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ABSTRACT

The study area is focused on the Mariana Trench, west Pacific Ocean. The research aim is to inves-
tigate correlation between various factors, such as bathymetric depths, geomorphic shape, geo-
graphic location on four tectonic plates of the sampling points along the trench, and their influ-
ence on the geologic sediment thickness. Technically, the advantages of applying Python
programming language for oceanographic data sets were tested. The methodological approach-
es include GIS data collecting, data analysis, statistical modelling, plotting and visualizing. Statis-
tical methods include several algorithms that were tested: 1) weighted least square linear regres-
sion between geological variables, 2) autocorrelation; 3) design matrix, 4) ordinary least square
regression, 5) quantile regression. The spatial and statistical analysis of the correlation of these
factors aimed at the understanding, which geological and geodetic factors affect the distribution
of the steepness and shape of the trench. Following factors were analysed: geology (sediment
thickness), geographic location of the trench on four tectonics plates: Philippines, Pacific, Mariana
and Caroline and bathymetry along the profiles: maximal and mean, minimal values, as well as the
statistical calculations of the 1st and 3rd quantiles. The study revealed correlations between the
sediment thickness and distinct variations of the trench geomorphology and sampling locations
across various segments along the crescent of the trench.

Keywords: Programming language, Python, Statistical analysis, Pacific Ocean, Hadal trenches,
Mariana Trench, oceanology, marine geology

INTRODUCTION zones (e.g. Schellart, 2008), statistical model-
ling using R and packages, e.g. dplyr, ggplot2,
PMCMR, car (Reid et al., 2018). Of all these, sta-
tistical modelling of the oceanological data
sets by means of R and Python programming

languages is the most cost-effective for investi-

Multiple approaches and GIS methods have
been used so far to model ocean seafloor, the
most unreachable part of the Earth. These in-
clude echo sounding (Smith, & Sandwell, 1997),

CTD (conductivity-temperature-depth profiler)
technique (Taira et al., 2005), acoustic methods,
continual profiling with single-beam systems
and bottom coverage capability, multi-beam
swath-mapping systems (Dierssen, & The-
berge, 2014), classic approaches of the GIS
mapping and other tools of geoinformatics (Fu-
jie et al., 2006), remote sensing images analysis,
navigation charts and data modelling using
schematic cross-sections of the subduction

gating hadal trench geomorphology.

Various studies have been reported on the
geologic variations of the Mariana Trench in-
volving uneven distribution of various geo-
morphic phenomena across the seafloor (e.g.,
Michibayashi et al., 2007; Grand et al., 1997).
Amongst these, the questions of how the
trench shape is varies and what are the factors
affective its geomorphology are the most chal-
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lenging in view of the importance of the deep ocean segments
for the whole ocean environment. The distribution of elevations
on the Earth or hypsography is highly uneven. Thus, the major-
ity of the depths is occupied by deep basins (4- 6.5 km) while
relatively few areas are covered by shallow zones. At the same
time, a considerable pool of resources is hidden by the ocean
depths which explains the actuality of the ocean research for
the national economies. The limitations in marine geological
methods are imposed by the high cost of the actual cruise ma-
rine expeditions. Using available open source geodata sets
have removed this problem by the use of low-cost geospatial
data and their processing in GIS and open source program-
ming language R and Python. Similarly, Python based statistical
set of libraries, such as NumPy, SciPy, StastModels, and Mat-
plotlib statistical package present effective low-cost and easily
available method for the marine oceanological data processing
and modelling.

Regional studies of the marine geology of the trenches across
the Pacific Ocean (e.g., Bello-Gonzélez et al., 2018; Boston et al.,
2017), modelling and predictions made upon analysis of the
geophysical settings of various trench, produced by these inves-
tigators were instrumental in understanding current issues of
the marine geological studies. The concepts of these reports on
seafloor spreading, tectonic slab subduction, continental drift,
and plate tectonics in the Pacific Ocean were analysed in the
current research.

STUDY AREA AND DATA

The study area is located in the Mariana Trench, west Pacific
Ocean, where the deepest place of the Earth is recorded (The-
berge, 2008).

The geomorphology of the Mariana Trench was studied through
the spatial and statistical analysis of the 25 cross-section bathy-
metric profiles digitized across the trench. Each profile has a
length of 1000 km and a distance between each two is 100 km.
The methodology consists of two parts: geospatial data process-
ing and statistical analysis.

First, during the geospatial part of the research, the data were
collected from the Quantum GIS project as vector layers. The at-
tribute tables contained numerical data on bathymetry, geology,
tectonic plates and geometric features of the Mariana Trench in
its various segments of the geographic location: north-west, cen-
tre, south-west.

Second, during the statistical part of the research, the table in
.csv format was then read into the Python environment using
Pandas package. The profiles were observed using methods of
the statistical modelling performed by Python programming lan-
guage. During the statistical testing and experiment, several ex-
isting approaches (Box, & Tiao, 1992; Timm, 2007; Oliphant,
2007; Oliphant, 2015; Lemenkova, 2019) provided by the Python
StatsModel and Matplotlib libraries were used as the core algo-
rithms described below.

METHODOLOGY

Design matrix and model fit summary by the Ordinary Least
Squares

The variables of geologic interest were stored in the table con-
sisting of 18 rows where numeric information describes geology,
bathymetry, geodesy and tectonics of the Mariana Trench. To fit
most of the models covered by StatsModels Python library, the
design or regressor matrix was created using existing approach-
es (Everitt, 2002; Box, & Tiao, 1992; Millman & Aivazis, 2011). The

Figure 1.

Study area: Mariana Trench, west Pacific Ocean (Source: author, QGIS project).
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1 from __future__ import print_function OLS Regression Results
‘_; ﬁnatplothb inline Dep. Variable: profile R-squared: @.457
import numpy as np Model : OLS  Adj. R-squared: 8.379
4 '}mport pandas as pd . Method: Least Squares F-statistic: 5.881
3_' import stut;models.upl as sm Dote: Sun, 24 Mar 2019 Prob (F-stotistic): B, 08445
£ from patsy import dmatrices Time: 19:36:32 Log-lLikelihood: 77.241
7 import os No. Observations: 25 AIC: 162.5
8 os.chdir{'/Users/pauline/Documents/Python') Df Residuals: 21 BIC: 167.4
9 df = pd.read_csv("Tab-Morph.csv") Df Model: 3
10 df = df .dropnal) Covariance Type: nonrobust
11 df[-18:] s —re .
12 y, X = dmotrices('profile ~ sedim_thick + igneous_volc + slope_angle’, R _mefsfde"t?’“[eazs?g?s‘!
13 ) data=df, return_type='dataframe'} Intercept 17.5305 6.362 > 2.010 4.701 31.160
14 y[:7] sedim_thicl 2.1320 0.048 2.743 2.012 9.232 0.032
157 Xf:71 igneous_volc 0.0445 0.016 2.819 @.010 8.012 0.077
slope_angle 9.1328 @.115 1,151 @.263 -9.187 9.373
Intercept sadim_thick - igneous_valc: ‘siope angle Omnibus: 1.669 Durbin-Watson: 8.654
Prob(0mnibus): 9.434  Jarque-Bera (JB): 1.995
3 143 1780 13 EL ok Skew: -9.198  Prob(J8): 0.578
1 10 102.0 71.0 2.0 Kurtosis: 2.854 Cond. No. B84,
2 1.0 96.0 0.0 51.0
Warnings:
3 10 108.0 0.0 5.0 [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
4 10 127.0 3.0 s2.0 Intercept 17,930487
sedim_thick -9.131967
s 0 1250 =0 [ igneous_volc B.044532
8 10 142.0 0.0 55.0 slope_angle @.132841
dtype: floatb4
Table 1. Python code for design matrix ‘dmatrices’ (left) and OLS computation by StatsModels of Python (right), Mariana

Trench data frame.

first is a matrix of endogenous variables of sediment thickness,
which show the response or geological regressand on changed
environmental conditions: geographic location, depth or tecton-
ic plate.

The design matrix (Table 1, left) shows the results of the first six
lines representing values of explanatory variables in a set of geo-
logical attributes, Mariana Trench.

The computing of the Ordinary Least Square (OLS) was based on
the formula (1):

~ X))

, (x-x)

2.
b= 5"

Where,

nis the sample size;

x is a constant and a scalar regressor;

y is a random regressor, sampled together with x;
his the number of lags being tested;

Each row of the calculated OLS coefficient estimates (Table 1,
right) shows an individual bathymetric profile with the successive
columns corresponding to the geologic and oceanographic vari-
ables and their specific values across the profiles.

Quantile statistics (QQ)

The used algorithm is very straightforward with a selected func-
tion of qgplot() by StatsModels to perform this task. The QQ re-
gression is a common abbreviation for ‘quantile by quantile’ sta-
tistical plot. The plot shows (Figure 2) one quantile against an-
other across various geological parameters (from left to right): A)
Sediment thickness; B) Slope angle degrees; C) Pacific Plate; D);
Philippine Plate E) Mariana Plate; F) Distribution of samples of ig-
neous volcanic areas.

Technically, the plotting was performed using following code of
Python for each corresponding plot:

axl.plt = qggplot(df.sedim thick,
ax=axl, fit=True,
linewidth=.5, alpha=.5, markerfacecolor='#00a497",

markeredgecolor='grey’,)

line='q’,

The QQ statistics calculation has been based on the following
formula (2) after Ljung, & Box (1978):

2

.l
Q= n(n+2)}, i o

Where,

nis the sample size;

rho is the sample autocorrelation at lag k, and
his the number of lags being tested.

The comparison of all the six subplots enables to analyse the
form of their shape against a straight line. The quantiles are
bathymetric sample observations with geologic attribute values
placed in the ascending order. The QQ statistics are used over
the pool of the sampling data to study their distribution. A QQ
statistic is a visual representation of the quantiles of a standard
normal distribution of the geological data set across the Mariana
Trench, showing their variation in space.

Weighted Least Squares

A Weighted Least Squares (WLS) for the geological variables are
shown on Figure 3. The approach of a weighted least squares is
a standard approach in regression analysis to approximate the
solution of overdetermined systems which is the case for the
complex marine geological systems. The least squares algo-
rithms has two sub-types: linear or ordinary least squares and
nonlinear least squares. In the scope of this research, only the lin-
ear least squares were tested: ordinary least squares and weight-
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QQ statistics plots of the geology of the Mariana Trench
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Figure 2.

Philippine Plate E) Mariana Plate; F) Volcanic spots.

Plotted QQ statistics for the data distribution: A) Sediment thickness; B) Slope angle degrees; C) Pacific Plate; D);

ed least square which is a generalization of the first one. In this
case, the off-diagonal entries of the correlation matrix of the
geological residuals are null the variances of the observations,
yet unequal along the covariance matrix.

AWLS is a statistical approach representing a special case of the
generalized least squares.

The calculation is based on the principle of the Gauss—Newton
algorithm that solves a non-linear least squares problem by mod-
ifying a Newton’s method for finding a minimum of a function.
The computation was based on the general approach of existing
equation (after Bjorck, 1996):

JWIAB=JT WAy 3

Where

W is a diagonal when the observational errors are uncorrelated
and the weight matrix;

J (t) is a transposed Jacobian matrix;

B3 are unbiased estimators as linear column vectors, the entries of
the Jacobian matrix;

y is a vector of the response values.

The calculations of the WLS for the data set (Table 2) were done
according to the reported procedures (Seabold & Perktold, 2010;
Strutz, T. (2016) by Python code snippet:

# Step-1.
mod_wls sm.WLS(y, X, weights=1./(w ** 2))

res_wls mod_wls.fit ()
print(res_wls.summary())

# Step-2.
sm.OLS(y, X).fit()

print(res_ols.params)

res_ols
print(res_wls.params)
# Step-3.
np.vstack([[res wls.bse],
[res 0ls.HCO se],
[res_ols.HC1l_ se],
[res_0ls.HC3_se]])
np.round(se,4)
colnames [“x1’, ‘const’]
[‘WLS’, ‘OLS’,
‘OLS_HC3’, ‘OLS_HC3']
tabl SimpleTable(se,
fmt=default_ txt fmt)
print(tabl)

se [res ols.bse],

[res ols.HC2
se],
se

rownames =

‘OLS_HCO’, ‘OLS_HC1’,

colnames, rownames, txt

Quantile regressions

Quantile regression shows (Figure 4) the estimated conditional
median and other quantiles of the response geological variables.
Thus the upper two rows of the plot show (Figure 4, A, B, C, D)
data distribution across tectonic plates: Pacific Plate, Philippine
Plate, Mariana Plate and Caroline Plate. The lower row of the plot
(Figure 4, E, F) shows data distribution for the cumulative sedi-
ment thickness and slope angle degree by profiles.
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at Pacific Plate by 25 bathymetric profiles

1000
. Bathymm

Obsarvations
| . — Te
1 == Qrdnary Least Squares
—-= Walghted Least Squares

=500
1000
i 51 100 150 i) 250 300 380 400
Mumber of nbearvations
l ] Weighted Least Squares of data disfribution
e at Mariana Plate by 25 bathymetric profiles
Bathymetric
i ®  Gbservations
2000 — Tue
ki —--- Qrginary Least Squares
— \Walghted Least Squares
i
o
=500
1003
1500
0 100 ] 300 400
Mumber of observations
| E | Weighted Least Squares of maximal depths
= across Marlana Trench by 25 bathymetric profiles
Bathymetric
®  Gbservations
— Trug
—qnopod | T Qrgmary Least Sguares
------ ‘Walghted Least Squares
=000
~B00000
~1000000

-10000 3000 ~BOOD ~7000 ~6000
Depths, m

lBJ Weighted Least Squares of data distribution
at Philippine Plate by 25 bathymefric profiles
Bathymetric
®  Ovservations
— True
Ordnary Least Squares
Weighted Leas! Squares

-1000
~1500
2000
2500 oy
e
0 100 200 o 400 500
Mumber of observalions
D Weighted Least Squares
' of sediment thickness at Mariana Trench by 25 bathymetric profiles
[ Bathymetic
. ®  Ghbservsions
& R — True
T — Ordinatry Least Squares
— Weighlad Least Squares
5 T T
i
25
-50
75
-100
-125
B0 )] 100 120 140
Sadiment hickness, m
F ] Welighted Least Squares of
et slope angle degrees across Mariana Trench by bathymetric profiles
Bam;ﬂnelﬁc
e ®  Observations
20 v s — Tne
\\\ \ ------ Ordinary Least Squares

------ Weighted Least Squaras

-8

Slopa angle. degres

Figure 3. Weighted Least Squares plotted for data distribution: A) Pacific Plate, B) Philippine Plate, C) Mariana Plate, D)
Sediment thickness, E) Depths (max); F) Slope angle degree.

The quantile regressions were plotted (Figure 4) using Python
code by StatsModel:

# Step-1. Least Absolute Deviation
mod = smf.quantreg(‘profile ~ slope angle’, data)
res = mod.fit(g=.5)
print(res.summary())

# Step-2. Placing the quantile regression

results 1in a Pandas DataFrame, and the OLS

results in a dictionary
quantiles = np.arange(.05, .96, .1)
def fit model(q):

res = mod.fit (g=q)

return [g, res.params[’‘Intercept’], res.

params[ ‘slope angle’]] +
int().loc[ ‘slope_angle’].tolist()

res.conf__
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=== RESTART: /lsers/pouline/Documents/Python/Script-830c-SH-ALS-Pacif.py ==mm  =me= RESTART: /Users/onul Fythan, pE-BIBL-SM-ALS-PRIL. Y sme= | == 7, RESTART : /Users/pauline/Docursats/Python /Scri pt-B3BC-5H-ML3-Harlo, py ====
(A) WLS Regression Resulis (B) WLS Regression Results (C) WLS Regression Results
Dep. Variable: ¥ R-squared: 9781  Dep. Verisble: ¥ R-squared: 8.965 | Dep. Variable: ¥ Resquarad: B.7a7
Madel: M5 Adj. R-squored: e.77z  Wadel: WS Adi. R-sguored: + WS Adi. R-squored: 8777
Least Squoces  F-stotistic: 32,18  Mcthod: Least Sguares  Frsbabistic: Least Souores  F-stotistics 24,77
Mon, 25 Mor 20819 Prob (F-stotistic): 4 7ie-pd  Date: Mon, Z5 Mor 2010 Prob (F-stetisticd: Mee, I5 Wor 2013 Prob (Fostatistic): 3.55-09
14:47:3%  Log-Likelihood: -18%, 76  Time: 14:58:45  Log-Likelihood: -172.93 | Time: 14:52:41  Log-Likelihood: -169,16
Na, ooggmguun;. 25  AIC: 335.5  No. Observations: . 349.9  No. Observations: AlLC: 42,3
DF Residuals: 231 BIC: 338.8 DF Residuals: 23 BIC: 352.3 | D Residuals: 3 BIC: 3448
of Hodel: DF Model: 1 DF Model:
Cavariance Type! ranrabust Cavariance Type: ronrabust Cavoriance Type: nonrobust
coef  std err t Pl [&.925 a.a73] cvef shd err t Prlel [ﬂ 025 @,975] coef  std err E Pkl [#.825 #.975]
const 146 6735 52.135 2.813 @.018 38.825 E54.522  consk 335 1523 6? Gﬂﬂ 5.742 .09 145 450 524.955 | canst 315, 5880 7E.993 3.995 @.eal 152,171 473.339
x1 -2, U85 2288 -9, 085 o000 -3, =208 =l -4.3747 8.236 -14.768 0. 008 -3.762 |al 8.370 -9.287 @008 -4.176 -2.643
Omnibus: 25.518 Durbin-Watson: 1.255  Oenibus: 18,573 Durbin-Wetsen: B.BBS  Dnibus: 19,038 Durbin-Watson: B.559
Prob(Canibus}: @.088  Jorque-Bero CIB): #4_234  ProbCOmnibus): @985 Jarque-Bero (JE): 9239  Prob(Omnibus}! @.098  Jargue-Bero (JB): 22.681
Skom: -2.851  Prob{JE): 7.470-18  Skem: <1181  Prob(JE): o.003gs | Shew: -1.776  Prob(18): 1.1%e-85
Kurtosis: E.068  Cond. Mo. 308,  Kurtesis: 5,085  Cond. Mo 372, Kurtosis: 6,025  Cond. Mo, 479,
Marmings: Marnings: Warrings:
[1] Standard Errors assume that the covorionce makrix of the errors is correctly [1] Stondard Crrors assume that the covorionce mstrix of the errors is correctly [1] Stondard Errocs assune that the covarignce matrix of the errors is correctly
specified, spacified specified.
[112 71874388 -2.30356684] [+83. ]63!0193 -4.48279094] [134,33527365 -2.58357379]
-2 BBEGAT2T] 7465138] [315.58913893 -3.489450923]

[146. 67351771

comat
1346 B.2878
42.088 @.2719
OLS_HCO 52,7957 #5709
DLS_HC1 55,8475 8.5052
DLS_MC3 62.7974 £.6996
DLS_HC3 75,3881 B.HS97

272 5hell
hansSoript -03:
WLS Regression Results

~sedum_thickness.py

NLS
OLS
OLS HC@ 72.1853 9.3

OLS_HE1 75,2583 @ 3128
DLS_HC3 77,4547 2.3245
OLS.HC3 £3.225 83514

7,098 @, ZSEZ
71,495 8.243

LN Tem— - Python 372 Shell?.
meenr RESTART 1 PyebhonEcrint 038

¥
MLS Regression Results

TE.9928 85705

oLs 56,3427 8.3135

OLS_HCR 72,9913 8.6456
OL5_HC1 768986 86731
DL5_HO3 35,9488 @, 7792
OLS._HC3  181.B3 9.9424

*Pythan 3.7.2-Shell”

= RESTART: fusér.upwunefIlo:ulnentsnytmNseript-éiaF-sﬁ-an-;10@!.&”19.”’ -
Ll

% Regression Results

¥ R-sguored: #.972 Ocp. Yorioble: y  R-squared: 0.993 Dep. Worioble: ¥ R-squarsd: 9,399

WS Adi. Resquared: @.971  Model: WS Ad. R-squared: 9,092 Model: WS Adj. R-squared: 0.89%

Leost Squares F-statistic: 790.6 Method: Least Squares F-stotistic: 3137, Mathed: Leost Squares F-statistic: 285.7

Hon, 5 Mar 2813 Prob (F-statistic): 2,58e-1%  DOote: Mon, 25 Mar 219 Frob (Festakiseic): 4.27e-26  Dote! Mon, 25 Mar 7919 Prob (F-statistic): 5.d4e-13

1511549 Log-Likelihood: -5, 895 Time: 15:54:33  Leg-Likelihood: 277,18 Time: 15:21:3Z  Log-Likelihood: -53.114

fio. Dbservations: 5 AK: 1738 Mo. Observotions: 3’ AN 5584 Mo, Dbservetions: AL 110.2

Df Residuols: 23 BHc: 1762 OF Sestouals: 2 BIC sp.p D Residuals: BB 1u2.7
DF Madal: 1 DF Model: 1 Dbf Model: 1
Coverionce Type: nenrobust Covariance Type: nonrobust Covarianca Type: nonrcbust

coel st err t PRIt [@.8z5 8.975] coef  std eer t Peit [8.825 8.975] ' coef  std err t Paltl B.975])

const 1878704 G600 16.224 (R 93,418 126.723 const 57890408 Z.0Teddd 20471 B0 5280405  B.120.05  Const 24.4614 LA 22863 8300 22.168 26,755

1 -1.48R1 0,853 -28.117 0, a6 1,688 1,388 %1 2,73 567 BOR 147460 158,769 1 -#.3323 B8Z3 -14.341 B @0 -8 -0.284

Dmnibus: 2.123  Durbin-Motson: @.518  Omnibus:t 2.874  Ourbin-Matsan: 1.583 Owriibus: 1.99%8  Durbin-Matson: 2,23

Prab{0nnibus]: B.918  Jargue-Bera (I8} @341 ProvOantbus): 8.238  Jorque-Bere (I8 2,166  Prob{Omnibus): B.5TE  Jarque-Bera (I1B): 1.028

Shew: 8163 Prob(I0): @843 Skew: 8,717 ProbiiR): 0.338  Skew: -B.430  Prob(IR}: 0.598

Kurtosis: 2.538  Cond. Ka. GG, Kurtesis: 2.851  Cond, Ho. 5.56ce08  Nurkosis: 2.582  {omd. Ho 157,

Warnings: Wornings: Wornings:

[1] Standard Errors ossume thet the covarbance motrix of the arrors is correctly

specified.
(54, 22878922 -1, 3H4E111E]

ecified.

[1] Stardard Errors assume thot the covariance matrie of the errors 15 corractly o

[2] The cordition number is lorge, 5.562484, This might indicote that there are

spacifiad.
[25.81457577 -@,35337792]

(107 G70£2334 -1,498RE3E3] strang milticollinearity or ather aumaricel probless. [24.45144126 -0.33228815]
i n————— [6.18224947e+B5 1.68220641e+82]

¥l  const [5.788971720405 1, 531145750402]
WS 6.5996 9.0533 xl const ns 1.1087 @ @232
oS 7.1857 0.8624 asmsssssssssssssssesens s 1.1568 8.9255
QOLS_HCR 1B.RS42 0, QETE WS 28051.5494 7,7336 OLE_WCH 1.3046 8.9277
OLS_HC1 11.3163 @.0916 as 19948.1136 2.5811 GLS_HCL 1,3683 80288

OLS_HEY 12,4109 0. 1084
OLS_HC3 14.2337 @,1152

OLS_HCA 27E3.1542 3.8183
OL5_HCL 38014,7681 40761
OL5_NC3 323586706 44195

OLS_HC3 1,3952 8.9299
OLS_HCH 1.4942 8.8323

[1] Stondord Errors assune thot the cavariance matrix of the errors

is correctly

Table 2.

Sediment thickness; E) Depths; F) Slope angle.

Computed results of the WLS modelling for the data distribution by plates: A) Pacific; B) Philippine; C) Mariana; D)

(A} antReg Regression Results (B) fuartReg Hegression Results [C] Quontley Regression Results
Dea. varighle: profile  Pseudo B-squared: @.2581 Dap. Varlable: profile  Pseudo R-squored: 8,512 Dep. Vorioble: profile  Pscudd R-squared: 0.4455
Model 1 Quanthieg Bﬂr\Mldth' 13.16 QuontReg  Bandwidth: 4901 Model: QuontReg  Bancwidth: 5.855
Method: mast Squores  Sparsity: 2234 Hethod' Legst Squares  Sparsity B.864 = Least Squores  Sporsity: 11.46
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Table 3.

Results of the computations for the quantile regression for sediment thickness versus geologic parameters: A) Pacific
Plate, B) Philippine Plate, C) Mariana Plate, D) Caroline Plate, E) Cumulative sediment thickness and F) Slope angle
degree by profiles.
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models = [fit model(x) for x in quantiles] ols = dict(a = ols.params[‘Intercept’],
models = pd.DataFrame(models, columns=[‘q’, ‘a’, b = ols.params[‘slope_angle’],
‘b’,"1b’,'ub’]) lb = ols_ci[0],

ub = ols ci[1])

ols = smf.ols(‘profile ~ slope angle’, data).fit()
ols ci = ols.conf int().loc[’slope angle’]. print(models)
print(ols)
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Figure 4. Quantile regression plotted for sediment thickness (m) versus geologic parameters: A) Pacific Plate, B) Philippine

Plate, C) Mariana Plate, D) Caroline Plate, E) Cumulative sediment thickness and F) Slope angle degree by profiles.
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Essentially, quantile regression is another approach of the linear
regression tested in the current research. The quantitative results
of the quantile regression are shown on Table 3, with respect to
the relevant plots shown on Figure 4 (corresponding to Figure 4:
A B,C D, EF).

Dynamic regression model: State Autoregressive Moving Av-
erage (SARIMA)

The methodology of the dynamic regression model is based on
the StatsModels embedded algorithm (Seabold & Perktold, 2010).

The abbreviation of SARIMA is the Space AutoRegresslve Mov-
ing Average model, initially developed by Ansley & Kohn, (1985).
The concept of the application of the SARIMA time series esti-
mation and post-estimation lies in the following. The changes in
the variables that are taken as time lags in classic dynamic re-
gression models are applied towards bathymetric profiles from 1
to 25. In this way, unlike in time series case when the SARIMA fits
the univariate models with time-dependent disturbances, this
case applies space-dependent disturbances, crossing the sam-
pling selection from 1 to 25 (X axe).

Because the model includes both dependent and independent
variables, the selected type of SARIMA was SARIMAX (see the Py-
thon code snippet below). The first group consists in changing
variables that is geologic settings and bathymetry (depths). The

second group (independent variables) is presented by the pro-
files lags that cross the Mariana Trench with the distance between
each of 100 km and the length of 1000 km. This cross-section pro-
files are taken as independent variables. Therefore, the depen-
dant variables differ spatially in different segments of the trench.

The model (Figure 5) fits univariate model of the geomorphic
structure of the trench by independent values of the distribution
of the bathymetric observation by profiles with dependent dis-
turbances of depths.

Fitting the model was done using the Python snippet:

mod = sm.tsa.statespace.SARIMAX(data[‘sedim
thick’], trend=’'c’, order=(1,1,1))

res = mod.fit (disp=False)

print(res.summary())

fig = sm.graphics.tsa.plot pacf(data.iloc[1l:]
[ “Ddf.geology’], lags=25, ax=axes[l])

The algorithm fits a model where the disturbances follow a linear
specification of the bathymetric distribution across the trench.
The dependent and independent geological variables vary by
profiles (Figure 5). Plotting was done using sublplot function of
Matplotlib:

fig, axes = plt.subplots(2, 2, figsize=(15,8))
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Figure 5.

Plotted SARIMAX statistics for the bathymetry: A) Sediment thickness index; B) Data distribution index, Philippine
Plate; C) Autocorrelation; D); Partial Autocorrelation.
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Statespace Model Results
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Warn
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ES S

ings:
Covariance matrix caleulated using the outer product of gradients (complex-step)

Ln: 28 Col: 29

Table 4.

Python programming code for used SARIMAX algorithm (left) and Statespace Model Results (right). Tested case in

Mariana Trench tectonics: sediment thickness across Philippine Plate.

RESULTS AND DISCUSSIONS

The conducted statistical data modelling and several types of
the regression analysis were aimed to compare the variance in
the geological data sets of the Mariana Trench explained by the
complex interplay of the geomorphic, geological and oceano-
logical attributes of the data and the bathymetric factors of the
location of several segments of the trench in various parts of the
Pacific Ocean. Using StatsModels library of Python, in particular
several linear models of the correlation between various factors
were computed, analysed and explained by the groups of vari-
ables.

Tested environmental variables of the Mariana Trench include
four main geological factors (location on the tectonic plates,
slope steepness degree, sediment thickness of the layer and
bathymetric depth and submarine volcanism) and attributes of
the 25 cross-section bathymetric profiles (mean values, maximal
depths, median values and two quartile sub-division of the data
sets) and the shared variances between environment and attri-
butes. Shared variance arises due to correlations between the
factor of sediment thickness and slope angle degree, e.g. be-
cause the attributes of the sediment accumulation are influenced
by the canyon shape apart from the directly or indirectly depend-
ing on the oceanological conditions of the submarine currents.

The graphical output shows normal data distribution as demon-
strated by (Figure 2), where each QQ profile has a given value for
data distribution by quantiles across the trench profiles. The dis-
tribution of the geologic residuals is shown on Figure 3 showing
particularly data correlation for several cases: frequency of the
data distribution by Pacific Plate, Philippine Plate, Mariana Plate,
sediment thickness, and range of the bathymetric depths taken
for the maximal values, and finally, geomorphological shape as
slope angle degree. The results shown on Table 2 represent the
computed numerical values of the previous graph (Figure 3).

The results on the Quantile regression (Figure 4) show the condi-
tional median of the response geologic variable given changing

bathymetric values with movement southwards across the Mari-
ana Trench. Thus, the upper plots shows (Figure 4, A, B, C) data
distribution across tectonic plates: Pacific Plate, Philippine Plate,
Mariana Plate and Caroline Plate. The lower plot (Figure 4, D, E,
F) shows data distribution for the Caroline Plate and cumulative
sediment thickness and slope angle degree by profiles.

The numerical explanation of the Figure 4 with corresponding
sub-plots is presented in Table 3. The Figure 5 shows dynamic re-
gression model using Python function embedded in StatsModel:
State Autoregressive Moving Average. Finally, Table 4 shows the
Python code that was used to perform the procedure of SARI-
MAX and the resulting output table. The model shows autocor-
relation of the data by bathymetric profiles. The results demon-
strated a correlation between the geological variables and geo-
spatial location of the samplings across Mariana Trench, which
proves the interplay between multiple factors affecting its geo-
morphology.

CONCLUSIONS

While the usage of the traditional methods of geoinformatics
and spatial analysis is, beyond doubts, strongly recommended
for any research in geoscience, there is another powerful tool for
the geospatial data processing other than GIS, sometimes over-
looked or skipped by the geographers: a data modelling by use
of Python or R programming languages. Python, an open source
free programming language is highly suitable for the statistical
analysis in geoscience research, since it has a powerful statistical
and math libraries, e.g. StatsModel, highly effective for scientific
computing and used in the current research. The functionality of
Python language and StatsModel, tested in this work, is proved
to be highly effective for the statistical analysis of the geo-marine
sets.

The proposed approach of the Python based statistical analysis
enables accurate and efficient computation and modelling of the
large data sets in marine geology and oceanology. A challenge
in the evaluation of geological big data sets (that is, several thou-
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sand of observation points as in this case, 12.590 samples) con-
cerns the difficulty in manual identifying a correct algorithms in
the computations and data distribution analysis.

The necessity to apply a precise machine learning algorithms is
recently increased in geographic sciences with respect to the im-
portance of choosing an effective method for data visualization
and computation. The solutions to the mentioned above prob-
lems are provided by Pandas data frames: for example, optimiz-
ing structure of the data, selecting the correct parts from the
whole data frame (columns, rows in the data arrays) and plotting.
Based on the presented results, the application of Python pro-
gramming language is strongly recommended in geoscience re-
search as an addition to the traditional GIS methods.
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