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INTRODUCTION 

One of the problems most frequently encountered by the applied econometrician is the 
choice between logarithmic and linear regression models. Economic theory is rarely of 
great help although there are cases where one or other specification is clearly inap- 
propriate; for example, in demand analysis constant elasticity specifications are inconsis- 
tent with the budget constraint. Nor are standard statistical tests very useful; R2 statistics 
are not commensurable between models with dependent variables in levels and in 
logarithms and the comparison of likelihoods has no firm basis in statistical inference. In 
this paper, we develop a practical text based upon Cox's ((1961) and (1962)) procedure for 
testing separate families of hypotheses; the work is thus an extension of earlier 
econometric applications of Cox's test to single equation linear regressions in Pesaran 
(1974) and to many equation non-linear regression in Pesaran and Deaton (1978). The 
test we develop here is applicable to two competing single-equation models, one of which 
explains the level of a variable up to an additive error, the other of which explains its 
logarithm, again up to an additive error. Hence, in terms of the levels of the variables, we 
are testing for multiplicative versus additive errors, and it is this which differentiates this 
paper from the earlier work in which an additive error was always assumed. We shall also 
allow, as in the earlier papers, the deterministic parts of the regressions to be linear or 
non-linear and to have the same or different independent variables; it is thus possible to 
test for functional form and specification in a very general way. 

Section 1 of the paper defines the problem and derives the test statistics. The 
formulae allow the calculation of two statistics, No and N1 say, the first of which is 
asymptotically distributed as N(0, 1) if the logarithmic specification is correct, the second, 
for all practical purposes, as N(0, 1) if the linear model is true. Section 2 discusses 
problems associated with the calculation of the statistics and shows how they can be 
surmounted. Section 3 presents the results of Monte-Carlo experiments designed to 
evaluate the potential of the test in practice. We investigate, in particular, the shape of the 
actual distributions of No and N1 in samples of sizes 20, 40 and 80 as well as comparing the 
performance of the Cox procedure with that of the likelihood ratio test, as proposed by 
Sargan (1964). Finally, we offer some evidence of the ability of the procedure to detect 
total misspecification when neither of the hypotheses is true. Section 4 contains a summary 
and conclusions. 

The general issues of statistical inference raised by the use of the Cox procedure in 
econometrics as well as alternative testing procedures have already been widely discussed, 
see Pesaran and Deaton (1978), Quandt (1974) and Amemiya (1976). In this case, 
however, there exists one very obvious alternative procedure. This is to specify the model, 
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not in levels or in logarithms, but via the Box-Cox transform; hence, the dependent 
variable is (ya - 1)/a, so that with a = 1, the regression is linear, with a = 0, it is 
logarithmic, these cases being only two possibilities out of an infinite range as a varies. 
The general model can be estimated by grid search or by non-linear maximization of the 
likelihood and a maximum likelihood estimate for a obtained. The values of 0 and 1 can 
then be compared using a conventional likelihood ratio test. A number of comments may 
be made. Note that the problem is now rather different from the one originally posed. We 
no longer have a discrete choice between a = 0 and a = 1 but instead have to choose 
between one or both of these and the maximum-likelihood estimate, a', say. One possible 
difficulty is that the investigator may only be interested in linear or logarithmic forms so 
that a value for ca of 0 73, for example, may not be very useful. It is our impression that 
many econometricians would simply adopt a rule which chooses the linear form when 
or > 0 5 and the log-linear a <0 5. If so, a straightforward comparison of likelihoods 
between the two cases is much more appropriate, and, in Section 3, we shall examine the 
performance of such a rule. However, it may well be that the investigator has no prior 
preference for either the logarithmic or linear forms so that any value for cx is perfectly 
acceptable. In this case, the correct procedure is to estimate the Box-Cox model and use 
the value of ca which emerges; no problem of choice or of inference arises. The final 
possibility is that the true model may not be included even in the general form. In this case, 
estimation of a and comparison with 0 and 1 will be of no help; the whole experiment is 
being conducted within a false maintained hypothesis and is meaningless. The Cox 
procedure, however, encompasses the possibility of rejecting both models which is, in this 
case, the only correct decision. Whether in fact it will do so is a matter for empirical 
investigation and we shall return to the question in Section 3. 

1. THE DERIVATION OF THE TEST STATISTICS 

1.1. Specification of the Models 

There are two models to be compared, Ho and H1. These are defined by 

Ho: ln yt = ft(x, 8o) + Eot*, 

Hi: yt= gt (z, 01) + E i t, ...(2) 

where Yt is the tth observation on the dependent variable, t = 1, ..., T; 6o and 01 are ko and 
k1 vectors of parameters, and x and z are vectors of independent variables. There is no 
restriction on the variables which appear in x and z; they may be the same, different or 
transformations of one another. The functions ft and gt may or may not be linear. For Cot, 
we assume 

Eot - N(O, _2 
). ... (3) 

It is not, however possible to assume Et- N(0, o2) since, if this were so, there would 
always be a finite probability of Yt becoming non-positive. If so, Ho must be false since the 
logarithm does not exist, and the problem of inference is a trivial one. Consequently, if it is 
possible to give serious consideration to Ho, the distribution of Elt must be such as to 
ensure that y is positive. Various distributions could be used which would meet this 
criterion. For example, we could follow Amemiya (1973) and truncate Elt so that Yt is 
given by (2) if the right hand side is greater than some positive number, a, say, and equal to 
a otherwise. Alternatively and in some respects more simply, we can truncate the 
distribution of elt at a fixed number of standard deviations from zero. Here we use the 
normal distribution and it is convenient to truncate symmetrically, i.e. if fN(x; 0.2) is the 
p.d.f. of an N(0, a2) variable and if r(Eit) is the p.d.f. of Elt, we write 

Tr(Elt) = a>o (k)fN((at; )1 ) ?tl < kor 

= 0 | ?1tl > ka, ... (4a) 
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where 

a(k) = (27)-e t2/2dt} ...(4b) 

The fact that Ho is to be seriously considered will be taken to imply that k can be set a priori 
at some large value (k ? 6 say). For values of k of the size indicated a is so close to unity 
that, for many purposes, we can assume E1t -N(O, 1o). If, on the other hand, we are not 
prepared to assert that gt(z, 01) is always at least 6 to 8 equation standard errors above 
zero, then it is not sensible to regard both Ho and H1 as possible. 

Let us write a0 and ai for the extended parameter vectors of the two models, so that 
= (6I, a2 ) and a' = (61, U2 ). Denote the log likelihood functions of Ho and H1 by 

Lo(ao) and Ll(al) respectively and by Llo the log of the maximum likelihood ratio. Then, 
if Ho is true, we must calculate 

To = L1o - T{ plimo (L) } a(5) 

where plimo denotes the probability limit when Ho is true and denotes a maximum 
likelihood estimate. If Lio = Lo(ao) -Ll(alo), where aio = plimo a',, then Cox (1962) has 
shown that, if Ho is true, To is asymptotically normally distributed with mean zero and 
variance V0(T0), given by 

1 t - 
Vo( To) = Vo(L lo)-T- 71 1 (6) 

T 

where Q is the asymptotic information matrix of Ho, 

Q = -plimo - ..L (7) 
T caaoaa'o 

and 

a [plimo (L1o/ T)] * (8) 

If H1 is true, similar expressions yield T1 and V1(T1). 

The two log likelihood functions are given by 

T T 2 2~O 
Lo(ao)= --ln(2ir)--Inuo- 2 I-nyt . (9) 

2 2 2r 

and 

T T 2Zi 
Ll(a) =--Iln (2Xr)--Iln a- 2t+ T In a(k) ... (10) 

2 2 2o 

where the extra sum in (9) is the log of the product of the Jacobians. Maximum likelihood 
estimates 6o, co, i, a1 satisfy 

(JO = E{ln Yt -nfty(0f 

Y. ,a {ln yt - ft (00)} = 0, j= ... ko ...(12) 

2=1 t{Yt_gt(0 ... (13) 
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Y.tag(l ly {Y- t(0^l1)= , j=L1 ...,~ ki ... (14) 
a lj 

where, for convenience, the x and z arguments of f and g have been suppressed. 
The maximized log likelihood ratio L1o is thus 

Ll= -n (-A) -ZtIn yt -Tlna(k). . .. (15) 
2 (TO ***( 

Note that L1o is itself a possible candidate for discriminating between Ho and H1 as has 
been suggested by Sargan (1964). The models are, of course, not nested, so that we do not 
have the usual justification for the statistic. Nevertheless, it is simple to calculate and, to 
the extent that likelihoods can be regarded as fundamental measures of plausibility, see in 
particular Edwards (1972), Llo is a natural quantity to inspect. 

1.2. Calculation of To 

Having laid this groundwork, we begin with the easier case, when Ho is true. Writing a 1o 
for plimo a^, so that a 10 is plimo 15, from (15) and (1) 

2 

TI 1 =-0n lT - -n al( -kt(0o). ...a(16) 

Hence, writing (Tl for the ML estimate of U20 To is given by 

T A2 

2 1o 

Note that in many applications, for example when ft is linear, the sum on the right hand 
side of (17) will be zero. The maximum likelihood estimate 1l, and hence clo, can be 
calculated by solving 

Eo(L(c) 0. . .. (18) 
aa 10 

But 

L1(a 1o) = --In (2) T--l no - 2 Zt {Yt - gt(10)}2 + T ln a (k) . .. (19) 
2 2 1o 

Hence 

IaLl(alo)\ T 1 y 
Eo ao-20 = - 220 + 2-4EoE.t{yt-gt(01o)}2. ... (20) 

This can be further evaluated by writing yt = eft(0o)+?ot. In this and the sequel, the following 
expectations are useful 

Eo(y') - erft(0o)er2c/2 . .. (21 a) 

Eo(oty) - ru2 e rf(0)er eJo/21 . . . (2 1b) 
Eo(8 otY r) 2 r 4 rf'(06)e r2o-2/2 + (oe rf'(06)e r2o-2/2 ... (2 ic) 

Hence 

Eo[Z {Y t2 - 2gt(6lo)yt + gt(o10) 2}] 

=. t { Yote? - 2gt(6lo)yot+gt(61o)2} 

= Zt {Yot - gt (10)}2 +E yt(eY -1), ...(22) 
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where yot =-e 0 EO(y), i.e. the expectation of Yt if the logarithmic model is 
correct. Hence, combining (18), (20) and (22), ao- is given by 

A0 T t I Yot _gt ( "10)12 + 
A 

Et Y t; ...2 3 
ioT T 

to 

where pot = eft(6o) 0 /2. This requires the estimate O10 which is given by consideration of 

E LO(alod1)) 0 Eo 
0.o 

This is straightforward; 0101, j = 1, ..., k1 must satisfy 

Et _ Yot - gt00)} = 0. . . . (24) 

Clearly, 010 is defined by regressing the expected value of y from Ho, i.e. yo, on g(z, 01). 
Equations (12), (13), (17), (23) and (24) completely define To. 

1.3. Calculation of Vo(To) 

The information matrix Q may be straightforwardly calculated by differentiation. Writing 
Mf for the matrix whose (i, j)th term is given by 

(Mf)zi=plimo 
1 

Etaft(00)at(800) ... (25) 
T--oo T aoi 80i 

we have 

o-1 
= ( f 

4 ... (26) 

To derive the elements of -q, we differentiate (16) w.r.t. 00j and o-o in turn. Thus, for 
j= 1, ..., ko 

2 
a plimo (Llo/T) 1 acr0 l 1 aft(00) 

-2o ~ 00-plimo--Et 
a00j 

aoao T a0 

But, from (23), and since 

ayot/800o 
= Yot aft(0o) 

0 2 af ft(0o) agt(010) a0lOk 2 _2a2 ft(0o) 

=-i 
EtlY0t-gt(010)1 Yot a00 k-L 

*OO ao +Te ?- t E t o0 
8doj YT 800j - 800k 80101 I 800j 

But, from (24) we can eliminate the terms in agt(100)/8O1k, so that, combining, for 
j=1, ...,ko 

1 aft(0o) f2 at(0o) 
7i = 2 Et Yot eY0t gt(010)- . . .(27) 

10o a80O 80Oo 

Similarly, differentiating (16) w.r.t. 0 and using (8), 

1 r o~2eyo lY T 
7lko+1 = 2 Et yoto2eyot- gt(010)1 - 2... (28) 

2C10 2aO2 

From (9) and (19) L1o = Lo(ao)-L1(a lo) is given by 

T 2 1 2 T 2 1 EIy t( 01 
Lio=--(uo- 2 EtEot -lnyt+-Iy o+ 2 {yt-gt(01o)}2-Tlna(k). 

2 20o 2 2lo 
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The variance of this expression can be evaluated straightforwardly (but tediously) term by 
term using the expectations (21). Hence 

Vo(L1o) + T+ o + 14 [e r(e E -4e02(e E 3 
2 4o10 

2 

+ 4(eCQ - 0) E Y20tgt( 210 - 2 E Yot[4eo'gyot - 3gt(0lo)]. 
10io 

Hence, from (6), (26), (27) and (28), 

- 2 e2a> _1) E y3tgt(0lo) +4(e -1) y2tgt(01?)2 

22 

- C f M _ o Y. y0t[y0oteO-gt(O1o)] 

4 
CO 

4[yot(2e'g -gt(10l))]2 -*29 2ToK ...(29) 2Tolo 

where 'k ) .. ., .k0) 

In practice, (29) is evaluated by replacing each of the unknown quantities GO, 910, 20, 
2lo and Mf by their maximum likelihood estimates do, 910 2 co, A2i and 

T 1 Et (dft/dSo) * (dftdaoo). 

1.4. Calculation of T1 

In the earlier papers, Pesaran (1974) and Pesaran and Deaton (1978), there was no need to 
derive T1 and V1(T1) separately since the derivations for To and Vo(To) could be repeated 
with merely a change of suffix. In the present case however, the asymmetry between the 
models requires quite separate derivation for the case where H1 is supposed to be true. In 
what follows, we shall frequently take expectations of expressions involving Elt. These 
cannot be evaluated analytically and we shall return in Section 2 to how they are best 
computed in practice. Since Lo1 =-Lio 

2 

plim1 =-ln +2 +plimn -ZE (ln yIn a(k), ... (30) 

2 2o 

where the expectation E1( ) is evaluated using the ML estimates 01 and 1. As before, U' oi 
(and 001) are derived by solving E1 {aLo(aol)/aaoo1} =0. Substituting ao, in (9) and 
differentiating 

aLo(aoi) T + 1 Et{ln yt-t (0?1)12. 

dcr1 2(Tol f0 

Hence, taking expectations and setting to zero, 

O'oi =T var (InYt)+TEt El(lnyt)-ft(001)}2. ... (32) 
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6o, is estimated similarly and must be calculated from the implicit solution of 

E {Ei(ln y)-ft()at(1) = 0, j = 1, .. , ko- ...(33) ao;01 
In practice, this is simply a repetition of the estimation of 0o using E1(ln Yt) instead of ln Yt 
as dependent variable. Equations (31)-(33) are sufficient, together with (11) and (12), for 
the calculation of T1. 

1.5. Calculation of V (T1) 

We shall need the result, derived from (4) by integration by parts, 

( lt?1 ) {1-(-1)}kr 1zk+(r _l)E(r-2 -(r-2)) = - 1- (- 1)~'}lk' Ok + (r -1E( 

where (Ck = (27r)-1a(k)e-(k /2). Hence, the four moments of ?lt are given by 

E(Elt) = 0 E(e 2t) = o(1-ak) 

E (E 3t) = O E (S 4t) = 3U41 (1 -bk) 

where ak = 2kWk, and bk = 2k(1 + k2/3)Wk. Note that, for the relevant range of k, both ak 

and bk are small (see the table below). 

k ak bk 

6 0 7 10-7 0.9 10-6 

1-3 10 2-2 10 

8 0.8.10-13 1.8. 10-12 

Now, from (10) and the above expectations 

Et1 a ln Ll 1( a? In L T E( aL1=0 E 2 Y ak 

(T a d i Ttl) Tr2EaR a?Rl jE Tad_o) (1 a 2IntL 1 agd agT (1a )2InL 

T aol1ao91 / *Tu1 ao1,i ae, 'T o1j-1 
(1 a 2In L1\ T 

E y2 24~(1-2ak). 

Hence, the information matrix Q is given by 

Q-1 

= 
~~~2cr4 ... (34) 

0 1-2ak 

where Mg is defined analagously to Mf (see (25) above). 
One further point needs to be made. For the asymptotic convergence of the Cox 

statistic to N(0, 1) it is sufficient that 

Et ) = 0 .(3 5a) 
aat 

and 

Et ala)=(a) ... (35b) 
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For all practical purposes, (35a) is satisfied for the values of k considered; for (35b) we find 
that 2 

__a Li X Ll aLl 
aoljaoljJ kaol aolj 

Etau 2Li ) (aLl aLl ) 

but 

f(alnL\21 aE IlnL l-ck+(T+l)ak/21 

Et al) 1 E 12f (1-2ak) J 

where Ck= (3bk+2ak)/2. Now, for all values of T that are ever likely to be relevant 
(<1000 say) the term (T+ 1)a2 is at most 10-11(k -6) so that it seems reasonable to 
assume (and the Monte Carlo results which follow confirm this) that as T becomes large in 
a practical sense, the distribution of T1 will be nearly normal. However, as T - 
Xo, /(T/2)((61/o2) - 1) will not tend to normality and to avoid this a correction can be 
made by considering 

/T l 1-3ak\ (1 -2ak) 

U2 
,- 

_ ) V 2 o1 l-2ak ak(4 2 )y 

and for all practical purposes, this correction is small enough to ignore. 
To derive 71, we differentiate (30) w.r.t. Oij in turn. Thus, for j = 1, ..., 

T aco1 aE1(ln yt) 
= 2 -o1 a 

But from (32), using the exact rather than the estimated form, 

801 2 r 1agt(tl)] f 1agt(oi)] 
t= T E covy {ln Yt, Yt g +{Ei(ln yt)-ft(0o1)}El Yt ag8oD] 

since, from (33), EZ{El(ln Yt) -ft(001)}aft(0o1)/a0o1l = 0, V1. Hence, for j = 1, ..., kl, on 
simplification 

Y. =tagt) (0In EInyt -ft(Ool)} ++ agjol) El 1 . ...(36) 

Similarly, differentiating (30) w.r.t. , 

T7 
1 

2or 1 1 aEl(ln yt) 
77kl+l= 2 2 

~ 
2 +Et 2 

a[o1 aU27 ] I 2 0o 81 a- 1C 

It may easily be checked from the distribution of E1t that 

aE1{ln yt} 1 E Fit 

a2 2E- a1 2oi Yt 
Hence, 

Z2 =1tE1[ E {ln Yt- ft(Oo)}] 1 T U1Yt 

Thus, collecting terms 

T 1 2 2 E1t{ln Yt-ft(Ool)}] 1 Z Ei{ 1t} 
71k, + =-j 2 + 

2 EtEl 2+ 2 EtEl 1 ... (37) 
2C1 21 (ToiYt 2 or1 Yt 
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Finally, from (10) and substitution of a01 in (9), Lo, =Li(a1)-Lo(aol) is given by 

T O~i\ Z~t 1tY 
Lo, =-In (-2 )--2 +tln Yt+ 2 Yt{ln y-t(0ol)}2+ T In a((k). ...(38) 

2 \oi 2o1 2coi 

From this V1(Lo1) can be calculated term by term. Since very few of the relevant 
expectations can be simplified analytically, there is little point in deriving further algebraic 
expressions for this variance and the questions of computation will be taken up below. 
Once V1(Lo1) has been calculated, V1(T1) is calculated from, using (34), 

22 4 

Vi(Ti) = Vl(Lol) - g'Mg ; T T71k+l+ (1 - 2ak) . .. (39) 

using (36) and (37) and replacing all unknown quantities by their ML estimates. (The 
quantity ak can be taken to be zero in practice.) 

2. THE COMPUTATIONS OF THE TEST STATISTICS 

The computation of To and Vo(To) poses no special difficulty. In general, both Ho and H1 
will be estimated by non-linear techniques and the calculation of To requires one 
additional non-linear regression to estimate 010 and 5lo. The expression for Vo(To), (29), 
although complicated, is trivial enough to calculate. Unfortunately, this is not the case for 
T1 or V1(T1). For example, we require the expression E1(ln Yt) which is given by 

r koI ln {gt(z, 01) + r} e ( 1 2 

- kol v/2rui a 
for some suitable value of k, as well as a range of other expectations which arise in the 
calculation of V1(T1). Expressions like (40) can be evaluated each time they arise by 
numerical integration procedures but, in practice, this is prohibitively expensive even for 
practical work (e.g. if T = 60, there would be 600 or so integrations required for one test 
statistic), let alone for Monte Carlo experiments. 

We therefore adopt the following alternative. Define v, a truncated N(0, 1) variable, 
by 

v = 1/cr1 ... (41) 

We can write r(v) for its density function so that (40) becomes 

El(ln Yt) = J{ln gt(01) +ln (1 + 6v)}T(v)dv 

= ln gt (01) + I ln (1 + ev) r (v)dv, . .. (42) 

where l = ol/g,(01). On working through the expressions for T1 and its variance, all 
required expectations can be evaluated with the aid of integials of the form 

k 

I(a, b, c) = I 1 (+ V)a [In ( + eV)]bV ',7(v)dv, ... (43) 

where e and v are as defined above and we require the ten integrals I(0, 1, 0), I(0, 2, 0), 
I (0, 3, 0), I (0, 4, 0), I (0, 1, 2), I (0, 2, 2,), I (- 1, 1,0), I (- 1, 1,1), I (- 1, 0,1), and 
I(-1, 0, 0). For given k, these integrals define ten functions of e, which we require for all 
values of e between zero and, say, 0 125. (If gt(61) > 8ol, it is not reasonable to consider 
Ho as a serious possibility.) 

Each of the integrals was thus evaluated by numerical integration for values of 6 from 
0 to 8 by intervals of 1/ 1024; the calculated values were then approximated by Chebycheff 
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polynomials. The polynomial coefficients were then built into the computer programme 
and used in routine evaluations of the statistics. This procedure worked extremely well. 
The calculations were very rapid compared with repeated quadrature and we were able to 
show that for reasonable values of k (6 to 10), the integrals were not sensitive to the precise 
value chosen. The programme was written so as to reject any value of e> 0 125; in this 
case, the Chebycheff approximations become unreliable but this is of no importance since, 
if this happens, Ho is clearly incorrect a priori. 

3. SOME EMPIRICAL EVIDENCE 

In this section, we present empirical evidence designed to elucidate the properties of the 
test, in particular, to investigate its distribution when either Ho or H1 is true and to discover 
how this is affected by sample size, and by other considerations. We also compare the Cox 
test with the unmodified likelihood ratio criterion suggested by Sargan (1964). Finally, we 
offer some tentative evidence for the case when neither Ho nor H1 is correct as specified. 
This last is perhaps the most important potential application of the test, but the possibilities 
are too vast to be more than touched on here. 

Of particular interest for applications of the test is the question of how much guidance 
the large sample distributions of the statistics gives us about their behaviour in small or 
moderate-sized samples. The theory tells us that No= To/1 Vo is asymptotically dis- 
tributed as N(O, 1) under Ho and similarly for N1 under H1. However, we are ultimately 
interested in the joint distribution of No and N1 under both hypotheses and since both 
statistics are functions of the same magnitude, the log likelihood ratio, this can be done 
straightforwardly, at least asymptotically. To clarify, we change the notation slightly and 
write, from (5) 

No= V(co) {L1o-Po(lao)} ... (44) 

N1 = V(cIY2{-Llo+Pl(dl)} ... (45) 

where Pa(cto)= T{plimo (Llo/T)}ao=o, Pa(c1)= T{plim1 (Llo/T)}1a=d,, we have used 
Lo= -Lo,, and the notation V0( ), V1( ), Po( ) and P1( ), emphasizes that the various 
magnitudes are evaluated as functions of the parameters of the current working hypothesis 
taken at their maximum likelihood values. For example, Vo is given by (29) as a function of 
ao and a10 but the latter is itself a function of a0 via (23) and (24) and, in practice, (29) and 
thus No is evaluated using the ML estimate of a0. If we rearrange (44) and (45), No and N1 
satisfy (exactly), 

No VO(c)2 + N1 V1 (c A1)2 = P1 (c A1) - Po(cto) . . . (46) 

Hence, under Ho 

[Vl(alo)] [, - _{P1(alo)-Po(ao)}] N(0, 1) (47) 

while under H1 

[Vo(ao) No], 
a1 - Po (aoto ]I 

aNO ... (48) 

The situation when Ho is true is illustrated in Figure 1; as the sample becomes large No 
and N1 will lie along the line ABCD. A similar situation pertains when H1 is true although 
the line will have a different position and slope. In both cases ABCD moves away from the 
origin, maintaining its slope, as the sample size increases. The joint distribution of No and 
N1 is thus a singular one above the line ABCD. If Ho is true its mean lies always above the 
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No axis, if H1 is true above the N1 axis, while if neither is true we have no information about 
the shape other than that the distribution lies along the line. 

V,(dO I PI I P=>l) -Po (at 0 

-WK | l ly \NoP 

.*K 

JV __( ___1___ , _ _________ 

FIGURE 1 

Asymptotic joint distribution of No and N1 under Ho 

In Monte Carlo experiments, when the parameters of the true models are known, the 
quantities in (47) can be calculated when Ho is true and those in (48) when H1 is true. We 
can thus calculate the asymptotic theoretical rejection and acceptance frequencies and 
compare these with the empirical results. Indeed, had we been fully aware of the 
technique earlier, the Monte Carlo experiments could have been designed around these 
asymptotic formulae, see Mizon and Hendry (1980). As it is, our attempts to use the 
asymptotic formulae have not so far been successful and for the present we content 
ourselves with the discussion of conventional Monte Carlo results. 

In order to keep the analysis as simple as possible and so as to keep the computations 
within bounds, the experiments are designed around the simplest linear model 

Yt = a + fxt + ut, ...(49) 

where xt is an autoregressive process defined by 

(xt - A) = p (xt_-, ) + Et, ..(50) 

with ut - N(O, o-b) and Et - N(O, o_ -). The expectation of xt, ,u, is chosen so that the series 
is positive; hence, (49) can be compared with the loglinear regression equation 

ln Yt = a* +,I* ln xt + u . ...(51) 

Working first with the case where the linear model, H1, as given by (49) is true, our 
ability to discriminate the true model from the false Ho, (51), is likely to depend upon a 
number of factors. First, the choice of a and ,B is important. If a is very large relative to 
,I3,, and ignoring the effects of the error, then (51) will approximate (49) rather well with 
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a * = In a. Similarly, if a is close to zero, setting a * = ln 13 and 13* = 1 will make (51) close 
to (49). Consequently, values of a close to 13gt are likely to give us the best- chance of 
discrimination. The second important factor is the variance of xt; hence p and o-, are likely 
to be important. Finally, discrimination is likely to depend on o-r; when this is small, the 
linear model should fit so well as to rule out alternative specifications. 

The experiments were carried out as follows. At a preliminary stage, six x, series, 
each of 80 observations, were generated corresponding to p = (0 5, 0 7, 0 9) and o-, = 

(8, 16), using the normal random number generator G05ADF from the NAGLIB library. 
In each case, sufficient early values were discarded so as to ensure the arbitrary initial 
choice for x0 had negligible importance. The parameter , 2was set to 100 in all cases. All 
generated values of x, were positive. The parameter o- was controlled indirectly by 
setting the asymptotic R2 for the regression equation (49). Elementary manipulation 
leads to 

plim R2= 
13202/ 

(1 -p2) ...(52) 

Given the extremely small probability of generating values of u, further than 8o-u from 
zero, no attempt was made to truncate the distribution. Given o- and p, oru can be chosen 
to set R2 at the desired level using (52). Three different sample sizes were used; for each 
replication, 80 observations of Yt were generated corresponding to x,. These were first 
used in a single test with sample size 80; each half of the sample (Yt and x,) was then used 
for two more tests of sample size 40. Finally, each half was itself subdivided to give four 
tests each with sample size 20. Each complete experiment was replicated 500 times. There 
are thus 500 replications for sample sizes 80, 1000 for sample sizes 40, and 2000 for 
sample size 20. The value of 13 was set to 5 throughout, with a at 500 (=,13A). Due to an 
oversight, it was not noticed that it is impossible to vary R2 for these values of a and 13 
without creating a high probability of negative values of Yt. Thus, in the experiments where 
R2 is varied, a is set to 1000. The differences in results between a = 1000 and a = 500 
were small enough to justify not repeating the earlier experiments. 

Before discussing the results, we describe briefly the layout of the tables where it is not 
self-explanatory. In Tables I to III the first column relates to the parameter being varied, 
while the second, T, give the relevant sample size, 80,40, or 20. The four columns headed 
by rro through to lri0 give the fractions of all cases in which the hypothesis subscripted was 
rejected. Hence, in the first row of Table I, 14X8 per cent of the cases rejected Ho, the 
loglinear model, 78-6 per cent of the cases rejected neither, 2-4 per cent rejected H1, the 
linear model, and 4X2 per cent rejected both. The usual 5 per cent points on the normal 
distribution were used. Hence, the Xr figures were constructed to the rules 

(ITo) Reject Ho and accept H1 whenever NO = To/v4Vo and N1 = Ti/lV1 are such 
that INOI _ 1-96 and IN1I < 1-96 

(IT1) Reject H1 and accept Ho whenever |NOl < 1X96 and |N11 _ 1X96 

(IT) Accept both Ho and H1 whenever |NOl < 1X96 and 1N11 < 1X96 

(X1r0) Reject both Ho and H1 whenever |NOl _ 1X96 and 1N11 - 1X96. 

These four probabilities are illustrated in Figure 1 for Ho true and for a critical value of k 
(= 1X96 in this case). Ir0 corresponds to that part of the line to the north-west of A and the 
south-east of D, ITo to AB, IT to BC, and Ir1 to CD. Note that as the sample size rises, and 
ABCD moves outwards keeping its slope constant, IT will eventually fall to zero and the 
power (X1 + iro) to unity. 

Column 7, headed S0, gives the proportion rejecting Ho, i.e. favouring H1, on the 
Sargan likelihood ratio criterion. Clearly, no significance level can be set for a " test " such 
as this and we have followed what would presumably be practice using the method, 
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TABLE I 

Linear model (H1) is true 
p=0 9, R2= 9, a =500 

oe T so i I Xo So N0:Vo N1:V1 KS1 

8 80 0-148 0-786 0 024 0-042 0 708 -1-09 -0.00 0 0247 
(0.016) (0.018) (0.007) (0-009) (0 020) 1 03 1-09 

8 40 0 071 0 876 0 021 0 032 0 588 -0 57 -0 05 0 0342 
(0-008) (0.010) (0 005) (0.006) (0.016) 1-09 1-02 

8 20 0-027 0-931 0-015 0-027 0-525 -0-26 -0-07 0.0443** 
(0-004) (0-006) (0-003) (0.004) (0-011) 0*95 0-93 

16 80 0-574 0 362 0 038 0-026 0*828 -2 22 -0-03 0-0542 
(0.022) (0-022) (0.009) (0-007) (0-017) 1-15 1-15 

16 40 0 241 0 708 0 023 0-028 0-700 -1 24 -0*07 0.0472* 
(0-014) (0-014) (0-005) (0-005) (0-015) 1-28 1-28 

16 20 0-080 0-884 0-014 0-022 0-590 -0 59 -0-10 0.0717** 
(0 006) (0.007) (0-003) (0-003) (0-011) 1 01 1.01 

TABLE II 

Linear model (H1) is true 
p = 0-7, o = 16, a =1000 

R2 T sIo IT I o So NgVo N1:V1 KS1 

0 9 80 0-708 0-238 0 032 0-022 0-884 -2-70 -0-08 0-0557 
(0-020) (0-019) (0 008) (0-007) (0-014) 1 31 1 04 

0 9 40 0 357 0-593 0-036 0-014 0 733 -1 51 -0-10 0.0483* 
(0-015) (0.016) (0-006) (0-004) (0-014) 1-89 1-02 

0-9 20 0-233 0 709 0 041 0-017 0 656 -1 06 -0-12 0.0470** 
(0-009) (0-010) (0-004) (0-003) (0.011) 1-61 1 08 

0 7 80 0-348 0 592 0-034 0 026 0 758 -1 61 -0*06 0-0405 
(0.021) (0*022) (0 008) (0.007) (0.019) 1*27 1-09 

0-7 40 0*162 0 780 0-027 0 031 0-668 -0 96 -0-07 0.0462* 
(0.012) (0-013) (0-005) (0-006) (0-015) 1 29 1-06 

0-7 20 0 101 0-844 0-032 0-023 0 606 -0 65 -0 09 0.0403** 
(0-007) (0 008) (0-004) (0-003) (0-011) 1 18 1-03 

TABLE III 

Loglinear model (Ho) is true 
p=0 9, R2 =09 

o-e T so0 IT I X Si No:Vo N1: V1 KSo 

0 08 80 0-018 0-782 0-176 0-024 0 694 -1-09 -1 07 0 0594 

(0-006) (0.019) (0.017) (0.007) (0-021) 0*98 1.11 

0-08 40 0 021 0 897 0 056 0-026 0-614 -0 04 -0 58 0 0359 

(0.005) (0.010) (0.007) (0.005) (0-015) 0 95 0 95 
0 08 20 0 010 0*942 0 026 0 023 0 553 -0 03 -0*30 0 0299 

(0.002) (0.005) (0-004) (0.003) (0-011) 0*89 0-89 

0-16 80 0*024 0-392 0-562 0*022 0 828 -0-15 -2-23 0.0826** 

(0.007) (0-022) (0.022) (0.007) (0.017) 1-00 1 32 
0*16 40 0 026 0-757 0*192 0-025 0 696 -0*09 -1 13 0.0437* 

(0X005) (0.014) (0.013) (0-005) (0.015) 1-00 1.09 
0 16 20 0-015 0 913 0-055 0-018 0 604 -0-10 -0*57 0.0568** 

(0.003) (0 006) (0-005) (0-003) (0.011) 0-87 0-87 
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to accept the model with the higher likelihood. Columns 8 and 9 headed No: V0 and N1: V, 
give the sample means and variances of the No's and N1's actually calculated; in theory if 
Ho is true, No should be zero and V0 be unity, similarly for N1 and V1. The final column 
KS1 or KSo is the value of the Kolmogorov-Smirnov test of the hypothesis that the N1's or 
No's are distributed as N(0, 1). Significant departures from N(0, 1) are indicated by * at 5 
per cent and ** at 1 per cent. All figures in brackets are estimated standard errors. 

We have not presented our results in terms of the usual Type I and Type II errors 
because the use of these concepts is less attractive when there are four rather than two 
possible decisions. However, if required, the probability of Type I error is given by 

1i + ri0 in Tables I and II and by rro + I0o in Table III, while the probabilities of Type II 
error are IT + r1T and IT + ITo respectively. 

The first set of experiments take a = = 500, R2 = p = 0.9 with (T. = (8, 16); the 
results are given in Table I. These were repeated with p = 0 7 and 0 5 for the same settings 
of the other parameters but the results were very close to those for p = 0 9 and are not 
given here. Table II investigates the effects of changing R2 from 0 9 to 0 7 with p = 0 7 
and a = 1000. 

Looking at the last column first, the Kolmogorov-Smirnov statistics show no evidence 
that the Cox statistics are not distributed as N(0, 1), for sample size 80. For sample size 40, 
3 out of the 4 cases indicate a departure at the 5 per cent level, although in the four 
experiments not reported in detail (p = 0 5, 0 7 with o-, = 8, 16), all but one are consistent 
with N(0, 1). However, when T = 20, all four cases shown indicate rejection at the 1 per 
cent level. Note however that the Kolmogorov-Smirnov test is extremely powerful and 
applies to the whole distribution. There is no evidence at all in these results to suggest that 
the probability of Type I error is significantly larger than 0 05, even when T = 20. This is 
particularly important since it is frequently conjectured that large sample tests, such as the 
Cox test, are prone to over-frequent rejection of correct hypotheses when used in small 
sample situations. 

Given the Kolmogorov-Smirnov test results, the values for N1 and V1 are as expected 
being, in all cases, close to 0 and 1 respectively. The values of No and Vo illustrate that the 
test performs qualitatively as it should; when the false hypothesis is treated as if it were 
true, the true model fits better than one would expect it to. When Ho is false, the 
distribution of No is shifted to the left to an extent which increases with the sample size and 
with the noisiness of the independent variable (o-J), while decreasing with the noisiness of 
the true model (o-). Note that, in these experiments at least, the variance of No when H1 is 
true remains, in most cases, close to unity. 

These shifts in No determine the performance of the test, the relevant characteristics 
of which are summarized in columns 3-6. The correct decision is to reject Ho and the 

2 
frequency this occurs varies from 71 per cent to 3 per cent depending on R2, o-, and T. 
Since columns 5 and 6 add to approximately 0 05 (the Type I error), column 4, the no 
decision case, is approximately equal to 095 less column 3. In other words, apart from the 
constant 5 per cent error, the test either makes the correct decision or is indecisive, the 
proportion of one to the other being determined by R2 o-, and T. The Sargan test, So, has 
no possibility of indecision, simply selecting the model with the higher likelihood. Not 

2 
surprisingly, the fraction of successes, So, responds much as does Iro to changes in R , 

and T; further, it is always greater than both 7ro and 0 5 (its expectation given zero 
discriminatory power). Thus the Sargan test contains useful information on choosing 
between the two models and, given its extreme simplicity of calculation-it requires no 
more than the original estimation-it is likely to be useful in practice, provided we are certain 
in advance that either Ho or H1 is true. The superiority of So over the Cox procedure is due 
to its " one or other " nature; there is no possibility of indecision nor is it possible for both 
models to be rejected. We shall see what happens when Ho and H1 are both false below. 
Note too that the two models being compared here have identical numbers of parameters 
so that the tendency of pure likelihood tests to favour the model with the greater number of 
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parameters is of no consequence. Without some correction however, the Sargan test is 
likely to be dangerous unless the number of parameters are the same in both models, i.e. in 
the case of a "pure" log versus linear comparison. More generally some correction to 
favour more "parsimonious " models could easily be built in, for example by taking 

Lio-(ko-k1) rather than L1o in which case the Sargan test is equivalent to using the 
Akaike ((1972) and (1974)) information criterion. (See also Sawa (1978) for further 
discussion.) 

Table III provides a check that the test works both ways round and should be read in 
conjunction with Table I. In this case Ho is true, so that the 7r1 column corresponds to the 
correct decision and thus to n-o in Table I. The true model underlying these results is 

ln y = y + 8 ln x + v ...(53) 

and 

In x, - In ju *=p (In xt-, - In y )+ et, ... (54) 

where y = 4 6, 8 = 0.5, ,* = 100, o, = (0.08, 0-16), p = 0 9, all these numbers being 
chosen so as to make (53) a close approximation to the original linear model (49). This 
device seems to have been successful in that Table III replicates very closely the 
corresponding numbers in Table I. Note, however, that when o-, = 0 16, the Kolmogorov- 
Smirnov test rejects N(0, 1) for all three sample sizes, the only case where this occurs in all 
the experiments undertaken. 

Finally, we look briefly at the case where both Ho and H1 are false so that we are using 
the Cox test as a test of misspecification. There is no particular reason to expect the test to 
be generally powerful in this context; it is designed around Ho and H1 specifically and its 
performance in recognising misspecification is likely to depend very much on the alter- 
native considered. We look at only one example, albeit one which is likely to arise quite 
often in practice. The data were generated according to 

yt = za +fxt + zt + ut, .. .(55) 

where a, l3, xt and ut are as in (49) and (50), with zt, an independent autoregressive process 
given by 

Zt = P2Zt-1 + 82t, . .. (56) 

where ?2t- N(O, a2e). P2 was set at 0 7 and o_ varied over (10, 20, 30). Ho and H1 were 
as before; hence, H1 is correct but for an omitted variable zt, the importance of which 
varies with 2e whereas Ho is incorrect, not only in omitting a variable, but also in 
functional form. H1 is thus likely to be a better approximation to (55) than is Ho. The 
variance of ut, c.2 , was set so as to give an asymptotic R2 of 0 9 on the misspecified equation 
H1; it can easily be checked that this is possible for the values of a, ,f, P2 and 0-2. indicated. 
It is important to realise that, in the results which follow, the (incorrect) equation H1 fits as 
well as it did when it was correct in the earlier experiments. 

The results of the tests for T = 80 and T = 40 are given in Table IV. Experiments for 
T = 20 are not presented since these, in the vast majority of cases, gave a no decision 
result. Clearly, the sample size is very important in these experiments, as is the variability 
of the omitted variable. In all experiments, Ho is rejected much more frequently than is 
H1. The Sargan test, too, always favour H1 by a large majority. When T = 40, most 
experiments lead to no result with most of the remainder rejecting Ho only. However, 
when the sample size increases to 80, the test begins to reject both models, 6% of the time 
when U2, = 10, 22'4 per cent of the time when o2 = 20 and 78-6 per cent of the time when 

0a2E = 30. Note that, in this case, the likelihood ratio favours H1 in all of the 500 cases so 
that the Sargan test, although decisive, is decisively wrong. Parenthetically, it is worth 
noting that the shifts in the distribution of No and N1 now appear to be much more 

complicated than when one of Ho and Hi was true. The negative values of No reflect the 
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TABLE IV 

Neither model is true 

0'2? T I IX 1 Io So N0:Vo N1:V1 

10 80 0 562 0 374 0 004 0-060 0-920 -2 24 0 62 
(0 022) (0 022) (0 003) (0 011) (0 012) 0 95 0 92 

10 40 0 164 0 784 0 017 0 035 0-676 -0 94 0 06 
(0 012) (0 013) (0 004) (0 006) (0 015) 1 41 1-03 

20 80 0 652 0-124 0 000 0-224 0-986 -2 95 1 32 
(0 021) (0 015) (0.000) (0 019) (0 005) 0 71 0 65 

20 40 0 206 0 734 0 011 0 049 0-697 -1 11 0-18 
(0-013) (0-014) (0.003) (0-007) (0 015) 1-67 1 02 

30 80 0 214 0 000 0.000 0 786 1.000 -3 96 2 25 
(0-018) (0 000) (0-000) (0.018) (0 000) 0.19 0 15 

30 40 0 397 0 534 0 000 0 069 0 673 -1 59 0 46 
(0 016) (0 016) (0 000) (0 008) (0.015) 2 72 1 08 

preference for H1 while the positive values of N1 suggest that H1 is false but should not be 
replaced by Ho. However, these positive and negative values arise as T increases by a 
" splitting " rather than a shifting of the distributions. When T is 20, both distributions are 
heavily concentrated in the no decision area. When T is 40, both are bi-modal with peaks 
in no decision and reject zones for Ho and with two peaks in the no decision zone for H1. At 
T = 80, both central peaks vanish and the outer peaks shift outward in opposite directions 
giving the result in the second last row of the table. 

Clearly, this is only one example of misspecification but we believe these results are 
encouraging enough to suggest that further work on specification analysis using the Cox 
test would be well worth attempting. 

4. SUMMARY AND CONCLUSIONS 

In this paper, we have applied Cox's procedure for non-tested hypotheses tests to the 
problem of testing a logarithmic versus a linear model. Section 1 derived the statistics and 
presented formulae for their calculation. We also presented empirical evidence which 
suggests that the large sample properties of the test are sufficiently closely realised in quite 
small samples to make the test practical. We found no evidence, in even very small 
samples, of a tendency for the test to reject correct hypotheses too frequently. The power 
of the test, however, depended crucially on the sample size, on the fit of the true hypothesis 
and on the noisiness of the independent variable. Our results also suggested that, provided 
the investigator knows that one or other of the models formally considered is correct, the 
unmodified likelihood ratio, as suggested by Sargan, is a useful discriminator between the 
models, at least when both have the same number of parameters. In the case where neither 
model is true, we presented some evidence that, with sufficiently large samples, the Cox 
test can detect misspecification even when both models fit well according to conventional 
criteria. 

Clearly, there is great scope for further research. The basic results of Tables I to III 
need to be confirmed on more general models, particularly in cases where non-linear 
estimation is involved. Perhaps most exciting, however, are applications to other types of 
misspecification analysis involving choice of functional form as well as omitted variables. 
Such tests should also include an examination of the role of the normality assumption 
particulary given Amemiya's (1977) recent work on the importance of normality in the 
maximum likelihood estimation of the general non-linear model. By extension of Ame- 
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miya's results, it may turn out that while the Cox test is robust against non-normality when 
errors are additive, the robustness may not extend to the cases examined in this paper. 

We should like to thank David Hendry, Adrian Pagan, Peter Phillips, Jean-Francois Richard, Gene Savin 
and especially Hashem Pesaran for extremely helpful comments. David Mitchell gave invaluable assistan6e with 
the computations. 
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