
Testing Implications of Data Dependencies

DAVID MAIER

State University of New York at Stony Brook

ALBERT0 0. MENDELZON

Princeton University

and

YEHOSHUA SAGIV

University of Illinois

Presented is a computation method-the chase-for testing implication of data dependencies by a set

of data dependencies. The chase operates on tableaux similar to those of Aho, Sagiv, and Ullman.

The chase includes previous tableau computation methods as special cases. By interpreting tableaux

alternately as mappings or as templates for relations, it is possible to test implication of join

dependencies (including multivalued dependencies) and functional dependencies by a set of depen-

dencies.

Key Words and Phrases: data dependencies, join dependencies, multivalued dependencies, functional

dependencies, tableaux, chase, relational databases

P
R Categories: 4.33, 5.21

1. INTRODUCTION

In the theory of relational databases, the family of integrity constraints known as
data dependencies plays an important role. Various types of such dependencies

have been studied in the literature: functional [3, 111, multivalued [13, 201, and
join dependencies [181.

Given a set of dependencies, there are additional dependencies implied by this
set in the sense that any relation that satisfies the original set must also satisfy

the additional dependencies. We often want to know if one dependency is implied
by a given set of dependencies. For example, the problem arises in the synthesis

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.

This research was supported in part by the National Science Foundation under Grant MCS 76-15255.

The work of A.O. Mendelzon was supported by an IBM Fellowship and the work of Y. Sagiv was

supported by a grant from Bell Laboratories.

A version of the work reported herein was presented at the 1979 Conference on Management of Data
(SIGMOD), Boston, Mass., June 1979.

Authors’ present addresses: D. Maier, Department of Computer Science, State University of New

York at Stony Brook, Stony Brook, NY 11794; A.O. Mendelzon, IBM Thomas J. Watson Research

Center, P.O. Box 218, Yorktown Heights, NY 10598; Y. Sagiv, Department of Computer Science,
University of Illinois, Urbana IL 61820.

0 1979 ACM 0362-5915/79/1200-0455 $00.75

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979, Pages 455-469.

456 - D. Maier, A. 0. Mendelzon, and Y. Sagiv

approach to database design [4,5,9], in the decomposition approach [e.g., 151, in

determining whether relation schemes are normalized [14], in testing for equiva-
lence of database schemes [a], and in determining whether a decomposition

satisfies independence properties [16, 171. The lossless join algorithm of [l] is

also an implication test for dependencies.
We shall use tableaux and an operation on tableaux, the chase, to determine

such consequences of a set of functional and join dependencies. The chase
computation may require exponential time in some cases. However, this technique

unifies the treatment of functional, multivalued, and join dependencies and
provides better insight into the problem. Hence, it may be instrumental in finding

new special cases (in addition to those mentioned above) for which polynomial

time algorithms exist.
In particular, we show that the chase computation provides a method notonly

for testing implications, but also for inferring functional and multivalued depen-
dencies. Given a set of dependencies C and a set of attributes X, we can find in no
more than exponential time the closure of X and the dependency basis of X.

2. BASIC DEFINITIONS

A universe U is a finite set of attributes {Al, Al, . . . , A,,,} and an associate 4
domain Di for each attribute Ai. Each domain is a countably infinite set. Each
universal element of U is a mapping ~1: {A,, . . . , A,,,} + D, where D is the union
of the D’s. The mapping must take each attribute to a member of its correspond-
ing domain. If we assign an order to the attributes, then a universal element of U
corresponds to a member of the Cartesian product DI x Dz x . -. x D,,,. A
universal instance (or just an instance) is a finite set of universal elements,
corresponding to a finite subset of this Cartesian product.

A relation scheme R over U is a subset of the set of attributes for U. A relation
r on R is a finite set of mappings or tuples, each taking the attributes in R into
their corresponding domains. A relation can thus be regarded as a finite subset of
the Cartesian product of domains corresponding to attributes in R. Both instances
and relations can be viewed as tables with columns corresponding to attributes
and rows containing a member from the domain of each attribute.

An instance is really just a relation over the attributes in U. For the moment,

a database scheme on universe U is a set R of relation schemes { R1 , Rz, . . . , RP},
where I& Ri = U, and a database is a set of relations (r,, r2, . . . , rP}, where r,
is a relation on scheme Ri. When dealing with sets of attributes, uppercase letters
near the beginning of the alphabet denote single attributes, while uppercase
letters from the end of the alphabet denote sets of attributes. Concatenation of
sets of attributes denotes union.

Two useful operations on relations are projection and (natural) join. Let R =
XY be a relation scheme. The projection of a relation r on R onto Y is a relation
r’ on Y. The relation r’ is obtained by removing columns of r not corresponding
to attributes in Y and eliminating duplicate tuples in what remains. This projec-
tion is denoted ny(r). Let r be a relation on R = XY and s be a relation on S =
YZ, with Y the intersection of XY and YZ. The join of r and s, denoted r W s, is

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Testing Implications of Data Dependencies 457

a relation r’ on XYZ. We put tuple t into r’ if the XY portion of t is a tuple of r
and the YZ portion is a tuple of s. The join is an associative operation, so we may
write a string of joins without parenthesizing. We may use projection and join on

universal instances by treating the instances as relations on the attributes of U.
The universal instance assumption [l, 61 restricts every relation ri in a

database to be the projection of some common universal instance I onto the

corresponding schemes Ri. In our notation for projection, there exists a universal

instance I such that r; = TR, (I), 1 I i I p. These projection mappings allow us to
go from universal instances to databases. The join operator allows us to go from
databases to instances, provided every attribute of the universe appears in some
R,. In this case, rl W r-2 W . + - W r, is a universal instance, although not necessarily

the one from which the ri’s were projected.
Given a set S of relation schemes, (S1, . . . , S,}, the project-join mapping

associated with S, written Ms, is defined by

MS(I) = q(I) W Q,(I) W .-. W q(I).

What we seek, to insure faithful representation of our instances, is a database
scheme R where MR(I) = I for all universal instances I. As our definitions now

stand, there are only trivial database schemes R with this property. However, in
any given application it is unlikely that the set of instances that might ever need
to be represented will constitute the entire set of universal instances. Instead,
only some subset P of universal instances will ever have to be considered. This
set P will usually be defined by a set C of constraints on the set of possible
instances. For a set of constraints C, let SAT(C) = (I] I satisfies C}. Say an
instance I is C-admissible (or simply admissible, when C is understood) if I is a
member of SAT(C). If c is a single constraint, we write SAT(C) for SAT({ c}).

One class of constraints is the various data dependencies, such as functional
dependencies (FDs) and multivalued dependencies (MVDs) . These dependencies
are extensively treated elsewhere [3,7,13,20]. Rissanen introduced another type
of data dependency, the join dependency [18]. Let r be a relation on R and S =

{S,..., S,} be a set of subsets of R, with the union of the Si’s being R. We say
r joins Zosslessly on S if r = q.9, (r) W . . . W nsq(r). If r joins losslessly on S, then
we say r satisfies the join dependency (JD) *[&, . . . , S,], which we sometimes
write as *[S]. An MVD is a special case of a JD. The MVD X- Y for a relation

on R is the JD *[XY, X(R - Y)].
A set of constraints C implies a constraint c, written C I= c, if SAT(C) contains

SAT(C). In other words, every instance that satisfies alI the constraints of C must
also satisfy c. Much work has been done on implications of a set of data
dependencies. Following Rissanen [18], let F, M, and J be sets of FDs, MVDs,
and JDs, respectively. Let F(C), M(C), and J(C) be the sets of FDs, MVDs, and
JDs implied by a set of constraints C. Previous work has dealt with methods for

computing F(F) [3, 93, M(F U M) and F(F U M) [4, 7, 15,193, J(F) and J(M)
[l], and J(F U M) [18]. In the sequel, we shall investigate the sets F(F U MU J)

and J(F U M U J); the latter also determines M(F U M U J), since every MVD
is a JD. Our method therefore handles all these previous situations as special
cases.

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

458 - D. Maier, A. 0. Mendelzon, and Y. Sagiv

3. TABLEAUX AND TRANSFORMATION RULES

Tableaux were defined by Aho, Sagiv, and Ullman [2]. We use a simplified
definition here, similar to the one of Aho, Beeri, and Ulhnan [l]. A tableau is a

set of rows, best pictured as a matrix with one column for each attribute in the
universe U. The rows of the matrix are composed of distinguished variables,
denoted by subscripted a’s, and nondistinguished variables, denoted by sub-

scripted b’s. Each variable may appear in only one column. Furthermore, only
one distinguished variable may appear in each column. By convention, the
distinguished variable ai wiU be the one that appears in the column corresponding

to attribute Ai. In this paper we assume that every distinguished variable appears

at least once. Below is an example of a tableau for a universe with attributes A,
B, and C.

Let T be a tableau and let V be the set of all variables appearing in T. A
valuation p for T is a mapping from V to D, such that p(v) is in Di if v is in the

column corresponding to Ai. (Recall that D is the union of all the domains Di.)
We extend valuations to apply to rows of Tin the obvious manner: if w is the row
(VI@ -** vn), then p(w) is the row (p(vl) - - - p(v,,)). We may interpret tableau
T as a mapping from instances to instances as follows. Let wl, 2~2, . . . , w,, be the
rows of T. Tableau T maps instance I to T(I), where

T(I) = {p((al, a,. . . , a,))IpisavaluationforTandp(wi)EI,15i<n).

It is important to note that a tableau defined on universe U can always be
transformed into an instance of I.7 by applying a valuation to it,. In particular, we
shaIl often speak of “tableau T considered as an instance”; what we mean by this
is an instance I = a(T) that results from applying a one-to-one valuation u to

each row of T. For the sake of brevity we shall omit explicit mention of u in the
sequel.

Following Aho et al. [l, 21, we can construct a tableau T representing the
mapping MS for any set S = (S1, . . . , S,] such that the union of the Si’s yields all
the attributes in U. T has a row w, for each Si. ROW wi has aj in the jth column

if Si contains Aj. All other entries in the tableau are distinct nondistinguished
symbols. In Figure 1 we have the tableau for MS, when S = (ABD, BCE, DE }.

Let P be a set of instances. We say tableaux T1 and T2 are equivalent on P,

written T, E pT2, if T,(I) = T2(I) for ail I in P. When P is the set of all instances,
we write T1 = TZ instead of T1 = pT2.

ABCDE
a~ a2 I 04 2 I b3 *2 03 h a5 bS 66 b7 a4 a5

Fig. 1. Tableau for (ABD, BCE, DE)

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Testing Implications of Data Dependencies 459

The following lemma generalizes a result of [2].

LEMMA 1. Let T, and T2 be tableaux, and let P be a set of instances. Suppose
that there are tableaux T,* and Tz* such that

(a) T, = PT~*, TZ = PTz*, and
(b) T,* and Tz*, considered as instances, are both in P.

Then Tl = pT2 if and only if T,* = Tz*.

PROOF. The if part is immediate. For the other part, suppose T1 = pTz. Then

Tl* = PTz*. We need to show Tl* and Tz* are equivalent everywhere. Consider
T1*(T1*) (note that we are treating T,* simultaneously as a mapping and as an
instance). Since TI * is an instance in P, it must be that Tl* (T, *) = Tz* (TI *). Let

w be the row of all distinguished variables. If we choose p to be the identity
valuation, then p (wi) = wi is in Tl* for all wi in Tl* and hence p(w) = w is in

Tl*(T1*). Therefore w is in Tz*(Ti*), and there must exist a (I with a(w) = w and
a(~;) in Tl* for all wj in Tz. Now let I be any instance. Choose any tuple t in
Tl*(I). Let p be the valuation with p(w) = t and p(Wi) in I for all wi in Tl*.
Consider pa. It follows that pa(w) = p(w) = t, and pu(w;) is in I for all wj in Tz*.
Hence T,*(l) c Tz*(I). A symmetric argument will show that T,*(I) = Tz*(I).

n

We now consider methods for modifying tableaux while preserving equivalence.
A transformation rule for P is a method for changing a tableau T to a tableau T’,
with T = r T’. When P is the set of all instances, the set of possible transformation
rules is very limited. When the set of admissible instances is restricted, however,

more rules are available. In general, for any constraint c there is a set of
transformation rules preserving equivalence on SAT(C). Such rules are essentially
a means to incorporate information about the set of admissible instances into the
tableau. We present transformation rules for FDs and JDs (and hence MVDs).
We shall show that repeated applications of the rules corresponding to a set C of

FDs and JDs always yield a tableau to which no further applications of rules can
be made. We shall see that this final tableau provides useful information on how

the mapping represented by the original tableau behaves on SAT(C). The rules
are as follows.

F-Rules. For each FD X+A, where A is a single attribute, there is a corre-

sponding F-rule. Suppose tableau T has rows w1 and w2 that agree in all the
X-columns. Let u1 and up be the variables in the A column of w1 and w2,
respectively, and suppose that u1 # u2. Applying the F-rule corresponding to
X+ A to rows w1 and w2 of T yields a transformed tableau T’. Tableau T’ is T
with all occurrences of variables u1 and v2 identified and duplicate rows removed.

The variables are identified by the following renaming rule. If one of the variables
is distinguished, the other one is renamed to that distinguished variable. If both
are nondistinguished, rename the variable with the larger subscript to be the

variable with the smaller subscript.

J-Rules. Let S = {S, . . . , S,), with the union of the S’s yielding all the
attributes of U. Rows wl, . . . , w, of T (not necessarily distinct) are joinable on

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

460 - D. Maier, A. 0. Mendelzon, and Y. Sagiv

/g-g pzJ$
F’ig. 2. Result of applying Fig. 3. Result of applying

B + C to tableau of Figure 1 *[CDE, ABE] to tableau of

Figure 2

S if there exists a row w not in T that agrees with wi on Si, 1 ZG i I q. Row w is
the result of joining the Wi’s. The J-rule corresponding to the JD *[S] takes rows
Wl, w, of T that are joinable on S and adds their result w to T to form
tableau T’.

Figure 2 shows the result of applying the F-rule for B + C to rows 1 and 2 of
the tableau in Figure 1. Figure 3 is the result of applying *[CD& ABE] to rows
3 and 2 of Figure 2. We shall sometimes speak of applying an FD or JD to a
tableau, meaning the corresponding F-rule or J-rule. Further on we shall apply
the term joinable to tuples of an instance. Note that if tuples ~1, . . . , Us of
instance I are joinable on S with result u, and 1 is in SAT(*[S]), then u must
be in I.

THEOREM 1. Let T’ be the result of applying an F-rule for X + A to T. Then
T and T’ are equivalent on SAT(X + A).

PROOF. See Aho, Sagiv, and Ullman [2]. cl

THEOREM 2. Let T’ be the result of applying a J-rule for *[S] to T. Then T
and T’ are equivalent on SAT(*[S]).

PROOF. We must show that T’(I) = T(I) for all I in SAT(*[S]).

[T’(I) _C T(I)]. Let t be a tuple of T’(I). There is some valuation p such that
p((al --. a,)) = t and p(w) is in I for every row w in T’. But then t is in T(I),
since p maps every row in T into something in I, because every row of T is in T’.

[T(I) c T’(I)]. Let t be a tuple of T(I). Let p be the valuation that generated
t and let w’ be the row in T’ but not in T. We must show that p(w’) is in I.
Assume w’ was formed by a J-rule from rows wl, . . . , w, of T. Hence wl, . . . , wg
are joinable on S with result w’. We know p(wl), . . . , p(wp) are all in Iand it is
not hard to show they are joinable on S with result p (w ‘). Since I is in SAT(*[S]),
p(w’) must be in I. Therefore, t = p((al, . . . , a,)) is in T’(I), since p(w) is in I
for every row w of T’. Cl

Conuention. In the sequel, C will always be a set of FDs and JDs.

4. THE CHASE

In this section we shall show that, when the set of instances P is defined by a set
of dependencies C (i.e., P = SAT(C)), the F-rules and J-rules can be used to
produce for each tableau T a tableau CHASEC(T) from which it is easy to
determine whether T is the identity mapping on SAT(C).

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Testing Implications of Data Dependencies l 461

As we shall see, the F-rules and J-rules associated with a set of dependencies
C are a Finite Church-Rosser (FCR) system. That is, given a tableau T, they can
be applied to T only a finite number of times, and the resulting tableau is unique,

independently of the order in which the rules were applied. A tableau T’ is the
chase of T under C, written CHASE~T), if it is obtained from T by repeated
applications of the rules associated with C, and no rule can be further applied to
T’. A generating sequence for T is a sequence of tableaux TO, T,, . . . , T,, such

that TO = T, Ti is obtained from Ti-1 by an application of a rule, and T,, =
CHASES T), i.e., no rule can be applied to T,. We shall show later (in Lemmas 3

and 4) that a finite generating sequence exists for every tableau T and every set

of dependencies C.
Suppose that a tableau Ti is obtained from Ti-1. For each row w of Ti-1 we

define its corresponding row in Ti as follows. If Ti was obtained by applying a
J-role, then there must be a row u in Ti such that v is identical to w, and we let
v be the corresponding row for w. If Ti was obtained by applying an F-rule, then

either w appears in Ti or w has been changed by the F-rule to some v, and v

appears in Ti. In the first case, w has an identical corresponding row in Ti; in the
second case, row v of Ti corresponds to row w of Ti-1. Note that two rows of Ti-1
may have the same corresponding row in Ti.

Let T be a tableau with rows wl, . . , , w,,,, and let TO, . . . , T, be a generating
sequence for T under a set of dependencies C. We extend the relation “u
corresponds to w” to its transitive-reflexive closure. Thus, for all tableaux Ti in
the sequence, there are rows wri, wzi, . . . , wmi (not necessarily distinct) in Ti that

correspond, respectively, to rows WI, . . . , LO,,, of T.

LEMMA 2. Let I be an instance in SAT(C), and let p be a valuation of T such
that for all rows wi of T, p(wi) is in I. Then for all tableaux Ti in a generating
sequence for T,

(1) p(Ti) C I, and
(2) for all 1 I j 5 m, p(wj) = p(wj’), i.e., p maps corresponding rows of T and

Ti to the same tuple in I.

PROOF. The proof is by induction on i. The basis, for i = 0, is immediate. For
the induction step, let i > 0, and assume the result is true for Ti-1. If Ti is obtained
from Ti-1 by an application of a J-rule, then every row of Ti-1 has an identical
corresponding row in Ti, and hence part (2) of our claim is true. Furthermore, we
can show as in the proof of Theorem 2 that the new row of Ti is mapped into I by
p, thus proving part (1). Now suppose Ti is obtained from Ti-1 by an application

of an F-rule, say X + A. Let vl and v2 be the variables in the A-column of rows
rl and r-2, respectively. Since rl and r-2 agree on the X-columns, so do p(rl) and
p (r-2). Since p (rl) and p (r-2) are tuples of 1, they must also agree on the A-column.
Hence, p (VI) = p (~2). It now follows that for every row w of Ti-1, its corresponding
row w’ in Ti is such that p(w) = p(w’). Since every row of Ti corresponds to some

row of Ti-1, our claim is true for Ti. Cl

We are now ready to prove that our system of transformations is FCR.

LEMMA 3. A given set of F-rules and J-rules can be applied to a tableau T
only a finite number of times.

ACM Transactions on Database Systems, Vol. 4, NO. 4, December 1979.

462 - D. Maier, A. 0. Mendelzon, and Y. Sagiv

PROOF. Since tableaux are sets of rows, and none of the rules can introduce

new variables, it suffices to show that a tableau cannot appear in a generating
sequence more than once. Let Ti and Tj, i < j, be two tableaux in a generating

sequence for T. If only J-rules were applied to go from Ti to Tj, then Tj contains
some row that is not in T,. If some F-rule was used, then Ti contains some
variable that is not in Tj. Hence, Ti and Tj are distinct. cl

LEMMA 4. CHASE~T) = T for tableau T if and only if T, considered as an
instance, is in sAT(C).

PROOF. Suppose T is not in SAT(C). If T violates an FD X + A, there must be
two rows in T that agree on X but not on A. Thus the F-rule for X + A can be

applied to T yielding a different tableau, and hence T # CHASE~(T). If T violates
a JD of C, the argument is similar. The other implication follows from the fact

that a transformation rule for C can be applied to a tableau T only when T,
considered as an instance, violates some dependency in C. cl

LEMMA 5. Let TO’, . . . , T,,’ and To2, . . . , T,,,2 be two generating sequences for
a tableau T under a set of dependencies C. Then T,,’ and T,,,2 are identical.

PROOF. We shall first prove that T,’ and T,” are the same up to renaming of
nondistinguished variables. This result is valid even if whenever two nondistin-

guished variables are identified by an F-rule, we choose one of them arbitrarily

to replace both variables, instead of following the rule of the smaller subscript as
originally defined. If we do follow the rule of the smaller subscript, we shall see

that T,,’ and T,,,’ are identical.
Let p1 and p2 be one-to-one valuations that map T,,’ and T,,,’ into instances I,

and 12, respectively. Note that II and I2 must both be in SAT(C) by Lemma 4. Let

Wl,..,, wk be the rows of T; wll, . . . , wkl are the corresponding rows of T,,‘, and

W12, . . . , wk2 are the corresponding rows of T,,,“.
Since two rows of T agree on a column only if the corresponding rows of T,,’

agree on the same column, it is easy to see that there exists a valuation PI of T
such that for all rows wi of T, /31(uli) = pl(wi’). By an application of Lemma 2, it
follows that (1) p1(Tm2) c 11, and (2) pl(wi”) = pl(wi) = pl(wi’) for 15 i I k.

Consider now the mapping a1 = P~-I/~~. Under 6,) each variable of T is mapped

to a variable of T,‘. It follows from (1) that 61 maps rows of T,,,” into rows of T,‘,
and from (2) that 61 maps every wi and every wi2 into wi’. Similarly, we can find
a mapping a2 from the variables of T to the variables of T,,,2, such that 132 maps

rows of T,’ into rows of T,,,“, and 82 maps every wi and every wi’ into wi’. It
follows that 6, maps every distinguished variable of T to itself, since a distin-
guished variable is never replaced with another variable when going from T to

any Ti’. Furthermore, 61 maps different variables of T,,,2 into different variables
of T,,‘. In proof, suppose two different variables u1 and v2 of T,,,” are mapped into

the same variable of T,,‘. We may assume both variables appear in the same
column, say column A, and there must exist two rows wi2 and wj2 of T,,,” that
disagree on that column. But since the composition 6261 maps wi’ into wi2 and wj’
into wj2, the images of these two rows under i% must also disagree on column A.

We conclude from this that an application of 6, to T,,,2 can be viewed as a
renaming of nondistinguished variables mapping T,,,” into T,,‘, and similarly for

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Testing Implications of Data Dependencies . 463

Fig. 4. Result of applying

BD + E to tableau of Figure

3

Fig. 5. Final tableau, obtained

by applying B + C and

*[CDE, ABE] to tableau of

Figure 4

&. We have thus proved that T,,,” and T,,’ are the same up to renaming of
nondistinguished variables.

We now show that T,,’ and T,,,’ are actually identical. We define an equivalence
relation El on the variables of T as follows. For two variables u, w, UE ‘w holds if
and only if u and w are identified by an F-rule in the generating sequence for T,,‘.

We define E” similarly using the generating sequence for T,,,‘. We extend E’ and
E2 to their reflexive-transitive closure.

We now claim that El and E” are the same equivalence relation. In proof,
suppose there are variables u, w such that vE’w holds but vE2w does not hold.
Let wi and wj be rows of T such that v appears in the A-column of wi and w

appears in the A-column of w,. Since vE’w holds, it can be shown that wi’ and
wj’ agree in the A-column. Similarly, the fact that uE ‘w does not hold implies
that wi2 and w,’ disagree in the A-column. But this a contradiction, since & maps
~1,’ and w,’ to wi’ and wj’, respectively, and & maps wi’ and wj’ to wi2 and w12,

respectively. An analogous argument shows E 2 c E ‘.

Let E = E’ = E2. Let u be any variable of T. Say u appears in column A. In
every row of T,’ corresponding to some row of T, u will be replaced by the
distinguished variable a in column A if aEu holds; otherwise, u will be replaced
by the nondistinguished variable with the smallest subscript among all those that
are equivalent to v under E. The same is true in every row of T,,,‘. It follows that
every row of T,,’ is a row of T,,,“, and vice versa, and hence the two tableaux are
identical. cl

Figures 2 through 5 show the computation of the chase for the tableau given in
Figure 1 under the constraints {B + C, BD + E, *[CDE, ABE]}. Figure 4 shows
the application of the F-rule for BD + E to the tableau of Figure 3, and Figure
5 is the final tableau. The tableau of Figure 5 is obtained from the one in Figure
4 by applying the F-rule for B + C once and then applying the J-rule for *[CDE,

ABE] three times.
We note that the computation for CHASEC(T) as given here may take exponen-

tial time. We can show that the computation can be done in no more than
exponential time as follows. Applying an F-rule to a tableau T can be done in
time polynomial in the size of T. Applying a J-rule to a tableau T can be done in
time exponential in the number of variables of T. Since the number of tableaux

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

464 * D. Maier, A. 0. Mendelzon, and Y. Sagiv

in a generating sequence for T is at most exponential in the number of variables
of T, the whole computation takes no more than exponential time in the size of

C and T.
The rules can be modified into slightly stronger versions. The F-rule can be

extended to apply to FDs X + W, W a set of attributes. This extended F-rule

equates variables in more than one column at once. The J-rule may be
strengthened to generate all the tuples allowed by a JD at once. Chasing is still
an exponential process, even with these stronger rules. The reason is that one

application of a strengthened J-rule can increase the number of rows exponen-
tially. Whether this performance can be improved is an open question. In special
cases, such as C consisting only of FDs, the algorithm runs in polynomial

time [l].
We have proved in Lemma 5 that the final result of the chase process does not

depend on the order in which we apply the rules. The following theorem shows
that the result of the chase is also independent of the particular cover of the set
of dependencies that we use.

THEOREM 3. If SAT(C) = SAT(D), then CHASEc(T) = CHASED(T) for any
tableau T.

PROOF. We shall first prove a special case of the theorem, where D = C U (c}

for any c such that C E c. Let T’ = CHASE~(T). We can get to T’ using rules in
D, since C c D. Furthermore, by Lemma 4, no rule for c can be applied to T’,
since T’ viewed as an instance is in SAT(C) and hence in SAT(D). So CHASE~T)
= T’.

Now we drop the restriction on C and D. Note that for any c in C and d in D,
C t= d and D E c. Let E = C U D. By repeated use of the special case above, we
canshow CHASE~(T) =CHASEE(T) = CHASE~(T). Cl

Theorem 3 tells us that before computing the chase under C, we are free to
choose any D with SAT(C) = SAT(D). In some cases, we may be able to choose a
D that will simplify the computation of the chase.

THEOREM 4. Let T be the tableau corresponding to a project-join mapping
MR and let C be a set of FDs, MVDs, and JDs. Then MR is the identity on
SAT(C) if and only if CHASE~(T) contains the row of all distinguished variables.

PROOF. Let P = SAT(C). Let T’ be a tableau containing only the row of all

distinguished variables. Obviously CHASES = T’. By Theorems 1 and 2,
T = pT’ if and only if CHASES T) = pT’ (because T’ = ~CHASEC(T’)). By Lemmas
1 and 4, CHASES T) = pTI if and only if CHASE~(T) = T’. It follows from the
results of [2, lo] that CHASEC(T) and T’ are equivaient on all instances if and
only if CHASEC(T) contains the row of all distinguished variables. cl

The theorem gives a method of checking whether a set C of FDs, MVDs, and
JDs implies any given JD (hence any MVD). Given the JD *[S], we know

instance I satisfies *[S] if and only if MS(I) = I. The theorem gives a test for
MS(I) = I for alI I in SAT(C). If so, then SAT(C) c SAT(*[S]), that is, C p *[S].

5. TABLEAUX AS TEMPLATES

We have been interpreting tableaux as mappings from instances to instances.
Tableaux may also be considered templates (actually partial templates) for

ACMTransactionsonDatabaseSystems,Vol.4.No.;l,Decem~~ 1979.

Testing Implications of Data Dependencies 465

instances. In this section we shall show that this interpretation can be used to
find the closure and the dependency basis of a set of attributes X, and also to
determine if an FD is implied by a set C.

5.1. Finding the Closure and Dependency Basis

Let C be a set of dependencies, and let X+ A be a nontrivial functional
dependency. We construct a tableau TX as follows. Tableau TX has two rows. One
row, denoted wl, has distinguished variables in all the columns. The other row,
wz, has distinguished variables in all the X-columns and nondistinguished varia-

bles in the rest of the columns. The following theorem shows how to use TX to
test whether X+ A is implied by C.

THEOREM 5. C I= X + A if and only if CHASE~(TX) has only a distinguished
variable in the A-column.

PROOF. For the only if, let T’ be CHASEC(TX) and suppose that 2” has more
than one variable in the A-column. Then T’ serves as a counterexample to the
implication, i.e., as an instance in which alI the dependencies of C hold, but

X + A fails. Conversely, suppose that T’ has only a distinguished variable in the

A-column, and let 1 be an instance in which C holds. Let tl and t2 be tuples of I
that agree in all the X-columns. We can apply the chase computation for TX to t,
and tz. Whenever a new row has to be added by a J-rule, this row is heady in I.
Whenever two variables are identified, they must already be the same in I. Since
eventually the chase computation identifies the variables in the A-column, tl and

t2 must agree in that column. Thus, X + A holds in I. This shows that X + A is
implied by C. cl

When we want to determine whether C R X+ A, it suffices to apply the
F-rules and J-rules only until column A contains only a distinguished variable,

because beyond this point no rule can introduce new variables into the column.
Furthermore, in this way we can find the closure of X under C. The closure of X
under C, or just closure of X (denoted X*) when C is understood, is the set of all
attributes A such that C k X + A.

COROLLARY 1. X* is the set of all attributes A such that the A-column of
CHASE~(TX) has only distinguished variables.

COROLLARY 2. F(M U J) = {X + Y 1 Y c X}. That is, the only FDs implied
by a set of JDs are the trivial ones.

PROOF. CHASE~(TX), where C = M U J, will have a nondistinguished variable
in every column not associated with an attribute in X, since J-rules cannot

identify variables. cl

Note that, when C contains only MVDs, the previous corollary follows from

the inference rules of Beeri, Fagin, and Howard for FDs and MVDs [7].
A multivalued dependency [12, 13, 201 is a join dependency whose associated

tableau has no more than two rows. An MVD can also be written as a statement
X + Y, where X and Y are sets of attributes. The corresponding join depen-
dency is *[XY, X(U - XY)]. The tableau T for the MVD X - Y has one row
with distinguished variables exactly in the columns for X U Y, and a second row

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

466 . D. Maier, A. 0. Mendelzon, and Y. Sagiv

with distinguished variables exactly in the columns for X U 2, where 2 = U -

XY.
Let C be a set of dependencies, and X a set of attributes. Consider the set

it= (YICl=X-++ Y}.

Note that the elements of this set are sets of attributes. The inference rules for

MVDs [7] imply that a has a subset, called the dependency basis of X, such that
the sets in the dependency basis are pairwise disjoint, every attribute is in some
set of the dependency basis, and if X ++ Y is implied by C, then Y is a union of
sets taken from the dependency basis of X. Note that for each attribute A in X*,

{A} is a member of the dependency basis of X, since X + A F X-H A.
It is easy to see that the dependency basis of X contains all sets of attributes Y

such that (a) Y E Q and (b) Y does not have any proper subset Y’ that is also a

member of !G?. Thus, if X* is given and if the set Q’ = { Y] C E X ++ Y and
X* fl Y = $} is given, then the dependency basis of X can be constructed in time
polynomial in the size of X* and 52’. We have already seen that X* can be found

in linear time from CHASEC(TX). The following lemma shows that so can a’.

LEMMA 6. Let Y be a set of attributes disjoint from X*. The MVD X - Y is
implied by C if and only if CHASEC(TX) contains a row with distinguished
variables exactly in the columns for X* U Y.

PROOF. (if) Let w1 be the row of TX that has only distinguished variables, and

let w2 be the other row of TX. Let u1 and uz be the corresponding rows in
CHASES. Suppose that row u of CHASE~TX) has distinguished variables
exactly in the columns for X* U Y. Let T’ be the tableau corresponding to the
database scheme {XY, X2}, where 2 = c’ - XY. Let rl be the row of T’
corresponding to XY, and r2 the other row of T’, and sl, s2 the corresponding
rows in CHASEc(T’).

It is not hard to construct, as in the proof of Lemma 5, a mapping 6 from the
variables of TX to the variables of CHASEC(T’), such that 6(wl) = s1 and 6(w2) =
s2. By an application of Lemma 2, every row of CHASE~(TX) is mapped by 6 into
a row of CHASEC(T’). Also, 6(ul) = 6(w1) and 6(u2) = 6(w2). It follows that rows
sI and s2 must agree in the X*-columns, since UI and u2 do. But SI and s2 agree on

a column only if both have the same distinguished variable in that column.
Therefore, 6 maps every distinguished variable in the X*-coltmms of CHASEC(TX)
to a distinguished variable of CHASEC(T’).

Furthermore, it is easy to see that all distinguished variables of TX in the
Y-columns are mapped by 6 to distinguished variables of CHASEC(T’). Similarly
it follows that all nondistinguished variables of TX in the Z-columns are mapped
by S to distinguished variables of CHASEC(T’).

Consider now the row u of CHASE~(TX) that has distinguished variables exactly
in the columns for X* U Y. We claim that the row 6(u) has only distinguished
variables. This follows from the previous remarks and the fact that row u has
distinguished variables in the columns for X* U Y and nondistinguished variables
in the columns for 2 - X*. Therefore, 6(u) is a row of CHASEC(T’) with only
distinguished variables, proving that C 5= X - Y.

(Only if) Suppose C E X - Y. By Theorem 4, CHASEC(TX) is the same as

CHASE~~~~-Y)(TX). There is a computation of this chase that starts out by

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Testing Implications of Data Dependencies 467

applying X - Y to rows w1 and ~2, producing a row w with distinguished
variables exactly in the columns for X U Y. It is easy to see that the row
corresponding to w in the final chase under this augmented set of dependencies
has distinguished variables exactly in the columns for X* U Y. Cl

COROLLARY 3. Given a set of dependencies C and a set of attributes X, the
closure of X and the dependency basis of X can be found in exponential time.

5.2. Completions

In this subsection we shall give a more formal setting for the idea of tableaux as

templates by defining the notion of a completion of an instance and proving some

general results about these completions.
If I is any instance, a completion of I under P is an instance H in P such that

H contains I and there is no proper subset of H in P containing I. An instance

may not always have a completion in P. However, we do have the following

result.

LEMMA 7. Let P be a set of universal instances. P is closed under intersection
if and only if completions under P are unique.

PROOF. Suppose P is closed under intersection. Let I be an arbitrary instance
with completions H and H’ under P. Then H n H’ is in P and contains 1. It

follows that H = H’. For the converse, suppose completions are unique. Let I and
H be in P, and J = I n H. There must be some subset I’ of I that is a completion

of J, and some subset H’ of H that is a completion of J. But then I’ = H’, hence
I’= J= H’, so JisinP. cl

Given tableau T and valuation p, let p(T) be the instance containing p(w) for

all w in T. We shall view T as a representative of the set of instances

REP(T, P) = { I] 1 is a completion of p(T) for some valuation p} .

For P = SAT(C), we bend our notation and write REP(T, C) for REP(T, SAT(C)).
It is easy to show that SAT(C) is closed under intersection.

The following lemma shows how the REP sets of equivalent tableaux are related
to each other.

LEMMA 8. For P closed under intersection, if T, = PTP, then for every I in
REP(T1, P) there exists an H in REP(T2, P) such that H C I.

PROOF. Let I E REP(T,, P), where I is the completion of pl (Tl), and let w be
the row of all distinguished variables. T1 (I) contains pl (w), since I contains pl (r)
for every row r of T, . Since T1 = PT2, pl (w) E Tz(I). There must be a p2 with

p2(w) = pi(w) and p2(x) E Ifor every x in Tz. Let the completion of pz(T2) under
P be H. H exists because p2(T2) C I. It follows that H c I. 0

We think it would be interesting to resolve the following open question: If
REP(T1 , P) = REP(Tz, P), and P is closed under intersection, can it be shown that
T, = pT2?

6. FURTHER QUESTIONS

Fagin has introduced the notion of embedded multivalued dependencies
(EMVDs) [13]. An EMVD takes the form X +- Y(Z) (read “X multivalued
implies Y in the context of 2”). Let W = XYZ. An instance I satisfies X ++

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

468 - D. Maier, A. 0. Mendelzon, and Y. Sagiv

ABCDE
QI a2 h 04 62

I

b3 a2 a3 b4 as
65 b6 b7 a4 ~15
a~ a2 03 b8 69

Fig. 6. Applying an EMVD rule for *[All, BC]

Y(Z) if its projection onto Wsatisfies X-w Y. We can similarly define embedded
join dependencies (EJDs). Let S = {&, . . ., S’,}, and let W = UiSi. We do not
require that W contain all the attributes in U. The EJD holds in instance I if the

projection of I onto W satisfies *[S].
Can we incorporate EJDs (and hence EMVDs) into C for our chase computa-

tion? One possible way to apply the EJD *[S] on W to a tableau T is to project
T onto W, apply the usual J-rule to generate a new row w, pad w to w’ with new

nondistinguished variables, and add w’ to T. Figure 6 shows the result of applying

the EJD *[A& BC] to rows 1 and 2 of the tableau of Figure 1. However, our
proof of termination depends on no new variables being added.

Another question is: can we find rules of inference for the set of FDs and JDs
similar to those for FDs and MVDs [7]?

ACKNOWLEDGMENTS

The authors wish to thank Catriel Beeri and Jeff Ullman for their comments on
an earlier version of this paper.

REFERENCES

1. AHO, A.V., BEERI, C., AND ULLMAN, J.D. The theory of joins in relational databases. Proc. 18th

Symp. on Foundations of Computer Science, Providence, R.I., 1977, pp. 107-113.

2. AHO, A.V., SAGIV, Y., AND ULLMAN, J.D. Equivalence of relational expressions. SIAM J.

Comptng. 8,2 (May 1979), 218-246.

3. ARMSTRONG, W.W. Dependency structures of data base relationships. Proc. IFIP ‘74, North-

Holland Pub. Co., Amsterdam, 1974, pp. 580-583.

4. BEERI, C. On the membership problem for multivalued dependencies in relational databases.

Tech. Rep. 229, Dept. Elec. Eng. and Comptr. Sci., Princeton U., Princeton, N.J., 1977.

5. BEERI, C. On the role of data dependencies in the construction of relational database schemas.

Tech. Rep. 43, Dept. Comptr. Sci., The Hebrew University, Jerusalem, Israel, 1979.

6. BEERI, C., BERNSTEIN, P., AND GOODMAN, N. A sophisticate’s introduction to database normal-

ization theory. Proc. 4th Int. Conf. on Very Large Data Bases, West Berlin, 1978, pp. 113-124.

7. BEERI, C., FAGIN, R., AND HOWARD, J. A complete axiomatization for functional and multivalued

dependencies. Proc. ACM-SIGMOD Conf., Toronto, Canada, 1977, pp. 47-61.

8. BEERI, C., MENDELZON, A.O., SAGIV, Y., AND ULLMAN, J.D. Equivalence of relational database

schemes. Proc. 11th ACM Symp. on Theory of Computing, Atlanta, Ga., 1979, pp. 319-329. See

also Tech. Rep. 252, Dept. Elec. Eng. and Comptr. Sci., Princeton U., Princeton, N.J., 1978.
9. BERNSTEIN, P.A. Synthesizing third normal form relations from functional dependencies. ACM

Trans. Database Syst. I, 4 (Dec. 19761, 277-298.

10. CHANDRA, A.K., AND MERLIN, P.M. Optimal implementation of conjunctive queries in relational

databases. Proc. 9th Ann. ACM Symp. on Theory of Computing, Boulder, Colo., 1976, pp. 77-90.
11. CODD, E.F. A relational model for large shared data banks. Comm. ACM 13, 6 (June 1970).

377-387.

12. DELOBEL, C. Contributions theoretiques a -la conception et a l’evaluation dun systeme

d’informations applique a la gestion. These d’Etat, U. of Grenoble, Grenoble, France, 1973.

ACM Tran.%xtions 0x1 Database Systems, Vol. 4, No. 4, December 1979.

Testing Implications of Data Dependencies 469

13. FAGIN. R. Multivalued dependencies and a new normal form for relational databases. ACM
Trans. Database Syst. 2,3 (Sept. 1977), 262-278.

14. FAGIN, R. Normal forms and relational database operators. Proc. ACM-SIGMOD Conf., Boston,

Mass., 1979, pp. 153-160.

15. HAGIHARA, K., ITO, M., TANIGUCHI, K., AND KASAMI, T. Decision problems for multivalued

dependencies in relational databases. SIAM J. Comptng. 8,2 (May 1979), 247-264.

16. MAIER, D., MENDELZON, A.O., SADRI, F., AND ULLMAN, J.D. Adequacy of decompositions of

relational databases. Unpub. manuscript.

17. RISSANEN, J. Independent components of relations. ACM Trans. Database Syst. 2,4 (Dec. 1977),

317-325.

18. RISSANEN, J. Theory of relations for databases-a tutorial survey. Proc. 7th Symp. on Mathe-

matical Foundations of Computer Science, Lecture Notes in Computer Science 64, Springer-

Verlag, 1978, pp. 536-551.

19. SAGIV, Y. An algorithm for inferring multivalued dependencies that works also for a subclass of

propositional logic. Rep. UIUCDCS-R-79-954, Dept. Comptr. Sci., U. of Illinois, Urbana-Cham-

paign, Ill., 1979.

20. ZANIOLO, C. Analysis and design of relational schemata for database systems. Tech. Rep. UCLA-

ENG-7769, Ph.D. Th., Dept. Comptr. Sci., U. of California, Los Angeles, Calif., 1976.

Received March 1979; revised June 1979

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

