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ABSTRACT

The study area is focused on the Mariana Trench, west Pacific Ocean. The research aim is to inves-

tigate correlation between various factors, such as bathymetric depths, geomorphic shape, geo-

graphic location on four tectonic plates of the sampling points along the trench, and their influ-

ence on the geologic sediment thickness. Technically, the advantages of applying Python 

programming language for oceanographic data sets were tested. The methodological approach-

es include GIS data collecting, data analysis, statistical modelling, plotting and visualizing. Statis-

tical methods include several algorithms that were tested: 1) weighted least square linear regres-

sion between geological variables, 2) autocorrelation; 3) design matrix, 4) ordinary least square 

regression, 5) quantile regression. The spatial and statistical analysis of the correlation of these 

factors aimed at the understanding, which geological and geodetic factors affect the distribution 

of the steepness and shape of the trench. Following factors were analysed: geology (sediment 

thickness), geographic location of the trench on four tectonics plates: Philippines, Pacific, Mariana 

and Caroline and bathymetry along the profiles: maximal and mean, minimal values, as well as the 

statistical calculations of the 1st and 3rd quantiles. The study revealed correlations between the 

sediment thickness and distinct variations of the trench geomorphology and sampling locations 

across various segments along the crescent of the trench. 

Keywords: Programming language, Python, Statistical analysis, Pacific Ocean, Hadal trenches, 

Mariana Trench, oceanology, marine geology

INTRODUCTION

Multiple approaches and GIS methods have 

been used so far to model ocean seafloor, the 

most unreachable part of the Earth. These in-

clude echo sounding (Smith, & Sandwell, 1997), 

CTD (conductivity-temperature-depth profiler) 

technique (Taira et al., 2005), acoustic methods, 

continual profiling with single-beam systems 

and bottom coverage capability, multi-beam 

swath-mapping systems (Dierssen, & The-

berge, 2014), classic approaches of the GIS 

mapping and other tools of geoinformatics (Fu-

jie et al., 2006), remote sensing images analysis, 

navigation charts and data modelling using 

schematic cross-sections of the subduction 

zones (e.g. Schellart, 2008), statistical model-

ling using R and packages, e.g. dplyr, ggplot2, 

PMCMR, car (Reid et al., 2018). Of all these, sta-

tistical modelling of the oceanological data 

sets by means of R and Python programming 

languages is the most cost-effective for investi-

gating hadal trench geomorphology. 

Various studies have been reported on the 

geologic variations of the Mariana Trench in-

volving uneven distribution of various geo-

morphic phenomena across the seafloor (e.g., 

Michibayashi et al., 2007; Grand et al., 1997). 

Amongst these, the questions of how the 

trench shape is varies and what are the factors 

affective its geomorphology are the most chal-
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lenging in view of the importance of the deep ocean segments 

for the whole ocean environment. The distribution of elevations 

on the Earth or hypsography is highly uneven. Thus, the major-

ity of the depths is occupied by deep basins (4– 6.5 km) while 

relatively few areas are covered by shallow zones. At the same 

time, a considerable pool of resources is hidden by the ocean 

depths which explains the actuality of the ocean research for 

the national economies. The limitations in marine geological 

methods are imposed by the high cost of the actual cruise ma-

rine expeditions. Using available open source geodata sets 

have removed this problem by the use of low-cost geospatial 

data and their processing in GIS and open source program-

ming language R and Python. Similarly, Python based statistical 

set of libraries, such as NumPy, SciPy, StastModels, and Mat-

plotlib statistical package present effective low-cost and easily 

available method for the marine oceanological data processing 

and modelling. 

Regional studies of the marine geology of the trenches across 

the Pacific Ocean (e.g., Bello-González et al., 2018; Boston et al., 

2017), modelling and predictions made upon analysis of the 

geophysical settings of various trench, produced by these inves-

tigators were instrumental in understanding current issues of 

the marine geological studies. The concepts of these reports on 

seafloor spreading, tectonic slab subduction, continental drift, 

and plate tectonics in the Pacific Ocean were analysed in the 

current research.  

STUDY AREA AND DATA

The study area is located in the Mariana Trench, west Pacific 

Ocean, where the deepest place of the Earth is recorded (The-

berge, 2008).

The geomorphology of the Mariana Trench was studied through 

the spatial and statistical analysis of the 25 cross-section bathy-

metric profiles digitized across the trench. Each profile has a 

length of 1000 km and a distance between each two is 100 km. 

The methodology consists of two parts: geospatial data process-

ing and statistical analysis. 

First, during the geospatial part of the research, the data were 

collected from the Quantum GIS project as vector layers. The at-

tribute tables contained numerical data on bathymetry, geology, 

tectonic plates and geometric features of the Mariana Trench in 

its various segments of the geographic location: north-west, cen-

tre, south-west. 

Second, during the statistical part of the research, the table in 

.csv format was then read into the Python environment using 

Pandas package. The profiles were observed using methods of 

the statistical modelling performed by Python programming lan-

guage. During the statistical testing and experiment, several ex-

isting approaches (Box, & Tiao, 1992; Timm, 2007; Oliphant, 

2007; Oliphant, 2015; Lemenkova, 2019) provided by the Python 

StatsModel and Matplotlib libraries were used as the core algo-

rithms described below.

METHODOLOGY

Design matrix and model fit summary by the Ordinary Least 

Squares

The variables of geologic interest were stored in the table con-

sisting of 18 rows where numeric information describes geology, 

bathymetry, geodesy and tectonics of the Mariana Trench. To fit 

most of the models covered by StatsModels Python library, the 

design or regressor matrix was created using existing approach-

es (Everitt, 2002; Box, & Tiao, 1992; Millman & Aivazis, 2011). The 

Figure 1. Study area: Mariana Trench, west Pacific Ocean (Source: author, QGIS project).
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first is a matrix of endogenous variables of sediment thickness, 

which show the response or geological regressand on changed 

environmental conditions: geographic location, depth or tecton-

ic plate.

The design matrix (Table 1, left) shows the results of the first six 

lines representing values of explanatory variables in a set of geo-

logical attributes, Mariana Trench. 

The computing of the Ordinary Least Square (OLS) was based on 

the formula (1):

b
1
= 

∑
n
 
i=1

 (x
i
-x)(y

i
-y)

∑
n
 
i=1

 (x
i
-x)

  (1)

Where,

n is the sample size;

x is a constant and a scalar regressor; 

y is a random regressor, sampled together with x;

h is the number of lags being tested;

Each row of the calculated OLS coefficient estimates (Table 1, 

right) shows an individual bathymetric profile with the successive 

columns corresponding to the geologic and oceanographic vari-

ables and their specific values across the profiles. 

Quantile statistics (QQ)

The used algorithm is very straightforward with a selected func-

tion of qqplot() by StatsModels to perform this task. The QQ re-

gression is a common abbreviation for ‘quantile by quantile’ sta-

tistical plot. The plot shows (Figure 2) one quantile against an-

other across various geological parameters (from left to right):  A) 

Sediment thickness; B) Slope angle degrees; C) Pacific Plate; D); 

Philippine Plate E) Mariana Plate; F) Distribution of samples of ig-

neous volcanic areas. 

Technically, the plotting was performed using following code of 

Python for each corresponding plot: 

ax1.plt = qqplot(df.sedim_thick, line=’q’, 

ax=ax1, fit=True,
linewidth=.5, alpha = .5, markerfacecolor=’#00a497’,
markeredgecolor=’grey’,)

The QQ statistics calculation has been based on the following 

formula (2) after Ljung, & Box (1978):

Q= n(n+2)∑
n
 k=1 (n-k)

l 2

k

  (2)

Where,      

n is the sample size;

rho is the sample autocorrelation at lag k, and 

h is the number of lags being tested.

The comparison of all the six subplots enables to analyse the 

form of their shape against a straight line. The quantiles are 

bathymetric sample observations with geologic attribute values 

placed in the ascending order. The QQ statistics are used over 

the pool of the sampling data to study their distribution. A QQ 

statistic is a visual representation of the quantiles of a standard 

normal distribution of the geological data set across the Mariana 

Trench, showing their variation in space.

Weighted Least Squares

A Weighted Least Squares (WLS) for the geological variables are 

shown on Figure 3. The approach of a weighted least squares is 

a standard approach in regression analysis to approximate the 

solution of overdetermined systems which is the case for the 

complex marine geological systems. The least squares algo-

rithms has two sub-types: linear or ordinary least squares and 

nonlinear least squares. In the scope of this research, only the lin-

ear least squares were tested: ordinary least squares and weight-

Table 1. Python code for design matrix ‘dmatrices’ (left) and OLS computation by StatsModels of Python (right), Mariana 

Trench data frame.
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ed least square which is a generalization of the first one. In this 

case, the off-diagonal entries of the correlation matrix of the 

geological residuals are null the variances of the observations, 

yet unequal along the covariance matrix.

A WLS is a statistical approach representing a special case of the 

generalized least squares. 

The calculation is based on the principle of the Gauss–Newton 

algorithm that solves a non-linear least squares problem by mod-

ifying a Newton’s method for finding a minimum of a function. 

The computation was based on the general approach of existing 

equation (after Björck, 1996):

JT WJ ∆ ß= JT W ∆ y    (3)

Where 

W is a diagonal when the observational errors are uncorrelated 

and the weight matrix;

J (t) is a transposed Jacobian matrix;

ß are unbiased estimators as linear column vectors, the entries of 

the Jacobian matrix;

y is a vector of the response values.

The calculations of the WLS for the data set (Table 2) were done 

according to the reported procedures (Seabold & Perktold, 2010; 

Strutz, T. (2016) by Python code snippet:

 # Step-1.

mod_wls = sm.WLS(y, X, weights=1./(w ** 2))

res_wls = mod_wls.fit()
print(res_wls.summary())
 # Step-2.

res_ols = sm.OLS(y, X).fit()
print(res_ols.params)
print(res_wls.params)
 # Step-3.

se = np.vstack([[res_wls.bse], [res_ols.bse], 
[res_ols.HC0_se], 
                [res_ols.HC1_se], [res_ols.HC2_
se], [res_ols.HC3_se]])
se = np.round(se,4)
colnames = [‘x1’, ‘const’]
rownames = [‘WLS’, ‘OLS’, ‘OLS_HC0’, ‘OLS_HC1’, 
‘OLS_HC3’, ‘OLS_HC3’]
tabl = SimpleTable(se, colnames, rownames, txt_
fmt=default_txt_fmt)
print(tabl)

Quantile regressions

Quantile regression shows (Figure 4) the estimated conditional 

median and other quantiles of the response geological variables. 

Thus the upper two rows of the plot show (Figure 4, A, B, C, D) 

data distribution across tectonic plates: Pacific Plate, Philippine 

Plate, Mariana Plate and Caroline Plate. The lower row of the plot 

(Figure 4, E, F) shows data distribution for the cumulative sedi-

ment thickness and slope angle degree by profiles.

Figure 2. Plotted QQ statistics for the data distribution: A) Sediment thickness; B) Slope angle degrees; C) Pacific Plate; D); 

Philippine Plate E) Mariana Plate; F) Volcanic spots.
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The quantile regressions were plotted (Figure 4) using Python 

code by StatsModel:

 # Step-1. Least Absolute Deviation

mod = smf.quantreg(‘profile ~ slope_angle’, data)
res = mod.fit(q=.5)
print(res.summary())
 # Step-2. Placing the quantile regression 

results in a Pandas DataFrame, and the OLS 

results in a dictionary

quantiles = np.arange(.05, .96, .1)
def fit_model(q):
    res = mod.fit(q=q)
    return [q, res.params[‘Intercept’], res.
params[‘slope_angle’]] +             res.conf_
int().loc[‘slope_angle’].tolist()   

Figure 3. Weighted Least Squares plotted for data distribution: A) Pacific Plate, B) Philippine Plate, C) Mariana Plate, D) 

Sediment thickness, E) Depths (max); F) Slope angle degree.
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Table 2. Computed results of the WLS modelling for the data distribution by plates: A) Pacific; B) Philippine; C) Mariana; D) 

Sediment thickness; E) Depths; F) Slope angle.

Table 3. Results of the computations for the quantile regression for sediment thickness versus geologic parameters: A) Pacific 

Plate, B) Philippine Plate, C) Mariana Plate, D) Caroline Plate, E) Cumulative sediment thickness and F) Slope angle 

degree by profiles.
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models = [fit_model(x) for x in quantiles]
models = pd.DataFrame(models, columns=[‘q’, ‘a’, 
‘b’,’lb’,’ub’])
ols = smf.ols(‘profile ~ slope_angle’, data).fit()
ols_ci = ols.conf_int().loc[‘slope_angle’].
tolist()

ols = dict(a = ols.params[‘Intercept’],
           b = ols.params[‘slope_angle’],
           lb = ols_ci[0],
           ub = ols_ci[1])
print(models)

print(ols)

Figure 4. Quantile regression plotted for sediment thickness (m) versus geologic parameters: A) Pacific Plate, B) Philippine 

Plate, C) Mariana Plate, D) Caroline Plate, E) Cumulative sediment thickness and F) Slope angle degree by profiles.
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Essentially, quantile regression is another approach of the linear 

regression tested in the current research. The quantitative results 

of the quantile regression are shown on Table 3, with respect to 

the relevant plots shown on Figure 4 (corresponding to Figure 4: 

A, B, C, D, E, F).

Dynamic regression model: State Autoregressive Moving Av-

erage (SARIMA)

The methodology of the dynamic regression model is based on 

the StatsModels embedded algorithm (Seabold & Perktold, 2010).

The abbreviation of SARIMA is the Space AutoRegressIve Mov-

ing Average model, initially developed by Ansley & Kohn, (1985). 

The concept of the application of the SARIMA time series esti-

mation and post-estimation lies in the following. The changes in 

the variables that are taken as time lags in classic dynamic re-

gression models are applied towards bathymetric profiles from 1 

to 25. In this way, unlike in time series case when the SARIMA fits 

the univariate models with time-dependent disturbances, this 

case applies space-dependent disturbances, crossing the sam-

pling selection from 1 to 25 (X axe). 

Because the model includes both dependent and independent 

variables, the selected type of SARIMA was SARIMAX (see the Py-

thon code snippet below). The first group consists in changing 

variables that is geologic settings and bathymetry (depths). The 

second group (independent variables) is presented by the pro-

files lags that cross the Mariana Trench with the distance between 

each of 100 km and the length of 1000 km. This cross-section pro-

files are taken as independent variables. Therefore, the depen-

dant variables differ spatially in different segments of the trench.

The model (Figure 5) fits univariate model of the geomorphic 

structure of the trench by independent values of the distribution 

of the bathymetric observation by profiles with dependent dis-

turbances of depths. 

Fitting the model was done using the Python snippet:

mod = sm.tsa.statespace.SARIMAX(data[‘sedim_
thick’], trend=’c’, order=(1,1,1))
res = mod.fit(disp=False)
print(res.summary())
fig = sm.graphics.tsa.plot_pacf(data.iloc[1:]
[‘Ddf.geology’], lags=25, ax=axes[1])

The algorithm fits a model where the disturbances follow a linear 

specification of the bathymetric distribution across the trench. 

The dependent and independent geological variables vary by 

profiles (Figure 5). Plotting was done using sublplot function of 

Matplotlib:

fig, axes = plt.subplots(2, 2, figsize=(15,8))

Figure 5. Plotted SARIMAX statistics for the bathymetry: A) Sediment thickness index; B) Data distribution index, Philippine 

Plate; C) Autocorrelation; D); Partial Autocorrelation.
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RESULTS AND DISCUSSIONS

The conducted statistical data modelling and several types of 

the regression analysis were aimed to compare the variance in 

the geological data sets of the Mariana Trench explained by the 

complex interplay of the geomorphic, geological and oceano-

logical attributes of the data and the bathymetric factors of the 

location of several segments of the trench in various parts of the 

Pacific Ocean. Using StatsModels library of Python, in particular 

several linear models of the correlation between various factors 

were computed, analysed and explained by the groups of vari-

ables. 

Tested environmental variables of the Mariana Trench include 

four main geological factors (location on the tectonic plates, 

slope steepness degree, sediment thickness of the layer and 

bathymetric depth and submarine volcanism) and attributes of 

the 25 cross-section bathymetric profiles (mean values, maximal 

depths, median values and two quartile sub-division of the data 

sets) and the shared variances between environment and attri-

butes. Shared variance arises due to correlations between the 

factor of sediment thickness and slope angle degree, e.g. be-

cause the attributes of the sediment accumulation are influenced 

by the canyon shape apart from the directly or indirectly depend-

ing on the oceanological conditions of the submarine currents.

The graphical output shows normal data distribution as demon-

strated by (Figure 2), where each QQ profile has a given value for 

data distribution by quantiles across the trench profiles. The dis-

tribution of the geologic residuals is shown on Figure 3 showing 

particularly data correlation for several cases: frequency of the 

data distribution by Pacific Plate, Philippine Plate, Mariana Plate, 

sediment thickness, and range of the bathymetric depths taken 

for the maximal values, and finally, geomorphological shape as 

slope angle degree. The results shown on Table 2 represent the 

computed numerical values of the previous graph (Figure 3).  

The results on the Quantile regression (Figure 4) show the condi-

tional median of the response geologic variable given changing 

bathymetric values with movement southwards across the Mari-

ana Trench. Thus, the upper plots shows (Figure 4, A, B, C) data 

distribution across tectonic plates: Pacific Plate, Philippine Plate, 

Mariana Plate and Caroline Plate. The lower plot (Figure 4, D, E, 

F) shows data distribution for the Caroline Plate and cumulative 

sediment thickness and slope angle degree by profiles. 

The numerical explanation of the Figure 4 with corresponding 

sub-plots is presented in Table 3. The Figure 5 shows dynamic re-

gression model using Python function embedded in StatsModel: 

State Autoregressive Moving Average. Finally, Table 4 shows the 

Python code that was used to perform the procedure of SARI-

MAX and the resulting output table. The model shows autocor-

relation of the data by bathymetric profiles. The results demon-

strated a correlation between the geological variables and geo-

spatial location of the samplings across Mariana Trench, which 

proves the interplay between multiple factors affecting its geo-

morphology.

CONCLUSIONS

While the usage of the traditional methods of geoinformatics 

and spatial analysis is, beyond doubts, strongly recommended 

for any research in geoscience, there is another powerful tool for 

the geospatial data processing other than GIS, sometimes over-

looked or skipped by the geographers: a data modelling by use 

of Python or R programming languages. Python, an open source 

free programming language is highly suitable for the statistical 

analysis in geoscience research, since it has a powerful statistical 

and math libraries, e.g. StatsModel, highly effective for scientific 

computing and used in the current research. The functionality of 

Python language and StatsModel, tested in this work, is proved 

to be highly effective for the statistical analysis of the geo-marine 

sets. 

The proposed approach of the Python based statistical analysis 

enables accurate and efficient computation and modelling of the 

large data sets in marine geology and oceanology. A challenge 

in the evaluation of geological big data sets (that is, several thou-

Table 4. Python programming code for used SARIMAX algorithm (left) and Statespace Model Results (right). Tested case in 

Mariana Trench tectonics: sediment thickness across Philippine Plate.



60

Aquat Sci Eng 2019; 34(2): 51-60
Lemenkova. Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation

sand of observation points as in this case, 12.590 samples) con-

cerns the difficulty in manual identifying a correct algorithms in 

the computations and data distribution analysis.

The necessity to apply a precise machine learning algorithms is 

recently increased in geographic sciences with respect to the im-

portance of choosing an effective method for data visualization 

and computation. The solutions to the mentioned above prob-

lems are provided by Pandas data frames: for example, optimiz-

ing structure of the data, selecting the correct parts from the 

whole data frame (columns, rows in the data arrays) and plotting. 

Based on the presented results, the application of Python pro-

gramming language is strongly recommended in geoscience re-

search as an addition to the traditional GIS methods.
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