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Abstract

We introduce the matrix multivariate auto-distance covariance and correlation functions for time series, dis-

cuss their interpretation and develop consistent estimators for practical implementation. We also develop a test

for testing the independent and identically distributed hypothesis for multivariate time series data and show that

it performs better than the multivariate Ljung–Box test. We discuss computational aspects and present a data

example to illustrate the methodology.
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1 Introduction

In applications from fields such as economics (e.g. Tsay, 2014), medicine (McLachlan et al., 2004) or environ-

metrics (Hipel and McLeod, 1994) we observe several time series evolving simultaneously. Analyzing each com-

ponent separately might lead to wrong conclusions because of possible interrelationships among the series. Such

relationships are usually identified by employing the autocovariance function. For a d-dimensional stationary time

series {Xt, t ∈ Z} with mean µ, the autocovariance function is defined by

Γ(j) = E
{

(Xt+j − µ)(Xt − µ)⊺
}

=
{

γrm(j)
}d

r,m=1
(j ∈ Z).

A consistent estimator is the sample autocorrelation function (Brockwell and Davis, 1991, p. 397)

Γ̂(j) =























n−1

n−j
∑

t=1

(Xt+j − X̄)(Xt − X̄)⊺, 0 ≤ j ≤ n− 1,

n−1
n
∑

t=−j+1

(Xt+j − X̄)(Xt − X̄)⊺, −n+ 1 ≤ j < 0,

which is often used to measure pairwise dependence. The multivariate Ljung–Box test statistic (Hosking, 1980; Li

and McLeod, 1981) is formed in terms as

mLB = n2

p
∑

j=1

(n− j)−1tr
{

Γ̂⊺(j)Γ̂−1(0)Γ̂(j)Γ̂−1(0)
}

, (1)

and it is widely applied for testing the hypotheses Γ(1) = · · · = Γ(p) = 0. However, application of (1) should

be done carefully because the number of lags included is held constant but, in practice, the dependence might

be of higher order (Hong, 1998, 2000; Xiao and Wu, 2014). Furthermore, the autocovariance function cannot

always detect serial dependence for purely non-Gaussian and non-linear models, though it is suitable for Gaussian

models. Test statistics which are based on the autocovariance function for testing independence are not consistent

against alternatives for models with zero autocovariance (Romano and Thombs, 1996; Shao, 2011), so alternative

dependence measures should be studied (Tjøstheim, 1996; Lacal and Tjøstheim, 2017, 2018).

We study the auto-distance covariance function as a suitable statistic for detecting nonlinear relationships in mul-

tivariate time series. This function is based on the distance covariance (Székely et al., 2007). Feuerverger (1993)



3

gave an early treatment and Zhou (2012), Dueck et al. (2014), Fokianos and Pitsillou (2017) and Davis et al. (2016)

extended it to time series. Work on the closely related notion of the Hilbert–Schmidt independence criterion in-

cludes Sejdinovic et al. (2013) and Gretton et al. (2008). In the present paper, we introduce the auto-distance

covariance matrix to identify possible non-linear relationships among the components of a vector series {Xt}

and show that its sample version is a consistent estimator of the population auto-distance covariance matrix. The

sample auto-distance covariance matrix may be used to construct tests for independence of multivariate time se-

ries. This is accomplished by following Hong (1999), who introduced the so-called generalized spectral density

function. The generalized spectral density matrix captures all the forms of dependence because it is constructed

by using the characteristic function. Hence, we can develop statistics for testing independence by considering an

increasing number of lags.

The present paper extends Zhou (2012) and Fokianos and Pitsillou (2017), who consider univariate testing of inde-

pendence based on auto-distance covariance and Székely et al. (2007), since some of our results can be transferred

to independent data. Indeed, using the auto-distance covariance matrix for identification of possible dependencies

among the components of a random vector could give rise to novel dimension-reduction methods. All methods are

available in the R package dCovTS (Pitsillou and Fokianos, 2016).

2 Auto-Distance Covariance Matrix

2.1 Definitions

Suppose that {Xt, t ∈ Z} is a d-variate strictly stationary time series. Denote its cumulative distribution function

by F (x1, . . . , xd) and assume that E(|Xt;r|) < ∞, for r = 1, . . . , d. Let Fr(·) denote the marginal distribution

function of {Xt;r} and Frm(·, ·) that of (Xt;r, Xt;m) with r,m = 1, . . . , d. Let {Xt : t = 1, . . . , n} be a sample

of size n. Zhou (2012), by extending the results of Székely et al. (2007), defines the distance covariance function

for multivariate time series, but without taking into account possible cross-dependencies between all possible

pairs of the component series of {Xt}. Here, we define the pairwise distance covariance function as the distance
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between the joint characteristic function and the marginal characteristic functions of the pair (Xt;r, Xt+j;m), for

r,m = 1, . . . , d. Denote the joint characteristic function of Xt;r and Xt+j;m by

φ
(r,m)
j (u, v) = E

[

exp
{

i(uXt;r + vXt+j;m)
}

]

(u, v ∈ R; j ∈ Z),

where r,m = 1, . . . , d and i2 = −1. Let φ(r)(u) = E
[

exp
{

i(uXt;r)
}]

denote the marginal characteristic

function of Xt;r for r = 1, . . . , d. Let

Σj(u, v) =
{

σ
(r,m)
j (u, v)

}

(j ∈ Z) (2)

denote the d× d matrix whose (r,m) element is

σ
(r,m)
j (u, v) = cov

{

exp(iuXt;r), exp(ivXt+j;m)
}

= φ
(r,m)
j (u, v)− φ(r)(u)φ(m)(v). (3)

If σ
(r,m)
j (u, v) = 0 for all (u, v) ∈ R

2 then the random variables Xt;r and Xt+j;m are independent for all j. Let

the ‖ · ‖W -norm of σ
(r,m)
j (u, v) be defined by

‖σ(r,m)
j (u, v)‖2W =

∫

R2

∣

∣

∣
σ
(r,m)
j (u, v)

∣

∣

∣

2

W(du, dv) (j ∈ Z),

where W(·, ·) is an arbitrary positive weight function such that ‖σ(r,m)
j (u, v)‖2W < ∞. Feuerverger (1993) and

Székely et al. (2007) employ a non-integrable weight function,

W(du, dv) =
1

π |u|2
1

π |v|2
dudv. (4)

The choice of W(·, ·) is key in this work. Obviously, (A.4) is non-integrable in R
2, but, choices with

∫

dW < ∞

are possible. Following Hong (1999) and Chen and Hong (2012), suppose that W(·, ·) : R2 → R
+ is nondecreas-

ing with bounded total variation. This obviously holds for W(du, dv) = dΦ(u)dΦ(v), where Φ(·) is the standard

normal cumulative distribution function. In this case, ‖σ(r,m)
j (u, v)‖2W can be computed by Monte Carlo simula-

tion. For related work, see also Meintanis and Iliopoulos (2008) and Hlávka et al. (2011). In what follows we use

(A.4) throughout, taking into account the fact that integrable weight functions might miss potential dependence

among observations (Székely et al., 2007, p. 2771).
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Definition 1 The pairwise auto-distance covariance function between Xt;r and Xt+j;m is denoted by Vrm(j) and

defined as the positive square root of

V 2
rm(j) = ‖σ(r,m)

j (u, v)‖2W (r,m = 1, . . . , d; j ∈ Z), (5)

with W(·, ·) given by (A.4). The auto-distance covariance matrix of {Xt} at lag j will be denoted by V (j) and is

the d× d matrix

V (j) =

{

Vrm(j)

}d

r,m=1

(j ∈ Z). (6)

Clearly, V 2
rm(j) ≥ 0, for all j and Xt;r and Xt+j;m are independent if and only if V 2

rm(j) = 0. Furthermore, we

define the d× d matrices

V (2)(j) =

{

V 2
rm(j)

}d

r,m=1

(j ∈ Z). (7)

Definition 1 is valid for any weight function W(·, ·) such that V 2
rm(j) < ∞; with (A.4), it is a pairwise auto-

distance covariance function.

Definition 2 The pairwise auto-distance correlation function between Xt;r and Xt+j;m is denoted by Rrm(j) and

defined as the positive square root of

R2
rm(j) =

V 2
rm(j)

{

V 2
rr(0)V

2
mm(0)

}1/2
(r,m = 1, . . . , d; j ∈ Z),

provided that Vrr(0)Vmm(0) 6= 0. The auto-distance correlation matrix of {Xt} at lag j is

R(j) =

{

Rrm(j)

}d

r,m=1

(j ∈ Z).

Similarly, define the d× d matrices

R(2)(j) =

{

R2
rm(j)

}d

r,m=1

(j ∈ Z).

Then (7) shows that R(2)(j) = D−1V (2)(j)D−1, where D = diag

{

Vrr(0)

}

, (r = 1, . . . , d). All above popula-

tion quantities exist and are well-defined because of standard properties of the characteristic function. Davis et al.

(2016) gives existence results concerning more general weight functions.
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When j 6= 0, Vrm(j) measures the dependence of Xt;r on Xt+j;m. For j > 0 and if Vrm(j) > 0, we say that the

series Xt;m leads the series Xt;r at lag j. In general, Vrm(j) 6= Vmr(j) for r 6= m, since they measure different

types of dependence between the series {Xt;r} and {Xt;m} for all r,m = 1, . . . , d. Thus, V (j) and R(j) are

non-symmetric matrices, but by stationarity,

V 2
rm(−j) = ‖cov

{

exp(iuXt;r), exp(ivXt−j;m)
}

‖2W

= ‖cov
{

exp(iuXt;m), exp(ivXt+j;r)
}

‖2W = V 2
mr(j), r,m = 1, . . . , d.

Consequently, V (−j) = V ⊺(j) and R(−j) = R⊺(j), because the matrices V (j) and R(j) have as elements the

positive square roots of the elements of V (2)(j) and R(2)(j).

Auto-distance covariance matrices are interpreted as follows. For all j ∈ Z, the diagonal elements
{

Vrr(j)
}d

r=1

correspond to the auto-distance covariance function of {Xt;r} and they explain dependence among the pairs

(

Xt;r, Xt+j;r

)

, r = 1, . . . , d. The off-diagonal elements
{

Vrm(0)
}d

r,m=1
measure concurrent dependence be-

tween {Xt;r} and {Xt;m}. If Vrm(0) > 0, {Xt;r} and {Xt;m} are concurrently dependent. For j 6= 0,
{

Vrm(j)
}d

r,m=1
measures dependence between {Xt;r} and {Xt+j;m}. If Vrm(j) = 0 for all j 6= 0, then

{Xt+j;m} does not depend on {Xt;r}. For all j ∈ Z, Vrm(j) = Vmr(j) = 0 implies that {Xt;r} and {Xt+j;m}

are independent. Moreover, for all j 6= 0, if Vrm(j) = 0 and Vmr(j) = 0 then {Xt;r} and {Xt;m} have no lead-lag

relationship. If for all j > 0, Vrm(j) = 0 but there exists some j > 0 such that Vmr(j) > 0, then {Xt;m} does not

depend on any past values of {Xt;r}, but {Xt;r} depends on some past values of {Xt;m}.

2.2 Estimation

To estimate (5) and (6), define, for j ≥ 0,

σ̂
(r,m)
j (u, v) = φ̂

(r,m)
j (u, v)− φ̂(r)(u)φ̂(m)(v),

with

φ̂
(r,m)
j (u, v) = (n− j)−1

n−j
∑

t=1

exp
{

i(uXt;r + vXt+j;m)
}

(u, v ∈ R),
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and φ̂(r)(u) = φ̂
(r,m)
j (u, 0), φ̂(m)(v) = φ̂

(r,m)
j (0, v). Then, the sample pairwise auto-distance covariance is

defined by the positive square root of

V̂ 2
rm(j) = π−2

∫

R2

∣

∣

∣
σ̂
(r,m)
j (u, v)

∣

∣

∣

2

|u|2 |v|2
dudv.

Let Yt;m = Xt+j;m. Then, based on the sample {(Xt;r, Yt;m) : t = 1, . . . , n−j}, we calculate the (n−j)×(n−j)

Euclidean distance matrices Ar = (Ar
ts) and Bm = (Bm

ts ) with elements

Ar
ts = arts − ārt. − ār.s + ār..,

whereαr
ts = |Xt;r −Xs;r|, ᾱr

t. =
(

∑n−j
s=1 a

r
ts

)

/(n−j), ᾱr
.s =

(

∑n−j
t=1 a

r
ts

)

/(n−j), ᾱr
.. =

(

∑n−j
t=1

∑n−j
s=1 a

r
ts

)

/(n−

j)2. Similarly, define the quantities bmts = |Yt;m − Ys;m| to obtain b̄mt. , b̄m.s , b̄m.. and Bm
ts . The, by following Székely

et al. (2007), we obtain that

V̂ 2
rm(j) = (n− j)−2

n−j
∑

t,s=1

Ar
tsB

m
ts .

If j < 0 we set V̂ 2
rm(j) = V̂ 2

mr(−j). By (7) define the d × d matrices V̂ (2)(j) =
{

V̂ 2
rm(j)

}

, j ∈ Z. The

sample distance covariance matrix is given by V̂ (j) =
{

V̂rm(j)
}

, j ∈ Z. Similarly, define R̂(2)(j) and R̂(j),

j ∈ Z.

2.3 Large sample properties of the sample distance covariance matrix

The assumption of stationarity is quite restrictive for applications and it is interesting to investigate the behavior of

the distance covariance function when this assumption does not hold. Consider a simple random walk where {Xt}

is assumed to be a univariate Gaussian process with E(Xt) = 0, var(Xt) = 1 and cov(Xt, Xt+j) = ρ(j). Then

(Fokianos and Pitsillou, 2017)

R2(j) =
ρ(j)arcsin{ρ(j)}+ {1− ρ2(j)}1/2 − ρ(j)arcsin{ρ(j)/2} − {4− ρ2(j)}1/2 + 1

1 + π/3− 31/2
(j ∈ Z).

The last display shows that the behavior of ρ2(j) determines that of R2(j), so we expect R2(j) to decay as slowly

as ρ2(j) does for a random walk. We can test whether the increments Xt − Xt−1 form an independent and

identically distributed sequence by employing the methods of Fokianos and Pitsillou (2017).
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In the Supplementary Material we show that V̂ 2
rm(j) is a V -statistic (Serfling, 1980, Section 5.1.2), which can be

approximated by another V -statistic with a kernel of lower order. Indeed, suppose that u, u′ ∈ R and let X be a

real-valued random variable. Define

mX(u) = E(|X − u|), m̄X = E{mX(X)}, dX(u, u′) = |u− u′| −mX(u)−mX(u′) + m̄X .

With some abuse of notation and setting X ≡ Xt;r and Y ≡ Xt+j;m we obtain that

V 2
rm(j) = E

{

dX(X,X ′)dY (Y, Y
′)
}

,

where (X ′, Y ′) is an independent and identically distributed copy of (X,Y ) (Székely and Rizzo, 2013, p. 1262).

That is, there exists a kernel h : R2 × R
2 → R given by

h(x, y;x′, y′) = dX(x, x′)dY (y, y
′), (8)

such that V 2
rm(j) =

∫

R2

∫

R2 h(x, y;x
′, y′)dFrm(x, y)dFrm(x′, y′). The kernel function is symmetric, continuous

and positive semidefinite. Under independence, V̂ 2
rm(·) is a degenerate V -statistic. If E(|Xt;r|2) < ∞, then

Székely and Rizzo (2013, Lemma 1) and Fubini’s theorem yield that

V 2
rm(j) = E(|X −X ′| |Y − Y ′|) + E(|X −X ′|)E(|Y − Y ′′|)− 2E(|X −X ′| |Y − Y ′′|),

where (X ′, Y ′) and (X ′′, Y ′′) are independent and identically distributed copies of (X,Y ). If Xt;r is independent

of Xt+j;m, then E{h(x, y;X,Y )} = 0, so V̂ 2
rm(j) has a first order degeneracy. The following proposition shows

the strong consistency of the estimator V̂ (j).

Proposition 1 Let {Xt} be a d-variate strictly stationary and ergodic process with E(|Xt;r|2) < ∞ for r =

1, . . . , d. Then, for all j ∈ Z, V̂ (j) → V (j) almost surely as n→ ∞.

Proposition 1 follows directly from the strong law of large numbers for V -statistics of ergodic and stationary

sequences (Aaronson et al., 1996). Alternatively, it can be proved by the methods of Székely et al. (2007), Fokianos

and Pitsillou (2017, Prop. 1) and Davis et al. (2016) by assuming E(|Xt;r|) < ∞ or by Zhou (2012) assuming

E(|Xt;r|1+ǫ
) < ∞ for some ǫ > 0. In particular, by assuming strict stationarity, ergodicity and E(|Xt;r|2) <

∞, for r = 1, . . . , d, the strong consistency of the sample auto-distance covariance matrix is established by
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individually considering each element of V̂ (2)(j) and then the corresponding element of V̂ (j). Previous related

work for strong laws of V -statistics requires stationarity, ergodicity, existence of second moments, almost surely

Frm(·, ·) continuity of the kernel function and uniform integrability. Under these assumptions, V̂ (j) is a weakly

consistent estimator of V (j), see Borovcova et al. (1999, Theorem 1) and Aaronson et al. (1996, Proposition

2.8).

The following theorem is proved in the Supplementary Material and gives the limiting distribution of the sample

pairwise auto-distance covariance function, V̂ 2
rm(·) when V 2

rm(·) 6= 0 and when {Xt} is a pairwise independent

sequence. Related results are given by Zhou (2012) and Davis et al. (2016). We attack the problem by using results

on U -statistics for β-mixing processes (Yoshihara, 1976). The first result shows that we can form asymptotic

confidence intervals for V 2
rm(·); unfortunately this gives no further information on the dependence structure in the

data.

Theorem 1 Suppose that {Xt} is β-mixing and assume that there exists a positive number δ such that for ν = 2+δ:

(i) E(|Xt;r|ν) < ∞, for r = 1, . . . , d, (ii) for any integers i1, i2, supi1,i2 E(|Xi1;r −Xi2;r|
ν
) < ∞ for all

r = 1, . . . , d and (iii) the mixing coefficients β(k) satisfy β(k) = O(k−(2+δ′)/δ′), for some δ′ such that 0 < δ′ < δ.

Then, for fixed j:

1. if V 2
rm(j) 6= 0 then

n1/2
{

V̂ 2
rm(j)− V 2

rm(j)

}

→ N(0, 36σ2), n→ ∞,

in distribution, where σ2 is given in the Supplementary Material,

2. if V 2
rm(j) = 0 and δ′ < δ/(3 + δ), then

nV̂ 2
rm(j) → Z =

∑

l

λlZ
2
l , n→ ∞, (9)

in distribution, where (Zl) is an independent and identically distributed sequence of standard normal ran-

dom variables and (λl) is a sequence of nonzero eigenvalues which satisfy the Hilbert–Schmidt equa-

tion E
{

h(x, y;X,Y )Φ(X,Y )
}

= λΦ(x, y). The kernel h(·) is defined by (8) and it is represented by

h(x, y;x′, y′) =
∑∞

l=1 λlΦl(x, y)Φl(x
′, y′), where (Φl)l is the sequence of the corresponding orthonormal
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eigenfunctions.

The second part of Theorem 1 is proved by a Hoeffding decomposition (Hoeffding, 1948) by showing that V̂ 2
rm(.)

is approximated by a V -statistic of order two which is degenerate under independence. Then, applying Leucht and

Neumann (2013a, Thm. 1) yields the result. If {Xt} is an independent and identically distributed sequence then the

second part of Theorem 1 holds; see Székely et al. (2007). In general, it is of interest to approximate the asymptotic

distribution of the matrix variate V -statistic {V (2)(j), j ∈ Z}, whether or not independence holds. To the best of

our knowledge, this problem has not been addressed in the literature, but see Chen (2016). Furthermore, it is of

interest to determine simultaneous confidence intervals for the elements of V (j) mimicking the methodology of

the ordinary autocorrelation function, under the assumption of independence. But the asymptotic distribution given

in (9) cannot be employed in applications, so a simulation-based method should be applied. We discuss this further

in Sec. 4.2.

3 Testing the independent and identically distributed hypothesis for mul-

tivariate time series

In this section, we develop a test statistic for testing the null hypothesis H0 : {Xt} is an independent and

identically distributed sequence. Recall that the Frobenius norm of an m × n matrix A is defined as ‖A‖2F =

∑m
i=1

∑n
j=1 |αij |2 = tr(A∗A), where A∗ denotes the conjugate transpose of A, and tr(A) denotes the trace of the

matrix A.

We obtain by (3) that

sup(u,v)∈R2

∞
∑

j=−∞

∣

∣

∣
σ
(r,m)
j (u, v)

∣

∣

∣
<∞, (10)

provided that {Xt} is an β-mixing process with coefficients decaying to zero. Indeed,
∣

∣cov(eiuXt;r , eivXt+j,m)
∣

∣ =
∣

∣

∣
σ
(r,m)
j (u, v)

∣

∣

∣
≤ Cβ(j), for some constant C. Thus, the sequence of covariance matrices {Σj(u, v), j ∈ Z},

defined by (2), has absolutely summable components for all (u, v) ∈ R
2. Define the Fourier transform of
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σ
(r,m)
j (·, ·),

f (r,m)(ω, u, v) = (2π)−1
∞
∑

j=−∞

σ
(r,m)
j (u, v)e−ijω (ω ∈ [−π, π]). (11)

Because of (A.2), f (r,m)(·, ·, ·) is bounded and uniformly continuous. If r = m, then f (r,r)(ω, u, v) is called the

generalized spectrum or generalized spectral density of Xt;r at frequency ω for all (u, v) ∈ R
2. If r 6= m, then

f (r,m)(ω, u, v) is called the generalized cross-spectrum or generalized cross spectral density of Xt;r and Xt;m at

frequency ω for all (u, v) ∈ R
2. Collecting all elements of (11) in a d × d matrix, we obtain the generalized

spectral density matrix

F (ω, u, v) = (2π)−1
∞
∑

j=−∞

Σj(u, v)e
−ijω =

{

f (r,m)(ω, u, v)
}d

r,m=1
.

Under the null hypothesis of independent and identically distributed data, Σj(u, v) = 0 for all j 6= 0. In this case

denote F (·, ·, ·) by

F0(ω, u, v) = (2π)−1
{

σ
(r,m)
0 (u, v)

}d

r,m=1
.

In general, F0(·, ·, ·) is not a diagonal matrix, but when Xt;r and Xt;m are independent for all r,m = 1, . . . , d,

then F0(·, ·, ·) reduces to a diagonal matrix. Consider the following class of kernel-density estimators,

f̂ (r,m)(ω, u, v) = (2π)−1

(n−1)
∑

j=−(n−1)

(1− |j| /n)1/2K(j/p)σ̂
(r,m)
j (u, v)e−ijω (ω ∈ [−π, π]),

where p is a bandwidth parameter and K(·) is a univariate kernel function satisfying

Assumption 3.1 K : R → [−1, 1] is symmetric and continuous at 0 and at all but a finite number of points, with

K(0) = 1,
∫∞

−∞
K2(z)dz <∞ and |K(z)| ≤ C |z|−b

for large z and b > 1/2.

Next let

F̂ (ω, u, v) =
{

f̂ (r,m)(ω, u, v)
}d

r,m=1
, F̂0(ω, u, v) = (2π)−1

{

σ̂
(r,m)
0 (u, v)

}d

r,m=1
.

Then, it is shown in the Supplementary Material that for W(·, ·) given by (A.4),

L2
2

{

F̂ (ω, u, v), F̂0(ω, u, v)
}

=

∫

R2

∫ π

−π

‖F̂ (ω, u, v)− F̂0(ω, u, v)‖2F dωW(du, dv)

= 2π−1
n−1
∑

j=1

(1− j/n)K2(j/p)tr
{

V̂ ∗(j)V̂ (j)
}

. (12)
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In terms of the distance correlation matrix, (12) becomes

L2
2

{

Ĝ(ω, u, v), Ĝ0(ω, u, v)
}

= 2π−1
n−1
∑

j=1

(1− j/n)K2(j/p)tr
{

V̂ ∗(j)D̂−1V̂ (j)D̂−1
}

, (13)

where Ĝ(·, ·, ·), Ĝ0(·, ·, ·) are the estimators of the normalized multivariate generalized spectrums G(·, ·, ·) and

G0(·, ·, ·); details are given in the Supplementary Material. Equations (12) and (13) motivate our study of multi-

variate tests of independence. In particular, it is of interest to test whether the vector series {Xt} is independent

and identically distributed regardless of any possible dependence between time series components {Xt;r} for

r = 1, . . . , d. Equation (13) can be viewed as a multivariate Ljung–Box type statistic based on the distance covari-

ance matrix instead of ordinary autocovariance matrix. Indeed, by choosingK(z) = 1 for |z| ≤ 1 and 0 otherwise,

equation (13) becomes

L2
2

{

Ĝ(ω, u, v), Ĝ0(ω, u, v)
}

= 2π−1

p
∑

j=1

(1− j/n)tr
{

V̂ ∗(j)D̂−1V̂ (j)D̂−1
}

.

Define T
(r,m)
n =

∑n−1
j=1 (n− j)K2(j/p)V̂ 2

rm(j). Then, the test statistic motivated by (12) is

Tn =
∑

r,m

T (r,m)
n =

n−1
∑

j=1

(n− j)K2(j/p)tr
{

V̂ ∗(j)V̂ (j)
}

.

Similarly, by using (13), consider

T̄n =
∑

r,m

T
(r,m)
n

{

V̂ 2
rr(0)V̂

2
mm(0)

}1/2
=

n−1
∑

j=1

(n− j)K2(j/p)tr
{

V̂ ∗(j)D̂−1V̂ (j)D̂−1
}

.

Theorem 2 Suppose that E(|Xt,r|2) < ∞, (r = 1, . . . , d) and that Assumption A.1 holds. Let p = cnλ, where

c > 0 and λ ∈ (0, 1). If {Xt} is an independent and identically distributed sequence, then

M (r,m)
n =

T
(r,m)
n − Ĉ

(r,m)
0 p

∫∞

0
K2(z)dz

{

D̂
(r,m)
0 p

∫∞

0
K4(z)dz

}1/2
→ N(0, 1), n→ ∞

in distribution, where

C
(r,m)
0 =

∫

R2

σ
(r,r)
0 (u,−u)σ(m,m)

0 (v,−v)W(du, dv),

D
(r,m)
0 = 2

∫

R2

∣

∣

∣
σ
(r,r)
0 (u, u′)σ

(m,m)
0 (v, v′)

∣

∣

∣

2

W(du, dv)W(du′, dv′) = 2V 2
rr(0)V

2
mm(0),

and Ĉ
(r,m)
0 , D̂

(r,m)
0 are their sample counterparts.
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Theorem 2 implies the following result.

Corollary 1 Suppose that E(|Xt,r|2) < ∞, (r = 1, . . . , d) and that Assumption A.1 holds. Let p = cnλ, where

c > 0 and λ ∈ (0, 1). If {Xt} is an independent and identically distributed sequence, then

Mn ≡
Tn −

(

∑

r,m Ĉ
(r,m)
0

)

p
∫∞

0
K2(z)dz

{(

∑

r,m D̂
(r,m)
0

)

p
∫∞

0
K4(z)dz

}1/2
→ N(0, 1), M̄n ≡

T̄n −
(

∑

r,m c
(r,m)
0

)

p
∫∞

0
K2(z)dz

d
{

2p
∫∞

0
K4(z)dz

}1/2
→ N(0, 1)

in distribution, as n → ∞, where c
(r,m)
0 = C

(r,m)
0 /

{

Vrr(0)Vmm(0)
}

, and ĉ
(r,m)
0 is the corresponding empirical

analogue.

The following result states the consistency of the test statistics.

Theorem 3 Let {Xt} be a β-mixing strictly stationary, but not independent and identically distributed, process

with mixing coefficients satisfying
∑

k β(k) < ∞. Suppose that E(|Xt,r|2) < ∞, (r = 1, . . . , d) and that

Assumption A.1 holds. Let p = cnλ for c > 0 and λ ∈ (0, 1). Then, as n→ ∞,

p1/2

n
Mn →

π
2L

2
2

(

F (ω, u, v), F0(ω, u, v)
)

{

∑

r,mD
(r,m)
0

∫∞

0
K4(z)dz

}1/2
,

p1/2

n
M̄n →

π
2L

2
2

(

G(ω, u, v), G0(ω, u, v)
)

d
{

2
∫∞

0
K4(z)dz

}1/2

in probability.

When we deal with a non-stationary process, T̄n converges to ∞ in probability, so the test will have asymptotic

power one. Rejection of the null does not allow us to conclude that the process is stationary under the alternative

hypothesis. Following the earlier discussion, we can test the independent and identically distributed hypothesis for

the increments Xt − Xt−1. In general, the results depend on the bandwidth parameter p and the sample size n.

Choosing the bandwidth parameter is not considered further, but our limited experience is that choosing roughly

p ≥ 15 for a sample size of n = 500 yields a good asymptotic approximation. However, it is preferable to vary

the value of p and to examine the sensitivity of the results. We suggest the use of simulation-based techniques to

approximate the distributions of Tn or T̄n for small n.
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4 Computation of test statistic with applications

4.1 Bootstrap methodology

To approximate the asymptotic distribution of Tn or T̄n we resort to the work of Dehling and Mikosch (1994),

who proposed a wild bootstrap for approximating the distribution of degenerate U -statistics for independent and

identically distributed data. In recent contributions, Leucht and Neumann (2013a,b) and Chwialkowski et al.

(2014) proposed a novel dependent wild bootstrap (Shao, 2010) for approximating the distribution of degenerate

U -and V -statistics calculated from time series data. The method relies on generating auxiliary random variables

(W ∗
tn)

n−j
t=1 and on computing bootstrap realizations of V̂ 2

rm(j) as

V̂ 2∗
rm(j) = (n− j)−2

n−j
∑

t,s=1

W ∗
tnh(Xt;r, Yt;m;Xs;r, Ys;m)W ∗

sn,

where h(·) is defined by (8), for r,m = 1, . . . , d and j = 1, . . . , n− 1. A bootstrap realization of Tn is computed

as

T ∗
n =

n−1
∑

j=1

(n− j)K2(j/p)
∑

r,m

V̂ 2∗
rm(j).

To test whether {Xt} is an independent and identically distributed sequence, we repeat the above steps B times

to obtain T ∗
n,1, . . . , T

∗
n,B and then approximate the p-value of Tn by

{

∑B
b=1 I(T

∗
n,b ≥ Tn)

}

/(B + 1), where I(·)

denotes the indicator function. We work analogously for T̄n.

We generate W ∗
tn as independent and identically distributed standard normal variables because we operate under

the null hypothesis. Theorem 2 and Corollary 1 show that we can employ the test statistic with a normal approxi-

mation but experience shows that a rather large sample size is required to achieve the nominal significance level.

Furthermore a standard non-parametric bootstrap provides an alternative test of the null hypothesis. This is imple-

mented in the R package dCovTS (Pitsillou and Fokianos, 2016). The wild bootstrap saves computational time,

as simulation is done in a separate loop. The results of Leucht and Neumann (2013b) imply the wild bootstrap

validity of V̂ 2∗
rm(j) as a proxy to V̂ 2

rm(j) for a fixed lag j and for τ -dependent processes. In this contribution we

restrict ourselves to β-mixing processes. Interesting time series models, such as autoregressive moving average
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models with continuous innovations or generalized autoregressive conditional heteroscedastic models, belong to

both classes of processes. The approximation of V̂ 2∗
rm(j) as a proxy to V̂ 2

rm(j) for a fixed lag j is guaranteed to

hold under suitable conditions on the mixing coefficients and for processes that lie in both classes. To gain insight

about the behavior of Tn and its wild bootstrap counterpart we will need to study the joint distribution of {V̂ 2∗
rm(j)}

as a proxy to the joint distribution of {V̂ 2
rm(j)}. Although we do not address this problem theoretically, empirical

evidence supports that distribution of T ∗
n approximates that of Tn adequately.

4.2 Obtaining simultaneous critical values for the auto-distance correlation plots

It is customary to check the white noise assumption by plotting the sample autocorrelation function with simulta-

neous confidence intervals. The critical values employed for obtaining confidence intervals are computed by using

the asymptotic normality of the first q sample autocorrelations for white noise (Brockwell and Davis, 1991, Thm.

7.2.1). Here we use a similar plot to check independence using the auto–distance correlation function. This task is

complicated because the vector comprising Rrm(j), (j = 1, . . . , q), is a function of degenerate V -statistics under

the null hypothesis. To overcome this difficulty we resort to Monte Carlo simulation.

Critical values chosen by the wild bootstrap asymptotically maintain the nominal size of a test statistic. Given B

bootstrap realizations of R̂rm(j), say {R̂∗
rm,b(j), b = 1, . . . , B}, we compute the p-value

prm(j) = (B + 1)−1
B
∑

b=1

I

{

R̂∗
rm,b(j) ≥ R̂rm(j)

}

.

But the p-values {prm(j), j = 1, . . . , q} correspond to testing the hypotheses Rrm(j) = 0, (j = 1, . . . , q).

Because this is a multiple testing situation, we adjust them at some prespecified level α, to obtain a new set of

p-values, say {p̃rm(j), j = 1, . . . , q}, by using the false discovery rate of Benjamini and Hochberg (1995). Using

the adjusted p-values, we get critical points {crm(j), j = 1, . . . , q} for which

p̃rm(j) =
#
{

R̂∗
rm(j) ≥ crm(j)

}

B
(j = 1, . . . , q).

The horizontal line in the plots corresponds to c = maxr,m,jcrm(j), a conservative approach that guarantees that



16

all simultaneous confidence intervals are at a given level α. In the Supplementary Material we show that these

critical values depend only on the length and not on the dimension of the series.

4.3 Results

We now describe a limited simulation study concerning the test statistic T̄n computed using a Lipschitz continuous

univariate kernel function K(·). That is for any z1, z2 ∈ R, |K(z1)−K(z2)| ≤ C |z1 − z2| , for some constant

C. We use the Daniell, the Parzen and Bartlett kernels. The Lipschitz condition rules out the truncated kernel but

results based on it are also given. We also compare the performance of T̄n to that of the multivariate Ljung–Box

statistic (1). We first investigate the size of the test by considering bivariate standard normal data. Table 1 shows

the achieved levels of all test statistics calculated at 5% and 10% nominal levels, and indicates that the proposed

test statistics approximate the nominal levels adequately. In order to compare the power of both test statistics, we

Table 1: Empirical type I error (%) of statistics for testing the hypothesis that the data are independent and identi-

cally distributed. The data are generated from the bivariate standard normal distribution. The bandwidth p is [3nλ],

λ = 0.1, 0.2 and 0.3. Results are based on B = 499 bootstrap replications for each of 1000 simulations.

n 500 1000

p 6 11 20 6 12 24

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

T̄n BAR 11.5 5.5 10.2 5.2 10.8 4.7 9.7 4.8 8.3 3.7 12 6

TRUNC 8.7 3.8 8.3 3.4 8.6 4.1 8 3 8 5 5 3

PAR 9.7 5.1 9.3 4.3 8.4 4.0 8 3 11 6 12 6

DAN 8.9 3.9 10.7 5.7 10.2 4.6 10.2 5.0 11.7 5.5 9.2 4.2

mLB 11.4 4.8 10.1 4.9 11.1 5.6 10.5 5.5 9.1 4.9 9.6 5.4

BAR, Bartlett kernel; TRUNC, truncated kernel; PAR, Parzen kernel; DAN, Daniell kernel; mLB, multivariate Ljung–Box statistic.
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consider a bivariate nonlinear moving average model of order 2,

Xt;i = ǫt;iǫt−1;iǫt−2;i (i = 1, 2), (14)

where {ǫt;i, i = 1, 2} is an independent and identically distributed sequence of standard normal random variables,

a bivariate generalized autoregressive conditional heteroscedastic model of order (1, 1)

Xt;i = h
1/2
t;i ǫt;i (i = 1, 2), (15)

where






ht;1

ht;2






=







0.003

0.005






+







0.2 0.1

0.1 0.3













X2
t−1;1

X2
t−1;2






−







0.4 0.05

0.05 0.5













ht−1;1

ht−1;2







and {ǫt;i, i = 1, 2} is a sample from a bivariate normal with correlation ρ = 0.4, and a bivariate autoregressive

model of order 1






Xt;1

Xt;2






=







0.04 −0.10

0.11 0.50













Xt−1;1

Xt−1;2






+







ǫt;1

ǫt;2






, (16)

and the error as in the previous model but with ρ = 0 and 0.4. Table 2 shows that T̄n attains larger power than (1)

when data are generated by the non-linear models (14) and (15). The Ljung–Box test statistic performs better than

T̄n when data are generated by (16) with ρ = 0 and for small values of p and large sample size. When p is large,

T̄n performs generally better than (1).

4.4 Application

We analyze monthly unemployment rates of the 50 US states from January 1976 to September 2011, seasonally ad-

justed and available from Tsay’s (2014) book site http://faculty.chicagobooth.edu/ruey.tsay/

teaching/mtsbk/. We consider first the 416 differenced monthly rates of Alaska, Arkansas, Colorado and

Delaware. Figure 1 displays the sample auto-distance correlation matrices at each lag, and reveals the dependence

structure for lags 1 to 12. After the sixth lag, the auto-distance correlation function suggests that there is no depen-

dence among the four series. Assuming that the four-dimensional series follows a vector autoregressive model and
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Table 2: Empirical power (%) of all test statistics of size 5%. The bandwidth p is [3nλ], λ = 0.1, 0.2 and 0.3. The

results are based onB = 499 bootstrap replications for each of 1000 simulations. The test statistic T̄n is calculated

using the Bartlett kernel.

n 500 800 1000

p 6 11 20 6 12 23 6 12 24

Model (14)

T̄n 100 100 100 100 100 100 100 100 100

mLB 40 32.5 26.6 47.1 35.9 28.5 46.6 36.6 26.8

Model (15)

T̄n 76.4 79.5 78.3 97.2 98 95.4 99.4 98 99

mLB 56.9 54.6 48.1 65.1 60.4 53.9 64.9 65.2 54.9

Model (16) with ρ = 0

T̄n 66.6 58.4 44.8 41.3 41.1 69.1 30.4 27 80.4

mLB 48.5 36.1 25.6 75.7 59.4 44.2 86.2 71.8 55.8

Model (16) with ρ = 0.4

T̄n 71.4 62.5 46.9 92.7 89.7 75.7 96.8 95.6 88

mLB 50.8 37.1 28.3 77.5 58.9 44.6 86.9 72.6 54.1

employing the Akaike information criterion, a fifth-order model fits the data well. The auto-distance correlation

plots of the resulting residual series in Figure 2 shows no serial dependence. Tests of independence for the residual

series using the Bartlett kernel for the computation of T̄n and mLB yield p-values 0.428, 0.228, 0.158 and 1, 0.999,

0.999 when p =6, 11 and 19, confirming the adequacy of the model fit.
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lag 9 lag 10 lag 11 lag 12

lag 5 lag 6 lag 7 lag 8

lag 1 lag 2 lag 3 lag 4
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Figure 1: Visualizing the sample auto-distance correlation matrices of the four-dimensional unemployment series

of Alaska, Arkansas, Colorado and Delaware, starting on top left at lag j = 1. The darker rectangles correspond

to higher distance correlations between series at a specific lag.
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Figure 2: Auto-distance correlation plot of the residuals vector process after fitting a fifth-order vector autoregres-

sive model to the unemployment data. The dotted horizontal line is drawn following the methodology described in

Section 4.2.
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A Appendix

A.1 V̂
2

rm
(·) as a V -statistic

For ease of notation let X ≡ Xt;r and Y ≡ Xt+j;m. Suppose that Zi = (Xi, Y i), i = 1, . . . , 6, are inde-

pendent and identically distributed copies of the vector Z = (X,Y ). By Prop. 2.6 of Lyons (2013), define the

function

f(u1, u2, u3, u4) = |u1 − u2| − |u1 − u3| − |u2 − u4|+ |u3 − u4| ,

where ui ∈ R, i = 1, . . . , 4. Now, set

h(Z1, . . . , Z6) = f(X1, X2, X3, X4)f(Y 1, Y 2, Y 5, Y 6). (A.1)

Provided that E(|Xt;r|2) <∞, ∀ r = 1, . . . , d, we obtain that

E
{

h(Z1, . . . , Z6)
}

= E(
∣

∣X1 −X2
∣

∣

∣

∣Y 1 − Y 2
∣

∣) + E(
∣

∣X1 −X2
∣

∣)E(
∣

∣Y 5 − Y 6
∣

∣)

− 2E(
∣

∣X1 −X2
∣

∣

∣

∣Y 1 − Y 5
∣

∣)

= V 2
rm(j),

where the last equality follows from Székely et al. (2007, Remark 3). We consider the symmetrized version of h(·)

given by (A.1), defined as

h̃(Z1, . . . , Z6) =
1

6!

∑

σ∈{1,...,6}

h(Zσ(1), . . . , Zσ(6)), (A.2)
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where σ is a permutation of {1, . . . , 6}. Then, we observe that

E
{

h̃(Z1, . . . , Z6)
}

=
1

6!

∑

σ∈{1,...,6}

E
{

h(Zσ(1), . . . , Zσ(6))
}

= V 2
rm(j).

Thus, we conclude that the function V 2
rm(j) can be expressed as

V 2
rm(j) =

∫

R2

· · ·
∫

R2

h̃(z1, . . . , z6)dFrm(z1) . . . dFrm(z6).

Because of symmetry and following v. Mises (1947), a biased estimator of V 2
rm(j) is given by

Trm =
1

(n− j)6

n−j
∑

i1=1

· · ·
n−j
∑

i6=1

h

{

(Xi1;r, Xi1+j;m), . . . , (Xi6;r, Xi6+j;m)

}

=
1

(n− j)6

n−j
∑

i1=1

· · ·
n−j
∑

i6=1

(

|Xi1;r −Xi2;r| − |Xi1;r −Xi3;r| − |Xi2;r −Xi4;r|+ |Xi3;r −Xi4;r|
)

×
(

|Xi1+j;m −Xi2+j;m| − |Xi1+j;m −Xi3+j;m| − |Xi2+j;m −Xi4+j;m|+ |Xi5+j;m −Xi6+j;m|
)

.

After some calculations, we obtain that

Trm =
1

(n− j)2

n−j
∑

i1,i2=1

|Xi1;r −Xi2;r| |Xi1+j;m −Xi2+j;m|

+
1

(n− j)4

n−j
∑

i1,i2=1

|Xi1;r −Xi2;r|
n−j
∑

i1,i2=1

|Xi1+j;m −Xi2+j;m|

− 2

(n− j)3

n−j
∑

i1,i2,i3=1

|Xi1;r −Xi2;r| |Xi1+j;m −Xi3+j;m|

=
1

(n− j)2

n−j
∑

t,s=1

Ar
tsB

m
ts

= V̂ 2
rm(j),

where the second equality is proved in Székely et al. (2007, Appendix). Because of symmetry we have that

V̂ 2
rm(j) =

∫

R2

· · ·
∫

R2

h̃(z1, . . . , z6)dF̂rm(z1) . . . dF̂rm(z6),

where F̂rm(·) denotes the empirical distribution function defined as

F̂rm(z) =
1

(n− j)

n−j
∑

t=1

I(Xt;r ≤ x,Xt+j;m ≤ y).

Hence, we have shown that V̂ 2
rm(j) is a V –statistic of order 6 with kernel function h̃(·) given by (A.2).
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A.2 Derivation of test statistics

Recall that the kernel K(·) satisfies

Assumption A.1 K : R → [−1, 1] is symmetric and is continuous at 0 and all but a finite number of points, with

K(0) = 1,
∫∞

−∞
K2(z)dz <∞ and |K(z)| ≤ C |z|−b

for large z and b > 1/2.

Following the notation of the paper, we have that

F̂ (ω, u, v) =
{

f̂ (r,m)(ω, u, v)
}d

r,m=1
, F̂0(ω, u, v) =

1

2π

{

σ̂
(r,m)
0 (u, v)

}d

r,m=1
,

where

f̂ (r,m)(ω, u, v) =
1

2π

(n−1)
∑

j=−(n−1)

(1− |j| /n)1/2K(j/p)σ̂
(r,m)
j (u, v)e−ijω (ω ∈ [−π, π]), (A.3)

with K(·) satisfying Assumption A.1 and p is a bandwidth parameter. Consider the squared L2-distance between

F̂ (·, ·, ·) and F̂0(·, ·, ·)

L2
2

{

F̂ (ω, u, v), F̂0(ω, u, v)
}

=

∫

R2

∫ π

−π

‖F̂ (ω, u, v)− F̂0(ω, u, v)‖2F dωW(du, dv)

=

∫

R2

∫ π

−π

tr

[

{

F̂ (ω, u, v)− F̂0(ω, u, v)
}∗

×
{

F̂ (ω, u, v)− F̂0(ω, u, v)
}

]

dωW(du, dv).

But,

L2
2

{

F̂ (ω, u, v), F̂0(ω, u, v)
}

=
2

π

∑

r,m

n−1
∑

j=1

(1− j/n)K2(j/p)

∫

R2

∣

∣

∣
σ̂
(r,m)
j (u, v)

∣

∣

∣

2

W(du, dv),

for any suitably weighting function W(·, ·). In particular, employing

W(du, dv) =
1

π |u|2
1

π |v|2
dudv, ((u, v) ∈ R

2),

yields to

L2
2

{

F̂ (ω, u, v), F̂0(ω, u, v)
}

=
2

π

∑

r,m

n−1
∑

j=1

(1− j/n)K2(j/p)V̂ 2
rm(j)

=
2

π

n−1
∑

j=1

(1− j/n)K2(j/p)tr{V̂ ∗(j)V̂ (j)}.
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In terms of correlation matrices, recall that D = diag{Vrr(0), r = 1, . . . , d} and define the d× d matrix

Rj(u, v) = D−1/2Σj(u, v)D
−1/2

with elements

ρ
(r,m)
j (u, v) =

σ
(r,m)
j (u, v)

{Vrr(0)Vmm(0)}1/2 .

By recalling that

sup(u,v)∈R2

∞
∑

j=−∞

∣

∣

∣
σ
(r,m)
j (u, v)

∣

∣

∣
<∞,

we can define the Fourier transform of ρ
(r,m)
j (·, ·) by

g(r,m)(ω, u, v) =
1

2π

∞
∑

j=−∞

ρ
(r,m)
j (u, v)e−ijω (ω ∈ [−π, π]).

Define the d× d matrix

G(ω, u, v) =
1

2π

∞
∑

j=−∞

Rj(u, v)e
−ijω =

{

g(r,m)(ω, u, v)
}d

r,m=1
.

Under independence, G(·, ·, ·) reduces to

G0(ω, u, v) =
1

2π

{

ρ
(r,m)
0 (u, v)

}d

r,m=1
.

An analogous to (A.3) kernel-density estimator of g(r,m)(·, ·) is given by

ĝ(r,m)(ω, u, v) =
1

2π

(n−1)
∑

j=−(n−1)

(1− |j| /n)1/2K(j/p)ρ̂
(r,m)
j (u, v)e−ijω (ω ∈ [−π, π]).

We can then define the estimators of G(·, ·, ·) and G0(·, ·, ·) by

Ĝ(ω, u, v) =
{

ĝ(r,m)(ω, u, v)
}d

r,m=1

and

Ĝ0(ω, u, v) =
1

2π

{

ρ̂
(r,m)
0 (u, v)

}d

r,m=1
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respectively. Considering now the squared L2-distance between G(·, ·, ·) and G0(·, ·, ·) we get

L2
2

(

Ĝ(ω, u, v), Ĝ0(ω, u, v)
)

=

∫

R2

∫ π

−π

‖Ĝ(ω, u, v)− Ĝ0(ω, u, v)‖2F dωW(du, dv)

=

∫

R2

∫ π

−π

tr

[

{

Ĝ(ω, u, v)− Ĝ0(ω, u, v)
}∗

×
{

Ĝ(ω, u, v)− Ĝ0(ω, u, v)
}

]

dωW(du, dv).

After some calculations and choosing the weighting function defined in (A.4) of the main article, we find that

L2
2

(

Ĝ(ω, u, v), Ĝ0(ω, u, v)
)

=
2

π

∑

r,m

n−1
∑

j=1

(1− j/n)K2(j/p)

∫

R2

∣

∣

∣
ρ̂
(r,m)
j (u, v)

∣

∣

∣

2

W(du, dv)

=
2

π

∑

r,m

n−1
∑

j=1

(1− j/n)K2(j/p)
V̂ 2
rm(j)

{V̂ 2
rr(0)V̂

2
mm(0)}1/2

=
2

π

∑

r,m

n−1
∑

j=1

(1− j/n)K2(j/p)R̂2
rm(j)

=
2

π

n−1
∑

j=1

(1− j/n)K2(j/p)tr
{

R̂∗(j)R̂(j)
}

=
2

π

n−1
∑

j=1

(1− j/n)K2(j/p)tr
[

{D̂−1/2V̂ (j)D̂−1/2}∗D̂−1/2V̂ (j)D̂−1/2
]

=
2

π

n−1
∑

j=1

(1− j/n)K2(j/p)tr
{

V̂ ∗(j)D̂−1V̂ (j)D̂−1
}

.

A.3 Simultaneous critical values

Table 3 illustrates that critical values obtained under independence are not sensitive to the choice of response dis-

tribution or the dimension of a series. They depend on the sample size, as it should be expected. The first six

columns of Table 3 have been obtained by considering univariate independent and identically distributed random

variables. The last two columns correspond to independent samples drawn from a d-dimensional normal distribu-

tion with zero mean and equicorrelation matrix with non-diagonal elements ρij = ρ, i 6= j. We set ρ = 0.9 and 0.4

respectively. To further support our argument we include Table 4 which gives critical values for levels α = 0.025

and 0.975. Those values can be used for forming confidence intervals.
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Table 3: Simultaneous empirical critical values at level α = 0.05, for different sample sizes and dimensions.

Results are based on B = 499 bootstrap replications for each of simulations.

N(0,1) Pois(4) Gamma(1,1) Beta(2,3) U(1,1) X2
4 ρ = 0.9 ρ = 0.4

n = 500

d = 2 0.116 0.117 0.118 0.113 0.109 0.117 0.117 0.116

d = 3 0.117 0.116 0.130 0.115 0.111 0.119 0.119 0.117

d = 4 0.118 0.117 0.132 0.118 0.112 0.121 0.119 0.119

d = 5 0.121 0.116 0.129 0.114 0.113 0.122 0.116 0.117

n = 600

d = 2 0.106 0.105 0.102 0.103 0.100 0.105 0.106 0.106

d = 3 0.107 0.105 0.106 0.106 0.102 0.112 0.108 0.106

d = 4 0.108 0.106 0.104 0.104 0.104 0.108 0.105 0.107

d = 5 0.109 0.107 0.106 0.102 0.106 0.110 0.110 0.107

n = 700

d = 2 0.098 0.095 0.099 0.096 0.092 0.098 0.097 0.098

d = 3 0.098 0.097 0.098 0.097 0.092 0.103 0.099 0.099

d = 4 0.100 0.099 0.096 0.097 0.095 0.101 0.099 0.099

d = 5 0.099 0.097 0.098 0.098 0.093 0.100 0.099 0.098

n = 800

d = 2 0.091 0.090 0.092 0.091 0.088 0.092 0.095 0.092

d = 3 0.091 0.093 0.093 0.090 0.089 0.095 0.094 0.094

d = 4 0.093 0.091 0.095 0.090 0.087 0.093 0.092 0.094

d = 5 0.092 0.092 0.095 0.090 0.089 0.097 0.092 0.092

n = 900

d = 2 0.087 0.084 0.088 0.085 0.080 0.086 0.086 0.084

d = 3 0.086 0.085 0.089 0.084 0.081 0.088 0.087 0.088

d = 4 0.087 0.086 0.090 0.085 0.083 0.089 0.088 0.088

d = 5 0.087 0.086 0.093 0.085 0.084 0.087 0.087 0.087

n = 1000

d = 2 0.081 0.080 0.082 0.081 0.079 0.081 0.083 0.082

d = 3 0.081 0.081 0.084 0.082 0.080 0.083 0.083 0.084

d = 4 0.083 0.081 0.084 0.081 0.081 0.082 0.082 0.082

d = 5 0.083 0.081 0.085 0.083 0.079 0.084 0.084 0.083
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Table 4: Simultaneous empirical critical values at two different s levels α = 0.025 and 0.975, for different sample

sizes and dimensions. Results are based on B = 499 bootstrap replications for each of 1000 simulations.

α = 0.025 α = 0.975

X2
4 ρ = 0.9 ρ = 0.4 X2

4 ρ = 0.9 ρ = 0.4

n = 500

d = 2 0.056 0.057 0.057 0.125 0.123 0.124

d = 3 0.057 0.057 0.058 0.129 0.123 0.127

d = 4 0.057 0.058 0.059 0.127 0.128 0.129

d = 5 0.058 0.059 0.059 0.127 0.129 0.129

n = 800

d = 2 0.044 0.045 0.047 0.098 0.101 0.103

d = 3 0.045 0.046 0.048 0.102 0.097 0.103

d = 4 0.046 0.046 0.045 0.103 0.101 0.101

d = 5 0.045 0.046 0.046 0.100 0.101 0.102
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A.4 Proofs

of Theorem 1 1. Suppose that V 2
rm(j) 6= 0 for a fixed j. Recall the notation of Section A.1. The stated

assumptions imply that there exists a positive number δ such that for ν = 2+ δ the following statements are

true:

i. E
{
∣

∣

∣
h̃(Z1, . . . , Z6)

∣

∣

∣

ν}

<∞,

ii. supi1<···<i6 E
{
∣

∣

∣
h̃(Zi1 , . . . , Zi6)

∣

∣

∣

ν}

<∞.

Their verification is based on the proof of (Lyons, 2013, Prop. 2.6) and the form of the kernel given by (A.2).

Hence, we conclude that

n1/2

{

V̂ 2
rm(j)− V 2

rm(j)

}

→ N(0, 36σ2),

with

σ2 =
[

E{h̃21(Z1)} − V 4
rm(j)

]

+ 2

[

∞
∑

k=1

E{h̃21(Z1)h̃21(Z
k+1)} − V 4

rm(j)

]

, (A.4)

where h̃c(z
1, . . . , zc) denotes the conditional expectation of h̃(·) defined as:

h̃c(z
1, . . . , zc) = E

{

h̃(z1, . . . , zc, Zc+1, . . . , Z6)
}

(c = 1, . . . , 5).

The above result follows directly from Yoshihara (1976, Thm. 1).

2. Considering now the case where the data are pairwise independent, we observe that

h1(z
1) = E

{

h(z1, Z2, . . . , Z6)
}

= 0,

which implies that h̃1(z
1) = 0, almost sure. The latter shows that the V –statistic V̂ 2

rm(j) has a degeneracy

of order 1. The statistic V̂ 2
rm(·) can be decomposed as (Hoeffding, 1948; Sen, 1972; Yoshihara, 1976)

V̂ 2
rm(j) =

(

6

2

)

V (2)
n +Rn, (A.5)

where Rn = OP (n
1+γ), γ > 2. V

(2)
n is a V –statistic of order 2 with kernel function h̃(2)(z1, z2) which is
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the ’centered’ version of h̃2(z
1, z2) given by (Serfling, 1980, p. 222)

h̃(2)(z1, z2) = h̃2(z
1, z2)−

∫

R2

h̃2(z
1, z2)dFrm(z1)−

∫

R2

h̃2(z
1, z2)dFrm(z2)

+

∫

R2

∫

R2

h̃2(z
1, z2)dFrm(z1)dFrm(z2),

such that

V (2)
n =

∫

R2

∫

R2

h̃(2)(z1, z2)dF̂rm(z1)dF̂rm(z2). (A.6)

Under pairwise independence, h̃(2)(z1, z2) = h̃2(z
1, z2) almost surely.

We further observe that h2(z
1, z2) = E

{

h(z1, z2, Z3, . . . , Z6)
}

= dX(x1, x2)dY (y
1, y2) by recalling that

for u, u′ ∈ R and X a real valued random variable

mX(u) = E(|X − u|), m̄X = E{mX(X)}, dX(u, u′) = |u− u′| −mX(u)−mX(u′) + m̄X .

In addition,

h̃2(z
1, z2) = E

{

h̃(z1, z2, Z3, . . . , Z6)
}

=

(

6

2

)−1

h2(z
1, z2).

Thus, (A.5) and (A.6) show that

V̂ 2
rm(j) =

(

6

2

)(

6

2

)−1
1

(n− j)2

n−j
∑

t,s=1

h2(z
t, zs) +Rn

=
1

(n− j)2

n−j
∑

t,s=1

dX(Xt;r, Xs;r)dY (Yt;m, Ys;m) +Rn.

But nRn → 0, in probability, as n→ ∞. Therefore,

nV̂ 2
rm(j)− 1

n

n−j
∑

t,s=1

dX(Xt;r, Xs;r)dY (Yt;m, Ys;m) → 0,

in probability, as n → ∞. In addition, under pairwise independence, we have that E
{(

h2(z, Z
s) |

Z1, . . . Zs−1
)}

= 0 almost surely. Therefore applying Theorem 1 of Leucht and Neumann (2013a) shows

that

1

n

n−j
∑

t,s=1

dX(Xt;r, Xs;r)dY (Yt;m, Ys;m) → Z =
∑

l

λlZ
2
l ,

in distribution, as n→ ∞, and so the proof is now completed.
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Define

f̄ (r,m)(ω, u, v) =
1

2π

(n−1)
∑

j=−(n−1)

K(j/p)(1− |j| /n)1/2σ̃(r,m)
j (u, v)e−ijω,

where

σ̃
(r,m)
j (u, v) =

1

n− |j|

n
∑

t=|j|+1

ψt;r(u)ψt−|j|;m(v) (A.7)

and

ψt;r(u) ≡ eiuXt;r − φ(r)(u). (A.8)

The corresponding pseudoestimator of the generalized spectral density matrix is defined as

F̄ (ω, u, v) =
1

2π

(n−1)
∑

j=−(n−1)

K(j/p)(1− |j| /n)1/2Σ̃|j|(u, v)e
−ijω,

where Σ̃|j|(·, ·) is the covariance matrix of eiuXt with elements given by (A.7). For the proof of Theorem 2,

we will need the following two lemmas whose proof is omitted as it follows closely the arguments given in the

supplementary material of Fokianos and Pitsillou (2017) and the fact that β-mixing implies α-mixing.

Lemma A.4.1 Let {Xt} be a β-mixing strictly stationary process with mixing coefficients satisfying β(k) =

O(k−2). Suppose that E |Xt,r|2 <∞, r = 1, . . . , d. Then we have that

(n − j)2E
∣

∣

∣
σ̂
(r,m)
j (u, v)− σ̃

(r,m)
j (u, v)

∣

∣

∣

2

≤ C and (n − j)E
∣

∣

∣
σ̃
(r,m)
j (u, v)

∣

∣

∣

2

≤ C uniformly in (u, v) ∈ R
2 for

r,m = 1, . . . , p.

Lemma A.4.2 Let {Xt} be a β-mixing strictly stationary process with mixing coefficients satisfying β(k) =

O(k−2). Suppose that E |Xt,r|2 < ∞, r = 1, . . . , d. For each γ > 0, let D(γ) = {(u, v) : γ ≤ |u| ≤

1/γ, γ ≤ |v| ≤ 1/γ}. Then

∫

D(γ)

n−1
∑

j=1

K2(j/p)(n− j)
(
∣

∣

∣
σ̂
(r,m)
j (u, v)

∣

∣

∣

2

−
∣

∣

∣
σ̃
(r,m)
j (u, v)

∣

∣

∣

2)

W(du, dv) = OP (p/
√
n)

= oP (
√
p)

for r,m = 1, . . . , p as p/n→ 0.
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of Theorem 2 It can be shown that (Hong (1999))

n−1
∑

j=1

K2(j/p)(n− j)
∣

∣

∣
σ̃
(r,m)
j (u, v)

∣

∣

∣

2

= Ĉrm(u, v) + V̂ rm(u, v) (A.9)

where

Ĉrm(u, v) =

n−1
∑

j=1

K2(j/p)

n− j







n
∑

t=j+1

Crm
ttj (u, v)







,

V̂ rm(u, v) =
n−1
∑

j=1

K2(j/p)

n− j







n
∑

t=j+2

t−1
∑

s=j+1

V rm
tsj (u, v)







,

with

V rm
tsj (u, v) = Crm

tsj (u, v) + Crm
stj (u, v)

∗

and

Crm
tsj (u, v) = ψt;r(u)ψs;r(u)

∗ψt−j;m(v)ψs−j;m(v)∗,

where ∗ denotes complex conjugate.

For the first summand of (A.9), it holds that
∫

D(γ)
Crm

ttj (u, v)W(du, dv) and
∫

D(γ)
Crm

ssj (u, v)W(du, dv) are inde-

pendent integrals unless t = s or s± j . In addition,

E

∫

D(γ)

Crm
ttj (u, v)W(du, dv) = Crmγ

0 ≡
∫

D(γ)

σ
(r,r)
0 (u,−u)σ(m,m)

0 (v,−v)W(du, dv) <∞,

shows that E
[

∑n
t=j+1

{

∫

D(γ)
Crm

ttj (u, v)dW − Crmγ
0

}]2

≤ C(n − j). Hence, by Markov’s inequality, Cauchy-

Schwarz inequality and the properties of the kernel function, we obtain that

∫

D(γ)

Ĉrm(u, v)dW = OP (p/
√
n) + Crmγ

0

n−1
∑

j=1

K2(j/p). (A.10)
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So, using Lemma A.4.2, equations (A.9) and (A.10) we have the following:

∫

D(γ)

{

n−1
∑

j=1

K2(j/p)(n− j)
∣

∣

∣
σ̂
(r,m)
j (u, v)

∣

∣

∣

2}

W(du, dv)

=

∫

D(γ)

{

n−1
∑

j=1

K2(j/p)(n− j)
∣

∣

∣
σ̃
(r,m)
j (u, v)

∣

∣

∣

2}

W(du, dv) +OP (p/
√
n)

=

∫

D(γ)

Ĉrm(u, v)W(du, dv) +

∫

D(γ)

V̂ rm(u, v)W(du, dv) +OP (p/
√
n)

= Crmγ
0

n−1
∑

j=1

K2(j/p) + V̂ rmγ
n +OP (p/

√
n),

where V̂ rmγ
n ≡

∫

D(γ)
V̂ rm(u, v)W(du, dv). Therefore

T (r,m)
n;γ ≡

∫

D(γ)

{

n−1
∑

j=1

K2(j/p)(n− j)
∣

∣

∣
σ̂
(r,m)
j (u, v)

∣

∣

∣

2}

W(du, dv)

= Crmγ
0

n−1
∑

j=1

K2(j/p) + V̂ rmγ
n +OP (p/

√
n). (A.11)

Given Assumption A.1 and by applying Hong (1999, Thm. A.3) on D(γ), we obtain

V̂ rmγ
n = V̂ rmγ

ng + oP (
√
p) (A.12)

where

V̂ rmγ
ng =

n
∑

t=g+2

t−g−1
∑

s=1

g
∑

j=1

K2(j/p)

n− j

∫

D(γ)

V rm
tsj (u, v)W(du, dv)

and g ≡ g(n) such that g/p → 0, g/n → 0. Now, by applying Hong (1999, Thm. A.4) on D(γ) we get the

following:

{

pDrmγ
0

∫ ∞

0

K4(z)dz
}−1/2

V̂ rmγ
ng → N(0, 1) (A.13)

as n→ ∞ in distribution, where

Drmγ
0 = 2

∫

D(γ)

∣

∣

∣
σ
(r,r)
0 (u, u′)σ

(m,m)
0 (v, v′)

∣

∣

∣

2

W(du, dv)W(du′, dv′).
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Equations (A.11), (A.12) and (A.13) yield to

∫

D(γ)

{

∑n−1
j=1 K2(j/p)(n−j)

∣

∣

∣
σ̂
(r,m)
j (u,v)

∣

∣

∣

2
}

W(du,dv)−Crmγ
0

∑n−1
j=1 K2(j/p)

{

pDrmγ
0

∫

∞

0
K4(z)dz

}1/2 → N(0, 1), (A.14)

as n→ ∞, in distribution.

Observe that Ĉrmγ
0 − Crmγ

0 = OP (1/
√
n) and that D̂rmγ

0 → Drmγ
0 in probability. Moreover, under Assump-

tion A.1, p → ∞ and p/n → 0, p−1
∑n−1

j=1 K
2(j/p) =

∫∞

0
K2(z)dz + O(p−1/2). Thus, one can replace

Crmγ
0

∑n−1
j=1 K

2(j/p) by Ĉrmγ
0 p

∫

K2(z)dz. Summarizing, (A.14) becomes

T
(r,m)
n;γ − Ĉrmγ

0 p
∫∞

0
K2(z)dz

{

pD̂rmγ
0

∫∞

0
K4(z)dz

}1/2
→ N(0, 1).

The rest of the proof follows by similar arguments given in Fokianos and Pitsillou (2017), by showing that

lim sup
γ→0

lim sup
n→∞

∣

∣

∣
T (r,m)
n − T (r,m)

n;γ

∣

∣

∣
= 0. (A.15)

of Corollary 1 We only show the proof of the first result. From Theorem 2 and under the null hypothesis of

independence, the random variables T
(r,m)
n satisfy

T
(r,m)
n − Ĉrmγ

0 p
∫∞

0
K2(z)dz

{

pD̂rmγ
0

∫∞

0
K4(z)dz

}1/2
→ N(0, 1) (A.16)

in distribution, as n → ∞, for r,m = 1, . . . , d. Following similar arguments analogous to the proof of Theorem

2, it can be shown that

∑

r,m

∫

D(γ)

{

n−1
∑

j=1

K2(j/p)(n− j)
∣

∣

∣
σ̂
(r,m)
j (u, v)

∣

∣

∣

2}

W(du, dv) =
∑

r,m

Crmγ
0

n−1
∑

j=1

K2(j/p)

+
∑

r,m

V̂ rmγ
n +OP (p/

√
n).

Given Assumption A.1 and employing similar arguments to those of Hong (1999, Proof of Thm. A3), we obtain

that

∑

r,m

V̂ rmγ
n =

∑

r,m

V̂ rmγ
ng + oP (

√
p)
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where

V̂ rmγ
ng =

n
∑

t=g+2

t−g−1
∑

s=1

g
∑

j=1

K2(j/p)

n− j

∫

D(γ)

V rm
tsj (u, v)W(du, dv)

and g ≡ g(n) such that g/p→ 0, g/n→ 0. Considering the definition of V rm
tsj (u, v) we obtain that

V̂ γ
ng =

n
∑

t=g+2

[

g
∑

j=1

t−g
∑

s=1

K2(j/p)

(n− j)

∫

D(γ)

∑

r,m

{

ψt;r(u)ψt+j;m(v)ψs;r(−u)ψs+j;r(−v)
}

W(du, dv)

+

g
∑

j=1

t−g
∑

s=1

K2(j/p)

(n− j)

∫

D(γ)

∑

r,m

{

ψt;r(−u)ψt+j;m(−v)ψs;r(u)ψs+j;r(v)
}

W(du, dv)

]

From (A.8), we observe that
{

∑

r,m ψt;r(u)ψt+j;m(v)
}

and
{

∑

r,m ψs;r(u)ψs+j;m(v)
}

are independent for t−

s > g and 1 ≤ j ≤ g. Thus, by applying Hong (1999, Thm. A4) we obtain that

{

∑

r,m

pDrmγ
0

∫ ∞

0

K4(z)dz
}−1/2 ∑

r,m

V̂ rmγ
ng → N(0, 1)

as n→ ∞ in distribution. Thus, we get the required result on D(γ). Then, following the same arguments as in the

proof of Theorem 2, we finally get the following result

M̃n =

∑

r,m T
(r,m)
n −

(

∑

r,m Ĉrmγ
0

)

p
∫∞

0
K2(z)dz

{

(

∑

r,m D̂rmγ
0

)

p
∫∞

0
K4(z)dz

}1/2
→ N(0, 1),

in distribution, as n→ ∞.

For the second result, recall that T̄
(r,m)
n may be written as

T̄ (r,m)
n =

1

V̂rr(0)V̂mm(0)
T (r,m)
n .

By recalling result (A.16), we get

T̄
(r,m)
n − ĉ

(r,m)
0 p

∫∞

0
K2(z)dz

{

d̂
(r,m)
0 p

∫∞

0
K4(z)dz

}1/2
→ N(0, 1),

in distribution, as n→ ∞, for r,m = 1, 2, . . . , d, where

ĉ
(r,m)
0 =

Ĉ
(r,m)
0

V̂rr(0)V̂mm(0)
, d̂

(r,m)
0 =

D̂
(r,m)
0

V̂ 2
rr(0)V̂

2
mm(0)

.
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But d̂
(r,m)
0 → 2 almost surely. Following the same methodology as before, we get that

M̄n =
T̄n −

(

∑

r,m ĉ
(r,m)
0

)

p
∫∞

0
K2(z)dz

d

{

2p
∫∞

0
K4(z)dz

}1/2
→ N(0, 1),

in distribution, as n→ ∞ and the proof is now completed.

of Theorem 3 We prove the first result of the theorem. Recall D(γ) defined in Lemma 2. For the proof we show

the following: (i) E
∫

D(γ)

∫ π

−π

∣

∣

∣
f̂ (r,m)(ω, u, v)− f (r,m)(ω, u, v)

∣

∣

∣

2

dωW(du, dv) → 0 which is proved similarly

to the proof of Hong (1999, Proof of Thm. 2, p. 1213) on D(γ) for all r,m = 1, . . . , d given that {Xt} is

a β-mixing strictly stationary, but not independent and identically distributed process, with mixing coefficients

satisfying
∑

k β(k) < ∞ and the kernel function satisfies assumption A.1. Additionally, by applying Markov’s

inequality we get (ii) Ĉrmγ
0 = OP (1) and (iii) D̂rmγ

0 → Drmγ
0 in probability.

The last remark together with assumption A.1 shows that

1

p1/2

{

∑

r,m

D̂rmγ
0 p

∫ ∞

0

K4(z)dz
}1/2

→
{

∑

r,m

Drmγ
0

∫ ∞

0

K4(z)dz
}1/2

,

in probability. Using remarks (i) and (ii) and after some calculations we get that

1

n

{

Tn;γ −
∑

r,m

Ĉrmγ
0

∫ ∞

0

K2(z)dz
}

→ π

2
L2
2;γ

{

F (ω, u, v), F0(ω, u, v)
}

,

in probability, where

Tn;γ =
∑

r,m

T (r,m)
n;γ ,

and

L2
2;γ

{

F (ω, u, v), F0(ω, u, v)
}

=

∫

D(γ)

∫ π

−π

tr

[

{

F (ω, u, v)− F0(ω, u, v)
}∗

×
{

F (ω, u, v)− F0(ω, u, v)
}

]

dωW(du, dv).

However, considering Ĉrmγ
0 → Ĉrm

0 and D̂rmγ
0 → D̂rm

0 as γ → 0 and (A.15), the first result is now proved on

R
2. The second result follows with analogous arguments.
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