expect the

LDM applied to (untransformed) frequency data will work best when the associated OTUs

are abundant, while we expect the LDM applied to arcsin-root-transformed frequencies to

work best when the associated OTUs are less abundant. Since we do not know the association

mechanism a priori, we also consider an omnibus strategy that simultaneously applies LDM

on both data scales. For the omnibus tests, we use the minimum of the p-value obtained

from the frequency and arcsin-root-transformed data as the final test statistic and use the

corresponding minima from the permuted data to simulate the null distribution [21].

The LDM and Redundancy Analysis

13
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The LDM bears some resemblance to Redundancy Analysis (RA), but also differs in notable

respects. RA seeks to describe how much of a matrix X can be explained by a single set of

variables B1, also concluding that the variability explained is ||B1B
T
1 X||2F . RA also calculates a

matrix like W1; however, RA requires that W1 have orthogonal columns, which is unnecessary

for calculating either Tr(D2
1) or |w1;j·|

2. Further, RA only allows analysis of one set of variables

at a time, so only a single matrix W1 is produced; this is presumably because the non-

orthogonality of multiple Wks implies that it is impossible to find W1 and W2 that satisfy

W T
1 W2 = 0 for arbitrary submodels B1 and B2. Thus in RA, the effect of each submodel Bk

must be tested sequentially using a separate linear model like

X̃k = BkW
T
k + ǫ,

where

X̃k =

(
I −

∑

k′<k

Bk′B
T
k′

)
X.

As a result, the F tests available in the LDM are expected to be more powerful than the type

I or “order of variables added” tests available in RA when there is more than one submodel

[11]. This is because the residual sums of squares in the denominator of the type III tests

used in the LDM include all submodels tested, rather than only submodels with k′ < k used

in sequential RA. Use of the restricted model in RA can thus result in an incorrect estimate

of the residual sum of squares, which may affect power even in a permutation setting as the

test is then not (asymptotically) pivotal. A second advantage of the LDM is that it is that

we can assign significance to all submodels with a single permutation experiment, while RA

requires a separate set of permutations for each submodel Bk tested.

Results

Simulation studies

We conducted several simulation studies to evaluate the performance of the LDM and

compare it to competing methods. To evaluate the global test, we compared our results

14
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to those obtained using our own implementation of PERMANOVA and the PERMANOVA

implemented in the adonis2 function. We also calculated OTU-specific tests using the LDM,

which we compared to results from DESeq2. We only performed limited comparisons to results

from MetagenomeSeq and Wilcoxon rank-sum test (applied to OTU frequencies), as they do

not allow for confounding covariates.

To generate our simulation data, we used the same motivating dataset as Zhao et al. [3],

specifically data on the upper-respiratory-tract (URT) microbiome first described by Charl-

son et al. [22]. To simulate read count data for the 856 OTUs reported in this study, we

adopted a DM model using the empirical frequencies calculated from the study data; we set

the overdispersion parameter to the estimate 0.02 obtained from these data, which is also

the median value we observed in an admittedly brief survey of the literature [23–25]. While

the original microbiome dataset was generated from 454 pyrosequencing with mean library

size ∼1500, we increased the mean library size to 10000 to reflect Illumina MiSeq sequencing

which is currently in common usage. For each simulation, we generated data for 100 samples

unless otherwise noted. We also conducted sensitivity analysis with a wide range of library

sizes, overdispersion parameters, and sample sizes, and by replacing the DM model with a

Poisson log-normal model (PLNM) to generate the read count data (the PLNM is described

in Supplementary Text S1).

We focused on two complementary scenarios. The first scenario (S1) assumed that a large

number of moderately abundant and rare OTUs were differentially abundant between cases

and controls, and the second scenario (S2) assumed the top 10 most abundant OTUs were

differentially abundant. Both scenarios have a one-way, case-control design with a confounder

and independent samples. Later we varied these scenarios to simulate a continuous trait, a

two-way design, or clustered data.

In both scenarios S1 and S2, we let Y denote case-control status and assumed an equal

number of cases (Y = 1) and controls (Y = 0). We simulated a confounder, C = 0.5Y + ǫ,

where ǫ was drawn from a uniform distribution U [0, 1]. In S1, we uniformly and independently
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sampled two (overlapping) sets of 428 OTUs (half of all OTUs), the first set associated with

Y and the second set associated with C; the set for Y was sampled after excluding the

top three most abundant OTUs to focus on less abundant OTUs. In S2, we assumed the

ten most abundant OTUs were associated with Y and the next forty most abundant OTUs

were associated with C. These OTU sets were held fixed across replicates of data. We

denoted the OTU frequencies estimated from the real data by the vector π1 and formed

vectors π2 and π3 by first setting π2 and π3 equal to π1 and then randomly permuting those

frequencies in π2 and π3 that belong to the selected set of OTUs associated with Y and

C, respectively. Note that the frequencies for OTUs not selected to be associated with Y

(or C) remain the same in π1 and π2 (or π3). We then defined a sample-specific frequency

vector as π̃(Y, C) = p1(Y, C)π1 + p2(Y )π2 + p3(C)π3, where p2(Y ) = βY , p3(C) = βCC,

p1(Y, C) = 1− p2(Y )− p3(C). In this model, β and βC are the effect sizes of Y and C on the

sample-specific OTU frequencies, respectively; here we set βC to 0.3 except for simulations

with no confounding, for which we set βC to zero. We then generated the OTU count data

for each sample using the DM model with π̃(Y, C), overdispersion parameter of 0.02, and

library size sampled from N(10000, 10000/3) and left-truncated at 500. By mixing π1, π2,

and π3 in a way that depends on the values of Y and C, we induced associations between the

selected OTUs and Y and C. Note that π1 serves as the “reference” OTU frequencies that

characterizes samples for which Y and C are both zero. In addition, the correlations among

Y , C, and OTU frequencies establish C as a confounder of the association between Y and

the OTUs. Finally, note that when β = 0, π̃(Y, C) does not depend on Y , so that the null

hypothesis of no association between Y and OTU frequencies holds.

To generate clustered data, we assume that we had samples from 50 distinct individuals,

each of whom contributed 2 samples. We modified scenarios S1 and S2 by assuming that half

of the individuals were cases (Y = 1) and the remaining individuals were controls (Y = 0). We

generated the confounder C at the individual level in the same way as for unclustered data;

to induce within-cluster correlations, we generated individual-specific OTU frequencies from
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the Dirichlet distribution with mean frequencies π̃(Y, C) (defined earlier) and overdispersion

parameter 0.02, and then generated counts for each samples from the same individual using

the Multinomial distribution with mean being the individual-specific OTU frequencies, using

library sizes that were generated independently for each sample. Note that if each individual

had a single sample, the combination of Dirichlet and Multinomial sampling would reproduce

the DM mixture model used for unclustered data.

To simulate data with a two-way design (without confounding), we considered two factors,

Y1 and Y2, that each have two levels and that are orthogonal. The samples were randomly

split into two groups with equal size, one group being assigned Y1 = 0 and the other Y1 = 1.

Samples in each group were then further split randomly into two subgroups with equal size,

with one group assigned Y2 = 0 and the other Y2 = 1. Then we induced association of Y1 and

Y2 with the OTUs in the same way as Y and C by assigning Y1 and Y2 the same sets of OTUs

as assigned to Y and C in scenarios S1 and S2 and using the sample sample-specific frequency

vector π̃(Y1, Y2) = (1− β1Y1 − β2Y2)π1 + β1Y1π2 + β2Y2π3. Note that β1 and β2 are the effect

sizes of Y1 and Y2, respectively.

To generate data with a continuous trait, we used a model considered by Zhao et al. [3].

We first generated OTU counts for each sample using the DM model with frequency vector

π1, overdispersion parameter 0.02, and library size sampled from N(10000, 10000/3). Let

S =
∑

j∈A Xij/Xj, where A is the set of the ten most abundant OTUs, Xij is the frequency

of the jth OTU in the ith sample, and Xj is the average frequency for the jth OTU across

samples. We generated a confounder C = scale(S) + ǫ̃, where scale(v) centers and normalizes

vector v to have unit variance and ǫ̃ ∼ N(0, 1). Finally, we simulated the continuous trait as

Y = βCscale(C)+βscale(S)+ ǫ, where βC = 0.3 and ǫ ∼ N(0, 1). Note that when β = 0 there

is no association between Y and the OTU frequencies.

We evaluated the type I error and power for testing the global hypothesis at nominal

significance level 0.05, and we assessed empirical sensitivity (proportion of truly associated

OTUs that are detected) and empirical FDR for testing individual OTUs at nominal FDR of
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10%. Results for type I error were based on 10000 replicates; all other results are based on

1000 replicates. In all simulations with confounders we treated C and Y as separate submodels

M1 and M2, respectively, when fitting the LDM. For the two-way simulations, Y1 and Y2 were

considered as separate submodels M1 and M2.

Results for testing global hypotheses with independent samples in the one-way case-control design

For testing the global hypothesis H0 : β = 0 of no association between microbiome compo-

sition and Y , we applied the LDM on the frequency and arcsin-root scales and also calculated

the omnibus test; these results are presented as VE-freq, VE-arcsin, and VE-omni, respec-

tively, where VE denotes variance explained. We also applied our own implementation of

PERMANOVA as well as the adonis2 implementation; we refer to them as PERMANOVA-

FL and adonis2, respectively.

Table 1 (top panel) shows our results for type I error. All methods, after adjusting for

confounders, had correct type I error; with the small sample size 20, the type I error rates of

PERMANOVA-FL and LDM methods were slightly conservative, which is consistent with the

findings of Anderson and Legendre (1999) [26]. There was substantial inflation of type I error

for S1 and modest inflation for S2 when the confounder was not accounted for, demonstrating

that our methods are effective in accounting for confounders, with either modest or substantial

confounding. The type I error rates were also close to 0.05 when the PLNM was adopted for

count data simulation (Table S1).

Figure 1 (top panel) displays our results for power. We can see that VE-arcsin is more

powerful than VE-freq under S1 and vice versa under S2; this is presumably because the vari-

ance stabilization of the arcsin-root transformation gives greater power to detect association

with the rare OTUs that carry association in S1, while the untransformed data gives increased

power to detect the common-OTU associations that characterize S2. In both cases, VE-omni

achieved almost the same power as the most powerful test, without having to know whether

common or rare OTUs were most important. PERMANOVA-FL has varying power depending
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on the choice of distance measure: the power is lowest with the weighted-UniFrac distance,

since the association was induced without reference to any phylogenetic tree, and the power

is highest with the Hellinger distance in S1 and Bray-Curtis in S2. In both S1 and S2, our

best-performing method has comparable power as the best-performing PERMANOVA-FL.

Our sensitivity analysis showed that the relative performance of these methods persist for a

wide range of library sizes, overdispersion parameters, and sample sizes (Figure S1), as well as

with the PLNM (Figure S2). For this set of studies, PERMANOVA-FL and adonis2 yielded

very similar power.

Results for testing individual OTUs with independent samples in the one-way case-control design

Because PERMANOVA-FL and adonis2 does not provide OTU-specific results, we com-

pared our results on testing individual OTUs to DESeq2. When applying DESeq2, we replaced

the default normalization by GMPR normalization [27], which was specifically developed for

zero-inflated microbiome data.

Figure 1 middle and bottom panels display results on empirical sensitivity and empirical

FDR, respectively. The LDM-based methods controlled FDR at 10% in all cases; their em-

pirical FDRs are conservative (and the sensitivity values are low) in S1 because this scenario

permuted frequencies among 428 OTUs selected for Y , majority of which are rare, and thus

generated many weakly associated OTUs that are essentially null OTUs. The sensitivity of

VE-omni tracks the method between VE-freq and VE-arcsin that performs better. Note that

VE-arcsin has a higher sensitivity than VE-freq in both S1 and S2, but the order can be

reversed in the scenario with a continuous trait (Figure 3). In contrast, the empirical FDRs

for DESeq2 are modestly inflated under S1 and highly inflated under S2.

Because MetagenomeSeq and the Wilcoxon rank-sum test do not allow for adjustment of

confounding covariates, we have not included results from these methods in Figure 1. To

compare with MetagenomeSeq and the Wilcoxon rank-sum test, we set βC = 0 for both

scenarios S1 and S2 to remove confounders. MetagenomeSeq always controlled FDR but was
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extremely conservative (FDR< 2% for nominal FDR of 10% and sample size 100) in detecting

associated OTUs for the simulations we conducted (Figure S3). The Wilcoxon test controlled

FDR and achieved good sensitivity when the DM model was used for generating the read

count data (Figure S3); when the PLNM was used (with no confounders), the data appeared

less overdispersed and Wilcoxon had consistently lower sensitivity than VE-omni (Figure S2).

Finally, DESeq2 failed to control FDR even in absence of any confounders.

Results for the two-way design

We set β1 = 0 and β2 = 0.5 to ascertain the type I error of the test of Y1, and β2 = 0 and

β1 = 0.5 to ascertain the type I error of the test of Y2. Both the LDM and PERMANOVA-FL

yielded correct type I error for testing each factor, whereas adonis2 had conservative type I

error in scenario S1. The type I error using adonis2 was about a factor of 3 smaller for testing

Y1 than for testing Y2 because the sampled OTUs for association with Y2 (or C) included

the top two most abundant OTUs and, as a result, Y2 had a stronger global effect on the

OTUs than Y1. Consistent with the conservative type I error, adonis2 had lower power than

PERMANOVA-FL (Figure 2). LDM (VE-omni) continued to maintain good power relative

to PERMANOVA-FL for either factor (Figure 2). Further, LDM controlled FDR for OTUs

that were detected to be associated with either factor (Figure 2).

Results for clustered data

In Table 1, we can see that permuting the case-control status over clusters rather than

observations yields the correct type I error for all methods. We also calculated the type I error

we would have obtained if we had incorrectly ignored the clustering structure when performing

the permutations. Note that failure to account for the clustering structure result in a type

I error of 100%. In Figure 3, we see the LDM controled FDR for these data, although the

power and sensitivity is lower than was observed with the same number of samples which

were unclustered (Figure 1). This is reasonable, as data with within-individual correlation is

typically not as informative as data from an equivalent number of independent samples.
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Results for continuous trait

From Table 1, we again see that all methods (adjusting for the confounder) have the

correct type I error for data with a continuous trait; there was inflation of type I error when

the confounder was not accounted for. In Figure 4, we see that the power of most methods

is about the same. Although the sensitivity remains low as the effect size β increases, this

appears to be related to the sample size, as we also show that the sensitivity increases rapidly

as the sample size increases (at fixed β = 3). The LDM continues to control FDR as the

sample size and sensitivity increase, while the empirical FDR for DESeq2 is never less than

40% for the range of sample sizes we considered.

Analysis of two microbiome datasets

To show the performance of the LDM in real microbiome data, we reanalyzed two datasets that

were previously analyzed using MiRKAT and MMiRKAT [28] (a variant of MiRKAT for testing

association between multiple continuous covariates and microbiome composition). The first is

from a study of the association between the upper-respiratory-tract (URT) microbiome and

smoking, and the second is from a study of the association between the prepouch-ileum (PPI)

microbiome and host gene expression in patients with inflammatory bowel disease (IBD). We

compared the performance of our global test (VE-omni) with PERMANOVA-FL, MiRKAT,

and MMiRKAT; we also compared our OTU-specific results with results from DESeq2.

URT microbiome and smoking association study

The data for our first example were generated as part of a study to examine the effect of

cigarette smoking on the orpharyngeal and nospharyngeal microbiome [22]. The 16S sequence

data are summarized in an OTU table consisting of data from 60 samples and 856 OTUs, with

mean library size 1500; metadata on smoking status (28 smokers and 32 nonsmokers) and two

additional covariates (gender and antibiotic use within the last 3 months) was also available.

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/229831doi: bioRxiv preprint 

https://doi.org/10.1101/229831


An imbalance in the proportion of male subjects by smoking status (75% in smokers, 56% in

non-smokers) indicates potential for confounding. Zhao et al. (2015) [3] analyzed these data

using MiRKAT, finding a significant global association between microbiome composition and

smoking status after adjusting for potential confounders gender and antibiotic use. We used

the Bray-Curtis distance for our analysis because it led to the smallest p-values compared to

other distances in Zhao et al. (2015). We combined gender and antibiotic use into a single

submodel M1 and treated smoking status as M2 when fitting the LDM.

We first constructed the ordination plots in Figure 5 using the Bray-Curtis distance after

removing the effects of gender and antibiotic use (i.e., using ∆1 as the distance matrix); these

plots demonstrate a clear shift in smokers compared with nonsmokers even after removing the

effect of potential confounders. The accompanying scree plots (Figure 5) on both frequency and

arcsin-root scales further suggest that smoking explains an important faction of the variability

in the OTU table. The residual (non-model) components are plotted in decreasing order of the

size of the eigenvalue of the component in the spectral decomposition of ∆2 (after removing

the effect of confounders and smoking); the high correlation between the order of values Dk

from the LDM and the order of eigenvalues of ∆2 is noteworthy. We filtered out OTUs with

presence in less than 5 samples, retaining 233 OTUs for analysis. The results of the LDM

global tests, along with results from PERMANOVA-FL and MiRKAT, are presented in top-

left panel of Table 2. VE-omni gave a smaller p-value than MiRKAT or PERMANOVA-FL

based on the Bray-Curtis distance. In the top-right panel of Table 2, we show the results of

our OTU-specific tests. VE-omni detected 5 OTUs (which include the 4 OTUs detected by

VE-freq and constitute 5 of the 14 OTUs detected by VE-arcsin) whereas DESeq2 detected

none. The inefficiency of DESeq2 is consistent with our simulation studies when the mean

library size was 1500 (results not shown).

PPI microbiome and host gene expression association study

The data for our second example were generated in a study of the association between the
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mucosal microbiome in the prepouch-ileum (PPI) and host gene expression among patients

with IBD [25]. The PPI microbiome data are summarized in an OTU table with data from

196 IBD patients and 7,000 OTUs; gene expression data at 33,297 host transcripts, as well

as clinical metadata such as antibiotic use (yes/no), inflammation score (0–13), and disease

type (familial adenomatous polyposis/FAP and non-FAP) were also available. The data also

included nine gene principal components (gPCs) that together explain 50% of the total variance

in host gene expression. Zhan et al. [28] gave a joint test of all nine gPCs for association with

microbiome composition, using MMiRKAT based on the Bray-Curtis distance measure and

adjusting for antibiotic use, inflammation score, and disease type (FAP/non-FAP). Here we

performed the same joint test using the LDM by putting the confounders in submodel matrix

M1 and then including all nine gPCs in a single submodel matrix M2; however, we followed

Morgan et al. (2015) [25] in only analyzing the original 196 PPI samples, not an additional 59

pouch samples from some of the same individuals included in the analysis of Zhan et al. [28].

We filtered out OTUs found in fewer than 5% of samples, retaining 2096 OTUs for analysis.

VE-freq, VE-arcsin, and VE-omni yielded p-values 0.023, 0.0084, and 0.015, respectively, and

detected 0, 4, and 3 OTUs (the 3 OTUs detected by VE-omni are included in the 4 OTUs

detected by VE-arcsin) that significantly accounted for the global association at a nominal

FDR rate of 10%. PERMANOVA-FL had p-value 0.0076 and MMiRKAT 0.0049, both based

on the Bray-Curtis distance.

We also followed Zhan et al. (2016) to conduct individual tests of each of the nine gPCs.

We treated each gPCs as a separate submodel (i.e., gPC1–gPC9 in M2–M10) in a single LDM,

with M1 accounting for the same confounders as in the joint test. Note that the gPCs are

orthogonal. Scree plots for frequency and arcsin-root transformed data are shown in Figure 6,

and indicate that gPC4 and gPC5 are most likely to be associated with microbial composition

although any association is likely to be marginal. In fact, Table 2 confirms that gPC4 and gPC5

showed significant associations (at the 0.05 significance level) with the overall microbiome

composition by the global tests; no other gPCs were found to be associated. Both VE-omni
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and VE-arcsin detected (the same) 3 associated OTUs for gPC5, while VE-arcsin additionally

found one OTU associated with gPC4. Both VE-omni and VE-arcsin also detected (the same)

1 OTU for gPC6, which was not significantly associated with the microbiome in a global test

by any method. In contrast to the results obtained by the LDM, DESeq2 detected between

4 and 59 OTUs for each of the nine gPCs, which seems implausible given the results of the

global tests. These findings may be related to the failure of DESeq2 to control FDR in the

presence of confounders in our simulation studies.

Discussion

We have presented the LDM, a linear model for testing association hypotheses for microbiome

data that can account for the complex designs found in microbiome studies. We have shown

that the LDM has good power for global tests of association between variables of interest and

the microbiome when compared to existing methods such as PERMANOVA and MiRKAT

(the simulation results of MiRKAT were similar to those of PERMANOVA and thus not

shown), but also provides OTU-specific tests. This is true even when confounding covariates

are present, or when the study design results in correlated data. We have additionally shown

that the OTUs identified by the LDM preserve FDR, while those identified by RNA-Seq-based

approaches such as DESeq2 typically do not; further, since global and OTU-specific tests are

unified, our analysis of the PPI microbiome data show that the LDM is less likely to identify

“significant” OTUs for variables that are not globally significant. In the analyses we show

here, there was only one instance where the LDM discovered OTUs that were significantly

associated with a variable but the LDM global test for that variable was non-significant (gPC6

in the PPI data); in our simulations there were no such cases, although that may be because

we only evaluated sensitivity for effect sizes that were large enough that the global test was

always positive. While some analysts may choose to only calculate OTU-specific tests in the

presence of a significant global test, this restriction is not required to control FDR at the

OTU level. We have evaluated our approach using simulated data with realistic amounts
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of overdispersion, confounding covariates and clustered data, and have shown how it can be

applied to two real datasets.

We implemented the LDM in the R package LDM for use on any operating system,

available at http://web1.sph.emory.edu/users/yhu30/software.html or on GitHub at

https://github.com/yhu/LDM. The program is scalable to large sample sizes. Using a single

thread of a MacBook Pro laptop (2.9 GHz Intel Core i7, 16 GB memory) and the default

value Lmin = 20, it took 8, 19, 833 seconds to perform integrated global and OTU tests with a

simulated dataset that consists of 20, 100, and 1000 samples. In our applications to real data,

we used Lmin = 100 to ensure stability of results which are based on Monte Carlo sampling.

It took 23 seconds (and stopped after 29400 permutations) to perform global and OTU tests

with the URT data, and 5 hours (and stopped after 1273000 permutations) to perform global

and OTU tests of nine gPCs separately with the PPI data.

The LDM easily handles complex designs. One important area the LDM is well-suited to

is accounting for experimental artifacts that may be introduced by the way the samples are

processed. For example, if the samples in a study are run on two different plates, and if some

samples are included on both plates, then a variable that represent the difference between the

microbiome profiles of the same sample on different plates can be included for each replicate

pair. In this situation, we could either test for a plate effect or simply decide a priori to

control for possible plate effects as confounders. Note that each variable we add (representing

a pair of samples) is balanced by the presence of an extra row in the data matrix, so that the

number of variables we have after adjusting for confounding remains equal to the number of

distinct samples. Note that in clustered data, the confounders (e.g., plate effect) could vary

within clusters. We plan to consider application of the LDM to design issues, such as how

many samples to replicate, in a separate publication.

The LDM has features in common with RA (Redundancy Analysis), a multivariate tech-

nique to describe how much variability in one matrix (say, an OTU table X) can be described

by variables in a second matrix (say, a model or design matrix M). The LDM differs from RA
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most importantly in its ability to simultaneously obtain results for several submodels (group-

ings of one or more variables). To fit more than one submodel using RA, it is necessary to

fit RA to each submodel, using data for which the previous submodels have been projected

off. This precludes use of type III (last variable added) tests, which are known to be the

most powerful [11]. Our use of the Freedman-Lane approach also gives superior performance;

in simulations, our PERMANOVA-FL had higher power than the adonis and adonis2 func-

tions in the R package vegan, even though adonis2 is based on some form of permutation of

residuals (according to adonis2 output).

Although the LDM is primarily based on the Euclidean distance in its focus on sums

of squares, variability explained and F-like tests, we have shown how information on arbi-

trary distances can be incorporated in exploratory analyses, and use a distance matrix to

choose analysis directions when submodels contain multiple terms. Although the Euclidean

distance has been criticized when used for ecological analysis, Chao and Chiu [29] have re-

cently suggested the problems associated with use of the Euclidean distance as a measure of

beta diversity are related to normalization, rather than any intrinsic failure of the Euclidean

distance. Finally, while distance-based Redundancy Analysis [30] does incorporate distance

information, like PERMANOVA, it removes information on the effects of individual OTUs,

and so was not included in our discussion.

In our examples here, we have put all confounders into the first submodel M1. This

conforms with practice in epidemiology in which confounders are not tested for inclusion into

a model, but rather are included based on subject-area knowledge [31]. With this in mind,

our implementation of the LDM does not provide p-values for the set of variables that are

designated as confounders, which makes the code run faster. However, for those who want

to estimate and test the individual effects of confounders, each confounder can be treated as

separate submodel, and the LDM will calculate a p-value for each confounder. The results

obtained in this way for the remaining variables are identical.

In this report we have concentrated on count data rather than presence-absence data.
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Although we plan to consider presence-absence data in a separate publication, preliminary

results indicate that if the data matrix is rarefied to a common library size and then converted

into presence-absence information, then the LDM works well with presence-absence data and

presence-absence-based distance measures. We plan to incorporate averages over rarefactions

as part of the Monte-Carlo procedure for hypothesis testing to eliminate the possible loss of

information that rarefaction may imply.

Among OTU-specific tests in absence of confounders, we found that metagenomeSeq con-

trolled FDR in the simulations we conducted, while Hawinkel et al. (2016) [13] claimed that

metagenomeSeq failed to control FDR. We noticed that Hawinkel et al. (2016) [13] adopted the

zero-inflated Gaussian mixture distribution (i.e., the fitZig function), whereas we adopted

the zero-inflated log-normal mixture model (i.e., the fitFeatureModel function) as recom-

mended by the metagenomeSeq R package. We also found that the Wilcoxon rank-sum test is

a robust and powerful choice for detecting differentially abundant OTUs when testing a single

binary covariate. A recently-developed version of the rank-sum test [32] that uses inverse-

probability-of-treatment weights could provide an interesting extension for categorical testing

when adjustment for confounding covariates is required. However, OTU-specific tests based

on the rank-sum test do not provide coherent results with any global test.

Conclusions

We propose the LDM, a method for testing association hypotheses for microbiome data. It

integrates distance-based analysis, global testing of any microbiome association, and detection

of individual OTU association to give coherent results. It is capable of handling complex design

features such as confounders, interactions, and correlated data, and is thus widely applicable in

modern microbiome studies. The LDM is generally as powerful as existing methods for testing

global associations, and controls FDR better than existing methods for finding individual

OTU effects. As such, it can accelerate the search for associations between the microbiome

and variables of interest.
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Appendix

In this appendix, we describe the permutation scheme we use to assess the significance

of our test statistics for both the LDM and PERMANOVA-FL. We make use of the fact

that, since the columns of B are orthogonal, BkB
T
k is the orthogonal projection operator (hat

matrix) corresponding to variables in submodel k. Consider the linear model for the jth

column of the matrix X given by

X·j =
K∑

k=1

BkW
T
k;j· + ǫ·j, (A1)

where ǫ·j = BK+1W
T
K+1;j· Suppose we wish to test the kth submodel. The Freedman-Lane

approach is to form residuals from the reduced model that excludes the term Bk, writing

Xk;·j =


I −

K∑

k′=1
k′ 6=k

Bk′B
T
k′


X·j,

where we have substituted the least-squares estimator of Wk;j· = XT
·jBk, and further note

this estimator is the same regardless of other terms in the model, since the columns of B are

orthogonal. We then generate a new set of values X
(π)
·j for X·j in which all linear effects except

those corresponding to Bk are preserved, but the residuals are permuted, by writing

X
(π)
·j =




K∑

k′=1
k′ 6=k

Bk′B
T
k′


X·j + PπXk;·j,

where Pπ is a permutation matrix. In order to construct the F tests we have described, we

need to calculate the residuals we would obtain by fitting either the full model (A1) to the

permuted data X
(π)
·j , and the reduced model that excludes the term Bk. These quantities are

most easily obtained by left-multiplying by an appropriate projection operator. The residual

for fitting the full model is given by

(
I −

K∑

k′=1

Bk′B
T
k′

)
X

(π)
·j =

(
I −

K∑

k′=1

Bk′B
T
k′

)
PπXk;·j,
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so that the residual sum of squares after fitting the full model is

XT
k;·jP

T
π

(
I −

K∑

k′=1

Bk′B
T
k′

)
PπXk;·j.

Because the Bks are orthogonal, we can see that the difference between the residual sum of

squares for the full and restricted models is simply the contribution to the sum of squares for

Bk, given by

XT
k;·jP

T
π BkB

T
k PπXk;·j.

Finally, we note that if Pπ is a permutation matrix, then PT
π is also a permutation matrix

corresponding to the permutation that reverses the effect of Pπ, i.e., PπP
T
π = I. Thus, we

define B
(π)
k = PT

π Bk to be a row-permuted version of Bk and note that the columns of B(π)

remain orthogonal, so that B
(π)
k B

(π)T

k is the orthogonal projection (hat) matrix corresponding

to fitting a model in which the variables have been permuted according to permutation matrix

PT
π . With this observation, we note that the residual sum of squares after fitting the full model

is

XT
k;·j

(
I −

K∑

k′=1

B
(π)
k′ B

(π)T

k′

)
Xk;·j,

which is the denominator of Fkj given in (10). Similarly, the contribution to the sum of squares

due to B
(π)
k alone is

XT
k;·jB

(π)
k B

(π)T

k Xk;·j,

which is the numerator of Fkj. Note also that B
(π)T

k B
(π)
k′ = δkk′I since PπP

T
π = I.
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Table 1 Type I error for testing the global hypothesis at nominal significance level 0.05

Scenario n PERMANOVA-FL adonis2 VE-freq VE-arcsin VE-omni

Independent samples, one-way case-control design

Adjusting for confounder S1 20 0.040 0.052 0.045 0.031 0.038

100 0.053 0.052 0.050 0.054 0.053

S2 20 0.039 0.054 0.043 0.026 0.034

100 0.050 0.050 0.052 0.047 0.053

Not adjusting for confounder S1 20 0.299 0.296 0.215 0.408 0.362

100 0.987 0.987 0.913 0.998 0.997

S2 20 0.065 0.064 0.056 0.076 0.067

100 0.151 0.151 0.083 0.245 0.194

Independent samples, two-way design

Testing for Y1 S1 100 0.046 0.013 0.048 0.048 0.050

S2 100 0.049 0.048 0.051 0.051 0.050

Testing for Y2 S1 100 0.049 0.036 0.049 0.046 0.049

S2 100 0.053 0.048 0.053 0.054 0.054

Clustered samples, one-way case-control design

Accounting for clustering S1 100 0.050 0.050 0.048 0.051 0.053

S2 100 0.044 0.047 0.047 0.044 0.045

Not accounting for clustering S1 100 1 1 1 1 1

S2 100 1 1 0.999 1 1

Independent samples, continuous trait

Adjusting for confounder 100 0.049 0.051 0.055 0.049 0.051

Not adjusting for confounder 100 0.095 0.095 0.090 0.093 0.091

Results for PERMANOVA-FL and adonis2 are based on the Bray-Curtis distance. n is the
number of samples. When testing Y1, we set β2 = 0.5; when testing Y2, we set β1 = 0.5. All
analyses of clustered data adjust for the confounder.
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Table 2 Results in analysis of the two real datasets

Testing the global hypothesis Testing individual OTUs

trait MiRKAT PERMANOVA-FL VE-freq VE-arcsin VE-omni VE-freq VE-arcsin VE-omni DESeq2

URT microbiome data

Smoking 0.0019 0.0018 0.0070 0.0006 0.001 4 14 5 0

PPI microbiome data

gPC1 0.22 0.19 0.13 0.47 0.19 0 0 0 14

gPC2 0.36 0.19 0.19 0.19 0.26 0 0 0 49

gPC3 0.24 0.31 0.30 0.21 0.29 0 0 0 29

gPC4 0.16 0.088 0.013 0.080 0.021 0 1 0 13

gPC5 0.0094 0.015 0.034 0.010 0.015 0 3 3 48

gPC6 0.19 0.41 0.43 0.49 0.53 0 1 1 23

gPC7 0.15 0.21 0.76 0.16 0.22 0 0 0 59

gPC8 0.21 0.33 0.64 0.36 0.47 1 0 0 4

gPC9 0.15 0.12 0.10 0.12 0.15 0 0 0 20

For the global hypotheses, reported results are p-values. For the individual OTU tests, results
reported are the number of OTUs detected at FDR = 10%. MiRKAT and PERMANOVA-FL
results are based on the Bray-Curtis distance.
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Fig. 1 Simulation results for one-way, case-control studies with independent samples. The
gray dotted lines represent the nominal FDR=0.1. BC: Bray-Curtis; WU: weighted UniFrac;
H: Hellinger.
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Fig. 2 Simulation results for studies with the two-way design and independent samples. The
gray dotted lines represent the nominal FDR=0.1. BC: Bray-Curtis. When testing Y1, we set
β2 = 0.5; when testing Y2, we set β1 = 0.5.
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Fig. 3 Simulation results for clustered data. The gray dotted lines represent the nominal
FDR=0.1. BC: Bray-Curtis; WU: weighted UniFrac; H: Hellinger. The DESeq2 program is
not applicable for this type of clustered data.
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Fig. 4 Simulation results for a continuous trait. The first and second columns correspond
to results as the effect size and the sample size, respectively, increase. The gray dotted lines
represent the nominal FDR=0.1. When varying the sample size, we set β = 1 for evaluating
power and β = 3 for sensitivity and empirical FDR.
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Fig. 5 Exploratory analysis of the URT microbiome data based on the Bray-Curtis distance.
Left plot: ordination plot after removing the effects of confounders gender and antibiotic
use, colored by smoking status. Center and right plots: proportions of variance explained by
smoking and the PCs of the (residual) distance measure after removing the effects of gender
and antibiotic use; the PCs are ordered by their Bray-Curtis eigenvalues. The center plot is
based on frequency data and the right plot is based on arcsin-root transformed data. The
components are ordered by the magnitude of their corresponding eigenvalue in a spectral
decomposition of ∆2 (the distance matrix after removing the effect of the confounders and
smoking).
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Fig. 6 Exploratory analysis of the PPI microbiome data based on the Bray-Curtis distance.
The proportions of variance explained by the 9 gPCs and the PCs of the (residual) distance
measure are obtained after removing the effects of confounders antibiotic use, inflammation
score, and disease type. The PCs are ordered by their Bray-Curtis eigenvalues. The left
plot is based on frequency data and the right plot is based on arcsin-root transformed data.
The components are ordered by the magnitude of their corresponding eigenvalue in a spectral
decomposition of ∆10 (the distance matrix after removing the effect of confounders and the 9
gPCs). Only the first 50 (of 195 total) components are shown.
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