
The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35533-7_26

http://dx.doi.org/10.1007/978-0-387-35533-7_26

250 R. Hao, D. Lee, R. K. Sinha and D. Vlah

more complex and less reliable. Testing is indispensable for the correct

functioning and performance of the routers.

In this work we study testing of router's network layer IP routing

protocols. We present algorithms and a software tool for testing Rout­

ing Information Protocol (RIP) [4], Open Shortest Path First (OSPF)

protocol [7], and Border Gateway Protocol (BGP) [9]. Unfortunately,

there is no precise specifications for these routing protocols. The only

design requirements are RFCs (Requests for Comments), which tend to

be incomplete. Furthermore, vendors often make their own implemen­

tation decisions for their routers, which are being deployed throughout

the Internet. Consequently, it is out of question to test whether routing

protocols are implemented in conformance to the "specification". On

the other hand, there are commonly agreed upon "expected behaviors",

such as correct routing table, packet forwarding, and network topology

information, which are invariant with implementations. There is a prac­

tical need and also it is feasible to test whether a router behaves as

expected.

Detecting faults in IP router has been an open challenge for both

router vendors and network administrators. Most of the systems and

tools for detecting router faults can be classified as either passive moni­

toring tools or active testing tools.

Passive monitoring tools such as RouteMonitor [6] deploy a collection

of monitoring devices in a production network to observe the routing

traffic exchanged between routers. These monitors do not inject any

route update into the network. Based on the observed routing infor­

mation, these monitors imitate the operation of a real router, execute

the routing protocol and compute a routing table. Faults can be found

through the comparison of routing tables and analysis of the statistics

for each route in the routing table.

Active testing is a more effective approach for fault detection com­

pared with monitoring. Most testing tools test the router in an isolated

environment and check the conformance of router's behavior in respect

to the RFCs. A main function of these tools is to generate a set of tests

that exercise each requirement in the design/RFC for "typical" network

configurations/topologies. Because it is computationally infeasible to

consider all possible network configurations, any tool can only consider

a small subset of all possible configurations. The existing commercial

tools pick this subset in an ad-hoc manner so that even if a router passes

all their tests, there is no guarantee of the fault coverage.

Our technique is also active testing. The key strength of our approach

is that we employ a probabilistic algorithm to select a subset of network

configurations. This has several benefits:

Testing IP Routing Protocols 251

1 We can guarantee a high fault coverage.

2 The existing commercial tools use a fixed set of network config­

urations. So if the fault is outside their chosen set, they have

absolutely no chance of uncovering the fault. We, on the other

hand, consider any configuration with nonzero probability.

3 There is little (if any) benefit of repeating the tests with an ex­

isting commercial tool. In contrast, each independent run of our

tool picks a different random set of configuration and increases the

chances of uncovering a fault. The same effect can be achieved with

commercial tools if the user handcodes a different set of configura­

tion each time, but this becomes quite cumbersome especially if the

tests need to be repeated mUltiple times. After all, one of the main

goals of test generation tools is to minimize human intervention.

4 We test the router behavior in dynamic environment when routers

and networks are constantly going up and down. Again, the choice

of which router/network goes up/down is made probabilistically.

It is very difficult to manually encode such a huge traffic pattern.

For the test execution on real routers, a testing environment is created

so that a Router Under Test (RUT) "perceives" that it is interacting with

a real network of routers.

Section 2 introduces a mathematical model of network topologies.

Section 3 presents a general probabilistic algorithm for testing routing

protocols. Sections 4, 5 and 6 specialize the general algorithm to RIP,

OSPF and BGP testing, respectively. Section 7 describes a software

tool SOCRATES for automatic testing of routing protocols and reports

experimental results. We omit all the proofs and the interested readers

are referred to [3].

2. A MATHEMATICAL MODEL OF IP
NETWORK TOPOLOGIES

We consider two different graph models of the IP network topologies.

First Model: If routers are connected by point-to-point link (e.g.,

Tl lines), we represent the topology as a weighted graph, where nodes

model routers and edges model the link between routers. We use this

model for BG P testing.

Second Model: For multiaccess networks where each router can inter­

face with more than one network and vice versa (e.g., routers connected

by Ethernet), we model the topology as a weighted bipartite graph on

router and network nodes. We use this model for OSPF testing. Since

252 R. Hao, D. Lee, R. K. Sinha and D. Vlah

this model is more general than the previous one (if each network node

is restricted to have degree exactly two, this model becomes similar to

the first model) and we will be stating all our algorithms on this model,

we describe it in more detail.

A network of internet connections is modeled by a directed graph

G =< V, W, E > where V is a set of router-nodes, W is a set of network­

nodes, and E is a set of directed edges [1]. Router-nodes represent

routers and network-nodes represent networks that connect the routers.

The interface between the routers and networks is represented by edges

in E where each edge has one end node in V and the other in W.

Specifically, an edge (v,w) from a router-node v in V to a network­

node w in W represents a router v interfacing with a network w with

a cost c(v,w) > 0, and an edge (w,v) from a network-node w in W

to a router-node v in V represents a network w interfacing a router v

with a cost c(w, v) = o. A pair of edges (v,w) and (w,v) correspond

to a link between router v and network w. We can replace each such

pair by an undirected edge [v, w] to obtain an undirected graph. This

undirected graph contains two sets of nodes V and W, and there are no

edges between nodes in V (W). Thus it is a bipartite graph, denoted by

Gb• Both directed graph G and the equivalent bipartite graph Gb model

IP network topologies, and we shall use them interchangeably.

Suppose that we have \VI = n routers and IWI = m networks inter­

connected. One important question we address is what is the smallest

value of m (as a function of n) needed in order to represent all possible

network topologies? What we mean is that given any bipartite graph

Gb, we can construct an auxiliary graph G* =< V, E* > on router-nodes

so that two router nodes are connected by an edge iff they connect to

a common network node in Gb. Essentially G* =< V, E* > represents

the "connectivity-pattern" among routers in Gb. Then we determine the

smallest value of m such that for each possible G* on n nodes, there is

a Gb with m network nodes that will correspond to this particular G*.

This is a basic problem for other applications such as network simula­

tion. If a chosen m is too small, we miss some network topologies. On

the other hand, if m is too large, it introduces redundancy and wastes

resources. We present the result:

Theorem 1 Any network topology can be represented by a bipartite

graph Gb =< V, W, Eb > with n router-nodes V and l J 1 network­

nodes W. Conversely, for any bipartite graph Gb =< V, W, Eb > with n

router-nodes V and l J r 1 network-nodes W, there is a network topol­

ogy, which is represented by Gb.

Testing IP Routing Protocols 253

Therefore, we have a complete representation of network topologies by

bipartite graphs with a matching lower and upper bounds on the num­

bers of network-nodes needed for the representation. Our probabilistic

test generation algorithm and fault coverage analysis are based on this

representation and its completeness.

3. A PROBABILISTIC TESTING

ALGORITHM

We present a general probabilistic method for testing routing proto­

cols. Starting with an empty network topology graph, we probabilisti­

cally insert and delete edges and nodes until the graph becomes com­

plete. After each network topology update, we check the RUT for its

network topology database, routing table, and packet forwarding behav­

iors. We first describe the overall probabilistic testing strategy and then

summarize· in a generic algorithm with an analysis of its run time. In

later sections, we specialize the algorithm to testing RIP, OSPF and

BGP.

3.1. TESTING STRATEGY

Ideally, we want to check the RUT for all possible network topologies,

however, it is impossible since there are too many (2n l!} J r!} 1). Instead,

we test on a small portion of network topologies, which are generated

probabilistically, and we shall show that our approach guarantees a high

fault coverage.

Initially we start with a graph Gb =< V, W, Eb > with only one router­

node V = {vol. which is the RUT, and W = Eb = 0. Depending on the

networks where a router is to be deployed, we set an upper bound n on

the number of router-nodes V in the network. The number of network­

nodes W is bounded above by c(n) = as in Theorem 1. We

repeat the following steps until Gb becomes a complete bipartite graph

with n router-nodes in V and c(n) network-nodes in W.

1 Randomly insert or delete an edge. An edge insertion means: a

new link is added between a router and a network or a down-link

has come back. An edge deletion means: a link between a router

and a network is down.

2 Randomly insert or delete a router-node (network-node). To in­

sert a router-node (network-node) means: a new router (network)

is added, or a crashed router (network) comes back with all its pre­

vious links before crash restored. To delete a router-node (network­

node) means: a router (network) crashes with all its links to net-

254 R. Hao, D. Lee, R. K. Sinha and D. Vlah

works (routers) down; we remove them from the graph and save

them for later restoration.

3 Probability of edge insertion, node insertion, edge deletion, and

node deletion are 0 S Pl,P2,P3,P4 S 1 respectively; PI + P2 + P3 +
P4 = l.

4 Keep track of the set Vo V of neighboring router-nodes of vo,

which are connected by a network-node with Vo. Specifically, a

router-node v is in Vo if and only if there exist a network-node w

such that [vo, w], [w, v] E Eb.

5 For each network topology generated above, check the RUT in

node Vo:

(a) Network topology database and routing table.

For each neighboring router-node v in Vo:

Compute its routing update information because of topol­

ogy change;

ii Send the computed information to Vo;

iii Obtain network topology database and routing table in­

formation from RUT Vo;

iv Compute the expected network topology database and

routing table of router-node Vo;

v Compare information from Items iii and iv. A discrep­

ancy indicates a fault.

(b) Packet forwarding behavior.

For each neighboring router-node Vi in Vo:

Find all the router-nodes v in V such that the chosen path

by the routing protocol under test - usually a shortest

path - from Vi to v contains vo, and determine the first

node u in Vo which is on the path after Vo; we have a

chosen path [Vi, vo, u, ... , V].

ii Construct and send an IP packet P from Vi to each such

router-node V;

iii Router-node u is to receive packet P from RUT vo; oth­

erwise, there is a fault.

3.2. A TESTING ALGORITHM

The testing strategy described above can be summarized as a generic

algorithm that applies to routing protocols, including RIP, OSPF and

BGP.

Testing IP Routing Protocols 255

For clarity, we do not include parameters and variables in subroutines

except for the RUT Va. We will also use the notation "send an IP packet

to router-node v" for "send an IP packet to a stub network attached to

router-node v".

Algorithm 1

input. n,O S PI,P2,P3,P4 S 1.

output. implementation fault or conformance.

1 repeat

2 construct initial network topology graph Gb with

V = {va}, Va = W = Eb = 0;
3 while (Gb is not complete)

4 UPDATE(vo);

5 if ROUTE(vo) =FALSE or FPACKET(vo) =FALSE;

6 return "faulty";

7 return "conforms"

Figure 1 Testing Algorithm

The Algorithm is probabilistic in nature. In the next subsection, we

will derive the expected number of iterations of the while-loop in line

3 (Proposition 1). Each iteration of the while-loop guarantees a small

fault-coverage. Repeating the test inside the while-loop increases fault­

coverage. The repeat-loop in line 1 runs for a sufficient number of times

for a desired fault coverage. The exact number of repetitions needed

will be computed later for specific protocol testing. Line 2 constructs an

initial network topology graph with only one router-node under test: Va.

Loop in Line 3 continues until a complete bipartite graph is obtained.

Subroutine UP D AT E(va) in Line 4 gets a new network topology, as

described in Item 1-3. This subroutine will be described in Section 3.3

with a run time analysis of the algorithm. Subroutines ROUT E(va) and

F PACK ET(va) in Line 5 check the routing table and packet forwarding

behavior, respectively, of the RUT, as in Items 4(a) and 4(b). If any

faults are detected, we abort the process and report "faulty" in Line

6. Otherwise, we declare conformance in Line 7 with a good confidence

in the topologies and router behaviors that we have tested. Subroutine

FPACKET(va) will be discussed in Section 3.4, and ROUTE(va) will

be described in Section 4, 5 and 6 for RIP, OSPF and BGP, respectively,

since it checks different functions for different protocols.

256 R. Hao, D. Lee, R. K. Sinha and D. Vlah

3.3. SUBROUTINE UPDATE(Vo) AND RUN
TIME ANALYSIS

We repeat the loop in Line 3 of Algorithm 1 until we obtain a com­

plete bipartite graph. Each repetition of the loop runs the Subroutine

UPDATE(vo) in Line 4, which generates a network topology for a test

on the router.

Subroutine UPDATE(vo)

parameters: n,m = c(n), O:'S PI,P2,P3,P4 :'S 1 with PI + P2 + P3 + P4 = l.
variables: Gb =< V, W, Eb >, Yo.
1 switch (p)

2 case 'PI': if (IEbl < IVI ·IWI) /* graph is not complete * /

3 insert an edge u.a.r. in E b ;

4 case 'P2': if (IVI + IWI < n + m) 1* nodes below upper bounds * /

5 insert a node u.a.r. in V U W;

6 case 'P3': if (IEbl > 0) 1* edge set not empty */

7 delete an edge u.a.r. from Eb;

8 case 'P4': if (IVI + IWI > 1) 1* node set not empty * /

9 delete a node u.a.r. from V U W;

10 compute Vo; 1* neighboring router-nodes of Vo * /

11 compute RoutingUpdate;

1* obtain protocol specific routing update information* /

12 return RoutingUpdate

Figure 2 subroutine UPDATE(vo)

For a network topology update, one of the four operations on edge or

node insertion or deletion is performed with probabilities 0 PI, P2, P3, P4

1. We can partition the unit interval into four subintervals of length

Pi, i = 1,2,3,4, and then sample uniformly at random (u.a.r.) in the

unit interval and obtain 0 P 1. We then "switch" on the value of P

in Line 1. The run time is summarized below:

Proposition 1 The expected number of iterations of the while-loop in

Line 3 of Algorithm 1 is at most:

(n + c(n) + n . c(n) - 1) 2, if PI + P2 - P3 - P4 = 0

n + c(n) + n· c(n) - 1
if PI + P2 - P3 - P4 > 0

PI + P2 - P3 - P4

where n is the maximal number of router-nodes, c(n) = and

PI, P2, P3, and P4 are the chosen probability of edge insertion, node

insertion, edge deletion, and node deletion, respectively. Furthermore,

Testing IP Routing Protocols 257

any network topology with no more than n router-nodes has a non-zero

probability of getting tested by Algorithm 1.

We can choose the four probability distributions so long as PI + P2

P3 + P4, which guarantees the completion of the algorithm.

3.4. SUBROUTINE FPACKET(Vo) AND
PACKET FORWARDING CHECK

Subroutine F P AC K ET(vo) at Line 5 in Algorithm 1 tests if the RUT

forwards packets correctly. Each packet switched by the router-node

under test Vo must pass through a router-node in the neighboring set

Vo, and we only need to check the packet forwarding behavior of Vo for

the packets sent from Vo. For each router-node Vi in Vo, we first find

all the router-nodes V in V such that the chosen path by the routing

protocol under test - usually a shortest path - from Vi to V contains vo.

We then determine the router-node u in Vo which is the first node on

the path from Vo to v. Hence, a packet P sent from Vi to V along the

path [Vi, vo, u, ... , V] must be received by u in Vo. When we construct

and send an IP packet P from Vi to the destination router-node v, the

router-node u must receive the packet P from Vo; otherwise, there is a

fault and the subroutine returns FALSE.

Subroutine FPACKET(vo)

input. variables Gb =< V, W, Eb >, Vo.

1 for each router-node Vi in Vo, i = 1, ... , r

2 construct SPT Ti rooted at Vi j

3 for each router-node V in subtree of T; rooted at Vo

4 send packet P from Vi to Vo with destination Vj

5 let router-node u in Vo be ancestor of V in Ti;

6 if node u does not receive packet P from Vo

7 return FALSE;

8 return TRUE

Figure 3 subroutine for testing packet forwarding behavior

Assume that a routing protocol uses shortest path route. (For BGP,

a similar scheme can be devised with its notion of "preferred routes.")

For each router-node Vi in Vo, Line 2 constructs a Shortest Path Tree

(SPT) rooted at Vi, and the router-node under test Vo is a child of Vi. A

packet from Vi to a destination router-node V passes Vo if and only if V is

a descendant of Vo in the SPT 1i. Line 3-7 checks Vo for its forwarding

packet P from Vi to v. The packet P must be sent from Vo to u, a node

258 R. Hao, D. Lee, R. K. Sinha and D. Vlah

in Vo and an ancestor of v. Otherwise, a fault in packet forwarding is

reported in Line 6-7.

4. TESTING RIP PROTOCOL

We now study the subroutine ROUTE for testing RIP [4], a simple

distance vector protocol. It uses the asynchronous version of Bellman­

Ford algorithm to construct shortest paths to all router-nodes connected

to the network. For RIP, c(u, v) - the cost of interfacing from the router­

node v to the network-node w is always equal to one. For each desti­

nation node, the routing table contains the distance to and also the

next-hop to route packets to that destination. RIP intends to cope with

dynamic networks with nodes and links up and down. To make sure that

distance vectors get updated efficiently and also to avoid routing loops,

most implementations use various heuristics such as Triggered update

and Split horizon [5].

Algorithm 1 tests RIP for the packet forwarding behavior in sub­

routine F P AC K ET with dynamic networks generated by subroutine

UPDATE. It uses subroutine ROUTE(vo) in Figure 4 to check whether

RIP of the RUT responds correctly to the changed network topology, i.e.,

whether it constructs a correct distance vector.

Subroutine ROUTE(vo)

variables. Vo. 1* neighboring router-nodes of Vo >1</

1 for nodes in Vo in random permutation: Vi, i = 1,2, ... , r

2 construct distance vector Di of Vi;

3 send to Vo distance vector: Di := splitJlOrizon(Di);

4 construct updated (expected) distance vector of Vo:

Do := Do EB D:;

5 obtain distance vector of Vo: Do;

1* via RIP protocol interface with Vo >1</

6 if (Do::f. Do)

7 return FALSE;

8 return TRUE;

Figure 4 subroutine ROUTE for RIP

Now we analyze the fault coverage of Algorithm 1. The analysis has

two parts. We first claim that if the algorithm reports a fault then there

indeed is a fault in the implementation. The second claim is that if the

implementation contains a fault then our algorithm is going to catch it

with a high probability. We present the results:

Testing IP Routing Protocols 259

Proposition 2 If Algorithm 1 reports a fault then there is indeed a fault

in the implementation of Bellman-Ford algorithm.

We first describe a fault model and then discuss the fault coverage.

Because Bellman-Ford algorithm proceeds by applying a series of relax-

ation steps, a reasonable fault model is to assume that a relaxation step

is computed incorrectly. This is also known as a single-fault model. A

single fault involves three router-nodes VI, v2, and V3. The idea is that

given a triangle consisting of nodes VI, V2, and V3, the implementation, in

trying to decide the shortest path from source Vo to node V2, incorrectly

picks the length two path VI -+ V3 -+ V2 over edge VI -+ V2. Given that

the implementation contains a single-fault, there are many possible ways

in which the testing algorithm can detect this fault:

Theorem 2 Given 0 < < 1, with e2 .n2.In: repetitions in line 1, Al-

gorithm 1 catches any single-fault in a RIP implementation with prob-

ability at least 1 - .

5. TESTING OSPF PROTOCOL

We now study a more complex routing protocol OSPF [7]. OSPF is

a link state routing protocol. Neighboring OSPF routers maintain ad-

jacency relationship by exchanging "Hello" packets. Each OSPF router

generates Link State Advertisements(LSAs) to describe its own network

connections and routes learned from other routing protocols. For broad-

cast network, a designated router is responsible for maintaining adja-

cency relationships with all other routers on this network. These LSAs

are sent to adjacent OSPF routers via flooding. Each OSPF router

keeps a LSA database that describes the current network topology, and

exchanges its database information with all the neighbors so that each

node has the same view of the network topology. Based on the network

topology information in the LSA database, each router-node constructs

a routing table using shortest paths algorithms.

Algorithm 1 uses subroutine ROUTE in Figure 5 to check whether

OSPF of the RUT responds correctly to the changed network topology

with a link or node up or down. Specifically, it checks: (1) After receiving

a link-state advertisement LSA, RUT Vo constructs a correct link-state

database Do; and (2) Vo floods a correct link-state advertisement to each

immediate neighbor node Vi in Vo. (3) Vo construct correct routing table

from its LSA database.

Whenever a link is down, the two adjacent nodes detect it, and form

an LS A to send to all the neighbors. Whenever a router or network node

is down, all its neighbors detect it as all the links to that node is down,

and flood this information through an LSA. For simplicity, for each

260 R. Hao, D. Lee, R. K. Sinha and D. Vlah

Subroutine ROUTE(vo)

input. LSA.

variables. Vo. 1* neighboring router-nodes of Vo * /
1 if (changed link not adjacent to vo)

2 select u.a.r. a node Vr in Vo reachable from changed links;

3 send LSA from Vr to Vo;

4 else 1* changed links adjacent to Vo * /
5 Vo informed of new link status;

6 for each Vi, i f. r, in Vo 1* check LSA flooding from Vo * /
7 receive LSA from Vo; 1* via protocol interface * /

8 if LSA f. LSA
9 return FALSE;

10 compute expected LSD for Vo: Do;

11 obtain LSD from Vo: Do; /* via explicit LSD download * /

12 if (Do f. Do) 1* check LSD of Vo * /
13 return FALSE;

14 calculate the expected routing table Ro from this LSD;

15 obtain routing table flo from Vo;

16 if (ito f. Ro) 1* check routing table of Vo * /
17 return FALSE;

18 return TRUE;

Figure 5 subroutine ROUTE for OSPF

node or link up or down, we denote this network update information by

LS A. We modify Line 4 of Algorithm 1 and collect this information via

LSA = UPDATE(vo).

6. TESTING BGP

The routers within the Internet have been grouped into administrative

units called autonomous systems (AS). RIP and OSPF are examples of

routing protocols used within an AS. BGP [9J is the routing protocol

of choice between ASs. Each router maintains its preferred path (called

AS-Path) to all possible destinations. Each BGP router advertises these

paths to all its adjacent (peer) routers. A key aspect of BGP is that the

path used for routing is not necessarily the shortest path. This is done by

specifying a set of policies. Each AS can independently set preferences

for its neighboring routers. When this AS receives two different routes

for the same destination, it picks the route advertised by the router with

the higher preference.

A simple BGP testing algorithm can use a subroutine for routing

information checking similar to ROUTE(vo) for RIP protocol testing,

and we omit an explicit description of the subroutine. We comment

Testing IP Routing Protocols 261

that the only notable differences is that instead of exchanging distance

vectors, we now exchange AS-PATHs to each possible destination. We

set the routing policy of the RUT and then we check whether it correctly

computes its set of preferred paths to all destinations.

Note that the strategy that we have just described only tests the

behavior for the policy that we have chosen. Which policy should we

pick? A fault may show up only under certain routing policies. We would

like to change the policies while the test is in progress with dynamic

network topologies; it could give us a larger fault-coverage with respect

to policies. However, changing the routing policies of the RUT is feasible

only with the software tool for the routers made by some specific vendors.

Policies, in general, are a complex and ill-understood part of the BGP

protocol. For example, each AS can set its policy independently. It was

shown [10] that policies which appear reasonable locally may be mutually

inconsistent. Furthermore, testing whether a given set of routing policies

are mutually consistent is NP-hard [2].

There are other difficulties with BGP testing. A design philosophy

of BGP is to maintain route stability, so if the network configuration

changes very fast, many vendors design their routers to deliberately ig­

nore the route changes. So we are forced to slow down our network

simulator to enable the router to "catch up." (In general, this is not a

problem with I-BGP testing.)

7. EXPERIMENTAL RESULTS

The probabilistic algorithm for IP router testing has been imple­

mented and is a part of SOCRATES, a software tool for automatic IP

routing protocol testing, developed at Lucent Bell Laboratories. The

tool is written in ANSI C and runs under Linux operating system. It is

inexpensive and completely portable. The only hardware support we re­

quire is a workstation capable of connecting to the RUT via at least two

Ethernet. Currently SOCRATES supports the testing of RIP (versions

1,2), OSPF (version 2) and BGP (version 4) protocols.

The architecture of SOCRATES is shown in Figure 6. It consists of

four components and several auxiliary utilities. The four components

are network topology generator, test executor, test and traffic log and

GUI.
Network topology generator implements the probabilistic test genera­

tion algorithm. It uses a graph model to represent the network topology,

simulates the network links (routers) up or down by adding or removing

edges (nodes). For each network topology change, a test case is generated

and sent to the test executor. Test executor implements the FPACKET

262 R. Hao, D. Lee, R. K. Sinha and D. Vlah

network
topology
generator

SOCRATES GUI

RIP utilities(rip_send/rip_recv)
OSPF utilities(ospf_enginel

send_rlil_ updilte/send_ nlil_ updilte)
BGP utilities(bgp_engine)

forwarding
check
utilities

Figure 6 Architecture of SOCRATES system

subroutine and the ROUTE(vo) subroutine for RIP, OSPF and BGP.

It executes the test cases and verifies if RUT updates its routing ta­

ble correctly and forwards IP packets correctly. Test executor uses the

utilities discussed below to send topology updates to the RUT, queries

the RUT to get the updated routing table, performs consistency check

with the calculated expected routing table, performs packet forwarding

checking if there is a change in the routing table, and makes final test

verdict. Test and traffic log records all the generated test cases in a log

file. For debugging purpose, we also log the IP level trace of all message

exchanges between RUT and SOCRATES.

SOCRATES uses some auxiliary utilities to communicate with the

RUT and carry out real testing. Except for BGP utility, which is based

on TCP connection for packet exchanging, all other utilities use the

networking facilities of the host operating system to read all packets

on the network in promiscuous mode, and to generate packets from

arbitrary source addresses. This allows the emulation of multiple routers,

with different IP addresses, from a single test host.

RIP utilities include rip_send and rip_recv. Whenever there is a

change in the network topology during RIP testing, rip_send is used

to send a RIP update packet (reflecting the change) to the RUT, and

rip_recv is used to explicitly query the RUT to get the updated routing

table.
OSPF utilities includes ospf_engine, send_rla_update and send_nla_up­

date. An asp/_engine is a small OSPF kernel, but can be controlled by

Testing IP Routing Protocols 263

the test executor. Its function is to maintain the fully adjacent rela­

tionship between the RUT and itself. It also synchronizes its local LSA

database with RUT and responds to all the flooding to make sure it

has the exact image of the LSA database in RUT. Whenever there is a

change in the network topology during OSPF testing, a new router-LSA

is generated to reflect the change. A new network-LSA may be gener­

ated depending on which node is the designated router for the affected

network in the graph. These two LSAs are sent to the RUT by using

send_rla_update and send_nla_update, respectively.

bgp_engine is a small program for setting up a TCP connection be­

tween the RUT's BGP port and the tester. It is controlled by the test

executor via SOCRATES control protocol to exchange BGP packets with

the RUT. Whenever there is a change in the network topology during

BGP testing, bgp_engine is directed to send a BGP UPDATE packet to

the RUT.

Packet forwarding checking utilities are used to verify the RUT's for­

warding behavior whenever there is a change in the RUT's routing table.

We used SOCRATES to test the RIP and OSPF implementation of

GATED [8], Lucent PacketStar (release 1.2) and CISCO 7206 Router (lOS

11.3). We ran test sessions on a Linux PC with four network interfaces

connected to the RUT.

In order to verify that SOCRATES can detect the implementation er­

rors, we introduced a bug into the RIP source code in GATED [8] by modi­

fying the way it processes any RIP update. Specifically, the buggy imple­

mentation ignored the last entry of any distance vector it received. We

used SOCRATES to test against this buggy implementation, and found

that for a configuration of size 20 routers x 100 networks, SOCRATES

could catch this bug in less than one minute.

The RIP standard document [4] was written to summarize already

existing implementations. The vagueness of the document permitted

the three RIP implementations to add heuristics, in order to improve

the performance of the protocol. Unfortunately, this made testing more

difficult. On the other hand, OSPF is a well specified protocol with

less room for arbitrary modifications. Testing OSPF implementations

resulted in successful test sessions with no interoperability issues. The

only minor problem we found is that one vendor's router sends out re­

dundant OSPF DD packets during LSA database synchronization. We

also found that compared with GATED, commercial routers do a much

strict correctness check before accepting OSPF LSAs into their LSA

database.

264 R. Hao, D. Lee, R. K. Sinha and D. Vlah

8. CONCLUSION

Testing is indispensable for the reliability of the routers. We de­

scribe a general probabilistic testing algorithm that can guarantee a

fault-coverage under fault-models. We apply this general testing algo­

rithm to RIP, OSPF, and BGP testing. We provide a run time and fault

coverage analysis. Finally, we describe a software tool that incorpo­

rates these algorithms and also creates a testing environment such that

generated test cases can be executed in real time on high speed routers.

References

[1] D. E. Comer and D. L. Stevens. Internetworking with TCP lIP, Vol.

II. Prentice-Hall, 1999.

[2] T. G. Griffin and G. Wilfong. An analysis of BGP convergenece

properties. In ACM SIGCOMM, pages 277-288, 1999.

[3] R. Hao, D. Lee, R. K. Sinha, and D. Vlah. Testing IP routing

protocols - from probabilistic algorithms to a software tool. Bell

Labs Tech Memo, 2000.

[4] C. Hedrick. RFC 1058. URL = www. ietf . org/rf c . html, June

1988.

[5] C. Huitema. Routing in the Internet. Prentice-Hall, 1995.

[6] D. Massey and B. Fenner. Fault detection in routing protocols.

Proceeding of International Conference on Network Protocols, pages

31-40, 1999.

[7] J. Moy. RFC 2178. URL = www.ietf.org/rfc.html, July 1997.

[8] Merit Networks. Gated. URL = ww. gated. org.

[9] Y. Rekhter and T. Li. RFC 1771. URL = www.ietf.org/rfc.html,

March 1995.

[10] K. Vardhan, R. Govindan, and D. Estrin. Persistent route oscilla­

tions in inter-domain routing. Technical Report 96-631, USC/lSI,

1996.

	TESTING IP
 ROUTING PROTOCOLS FROM PROBABILISTIC ALGORITHMS AND A SOFTWARE TOOL
	1. INTRODUCTION

	2. A MATHEMATICAL MODEL OF IPNETWORK TOPOLOGIES
	3. A PROBABILISTIC TESTINGALGORITHM
	3.1. TESTING STRATEGY
	3.2. A TESTING ALGORITHM
	3.3. SUBROUTINE UPDATE(Vo) AND RUNTIME ANALYSIS
	3.4. SUBROUTINE FPACKET(Vo) ANDPACKET FORWARDING CHECK

	4. TESTING RIP PROTOCOL
	5. TESTING OSPF PROTOCOL
	6. TESTING BGP
	7. EXPERIMENTAL RESULTS
	8. CONCLUSION
	References

