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Abstract

Data envelopment analysis (DEA) and free disposal hull (FDH) estimators are widely
used to estimate efficiencies of production units. In applications, practitioners use DEA
estimators far more frequently than FDH estimators, and thereby assume, at least im-
plicitly, that production sets are convex. Moreover, use of the constant returns to scale
(CRS) version of the DEA estimator requires an assumption of CRS. While several
bootstrap methods have been developed for making inference about the efficiencies of
individual units, to date no methods have existed for making consistent inference about
differences in mean efficiency across groups of producers or for testing hypotheses about
model structure such as returns to scale or convexity of the production set. This pa-
per builds on central limit theorem results of Kneip et al. (2013) to develop additional
theoretical results permitting consistent tests of model structure. Monte Carlo results
illustrating the performance of the tests in terms of size and power are also presented. In
addition, the variable returns to scale version of the DEA estimator is proved to attain
the faster convergence rate of the CRS-DEA estimator under CRS.
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1 Introduction

Nonparametric efficiency estimators are widely used to benchmark producers’ performance

by estimating distance from a producer’s location in input-output space to the boundary

of the set of feasible combinations of inputs and outputs—i.e., the production set—in one

of several possible directions. Estimators that involve enveloping the observed set of input-

output vectors with convex sets are known in the literature as data envelopment analysis

(DEA) estimators, and can be traced to the ideas of Kantorovich (1939), Koopmans (1951),

and Debreu (1951). The early work by Kantorovich was suppressed by Soviet authorities;

in the West, Farrell (1957) is typically credited with the first empirical application of DEA

estimators. The methods were subsequently popularized by Charnes et al. (1978), Banker

et al. (1984), and others. Alternatively, the free disposal hull (FDH) estimator proposed by

Deprins et al. (1984) envelops observed input-output vectors with a non-convex set.

Many hundreds of examples of nonparametric efficiency estimation can be found in the

literature; Gattoufi et al. (2004) list over 1,800 published studies, and internet searches find

many more.1 The statistical properties of these estimators were unknown until recently; conse-

quently, most studies have not employed statistical inference. In recent years, however, many

results have been obtained, permitting inference about the efficiency of individual producers; a

recent survey of these results is provided by Simar and Wilson (2013). In addition, Kneip et al.

(2013) develop new central limit theorems for means of nonparametric efficiency estimators,

permitting inference about mean efficiency and convenient summarization of results.

While it is useful to make inference about the efficiency of individual producers, as well as

mean efficiency among groups of producers, more is needed. This paper extends the results of

Kneip et al. (2013) to develop methods for testing differences in mean efficiency across groups

of producers, as well as model features such as returns to scale or convexity of the production

set. Regarding tests of differences in mean efficiency across groups, one might wonder if

this is not a trivial problem. However, the results of Kneip et al. (2013) make clear that

standard central limit theorems do not apply (except when the number of inputs and outputs

are implausibly small); in addition, it is well-known that nonparametric efficiency estimators

are correlated, which introduces additional complication. As will be seen, the problem is not

1 A search on google.com on 29 October 2013 using the keywords “dea,” “efficiency,” and “production”
yielded approximately 5,480,000 results.
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straightforward.

One might similarly wonder whether constant returns to scale (CRS) might be tested

against the alternative hypothesis of non-constant, variable returns to scale (VRS) by simply

comparing means of DEA estimators that impose CRS (CRS-DEA) and means of DEA es-

timators that permit VRS (VRS-DEA), or whether convexity versus non-convexity might be

tested by comparing means of FDH and VRS-DEA estimators. However, here too the prob-

lem is complicated for the same reasons that testing whether mean efficiency is the same for

two groups of producers. Testing CRS versus VRS also involves an additional complication—

Park et al. (2010) prove that the CRS-DEA rate converges at rate n2/(p+q) under CRS, where

n is the sample size and p and q give the numbers of inputs and outputs, respectively, while

Kneip et al. (1998) prove that the VRS-DEA estimator converges at rate n2/(p+q+1) under

VRS. Careful reading of Kneip et al. (2013) reveals that convergence rates play an important

role in the new central limit theorems obtained there; for purposes of testing CRS versus VRS,

one needs the convergence rate of the VRS-DEA estimator under CRS, but until now this has

been unknown. Below, we present a theorem (and a proof) establishing that the VRS-DEA

estimator attains the same convergence rate as the CRS-DEA estimator under CRS.

The ability to test whether the production set is convex or non-convex is crucially im-

portant in applications; DEA estimators impose convexity, and are statistically consistent

only if the production set is convex. FDH estimators, on the other hand, remain consistent

regardless of whether the production set is convex, but their convergence rate is slower than

that of DEA estimators for a given number of inputs and outputs. If the production set is

convex, it is similarly important to be able to test whether returns to scale are constant or

variable. Although the theorem given below indicates that the variance of the VRS-DEA

estimator is of the same order as the variance of the CRS-DEA estimator when CRS holds,

one should expect the variance of the CRS-DEA estimator to be smaller than that of the

VRS-DEA estimator under CRS, since the CRS-DEA estimator imposes CRS whereas the

VRS-DEA estimator does not (i.e., the CRS-DEA estimator exploits the information that the

frontier is CRS while the VRS-DEA estimator does not). Until now, the choice between FDH,

CRS-DEA, and VRS-DEA estimators in many empirical studies has been largely ad-hoc. The

results we provide here will allow researchers to choose the appropriate estimator for a given

situation.
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The paper unfolds as follows. In the next section, a statistical model is established, with

requisite assumptions, and the nonparametric efficiency estimators are briefly described. In

Section 3, various issues surrounding tests of differences in mean or model features are dealt

with to propose specific test statistics and to derive results required for implementing the tests

and making appropriate inference. The performance of the tests in finite samples is examined

in a series of Monte Carlo experiments described in Section 4, and conclusions are given in

the final section.

2 A Statistical Model

Denote a vector of p input quantities by x ∈ Rp
+, and a vector of q output quantities by

y ∈ Rq
+. The production set

Ψ = {(x, y) ∈ Rp+q
+ | x can produce y}, (2.1)

gives the set of combinations of inputs and outputs that are feasible. The technology, or

efficient frontier of Ψ, is given by

Ψ∂ =
{

(x, y) ∈ Ψ |
(
γ−1x, γy

)
6∈ Ψ for all γ > 1

}
. (2.2)

The Farrell (1957) input-oriented measure of technical efficiency,

θ(x, y) = inf{θ > 0 | (θx, y) ∈ Ψ}, (2.3)

gives the minimum feasible, proportionate reduction in input levels, holding output levels

constant, for a firm operating at (x, y) ∈ Ψ. Clearly, θ(x, y) ∈ (0, 1] ∀ (x, y) ∈ Ψ; if θ(x, y) = 1,

the firm is said to be technically efficient in the input direction. Alternatively, if θ(x, y) < 1,

the firm is said to be technically inefficient.

Technical efficiency can be also be measured in output, hyperbolic, or arbitrary, linear

directions toward the frontier as discussed by Simar and Wilson, (2000, 2013), Wilson (2011),

Simar and Vanhems (2012), and Simar et al. (2012). To conserve space, the analysis below is

presented in terms of the input-oriented measure in (2.3); it is trivial (but perhaps tedious) to

extend all of the results that follow to the other directions by simply adapting the notation.

Various assumptions on the production set Ψ can be made, but typical assumptions (e.g.,

Shephard, 1970; Färe, 1988; Simar and Wilson (2000); etc.) include the following.
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Assumption 2.1. Ψ is closed, and Ψ∂ exists.

Assumption 2.2. Both inputs and outputs are strongly disposable; i.e., for x̃ ≥ x, 0 ≤ ỹ ≤ y,

if (x, y) ∈ Ψ then (x̃, y) ∈ Ψ and (x, ỹ) ∈ Ψ.2

Strong disposability in Assumption 2.2 implies weak monotonicity for the frontier, and is

standard in micro-economic theory of the firm. Additional assumptions about the structure

of Ψ or Ψ∂ are often made. For example, in studies where DEA estimators are employed,

Ψ is assumed (often implicitly) to be convex. Where CRS-DEA estimators are used, Ψ∂ is

assumed to be characterized by constant returns to scale everywhere (e.g., Charnes et al.,

1978; etc.). As noted in the introduction, these assumptions have typically been ad-hoc. Such

assumptions should be tested.

Of course, the set Ψ is unobserved, and hence must be estimated from a sample Xn =

{(Xi, Yi)}ni=1 of observed input-output pairs Xi ∈ Rp
+, Yi ∈ Rq

+. The free-disposal hull of the

sample observations in Xn, i.e.,

Ψ̂FDH(Xn) =
⋃

(Xi,Yi)∈Xn

{
(x, y) ∈ Rp+q | y ≤ Yi, x ≥ Xi

}
, (2.4)

was proposed by Deprins et al. (1984) to estimate Ψ. Replacing Ψ with Ψ̂FDH(Xn) on the

right-hand side (RHS) of (2.3) yields the FDH estimator θ̂FDH(x, y | Xn) of θ(x, y).3

Alternatively, if Ψ is convex, then Ψ can be estimated by

Ψ̂VRS(Xn) =
{

(x, y) ∈ Rp+q | y ≤ Y ω, x ≥Xω, i′nω = 1, ω ∈ Rn
+

}
, (2.5)

where X =
(
X1, . . . , Xn

)
and Y =

(
Y1, . . . , Yn

)
are (p × n) and (q × n) matrices of input

and output vectors, respectively; in is an (n × 1) vector of ones, and ω is a (n × 1) vector

of weights. This is the convex hull of Ψ̂FDH(Xn), and is called the VRS-DEA estimator of Ψ.

Replacing Ψ on the RHS of (2.3) with Ψ̂VRS(Xn) yields the VRS-DEA estimator of θ(x, y).

If Ψ∂ exhibits globally constant returns to scale (CRS), i.e, if (ax, ay) ∈ Ψ for all (x, y) ∈
Ψ and a ∈ [0,∞), then Ψ can be estimated by the conical hull of Ψ̂FDH(Xn) obtained by

2 Note that as usual, inequalities involving vectors are defined on an element-by-element basis.
3 Afriat (1972, Theorem 1.1) defines a left- (but not right-) continuous function similar to the FDH estimator

Ψ̂FDH(Xn) for the case p ≥ 1, q = 1. Note, however, that Ψ̂FDH(Xn) is not a function, and is defined for
arbitrary p ≥ 1 as well as q ≥ 1. Moreover, Afriat’s function does not permit measurement of efficiency in the
input direction, nor (in general) in hyperbolic or directional orientations.
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dropping the constraint i′nω = 1 from the RHS of (2.5); denote this estimator by Ψ̂CRS(Xn).

Again using the plug-in principle, replacing Ψ on the RHS of (2.3) with Ψ̂CRS(Xn) yields

the CRS-DEA estimator θ̂CRS(x, y | Xn) of θ(x, y). By construction, for a given sample Xn,

Ψ̂FDH(Xn) ⊆ Ψ̂VRS(Xn) ⊆ Ψ̂CRS(Xn).

Computation of the FDH and DEA efficiency estimators is straightforward. FDH efficiency

estimates can be computed as

θ̂FDH(x, y) = min
i∈I(y)

(
max

j=1, ..., p

(
Xj
i

xj

))
, (2.6)

where I(y) = {i | yi ≥ y, i = 1, . . . , n} and Xj
i , x

j are the jth elements of Xi and x,

respectively (throughout, subscripts will be used to index different vectors, while superscripts

will be used to index elements of vectors). DEA efficiency estimates are typically computed

by solving linear programs; for the VRS-DEA estimator, one can compute

θ̂VRS(x,y) = min
θ,ω

{
θ | y ≤ Y ω, θx ≥Xω, i′nω = 1, ω ∈ Rn

+

}
. (2.7)

The CRS-DEA estimator θ̂CRS(x, y | Xn) can be computed similarly by dropping the constraint

i′nω = 1 on the RHS of (2.7).

Asymptotic properties of FDH efficiency estimators are given by by Park et al. (2000) and

Daouia et al. (2013). Asymptotic properties of VRS-DEA efficiency estimators are investigated

in Kneip et al. (1998), Jeong (2004), Jeong and Park (2006), Kneip et al. (2008), while

asymptotic properties of CRS-DEA efficiency estimators are examined in Park et al. (2010).

Under appropriate assumptions, each estimator is consistent and converges at rate nκ, where

κ = 1/(p + q), 2/(p + q + 1), or 2/(p + q) for the FDH, VRS-DEA, and CRS-DEA cases,

respectively. In addition, each estimator has a non-degenerate limiting distribution. These

results have been extended to the hyperbolic and directional orientations by Wilson (2011),

Simar and Vanhems (2012), and Simar et al. (2012), with similar rates of convergence and

limiting distributions.

Additional, technical assumptions required for each central limit theorem result (for means

of FDH, VRS-DEA, and CRS-DEA estimates) established by Kneip et al. (2013) and used

below are given in the Appendix, in Section A.1:.
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3 Testing Issues in Nonparametric Frontier Models

3.1 Testing the equality of the mean of 2 groups of firms

Suppose the researcher is confronted with two independent samples of sizes n1 and n2 of firms

belonging to groups labeled G1 and G2. In such situations, it is natural to test whether

µ1,θ = E(θ(X, Y ) | (X, Y ) ∈ G1) and µ2,θ = E(θ(X, Y ) | (X, Y ) ∈ G2) are equal against

the alternative that, say, Group 1 is more efficient than Group 2, i.e. µ1,θ > µ2,θ.
4 More

formally, one might test the null hypothesis H0 : µ1,θ = µ2,θ versus the alternative hypothesis

H1 : µ1,θ > µ2,θ.

Testing for mean efficiency across two groups was suggested—but not implemented—in

the pioneering application of Charnes et al. (1981), who considered two groups of schools,

one receiving a treatment effect and the other not receiving the treatment. To give additional

examples where such a test might be useful, one might test whether mean efficiency among for-

profit producers is greater than mean efficiency of non-profit producers in studies of hospitals,

banks and credit unions, or perhaps other industries. One might similarly be interested in

comparing average performance of publicly-traded versus privately-held firms, or in regional

differences that might reflect variation in state-level regulation or other industry features.

Suppose iid samples X1,n1 = {(Xi, Yi)}n1
i=1 and X2,n2 = {(Xi, Yi)}n2

i=1 of input-output pairs

from groups 1 and 2 (respectively) are available. In addition, assume these samples are

independent of each other. The two samples yield independent estimators

µ̂1,n1 = n−11

∑
(Xi,Yi)∈X1,n1̂

θ(Xi, Yi | X1,n1) (3.1)

and

µ̂2,n2 = n−12

∑
(Xi,Yi)∈X2,n2̂

θ(Xi, Yi | X2,n2) (3.2)

of µ1,θ and µ2,θ, respectively; the conditioning indicates the sample used to compute the

efficiency estimates under the summation signs. In addition, the subscripts on θ̂(·) have been

dropped; either the FDH, VRS-DEA, or CRS-DEA estimators with corresponding convergence

rates nκ could be used, although the same estimator would be used for both groups. Theorem

4.1 of Kneip et al. (2013) establishes (under appropriate regularity conditions; see Section A.1:

4 Mutatis mutandis, alternative tests with a two sided alternative or with other measures of efficiency would
follow the same procedure.
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for details) consistency and other properties of these estimators. The same theorem, however,

makes clear that standard, conventional central limit theorems can be used to make inference

about the population means µ1,θ and µ2,θ only when the dimensionality (p+q) is small enough

so that κ > 1/2 due to the bias of the estimators µ̂1,n1 and µ̂2,n2 . The assumptions required

for consistency of µ̂1,n1 and µ̂2,n2 are decreasingly restrictive as one moves from the CRS-DEA

case to the VRS-DEA case, and finally to the FDH case. The presentation in the remainder

of this sub-section is in terms of the VRS-DEA case; the results extend easily to the other

cases with appropriate changes in assumptions and notation.

Kneip et al. (2013) use a bias estimate to develop new central limit theorems for making

inference about mean efficiency. First, divide the sample for group ` ∈ {1, 2} by setting

m`,1 = [n`/2] and m`,2 = n`− [n`/2], where [a] denotes the integer part of a. Set k = 1. Then

let X (1)
`,m`,1,k

denote a random subset of size m`,1 of observed input-output pairs in X`,n` , and

let X (2)
`,m`,2,k

be the set of remaining input-output pairs in X`,n` so that X (1)
`,m`,1,k

∩ X (2)
`,m`,2,k

= ∅
and X (1)

`,m`,1,k
∪ X (2)

`,m`,2,k
= X`,n` . Hence the samples X`,n` are split evenly where n` is even, or

almost evenly (with a difference of one observation) where n` is odd. Now let

µ̂
(j)
`,m`,j ,k

= (m`,j)
−1

∑
(Xi,Yi)∈X

(j)
`,m`,j ,k

θ̂
(
Xi, Yi | X (j)

`,m`,j ,k

)
(3.3)

for j ∈ {1, 2}. Define

µ̃∗`,n`,k = 0.5
(
µ̂
(1)
`,m`,1,k

+ µ̂
(2)
`,m`,2,k

)
(3.4)

and

B̃`,κ,n`,k = (2κ − 1)−1
(
µ̃∗`,n`,k − µ̂`,n`

)
. (3.5)

Of course, for group ` ∈ {1, 2} with n` observations, there are
(
n`
n`/2

)
possible splits of

the sample. To reduce the variation of the bias estimate in (3.5), the above steps can be

repeated, shuffling the observations before each split of the two samples, for k = 1, . . . , K

with K <<
((

n1

n1/2

)
∧
(
n2

n2/2

))
. Then set

B̂`,κ,n` = K−1
K∑
k=1

B̃`,κ,n`,k. (3.6)

This gives a jackknife estimate of bias.5

5 In many cases, one might use a delete-one or a delete-k jackknife with samples of size n − k to correct
for bias. For our purposes, however, the jackknife samples must be a fixed, constant, multiplicative factor of
n in order for the result in Theorem 4.3 of Kneip et al., 2013 to hold.
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Theorem 4.3 of Kneip et al. (2013) establishes, under appropriate regularity conditions

and provided p+ q ≤ 4 when VRS-DEA estimators are used,

√
n`

(
µ̂`,n` − B̂`,κ,n` − µ`,θ +R`,n`,κ

)
L−→ N(0, σ2

`,θ) (3.7)

for the two groups ` ∈ {1, 2}, where R`,n`,κ = o(n−κ` ) and σ`,θ = VAR(θ(X, Y ) | (X, Y ) ∈ G`).

If CRS-DEA estimators are used and Ψ∂ is globally CRS, then the result holds for p+ q ≤ 5.

On the other hand, if FDH estimators are used, the result is valid only for p + q ≤ 3. See

Kneip et al. (2013) for additional details.

Alternatively, if p + q > 4 and VRS-DEA estimators are used (or if p + q > 5 with CRS-

DEA estimators, or p+ q > 3 with FDH estimators), then Theorem 4.4 of Kneip et al. (2013)

is applicable. For ` ∈ {1, 2}, let n`,κ = [n2κ
` ]; then n`,κ < n` for κ < 1/2. Let X ∗`,n`,κ be a

random subset of n`,κ input-output pairs from X`,n` . Then let

µ̂`,n`,κ = n−1`,κ
∑

(X`,i,Y`,i)∈X ∗`,n`,κ

θ̂ (X`,i, Y`,i) | X`,n`) , (3.8)

noting that while the summation is over only the input-output pairs in X ∗`,n`,κ , the efficiency

estimates under the summation sign are computed using all of the input-output pairs in X`,n` .
Then by Kneip et al. (2013, Theorem 4.4), for each group ` = 1, 2,

n`
κ
(
µ̂`,n`,κ − B̂`,κ,n` − µ`,θ +R`,n`,κ

)
L−→ N(0, σ2

`,θ) (3.9)

under suitable regularity conditions.

For all values of p+ q, Theorem 4.1 of Kneip et al. (2013) indicates that the variances σ2
`,θ

are estimated consistently by the sample variances σ̂2
`,θ,n`

within each group ` ∈ {1, 2}; i.e.,

σ̂2
`,θ,n`

= n−1`

n∑̀
i=1

[
θ̂(X`,i, Y`,i | X`)− µ̂`,n`

]2 p−→ σ2
` . (3.10)

The independence of the two samples plays a crucial role, and avoids complications due to

covariances.

It is well-known that two sequences of independent variables, each having a normal limiting

distribution, possess a joint limiting bivariate normal distribution with independent marginals

given by the individual normal limits. Consequently, the difference of the two random, inde-

pendent sequences has a limiting normal distribution given by the difference of the two normal
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limits. Therefore, using VRS-DEA estimators with p + q ≤ 4 (or CRS-DEA estimators with

p+ q ≤ 5, or FDH estimators with p+ q ≤ 3),

τ̂1,n1,n2 =
(µ̂1,n1 − µ̂2,n2)−

(
B̂1,κ,n1 − B̂2,κ,n2

)
− (µ1,θ − µ2,θ)√

σ̂2
1,θ,n1

n1
+

σ̂2
2,θ,n2

n2

L−→ N(0, 1), (3.11)

provided n1/n2 → c > 0 as n1, n2 → ∞, where c is a constant. Then if p̂ = 1 − Φ (τ̂1,n1,n2)

is sufficiently small, perhaps less than .1, .05, or .01 and where Φ(·) denotes the standard

normal distribution function, one may reject the null hypothesis H0 : µ1,θ = µ2,θ in favor of

the alternative hypothesis H1 : µ1,θ > µ2,θ. One could also use (3.11) to construct confidence

intervals for (µ1,θ − µ2,θ).

In situations where p + q > 4 with VRS-DEA estimators (or p + q > 5 with CRS-DEA

estimators, or p+ q > 3 with FDH estimators), a similar test statistic can be obtained using

(3.9) in place of equations (3.7). Using similar reasoning, it is easy to see that

τ̂2,n1,κ,n2,κ =

(
µ̂1,n1,κ − µ̂2,n2,κ

)
−
(
B̂1,κ,n1 − B̂2,κ,n2

)
− (µ1,θ − µ2,θ)√

σ̂2
1,θ,n1

n1,κ
+

σ̂2
2,θ,n2

n2,κ

L−→ N(0, 1), (3.12)

again provided provided n1/n2 → c > 0 as n1, n2 →∞. Note that the same estimates for the

variances and biases are used in (3.12) as in (3.11). The only difference between (3.11) and

(3.12) is in the number of observations used to compute the sample means.

3.2 Testing returns to scale

Unlike the situation described in Section 3.1 where the researcher faces two independent groups

of observations and wants to test whether mean efficiency is the same in the two groups, one

may face a single iid sample Xn = {(Xi, Yi}ni=1 of n input-output pairs and wish to test the null

hypothesis of constant returns to scale versus the alternative hypothesis of variable returns to

scale. Under the alternative hypothesis, Ψ is strictly convex, while under the null, Ψ is only

weakly convex. Under the null, both the VRS-DEA and CRS-DEA estimators of θ(X, Y ) are

consistent, but under the alternative, only the VRS-DEA estimator is consistent.

Consider the sample means

µ̂full
VRS,n = n−1

n∑
i=1

θ̂VRS (Xi, Yi | Xn) (3.13)
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and

µ̂full
CRS,n = n−1

n∑
i=1

θ̂CRS (Xi, Yi | Xn) (3.14)

computed using all of the n observations in Xn. By construction, θ̂CRS (Xi, Yi | Xn) ≤
θ̂VRS (Xi, Yi | Xn) ≤ 1 and hence µ̂full

VRS,n − µ̂full
CRS,n ≥ 0. Under the null, one would expect

µ̂full
VRS,n − µ̂full

CRS,n to be “small,” while under the alternative µ̂full
VRS,n − µ̂full

CRS,n is expected to be

“large.”

Clearly, the variance of the difference µ̂full
VRS,n − µ̂full

CRS,n is VAR
(
µ̂full
VRS,n

)
+ VAR

(
µ̂full
CRS,n

)
−

2COV
(
µ̂full
VRS,n, µ̂

full
CRS,n

)
. By Theorem 4.1 of Kneip et al. (2013), the first two terms sum to

2n−1σ2
θ , and under the null

COV
(
µ̂full
VRS,n, µ̂

full
CRS,n

)
= COV

[(
µ̂full
VRS,n − E

(
µ̂full
VRS,n

)) (
µ̂full
CRS,n − E

(
µ̂full
CRS,n

))]
= COV

[(
θn − µθ + op

(
n−1/2

))
,
(
θn − µθ + op

(
n−1/2

))]
= VAR

(
θn
)

+ o
(
n−1
)

= n−1σ2
θ + o

(
n−1
)

(3.15)

under the null, where θn = n−1
∑n

i=1 θ(Xi, Yi), which is unobserved. Consequently, a test

statistic using the difference in the sample means given by (3.13)–(3.14) will have a degenerate

distribution under the null since the asymptotic variance of
(
µ̂full
VRS,n − µ̂full

CRS,n

)
is zero. In other

words, the density of na
(
µ̂full
VRS,n − µ̂full

CRS,n

)
collapses to a Dirac delta function at zero for any

power a ≤ 1/2 of n. This is true regardless of the dimensionality (p+ q).

In order to obtain non-degenerate test statistics, randomly split the sample into two sam-

ples X1,n1 , X2,n2 such that X1,n1 ∪ X2,n2 = Xn and X1,n1 ∩ X2,n2 = ∅, where n1 = [n/2] and

n2 = n− n1. Next, let

µ̂VRS,n1 = n−11

∑
(Xi,Yi)∈X1,n1̂

θVRS(Xi, Yi | X1,n1) (3.16)

and

µ̂CRS,n2 = n−12

∑
(Xi,Yi)∈X2,n2̂

θCRS(Xi, Yi | X2,n2). (3.17)

In addition, let

σ̂2
VRS,n1

= n−11

∑
(Xi,Yi)∈X1,n1

[
θ̂VRS(Xi, Yi | X1,n1)− µ̂VRS,n1

]2
(3.18)
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and

σ̂2
CRS,n2

= n−12

∑
(Xi,Yi)∈X2,n2

[
θ̂CRS(Xi, Yi | X2,n2)− µ̂CRS,n2

]2
. (3.19)

Theorem 4.1 of Kneip et al. (2013) establishes that both µ̂VRS,n1 and µ̂CRS,n2 are consistent

estimators of µθ = E(θ(X, Y )) under the null hypothesis of CRS, and that both (3.18) and

(3.19) consistently estimate the variances of the VRS and CRS efficiency estimators.

Park et al. (2010) prove that the CRS efficiency estimator converges at rate n2/(p+q) under

CRS, whereas Kneip et al. (1998) prove that the VRS efficiency estimator converges at rate

n2/(p+q+1) under variable (but not constant) returns to scale. The following theorem establishes

the convergence rate of the VRS efficiency estimator when Ψ∂ is globally CRS; this is needed

to construct bias corrections similar to those used above in Section 3.1 and in Kneip et al.

(2013).

The theorem that follows gives some new and unexpected results. Among other things,

the theorem establishes that when Ψ∂ is globally CRS, the VRS-DEA estimator attains the

faster convergence rate of the CRS-DEA estimator.

Theorem 3.1. Under Assumptions 2.1–A.1, A.4, and A.6, the following conditions hold:

(i) For any fixed (x, y) in the interior of D

θ̂VRS(x, y | Xn)− θ(x, y) = OP (n−
2
p+q ). (3.20)

(ii) If p + q = 2, then E
[
θ̂VRS(Xi, Yi | Xn)− θ(Xi, Yi)

]
= O(n−1 log n). If p + q > 2, then

there exists a constant 0 < D1 <∞ such that for all i, j ∈ {1, . . . , n}, i 6= j,

E
[
θ̂VRS(Xi, Yi | Xn)− θ(Xi, Yi)

]
= D1n

− 2
p+q +O

(
n−

3
p+q (log n)

p+q+3
p+q

)
, (3.21)

VAR
(
θ̂VRS(Xi, Yi | Xn)− θ(Xi, Yi)

)
= O

(
n−

3
p+q (log n)

3
p+q

)
, (3.22)

and∣∣∣COV
(
θ̂VRS(Xi, Yi | Xn)− θ(Xi, Yi), θ̂VRS(Xj, Yj | Xn)− θ(Xj, Yj)

)∣∣∣
= O

(
n−

p+q+1
p+q (log n)

p+q+1
p+q

)
= o

(
n−1
)
. (3.23)

The value of the constant D1 depends on f and on the structure of the set D ⊂ Ψ.
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A proof is given in the Appendix, in Section A.2:.

By virtue of Theorem 3.1, we can build a test statistic as follows. First, in order to

construct the bias corrections, set k = 1 and split each of the two subsamples X`,n` , ` ∈ {1, 2}
randomly into two mutually exclusive and collectively exhaustive parts X (1)

`,m`,1,k
and X (2)

`,m`,2,k

as described above in Section 3.1. For each part j ∈ {1, 2} of X1,n1,k, compute

µ̂
(j)
VRS,m1,j ,k

= m−11,j

∑
(Xi,Yi)∈X

(j)
1,m1,j

θ̂VRS

(
Xi, Yi | X (j)

1,m1,j,k

)
. (3.24)

Similarly, for each part j ∈ {1, 2} of X2,n2,k, compute

µ̂
(j)
CRS,m2,j ,k

= m−12,j

∑
(Xi,Yi)∈X

(j)
2,m2,j

θ̂CRS

(
Xi, Yi | X (j)

2,m2,j ,k

)
. (3.25)

Then let

µ̃∗VRS,n1,k
= 0.5

(
µ̂
(1)
VRS,m1,1,k

+ µ̂
(2)
VRS,m1,2,k

)
(3.26)

and

µ̃∗CRS,n2,k
= 0.5

(
µ̂
(1)
CRS,m2,1,k

+ µ̂
(2)
CRS,m2,2,k

)
. (3.27)

Analogous to (3.5), compute (for the kth split)

B̃VRS,κ,n1,k = (2κ − 1)−1
(
µ̃∗VRS,n1,k

− µ̂VRS,n1

)
(3.28)

and

B̃CRS,κ,n2,k = (2κ − 1)−1
(
µ̃∗CRS,n2,k

− µ̂CRS,n2

)
, (3.29)

where κ = 2/(p+ q). For ` ∈ {1, 2}, shuffle the observations in the subsamples X`,n` and split

again; then repeat the above steps for k = 2, . . . , K. Finally, the necessary bias corrections

are given by

B̂VRS,κ,n1 = K−1
K∑
k=1

B̃VRS,κ,n1,k (3.30)

and

B̂CRS,κ,n1 = K−1
K∑
k=1

B̃CRS,κ,n1,k. (3.31)

Under the null hypothesis of constant returns to scale, and following the reasoning used in

Section 3.1, Theorem 4.2 of Kneip et al. (2013) together with Theorem 3.1 given above ensure
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that

τ̂3,n =
(µ̂VRS,n1 − µ̂CRS,n2)−

(
B̂VRS,κ,n1 − B̂CRS,κ,n2

)
√

σ̂2
VRS,n1

n1
+

σ̂2
CRS,n2

n2

L−→ N(0, 1) (3.32)

provided (p+ q) ≤ 5.

Alternatively, if (p + q) > 5, the sample means must be computed using subsets of the

available observations. For ` ∈ {1, 2} and X ∗`,n`,κ defined as in Section 3.1, let

µ̂VRS,n1,κ = n−11,κ

∑
(Xi,Yi)∈X ∗1,n1,κ̂

θ(Xi, Yi | X1,n1) (3.33)

and

µ̂CRS,n2,κ = n−12,κ

∑
(Xi,Yi)∈X ∗2,n2,κ̂

θ(Xi, Yi | X2,n2). (3.34)

As in (3.8), the summations in (3.33)–(3.34) are over subsets of the observations used to

compute the efficiency estimates under the summation signs. Again under the null hypothesis

of constant returns to scale, by Theorem 4.4 of Kneip et al. (2013) and Theorem 3.1 that

appears above ensure

τ̂4,n =

(
µ̂VRS,n1,κ − µ̂CRS,n2,κ

)
−
(
B̂VRS,κ,n1 − B̂CRS,κ,n2

)
√

σ̂2
VRS,n1

n1,κ
+

σ̂2
CRS,n2

n2,κ

L−→ N(0, 1) (3.35)

for (p+ q) > 5.

Depending on the value of (p+q), either τ̂3,n or τ̂4,n can be used to test the null hypothesis of

constant returns to scale, with critical values obtained from the standard normal distribution.

In particular, for j ∈ {3, 4}, the null hypothesis of constant returns to scale is rejected if

p̂ = 1− Φ(τ̂j,n) is less than, say, .1, .05, or .01.

3.3 Testing convexity of the attainable set

Situations where one might want to test whether the production set Ψ is convex versus non-

convex resemble the situation in Section 3.2 in that the researcher is faced with a single

iid sample Xn = {(Xi, Yi)}ni=1. Under the null hypothesis of convexity, both the FDH and

VRS-DEA estimators are consistent, but under the alternative, only the FDH estimator is
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consistent. It might be tempting to compute the sample mean

µ̂full
FDH,n = n−1

∑
(Xi,Yi)∈Xn̂

θFDH (Xi, Yi | Xn) (3.36)

using the full set of observations in Xn and use this with (3.13) to construct a test statistic

based on the difference µ̂full
VRS,n − µ̂full

FDH,n. By construction, θ̂VRS(Xi, Yi | Xn) ≤ θ̂FDH(Xi, Yi |
Xn) ≤ 1 and therefore µ̂full

FDH,n− µ̂full
VRS,n ≥ 0. Under the null, µ̂full

VRS,n− µ̂full
FDH,n is expected to be

“small,” while under the alternative the difference is expected to be “large.”

Such an approach is doomed to failure for reasons similar to those given at the beginning of

Section 3.2. Using Theorem 4.1 of Kneip et al. (2013) and reasoning similar to the argument at

the beginning of Section 3.2, it is easy to show that na
(
θ̂FDH(Xi, Yi | Xn)− θ̂VRS(Xi, Yi | Xn)

)
converges under the null to a degenerate distribution for any power a ≤ 1/2 of n; i.e., the

asymptotic variance of the statistic is zero, and the density of the statistic converges to a

Dirac delta function at zero under the null.

As in Section 3.2, the sample Xn can be repeatedly split into two parts X1,n1 and X2,n2 such

that X1,n1 ∩ X2,n2 = ∅ and X1,n1 ∪ X2,n2 = Xn. Here, however, the two efficiency estimators

have different convergence rates under the null. The FDH estimator converges at rate n1/(p+q)

(Park et al., 2000), while the VRS-DEA estimator converges at rate n2/(p+q+1) under strict

convexity (Kneip et al., 1998), or at rate n2/(p+q) under weak convexity by Theorem 3.1. This

difference can be exploited by setting n
2/(p+q+1)
1 = n

1/(p+q)
2 and n1 +n2 = n for a given sample

size n, and then solving for n1 and n2. There is no closed-form solution, but it is easy to find a

numerical solution by writing n−n1−n2(p+q)/(p+q+1)
1 = 0; the root of this equation is bounded

between 0 and n/2, and can be found by simple bisection. Letting n1 equal the integer part

of the solution and setting n2 = n − n1 gives the desired subsample sizes with n2 > n1.

Using the larger subsample X2,n2 to compute the FDH estimates and the smaller subsample

X1,n1 to compute the VRS-DEA estimates allocates observations from the original sample Xn
efficiently in the sense that more observations are used to mitigate the slower convergence rate

of the FDH estimator.

Once the original sample has been split, compute µ̂VRS,n1 using (3.16) and

µ̂FDH,n2 = n−12

∑
(Xi,Yi)∈X2,n2̂

θFDH (Xi, Yi | X2,n2) . (3.37)
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In addition, let

σ̂2
FDH,n2

= n−12

∑
(Xi,Yi)∈X2,n2

[
θ̂FDH(Xi, Yi | X2,n2)− µ̂FDH,n2

]2
. (3.38)

Theorem 4.1 of Kneip et al. (2013) establishes that both µ̂VRS,n1 and µ̂FDH,n2 are consistent

estimators of µθ = E(θ(X, Y )) under the null hypothesis of convexity, and that both σ̂2
VRS,n1

and σ̂2
FDH,n2

given in (3.18) and (3.38) consistently estimate the variances of the VRS and

FDH efficiency estimators.

In order to construct the bias corrections, for k = 1, . . . , K, split each of the two

subsamples X`,n` , ` ∈ {1, 2} randomly into two mutually exclusive and collectively exhaustive

parts X (1)
`,m`,1,k

and X (2)
`,m`,2,k

as described above in Section 3.1. Compute B̂VRS,κ1,n1 as described

in Section 3.2 using (3.24), (3.26), and (3.28) with κ1 = 2/(p + q + 1) replacing κ. For each

part j ∈ {1, 2} of X2,n2,k, compute

µ̂
(j)
FDH,m2,j ,k

= m−12,j

∑
(Xi,Yi)∈X

(j)
2,m2,j ,k

θ̂FDH

(
Xi, Yi | X (j)

2,m2,j ,k

)
. (3.39)

and let

µ̃∗FDH,n2,k
= 0.5

(
µ̂
(1)
FDH,m2,1,k

+ µ̂
(2)
FDH,m2,2,k

)
. (3.40)

Then compute

B̃FDH,κ2,n2,k = (2κ2 − 1)−1
(
µ̃∗FDH,n2,k

− µ̂FDH,n2

)
, (3.41)

using (3.39) and (3.40), and where κ2 = 1/(p+ q). Finally, compute the FDH bias correction

B̂FDH,κ2,n2 = K−1
K∑
k=1

B̃FDH,κ2,n2,k. (3.42)

Under the null hypothesis of convexity of Ψ, and following the reasoning used in Sections

3.1–3.2, Theorem 4.2 of Kneip et al. (2013) ensures that

τ̂5,n =
(µ̂FDH,n2 − µ̂VRS,n1)−

(
B̂FDH,κ2,n2 − B̂VRS,κ1,n1

)
√

σ̂2
FDH,n2

n2
+

σ̂2
VRS,n1

n1

L−→ N(0, 1) (3.43)

provided (p + q) ≤ 3 since the FDH convergence rate dominates that of the VRS-DEA esti-

mator.
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Alternatively, if (p + q) > 3, the sample means must be computed using subsets of X1,n1

and X2,n2 . For ` ∈ {1, 2}, let κ = κ2 = 1/(p + q) and let X`,n`,κ be defined as in Section 3.1.

Compute µ̂VRS,n1,κ using (3.33), and compute

µ̂FDH,n2,κ = n−12,κ

∑
(Xi,Yi)∈X ∗2,n2,κ̂

θ(Xi, Yi | X2,n2). (3.44)

Here again, as in (3.33) and (3.34), the summation in (3.44) is over a subset of the observations

used to compute the efficiency estimates under the summation sign. Then under the null

hypothesis of convexity for Ψ,

τ̂6,n =

(
µ̂FDH,n2,κ − µ̂VRS,n1,κ

)
−
(
B̂FDH,κ2,n2 − B̂VRS,κ1,n1

)
√

σ̂2
FDH,n2

n2,κ
+

σ̂2
VRS,n1

n1,κ

L−→ N(0, 1) (3.45)

for (p+ q) > 3 by Theorem 4.4 of Kneip et al. (2013).

Depending on whether (p+ q) ≤ 3 or (p+ q) > 3, either τ̂5,n or τ̂6,n can be used to test the

null hypothesis of constant returns to scale, with critical values obtained from the standard

normal distribution. In particular, for j ∈ {5, 6}, the null hypothesis of convexity of Ψ is

rejected if p̂ = 1− Φ(τ̂j,n) is less than a suitably small value, e.g., .1, .05, or .01.

4 Monte Carlo Evidence

4.1 Experimental Framework

We perform three sets of Monte Carlo experiments to examine the performance of the tests

described above in Section 3. In the first set of experiments, we consider the size and power

properties of the test of equality of mean efficiency across two groups. In the next two sets of

experiments, we consider size and power properties of (i) the test of convexity of the production

set Ψ and (ii) returns to scale of the technology Ψ∂.

In the experiments examining the test of mean efficiency across two groups of observa-

tions, we consider sample sizes n1 = n2 ∈ {50, 100, 200, 1, 000, 10, 000, 20, 000} and

data-generating processes (DGPs) with p = q = 1, p = q = 2, and p = q = 3. In the ex-

periments with the returns to scale and convexity tests, we consider individual sample sizes
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n = {50, 100, 200, 1, 000, 10, 000, 20, 000} and DGPs with q = 1 and p ∈ {1, 2, 3, 4, 5}.6

In each experiment, we perform 1,000 Monte Carlo trials. On each Monte Carlo trial, we sim-

ulate data from a known, “true” model, compute the relevant test statistic, and then compute

the corresponding p-value using the standard normal quantile function. In the tables that

follow, we report the proportion (among 1,000 Monte Carlo trials) of cases where we reject

the null hypothesis of equivalent means, constant returns to scale, or convexity of Ψ in tests

of nominal sizes .10, .05, and .01.

In the first set of experiments, where we test the equality of mean efficiency across two

samples of sizes n1 = n2, we simulate data by first generating (p + q)-tuples u =
[
u′p,u

′
q

]′
uniformly distributed on a unit sphere centered at the origin in Rp+q, where up and uq are

vectors of length p and q, respectively. We then set x = (1− |up|)θ−1 and y = |uq|, where θ

is a draw from the distribution with density

f(t | λk) =

{
λkt
−2e−λk(t

−1−1) ∀ t ∈ (0, 1],

0 otherwise,
(4.1)

with k = 1 or 2 depending on whether observations are generated for sample 1 or 2.7 We set

λ1 = 2 and consider λ2 ∈ {2.0, 1.9, 1.8, . . . , 1.0, 0.75, 0.5}.
In the second set of experiments examining the returns-to-scale test, we model the tech-

nology by

Y = g

(
p∏
j=1

(
X̃j
)1/p)

, (4.2)

where X̃j is the efficient level of the jth input and the function g() : R1
+ 7→ R1

+ is either

homogeneous of degree 1 under the null hypothesis of CRS, or is not homogeneous under

the alternative hypothesis of variable returns to scale. To describe the function g(·), consider

the transformation (x, y) 7→ (s, t) such that s =
√

2 − x+y√
2

and t = x−y√
2

. In (s, t)-space, the

coordinate system relative to that in (x, y)-space has been rotated through an clockwise angle

of 3π/4 radians and then shifted by a distance of
√

2 along a 45-degree ray from the origin in

6 Of course, situations involving more than one output can be easily handled using our methods; here, we
use only one output to simplify the process of simulating data. In all of the theoretical results about properties
of DEA and FDH estimators, including Korostelev et al. (1995a, 1995b), Park et al. (2000), Park et al. (2010),
Kneip et al. (1998), Kneip et al., (2008, 2011), Gijbels et al. (1999), and Wilson (2011), it is the dimensionality
(p+ q) rather than the ratio p/q that is important for determining properties of the estimators; consequently,
we expect no loss of generality from simulating only one output.

7 Note that 1/θ has exponential density f(t | λk) = λke
λk(t−1) ∀ t ∈ [1,∞).
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(x, y)-space. In (s, t)-space, the function g(·) corresponds to

t = c
(
a2 + δ2s2

)1/2 − d (4.3)

where a = 0.5, c = 0.75, d = 0.375, and δ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4}.
The transformation from (x, y)-space to (s, t)-space is easily inverted; given a point (s, t),

x =
√
2−s+t√

2
and y =

√
2−s−t√

2
.

The function g(·) is illustrated in Figure 1 for the various values of δ. For δ = 0, (4.3) is a

flat, horizontal line in (s, t)-space so that t = 0 ∀s as depicted in the first panel of Figure 1; in

(x, y)-space, this corresponds to a 45-degree line from the origin as illustrated in the second

panel of Figure 3.2. Setting δ > 0 results in a convex (from below) curve in (s, t)-space, and a

concave (from below) curve in (x, y)-space, with curvature increasing with δ as shown in both

panels of Figure 1. In the left-hand panel of Figure 1, the triangle with corners at (−
√

2, 0),

(
√

2, 0), and (0,
√

2, 0) formed by the dashed lines and the horizontal solid line corresponds

to the triangle with corners at (0,0), (0, 2), and (2, 2) in the right-hand panel. For δ strictly

greater than 0 but less than about 1.41, | ∂t
∂s
| calculated from (4.3) is less than one, and hence

g(·) is monotonically increasing for in (x, y)-space within the triangle described above and

depicted in the right-hand panel of Figure 1.

Data for the returns-to-scale experiments are generated by first computing for a value

of δ in the set given above, the corresponding value of s, denoted smax, where the curve in

(4.3) intersects the line t =
√

2 − s, and then generating uniform random numbers si on

the interval
(
max(−smax,−0.9

√
2), min(smax, 0.9

√
2)
)
. Plugging these into (4.3) for s gives

corresponding values ti; pairs (si, ti) are then transformed to pairs (X̃i, Yi) using the inverse

transformation described above. If p = 1, then Xi = θ−1X̃i where θ is a draw from the

density in (4.1) parameterized by setting λ = 2. If p > 1, then generate a pair (si, ti) as

before and transform to a pair (Vi, Yi) using the same inverse transformation describe above

(here, the scalar X̃i has been relabeled Vi). Generate a (p × 1) vector u of uniform deviates

on (0, 1). Then set Vi =
∏p

j=1

(
X̃j
i

)1/p
; in terms of (4.2), we have Yi = g(Vi). Now write

p log Vi =
∑p

j=1 log X̃j
i = i′pW i, where W i is a p-vector with jth element log X̃j

i . Finally, set

Xi = θ−1 expW i = θ−1 exp
(

u
i′pu
p log Vi

)
, where θ is a draw from the density in (4.1), again

with λ = 2. The vector u of uniform deviates serves to divide the scalar quantity p log Vi into

p additive components, which are transformed to efficient input levels, and then projected

away from the frontier Ψ∂ by multiplying by θ−1.
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A similar simulation strategy is used for the third set of experiments that examine per-

formance the convexity test. The technology is again described by (4.2), but the func-

tion g() : R1
+ 7→ R1

+ is redefined. Here, the transformation (x, y) 7→ (s, t) is such that

s = t −
√

2 + x
√

2 and t = y−x√
2

; then x = s−t+
√
2√

2
and y = t+s√

2
+ 1. Hence in (s, t)-space, the

coordinate system relative to that in (x, y)-space has been rotated through a counterclockwise

angle of π/4 radians and then shifted by a distance of
√

2 along a 45-degree ray from the

origin in (x, y) space. Data are simulated as described above for the returns to scale test with

the same values of δ, resulting in the function g depicted in Figure 2. In addition, a strictly

convex (from above) version of g is simulated using δ = 1.4 and the transformation used to

generate data for the experiments with the returns to scale test.

In each of the three sets of experiments, K = 100 subsample splits were used to compute

the bias corrections.

4.2 Results of simulation experiments

Monte Carlo estimates of rejection rates for the two-sample test using the VRS-DEA estimator

with nominal test sizes of .1, .05, and .01 are shown in Table 1 for 2-6 dimensions. The test

statistic τ̂1,n1,n2 in (3.11) is used in the first three sets of results depicted in Table 1, where

(p + q) = 2, 3, and 4. The test statistic τ̂2,n1,n2 given in (3.12) is used in the last two sets of

results in Table 1, where (p+ q) = 5 and 6. For each sample size, there are 13 rows of results,

with the first row giving rejection rates when the null is true, and rows 2–13 giving rejection

rates for increasing departures from the null.

A broad overview of the results in Table 1 indicates that for a given nominal test-size, the

realized rejection rate approaches the nominal size as sample sizes increase when the null is

true. In addition, for a given departure from the null, the power of the test increases with

sample size (although not monotonically in every case). In addition, looking left to right in

the table, there is a noticeable improvement in terms of achieved size of the tests while moving

from 4 to 5 dimensions, i.e., when the statistic τ̂2,n1,n2 begins to be used. This improvement

comes at the expense of decreased power, however, reflecting the usual tradeoff between size

and power of a test.

For 200 or fewer observations, the results in Table 1 indicate that the realized test sizes are

too large; but with 1,000 observations, the realized test sizes are close to their corresponding
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nominal levels. Although one might prefer a conservative test to a less-conservative test in

small samples, to the extent that realized sizes do not match nominal sizes, one can compensate

by choosing smaller test-sizes, or making appropriate caveats when just barely rejecting the

null in real-world applications. The good news is that the difference between realized and

nominal test sizes is smaller for 5-6 dimensions, which are common in applications, than for

2–4 dimensions.

The next set of results given in Table 2 illustrates the performance of the returns to scale

test, again for 2–6 dimensions (recall that here, q = 1, while p = 1 through 5). The test

statistic τ̂3,n given in (3.32) is used for 2–5 dimensions, and the test statistic τ̂4,n given in

(3.35) is used when there are 6 dimensions. Looking at the table, overall conclusions similar

to those drawn for the test of equivalent means can be drawn: the returns to scale test

improves in terms of size and power as sample size increases, and while there is a price to pay

for increasing the number of dimensions, there is a noticeable improvement in the size (but at

the expense of reduced power) of the test when going from 5 to 6 dimensions, i.e., when the

statistic τ̂4,n can be used.

It is interesting to note that in the experiments for the equivalent means test, two samples

of sizes 50, 100, ... were generated, whereas in the experiments for the returns to scale test,

only one sample of size 50, 100, ... was generated. Comparing the results for n = 100 in Table

2 with the results for n1 = n2 = 50 in Table 1 suggests, that for 100 total observations in either

case, the size-performance of the returns to scale test is slightly better than that for the means

test for 2 or 3 dimensions, and considerably better for 4 dimensions. Similar observations hold

for n = 200 in Table 2 versus n1 = n2 = 100 in Table 1. Apparently, it is “easier” to test for

constant versus variable returns to scale than to test whether mean efficiencies are equal.

Table ?? gives results for the simulations for the convexity test. For each sample size,

11 rows give rejection rates at the three nominal test sizes considered and the five different

dimensionalities. The first row in each case corresponds to the case where g() is strictly convex

(from above), while the second row in each case corresponds to the case where g() is linear,

i.e., weakly convex. Rows 2–11 correspond to increasing departures from the null hypothesis

of convexity.

Overall conclusions similar to those drawn in the two previous sets of results can be drawn

from the results in Table ??, too; i.e., realized size improves with increasing sample size, and
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there is a price to pay for increasing dimensionality, except in going from 3 to 4 dimensions,

where the test statistic τ̂6,n given in (3.45) begins to be used instead of τ̂5,n given in (3.43),

there is a noticeable improvement in performance in terms of size (but not power). At sample

sizes of n = 1, 000 or less, when g() is strictly convex, the realized test sizes are much closer

to the corresponding nominal sizes than when g() is only weakly convex. For example, with

n = 50, at the five-percent level, the estimated rejection rates for p+ q = 2 and 3 are 8.6 and

10.1 percent where g() is strictly convex, but 29.8 and 31.1 percent where g() is only weakly

convex. The situation is somewhat better with large dimensionality, however; for p + q = 4,

5, and 6, the estimated rejection rates are 15.3 to 16.2 percent at the five-percent level when

g() is only weakly convex. The estimated rejection rates improve (i.e., move closer to the

nominal rates) as sample size increases, but even with n = 20, 000, the rates are larger than

the nominal values when g() is only weakly convex, and slightly so even if g() is strictly convex.

Nonetheless, the results in Table ?? suggest that if one is comfortable working at the 5

percent level in ordinary situations, he might want to work at the 1 percent level when testing

convexity. Or, if estimated p-values are used, the researcher should be wary of rejecting the

null hypothesis of convexity if the estimated p value is, for example, 0.06–0.01. But if the

estimated p value is, e.g., of order 10−4, it seems reasonable to reject convexity. As is often

the case in hypothesis testing, some caution is warranted.

As noted above at the end of Section 4.1, the experiments whose results are displayed in

Tables 1–?? were conducted while averaging the bias-corrections discussed in Section 3 over

K = 100 random splits of the samples (or subsamples, in the case of the returns to scale and

convexity tests). Doing this, however, adds to the computational burden. To examine the

potential gains from the averaging, we also conducted experiments along the lines described

above, but with no averaging of the bias corrections (i.e., in terms of the notation in Section

3, with K = 1). In order to conserve space, we do not include the results of these experiments

here, but they are available from the authors on request.

The experiments with K = 1 indicate that there are substantial gains to averaging the

bias-corrections, at least for small to moderate sample sizes. For the test of equivalent means,

with n1 = n2 = 50, and λ2 = 2.00 (so that the null is true), the experiments with K = 1

yield realized test-sizes at the five-percent level of 0.146, 0.227, 0.352, 0.103, and 0.110 for

2–6 dimensions. For comparison, the corresponding realized sizes in Table 1 are 0.117, 0.190,
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0.283, 0.090, and 0.102. The differences in corresponding realized sizes become smaller with

n1 = n2 = 100 and n1 = n2 = 200, and are insignificantly different when n1 = n2 = 1000

except in the case p = q = 2, where the realized size is 0.134, compared to 0.096 in Table 1.

Similar differences can be seen when the results for the returns to scale and convexity tests

with K = 1 are compared to results with K = 100. We suggest averaging the bias corrections

when using fewer than 1,000 observations, but there is little or no apparent gain from doing

so when with sample sizes greater than 1,000.

5 Summary and Conclusions

We have presented tests of equivalent means across groups of producers, constant versus vari-

able returns to scale of the frontier Ψ∂, and convexity versus non-convexity of the production

set Ψ based on the new central limit theorem results of Kneip et al. (2013). Our tests rely

on asymptotic normality of the test statistics, and thus avoid the complication and computa-

tional burden of bootstrapping. The Monte Carlo results we presented in Section 4 indicate

that performance of the tests, in terms of realized sizes, improves as sample size increases.

The Monte Carlo results also indicate that our tests tend to over-reject, particularly in

samples of less than a few hundred observations. As noted above in Section 4.2, the experimen-

tal results provide some practical guidance for applied researchers; i.e., one should be cautious

in drawing conclusions when one of our tests just barely rejects the null. On the other hand,

one can be more confident when estimated p-values are 0.01 or less. To give an example of

how the tests might be used, Apon et al. (2013) examine research output by eight different

academic departments across U.S. universities, and whether those that have on-campus access

to high performance computing (HPC) facilities are more efficient than those that do not have

access to HPC. Apon et al. find arguably clear evidence of significantly greater efficiency for

departments with on-campus access to HPC in six cases, with p-values ranging from about

10−7 to 10−137. In the two cases where the null hypothesis of equivalent means could not

be rejected, the p-values were 0.9999 or greater. At least in the study by Apon et al., there

seems to be little ambiguity about whether to reject null hypotheses of equivalent means; i.e.,

while the Monte Carlo results presented above in Section 4.2 indicate that our tests tend to

over-reject, the p-values obtained by Apon et al. leave little doubt. Not every research project

will yield such clear-cut results, but some will.
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Appendix A: Technical Details

A.1: Additional Assumptions

The next two assumptions are required for each central limit theorem result (for means of

FDH, VRS-DEA, and CRS-DEA estimates) established by Kneip et al. (2013).

Assumption A.1. (i) The random variables (X, Y ) possess a joint density f with support

D ⊂ Ψ; and (ii) f is continuously differentiable on D.

Assumption A.2. (i) D∗ := {θ(x, y)x, y) | (x, y) ∈ D} ⊂ D; (ii) D∗ is compact; and (iii)

f(θ(x, y)x, y) > 0 for all (x, y) ∈ D.

In the case of FDH estimators, the central limit theorem results in Kneip et al. (2013)

require the next assumption.

Assumption A.3. (i) θ(x, y) is twice continuously differentiable on D; and (ii) all the first-

order partial derivatives of θ(x, y) with respect to x and y are nonzero at any point (x, y) ∈ D.

Recalling that the free disposability assumed in Assumption 2.2 implies that the frontier

is weakly monotone, Assumption A.3 strengthens this by requiring the frontier to be strictly

monotone with no constant segments.

Stronger assumptions are required by the DEA estimators. Both the VRS-DEA and CRS-

DEA estimators require the next assumption.

Assumption A.4. θ(x, y) is three times continuously differentiable on D.

In addition, the VRS-DEA estimator requires the following assumption.

Assumption A.5. D is almost strictly convex; i.e., for any (x, y), (x̃, ỹ) ∈ D with ( x
‖x‖ , y) 6=

( x̃
‖x̃‖ , ỹ), the set {(x∗, y∗) | (x∗, y∗) = (x, y) +α((x̃, ỹ)− (x, y)) for some 0 < α < 1} is a subset

of the interior of D.

For the case of the CRS-DEA estimator, Assumption A.5 must be replaced by the following

condition.

Assumption A.6. (i) For any (x, y) ∈ Ψ and any a ∈ [0,∞), (ax, ay) ∈ Ψ; (ii) the support

D ⊂ Ψ of f is such that for any (x, y), (x̃, ỹ) ∈ D with ( x
‖x‖ ,

y
‖y‖) 6= ( x̃

‖x̃‖ ,
ỹ
‖ỹ‖), the set
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{(x∗, y∗) | (x∗, y∗) = (x, y) + α((x̃, ỹ)− (x, y)) for some 0 < α < 1} is a subset of the interior

of D; (iii) D is a connected set; and (iv) (x, y) /∈ D for any (x, y) ∈ Rp
+ × Rq with y1 = 0,

where y1 denotes the first element of the vector y.

To summarize, all of the central limit theorem results obtained by Kneip et al. (2013)

and used in Section 3 depend on Assumptions 2.1–A.2. In addition to these assumptions, the

results involving FDH estimators require Assumption A.3. The VRS-DEA and CRS-DEA

estimators require the stronger Assumption A.4 in place of Assumption A.3. The VRS-

DEA estimator also requires Assumption A.5, while the VRS-CRS estimator instead requires

Assumption A.6. It is important to note that the conditions on the structure of Ψ (and D)

given in Assumptions A.5 and A.6 are incompatible. It is not possible that both assumptions

hold simultaneously.

A.2: Proof of Theorem 3.1

The construction follows the arguments used in the proofs of Theorems 3.1 and 3.2 in Kneip

et al. (2013). We therefore need some additional notation. Consider the transformations

x∗ = x/y1, y∗ = y/y1 = (1, y2/y1, . . . , yq/y1)′ and ỹ = (y2/y1, . . . , yq/y1)′ ∈ Rq−1, for all

y = (y1, . . . , yq)′ with y1 > 0 With respect to the (q − 1)-dimensional output variable ỹ,

a production set Ψ̃ := {(x∗, ỹ) | (x∗, (1, ỹ)′) ∈ Ψ can be defined. By the CRS-assumption,

corresponding efficiencies are given by θ∗(x∗, ỹ) := θ(x∗, (1, ỹ)′) = θ(x, y). Furthermore, the

density f of (Xi, Yi) induces a density f ∗ of (X∗i , Ỹi). Smoothness of θ and f translates into

a corresponding smoothness of θ∗ and f ∗.

Consider a point (x, y) in the interior of D, and let V(x∗) denote the (p− 1)-dimensional

linear space of all vectors z ∈ Rp such that zTx∗ = 0, and let Ψ∗(x∗) denote the set of

all (z, ỹ) ∈ V(x∗) × Rq−1 with (γ x∗

||x∗|| + z, ỹ) ∈ D̃ for some γ > 0. This introduces another

coordinate system whose properties are extensively discussed in Kneip et al. (2008) and Kneip

et al. (2013). In particular, the efficient boundary of Ψ∗ can now be described by the function

gx∗(z, ỹ) := inf
{
γ |
(
γ x∗

||x∗|| + z, ỹ
)
∈ Ψ∗

}
.

Let X̃n := {(X∗i , Ỹi), i = 1, . . . , n}. Since (x, y) is in the interior of D, the probability that

(x∗, ỹ) is in the convex hull of X ∗n tends to 1 as n→∞. But then it has been shown in Kneip

et al. (2013) that the CRS-estimator of θ(x, y) exactly coincides with a VRS-DEA estimator
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based on the reduced sample of observations X̃n:

θ̂CRS(x, y | Xn) = θ̂VRS(x∗, ỹ | X̃n)

= min
ω

{ n∑
i=1

ωi
gx∗(θ

∗(X∗i , Ỹi)Zi, Ỹi)

‖x∗‖θ∗(X∗i , Ỹi)
| Zω = 0, Ỹ ω = ỹ, i′nω = 1, ω ∈ Rn

+

}
, (A.1)

where in is defined as in Section 2, ωi represents the ith element of ω, θ∗i = θ(X∗i , Ỹi),

Zi = X∗i −
x∗TX∗i
||x∗||2

x∗ is a (p× 1) vector, while Y = (Ỹ1, . . . , Ỹn) and Z = (Z1, . . . , Zn) are

((q − 1)× n) and (p× n) matrices, respectively.

Kneip et al. (2013) also show that when including the point (0, 0), then θ̂VRS(x, y |
Xn ∪ {(0, 0)}) is obtained by minimizing (A.1) with respect to the additional constraint∑n

i=1 ω
∗
i
y1

Y 1
i
≤ 1. When turning to the usual VRS-DEA estimator θ̂VRS(x, y | Xn), then the

same type of arguments yield

θ̂VRS(x, y | Xn)

= min
ω

{ n∑
i=1

ωi
gx∗(θ

∗(X∗i , Ỹi)Zi, Ỹi)

‖x∗‖θ∗(X∗i , Ỹi)
| Zω = 0, Ỹ ω = ỹ, i′nω = 1,

n∑
i=1

ωi
y1

Y 1
i

= 1, ω ∈ Rn
+

}
.

(A.2)

Now define

θ̂+CRS(x, y | Xn) = min
ω

{ ∑
i:Y 1

i >y
1

ωi
gx∗(θ

∗(X∗i , Ỹi)Zi, Ỹi)

‖x∗‖θ∗(X∗i , Ỹi)
|

∑
i:Y 1

i >y
1

ωi = 1,
∑

i:Y 1
i >y

1

ωiZ
∗
i = 0,

∑
i:Y 1

i >y
1

ωiỸi = ỹ, ω ∈ Rn
+

}
, (A.3)

and similarly define θ̂−CRS(x, y | Xn) by only using observations with Y 1
i < y1.

Let ω+ and ω− denote the vectors ω ∈ Rn
+ providing the minimal values of θ̂+CRS(x, y | Xn)

and θ̂−CRS(x, y | Xn), respectively. Without restriction, ω+
i = 0 whenever Y 1

i ≤ y1, and ω−i = 0

whenever Y 1
i ≥ y1. Obviously, s+ :=

∑n
i=1 ω

+
i
y1

Y 1
i
< 1 while s− :=

∑n
i=1 ω

−
i
y1

Y 1
i
> 1. Hence

there exists an 0 < α < 1 such that αs+ + (1 − α)s− = 1, and thus
∑n

i=1 ω
∗
i
y1

Y 1
i

= 1 for

ω∗ := αω+ + (1 − α)ω−. Moreover, the vector ω∗ satisfies all constraints in (A.2). We can

conclude that

θ̂CRS(x, y | Xn) ≤ θ̂VRS(x, y | Xn) ≤ αθ̂+CRS(x, y | Xn) + (1− α)θ̂−CRS(x, y | Xn). (A.4)
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But since the point (x, y) is in the interior of D, θ̂+CRS(x, y | Xn) and θ̂−CRS(x, y | Xn) are CRS-

estimators based on subsamples of observations, where the size of each subsample increases

proportional to n. This implies θ̂+CRS(x, y | Xn) − θ(x, y) = OP (n−
2
p+q ) as well as θ̂−CRS(x, y |

Xn)− θ(x, y) = OP (n−
2
p+q ), and assertion (i) is an immediate consequence of (A.4).

Consider (ii). With νn := b( logn
n

)
1
p+q for some b > 0 let C(x, y; ν2n, νn) denote the set of all

(x′, y′) with 1−θ∗(x′∗, ỹ′) ≥ ν2n, |z′j| ≤ νn, j = 1, . . . , p−1, and |ỹ′j− ỹj| ≤ νn, j = 1, . . . , q−1.

If ωopt denotes the vector ω ∈ Rn
+ providing the minimal value of θ̂VRS(x, y | Xn) in (A.2), then

a straightforward generalization of the localization arguments given in Kneip et al. (2008) and

Kneip et al. (2013) shows that with probability tending to 1,

ωopti = 0 for all i = 1, . . . , n with (Xi, Yi) /∈ C(x, y; ν2n, νn). (A.5)

Let f̄1 denote the marginal density of Y 1
i . Assumptions A.2 and A.6 imply that f̄1 has a

compact support [y1min, y
1
max] ⊂ R+ with y1min > 0. Moreover, f̄1 is continuous, and f̄1(y1) > 0

for any y1 ∈ [y1min, y
1
max]. For y1min < y1 < y1max let π+(y1) = P (Y 1

i > y1) as well as π−(y1) =

P (Y 1
i < y1). Obviously, the number of observations (Xi, Yi) with Y 1

i > y1 varies around

nπ+(y1), while the number of observations (Xi, Yi) with Y 1
i < y1 varies around nπ−(y1).

Using (A.5), a straightforward generalization of the arguments in the proof of Theorem

3.1 of Kneip et al. (2013) now may be used to show that for any y1min < y1 < y1max,∣∣∣E (θ̂VRS(Xi, Yi | Xn)− θ(Xi, Yi)
∣∣Y 1
i = y1

)
− n−

2
p+qD(y1)

∣∣∣
≤ A

(
1

nmin{π+(y1), π−(y1)}

) 3
p+q

(log n)
p+q+3
p+q , (A.6)

where 0 < D(y1) < ∞ is a measurable function of y1, while 0 < A < ∞ is a constant which

does not depend on y1. The exact analytical structure of D(y1) is difficult to evaluate, but

Theorem 3.2 of Kneip et al. (2013) together with (A.4) and our maintained distributional

assumptions imply that there are constants 0 < A1 <∞ and 0 < A2 <∞ such that

D(y1) ≤ A1

(
1

min{π+(y1), π−(y1)}

) 2
p+q

≤ A2

(
1

min{y1 − y1min, y1max − y1}

) 2
p+q

. (A.7)

If p + q > 2, then the integral
∫ y1max
y1min

(
1

min{y1−y1min,y1max−y1}

) 2
p+q

f̄1(y
1)dy1 is necessarily finite.

Since E
(
θ̂VRS(Xi, Yi | Xn)− θ(Xi, Yi)

)
=
∫ y1max
y1min

E
(
θ̂VRS(Xi, Yi | Xn)− θ(Xi, Yi)

∣∣Y 1
i = y1

)
f̄1(y

1)dy1,

relation (3.21) then follows from (A.6) and (A.7).
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Note that for p+ q = 2,∫ y1max−n−1

y1min+n
−1

(
1

min{y1 − y1min, y1max − y1}

)
f̄1(y

1)dy1 = O(log n). (A.8)

Since furthermore 0 ≤ θ̂VRS(Xi, Yi | Xn) − θ(Xi, Yi) ≤ 1 for all i, and P (Y 1
i ∈

[y1min, y
1
min + n−1]) = O(n−1), P (Y 1

i ∈ [y1max − n−1, y1max]) = O(n−1), (A.6) and (A.7) yield

E
(
θ̂VRS(Xi, Yi | Xn)− θ(Xi, Yi)

)
= O(n−1 log n) for p+ q = 2.

Using the localization result (A.5), assertions (3.22) and (3.23) follow from straightforward

generalizations of the arguments used in the proofs of Theorems 3.1 and 3.2 of Kneip et al.

(2013) in order to derive variances and covariances of VRS- and CRS-estimators.
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Catholique de Louvain, Louvain-la-Neuve, Belgium.

Koopmans, T. C. (1951), An analysis of production as an efficient combination of activities,
in T. C. Koopmans, ed., Activity Analysis of Production and Allocation, New York:
John-Wiley and Sons, Inc., pp. 33–97. Cowles Commission for Research in Economics,
Monograph 13.

Korostelev, A., L. Simar, and A. B. Tsybakov (1995a), Efficient estimation of monotone
boundaries, The Annals of Statistics 23, 476–489.

— (1995b), On estimation of monotone and convex boundaries, Publications de l’Institut de
Statistique de l’Université de Paris XXXIX 1, 3–18.
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Figure 2: Function g(·) for Tests of Convexity
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