
Testing logic cores using a BIST P1500 compliant approach: a case of
study

P. Bernardi2, G. Masera1, F. Quaglio1, M. Sonza Reorda2

1Politecnico di Torino

Dipartimento di Elettronica
Torino, Italy

2Politecnico di Torino

Dipartimento di Automatica e Informatica
Torino, Italy

Abstract

In this paper we describe how we applied a BIST-based ap-
proach to the test of a logic core to be included in System-on-a-
chip (SoC) environments. The approach advantages are the
ability to protect the core IP, the simple test interface (thanks
also to the adoption of the P1500 standard), the possibility to run
the test at-speed, the reduced test time, and the good diagnostic
capabilities. The paper reports figures about the achieved fault
coverage, the required area overhead, and the performance slow-
down, and compares the figures with those for alternative ap-
proaches, such as those based on full scan and sequential ATPG.

1. Introduction

Continuous technological improvements allow designing a
complex system into a single chip (System-On-Chip or SoC). A
SoC is composed of different reusable functional blocks, called
embedded cores. Typical embedded cores include processors
(such as CPUs, DSPs, and microcontrollers), memories (such as
ROMs, DRAMs, SRAMs, and flash), I/O devices, etc. System
designers can purchase cores from core vendors and integrate
them with their own User-Defined Logic (UDL) to implements
SoCs. Core-based SoCs present important advantages: the size
and the cost of the end-product are decreased, and thanks to the
design re-use, the time-to-market is greatly reduced.

Conversely, testing a core-based SoC is a major challenge [1].
The main problem is that accessibility to cores and UDL is
greatly reduced. Traditional approaches [1-2] for testing core-
based SoCs completely rely on additional Design for Testability
(DfT) structures such as test busses for test transfers from/to the
core under test. The access mechanism requires additional logic
(such as a wrapper around the core) and wiring (such as a test
access mechanism or TAM) to connect cores to the test source
and sink. A critical point to be solved in SoC testing is the extra
cost introduced by the DfT logic, i.e., the area, delay and test
application time overheads. Some approaches have been pro-
posed to solve this problem. A class of test approaches [3-4]
adopts the reuse of existing functionalities for test access. These
methods assume that every core has a transparent mode in which
data can be propagated. However, these methods are not general
enough to handle all the possible kinds of cores and all the possi-
ble test schemes, such as scan or Built-In Self-Test (BIST). Some
researchers [5-7] proposed to exploit an embedded processor to
test the other components of the SoC: first the processor core is
tested (e.g., by means of functional patterns or full-scan test), and
then a test program, executed by the embedded processor, is used
to test the on-chip memories and other cores. The use of embed-
ded processors to test cores presents many advantages: the size of
the test controller is normally negligible, the test program (being

in software) guarantees a high flexibility, and the testing process
can often be done at-speed. Moreover, the test process is done
inside the chip and the tester can work at a lower speed, thus
reducing the costs for the test equipment. The main disadvantage
is related to the need for an on-chip processor and to the depend-
ence on the one possibly present in the SoC. In case of different
processors, the test program has to be adapted to each of them
causing an increased cost in the test development. Moreover, this
approach cannot be applied to embedded cores not suitably con-
nected to the processor.

When considering logic cores, the adoption of deterministic
BIST is becoming increasingly popular, mainly due to the avail-
ability of efficient commercial tools supporting this technique.
However, this approach has serious limitations when delay faults
are of interest, since it relies on scan chains to access the internal
points of the circuit.

In this paper we report the experience gathered by adopting a
test strategy for logic cores based on a custom BIST engine
wrapped to the embedded device under test. From the test point
of view, the core complies with the P1500 standard, thus easing
the connection of the core to other test resources on the chip (e.g.,
a 1149.1 TAP controller for accessing the SoC from outside). The
advantages of this solution are first the high re-usability of the IP
core, even in terms of testing features: only the test protocol must
be delivered to the user (no vectors). As a second advantage there
is the high fault achieved by the BIST engine (especially in terms
of delay faults, as it performs the test at-speed). Finally, the
approach provides the test engineer with some diagnostic feed-
back about the executed test; low area overhead and negligible
costs in terms of wiring and performance reduction are the main
drawbacks. The P1500 standard structure integrated with the
BIST finally provides plug and play characteristics to the core to
be easily inserted into powerful SoC level test structures. A case
study will be reported allowing to better evaluating the advan-
tages and disadvantages of the adopted test strategy.

Section 2 summarizes the possible architectural solutions for
core-based SoC testing and introduces the one adopted in our
work. Section 3 describes the proposed test architecture in terms
of internal organization, detection and diagnosis properties
evaluation, and external layers. Section 4 describes the consid-
ered case study and, finally, section 6 draws some conclusions.

2. Core test architectures

Testing core-based SoCs is a complex problem that can be di-
vided in two parts: core-level and chip-level testing. Core-level
testing involves making each core testable, i.e., inserting the
necessary test structures and generating test sequences. Chip-
level testing involves defining a test access mechanism architec-

1530-1591/05 $20.00 © 2005 IEEE

ture for applying the test sequences to the input peripheries of the
cores, and for propagating the test responses from the core out-
puts to the chip outputs.

In this paper we mainly focus on the core-level testing problem,
resorting to a custom TAM for connecting the core to a standard
1149.1 TAP controller, thus providing an easy interface between
the SoC and an external ATE.

Different approaches can be adopted for testing logic cores;
they are normally grouped in the following classes:

• scan based
• pseudo-random based [8-9]
• logic BIST.

In scan based and logic BIST approaches, a set of patterns are

generated using automatic tools (ATPGs) and applied to the
circuit. In the sequential approach, the calculated patterns are
sequentially sent to the circuit and responses read after each
application and any additional internal structure is added in order
to improve the effectiveness of the patterns. On the contrary, in
the scan approach, the controllability and the observability of the
circuit are improved by modifying the common flip flop: the so-
called scan cells allow writing and reading the content of the
memory element during the test apply, and are connected to
compose a scan chain. However, as a serial process is required to
load and upload the scan chain, that approach requires onerous
application time and heavy ATE requirements in terms of storage
needed for test data and test application program.

An alternative technique is the pseudo-random pattern genera-
tion. Such approach is based on the Galois theories for the gen-
eration of pseudo-random number sequences starting from the
definition of a characteristic polonium. Particular structures,
called Autonomous Linear Feedback Shift Registers (ALFSR)
provides a perfect hardware implementation for such kind of
pattern generation strategy.

In this paper, a BIST implementation based on pseudo-random
pattern generation is proposed and its effectiveness in coping
with cores composed of many functional modules is underlined.
In particular we focussed on the definition of a low-intrusive
techniques guaranteeing high performance in term of fault cover-
age and high reusability in SoC structured. The proposed archi-
tecture is accessible through the test standard interfaces (IEEE
1149.1 and P1500) in order to make the test completely accessi-
ble from the outside: the test of the core can thus be executed by
means of 1149.1 instructions and the core test details are com-
pletely transparent to core designers, maintaining the core Intel-
lectual Properties.

3. The adopted approach

The approach adopted in this paper is based on the insertion of
a BIST engine in charge of generate and apply patterns to the
device under test. The adopted BIST circuitry has been designed
to achieve two goals: on one hand we want to simplify the intro-
duction of any modification in the pattern generation algorithm;
on the other hand we aim at adopting the same architecture to a
large set of logic cores. The adopted architecture exploits the
current test standard interface in order to simplify the designer
effort. The BIST engine is not directly visible from the outside,
since the core is P1500 compliant, and includes a P1500 wrapper.

3.1. The BIST engine

The BIST engine internal architecture is divided into the fol-
lowing functional blocks:

• a Control Unit to manage the test execution;
• a Pattern Generator to produce and apply the test pat-

terns;
• a Result Collector to manage the memory access timing.

ATE

TAP controller

P1500 wrapper
TAM

BIST engine

Logic core

SOC

Fig. 1: The general architecture of the adopted approach.

In figure 2 a generic environment for the considered approach
is presented: the A, B and C modules are parts of the same logic
core and communicate among them in order to process inputs and
generate outputs. In the picture, inputs and outputs of each mod-
ule are considered separately to ease the test approach compre-
hension.

Control
unit Module A Module B Module C

ALFSR

MISR MISR MISR
Output
selector

Functional input

Functional output

Result collector

w_A

end_test

CG A CG C

Pattern generator

test_enable

C
on

tr
ol

 s
ig

na
ls

D
at

a
si

gn
al

s

w_B w_C

w_CG_A w_CG_Cw_ALFSR

Fig. 2: BIST engine overall structure.

The Control Unit manages the test execution; by receiving and

decoding commands from the control signals, this module is able
to manage the test execution and the upload of the results. In
particular, it covers three tasks:

• it receives from the data signals the number of patterns to
be applied

• it drives the test_enable signal that starts and stops
the test execution and provides the information about the
end of the test

• it selects the result to be uploaded.

This choice allows easy reuse in different applications, like the

application of test vectors generated according to different algo-
rithms, or the test of logic cores with different characteristics.

The Pattern Generator is in charge of the application of the
patterns to the DUT and is composed of:

• an ALFSR module[8-9]
• a set of Constraints Generators (CG).

The ALFSR module generates pseudo-random patterns accord-

ing to the chosen polynomial characteristics; for cores composed
of many functional blocks, only one ALFRS circuitry can be
employed. On the contrary, a Constraint Generator is a custom
circuitry able to drive constrained inputs. The adoption of such
blocks provides great improvements in terms of effectiveness of
the applied test, where a particular state machine controls the

behavior of the circuit.
In the design of the pattern generation circuitry, we identified

four architectural situations:
a. the block under test does not have constrained inputs and

the ALFRS size fits the input port width
b. the block under test does not have constrained inputs and

the input port width is larger than the ALFRS dimension
c. the block under test does have constrained inputs and the

ALFRS size fits the input port width
d. the block under test have constrained inputs and the input

port width is bigger than the ALFRS dimension.

While in a) the designer task consists just in connecting the

ALFRS output with DUT input port, in b), c) and d) scenarios
more care in choosing connections is required. Respectively,
designers have to

− replicate the ALFSR outputs to reach the input port width
− identify the constrained inputs to build the CG and

connect the ALFRS output to the remaining inputs.
− identify the constrained inputs to build the CG and

replicate the ALFRS outputs to drive all the remaining
inputs.

These three situations are shown in figure 2 where respectively

w_B > w_ALFSR, w_A < w_ALFSR + w_CG_A and w_C >
w_ALFSR + w_CG_C.

The Result Collector is in charge of storing and making the
results reachable from the outside. It is composed of

• a set of MISR modules[8-9]
• an Output Selector module.

The ability of MISR modules to compact information with a

low percentage of aliasing makes them suitable to store the re-
sults of the test. In our approach we coupled each module under
test with a MISR: whereas the size of the MISR cannot exceed a
predefined size, a xor cascade has been used. Each MISR module
is reachable from the outside by programming the Output Selec-
tor.

This organization allows reducing the re-design operations and
supports the reuse of the internal structures: changing ALFSRs
and MISRs dimension is a trivial task. Only the individuation of
inputs constraints and the design of the Constraints Generator
require a bigger effort to designers.

3.2. Fault coverage and diagnosis ability
evaluation

To obtain high fault coverage and guarantee high ability in
terms of fault location, we identified three steps:

1. Statement coverage and toggle activity evaluation
2. Fault coverage measure
3. Equivalent fault classes computation.

In the first step, pseudo-random patterns are applied to the RTL

description of the modules composing the logic core and the
measure of the percent number of VHDL lines executed is per-
formed. Such measure, usually called statement coverage, to-
gether with the calculation of the percent number of variables
toggled by the patterns, called toggle activity, gives to the de-
signer a first degree of confidence about the effectiveness of the
generated patterns [10] and can be performed using a simulation
tool. Until this step, the evaluated patterns can be generated using
the VHDL description of the Pattern Generator or simply calcu-
lated with ad-hoc tools generating pseudo-random sequences.
Figure 3 represents the first step.

The second step refers to the synthesized component and can be
performed using a fault simulator. In order to obtain reliable
results, the design to be evaluated in this step should already

include the Pattern Generator and the MISRs embedded into the
Result Collector, as the final layout optimization will merge their
circuitry with that of the device under test.

Whereas the fault coverage reached is less than the required,

three actions can be performed:
− apply a larger number of patterns
− modify the ALFSR or MISRs structure
− redefine the Constraints Generator where included.

Pseudo-random
patterns

Logic core
VHDL(RTL)

Simulation tool

Statement coverage
Toggle activity

Enough?
no

Step 2
yes

Fig. 3: Statement coverage and toggle activity evaluation loop.

While the first action does not require any modification in the

designed circuitry, the number of patterns can be increased only
until the time for test requirements are not exceeded. In this case,
the flow backs to the first step with the evaluation of new pat-
terns. This loop, reported in figure 4, ends when the desired fault
coverage is reached or when exceeding the manufacturing con-
strains.

Logic Core
VHDL (RTL)

Pattern
Generator
VHDL (RTL)

MISR
VHDL (RTL)

Synthesys tool

Logic Core
+

partial BIST
VHDL (GATE)

Fault simulator
tool

Fault coverage

Enough?
no

yes

Add patterns

Step 3

Step 2

Fig. 4: Statement coverage and toggle activity evaluation loop.

The thirst step aims at reaching high diagnosis ability: this

characteristic of the performed test can be evaluated by means of
the size of the equivalent fault classes [11]. Such measure allows
establishing the precision in terms of fault location provided by
the analyzed patterns. The size of the equivalent fault classes
mainly depends on the ability of the chosen patterns to produce a

different syndrome for every fault possibly affecting the DUT.
To reach this purpose, a tool able to apply patterns and store the

circuit response is needed. The collected information, by means
of the obtained syndromes, can be used to build the so-called
diagnostic matrix [16], allowing to identify the faults belonging
to the same equivalent fault class.

To improve the diagnostic properties of the generated patterns,
it is possible to operate in two ways:

− adding test patterns
− changing the test structure characteristics.

3.3. The P1500 wrapper module
The wrapper, shown in Fig. 5, contains the circuitry necessary

to interface the test processor with the outside in a P1500 compli-
ant fashion, supporting the commands for running the BIST
operation and accessing to its results. The wrapper is compliant
with the suggestions of the P1500 standardization group [12].
The wrapper can be connected to the outside via a standard TAP.

WRAPPER

WSI

UpdateWR W
I
R

W
C
D
R

W
B
Y

W
D
R

W
B
R

WRCK

WRSTN

CaptureWR

ShiftWR

WSO

SelectWIR

BIST

CORE

Logic
core

TA
P

 C
on

tr
ol

le
r

Fig. 5: Details of the Wrapper Architecture.

In addition to the mandatory components we propose the intro-

duction of the following Wrapper Data registers:
• Wrapper Control Data Register (WCDR): through this

register the TAP controller sends the commands to the core
(e.g., core reset, core test start, the Status register read,
etc.).

• Wrapper Data Register (WDR): it is an output register.
The TAP Controller can read the test information stored
into the status register.

4. The case study

We applied the outlined approach to a Reconfigurable Serial
Low-Density Parity-Checker decoder core [13-15]. This core was
developed by our institution in the frame of a project involving
several semiconductor, equipment, and telecom companies; to
make it more easily usable by core integrators, a test solution was
required: in the following we give details about the adopted
solution.

Low-Density Parity-Check (LDPC) codes are powerful and
computationally intensive error correction codes, originally pro-
posed by Gallagher [13] and recently rediscovered [14] for a
number of applications, including Digital Video Broadcasting
(DVB) and magnetic recording. LDPC codes can be represented
as a bipartite graph (Fig. 1), where two classes of processing
elements iteratively exchange information according to the Mes-
sage Passing [14-13] algorithm: Bit Nodes (BN) correspond to
the codeword symbols, while Check Nodes (CN) are associated
to the constraints the code poses on the bit nodes in order for
them to form a valid codeword; at each iteration, the reliability of

the decoding decisions that can be made on basis of the ex-
changed information is progressively refined.

Fully and partially parallel solutions for the implementation of
the decoder exploit the regularity of the bipartite graph mapping
directly CN’s and BN’s into hardware blocks; graph edges either
are mapped to proper interconnect infrastructures or are imple-
mented by means of memory banks. The complexity of check and
bit nodes is strongly related to the number of incoming/outgoing
edges; additional complexity comes from the requirement of
supporting different edge numbers that is typical in the most
powerful, irregular codes.

Fig. 6: Bipartite graph for an LDPC code

In [15] the implementation of an LDPC decoder is proposed,

based on the use of a shared memory that emulates the intercon-
nection between BIT_NODEs and CHECK_NODEs. In [15], a
further implementation is proposed, introducing programmability
in the architecture proposed in [14]. In this approach, a configur-
able BIT_NODE and a configurable CHECK_NODE are de-
scribed. Their ability consists in emulating more than one mod-
ule, by mapping more “virtual” nodes to the two physically avail-
able processing elements; the interconnections are simulated by
means of two “interleaving memories” and thanks to its recon-
figurable characteristics, this decoder is able to support codes of
different sizes and rates, up to a maximum of 512 check nodes
and 1,024 bit nodes. A CONTROL UNIT is introduced in order
to manage the memory access and the reconfiguration informa-
tion. The schematic of this enhanced circuitry is reported in
Figure 7. Additionally to the use of the showed core in conjunc-
tion with external memories to achieve a serial reconfigurable
decoder, it can also be adopted as the basic building block for the
implementation of a fully parallel architecture.

Fig. 6: Architecture of the Reconfigurable Serial Low Density
Parity Checker decoder [15]. The BIT_NODE (BN), the
CHECK_NODE (CN) and the CONTROL_UNIT (CU) are con-
nected to the two interleaved memories to perform error
detection and correction during transmission of high data
volumes

As far as this design is considered, we partitioned the analyzed

logic core in BIT_NODE, CHECK_NODE and
CONTROL_UNIT modules. The characteristics of each module
in terms of input and output port size is reported in table 1. The
test of the two interleaved memories and the buffers is not con-

CN

BN

EDGE

sidered in this paper.

Component Input port size
[bits]

Output port size
[bits]

BIT_NODE 54 55
CHECK_NODE 53 53

CONTROL_UNIT 45 44
Table 1: Input and output port size in bits.

The BIST engine has the following structure. The Control Unit
contains a counter register (pattern_counter) on 12 bits,
allowing to apply up to 4,096 patterns for each test execution, and
generates a 2 bits signal connected with the Result Collector, in
charge of selecting the output to be read.

The Pattern Generator is equipped with a 20-bit ALFRS mod-
ule and only one Constraints Generator connected both to the
BIT_NODE and the CHECK_NODE of the serial LDPC while
the CONTROL UNIT does not need it. The Constraints Genera-
tor manages a 4 bits sized port that internally selects the data path
into the circuitry: it allows applying a limited number of patterns
when a small data path is selected, while holding selection values
that maximize the used circuitry.

The Result Collector is composed of three 16 bit sized MISR
modules, each one connected to the DUT outputs through a xor
cascade, and a Output Selector, whose behavior is driven by the
Control Unit.

The total area occupied by the DfT additional logic is reported
in Tab. 2, and have been worked out by using a commercial tool
(Synopsys Design Analizer) using an industrial 0.13 µm techno-
logical library.

The TAM logic (which includes the Wrapper module) repre-
sents a fixed cost necessary to manage the chip-level test. Its area
overhead can be quantified as the 16% of the global cost of the
additional core-level test logic.

Component Area [µm^2] Overhead [%]
Serial LDPC 165,817.88 -
BIST engine 22,481.63 13.5

P1500 Wrapper 4,566.94 2.8
TOTAL 192,866.51 16.4

Table 2: Area overhead evaluation.
The fault coverage percentage reached by our approach is re-

ported in table 3 and refers to both Stuck At Faults (SAF) and
Transition Delay Faults (TDF). Such results have been obtained
employing a commercial fault injection tool (Synopsys Tetra-
max). In order to provide the reader with reference figures, we

also included in the table the data related to the cases in which
sequential and full scan patterns produced by a commercial
ATPG tool (again Synopsys Tetramax) are used. It is important
to note that these patterns could not be easily applied to the core,
if embedded in a SoC, while the BIST approach is very suitable
to deal with this situation. The number of scan cells inserted is 75
for the BIT_NODE, 803 for the CHECK_NODE and 42, divided
in two scan chains including 14 and 28 cells, for the
CONTROL_UNIT. These values have been calculated using a
SUN workstation equipped with a SPARC V8 microprocessor
and the CPU times reported in the above table working at 431.03
Mhz in the case of the BIST engine approach (at-speed testing)
and at 100 Mhz (supposed ATE frequency) in the Sequential and
Full scan approach.

With respect to the Sequential and Full Scan approaches, the
use of the BIST approach is desirable for at least the following
reasons:

− the fault coverage reached is higher than Sequential
patterns coverage and comparable with Full Scan

− the BIST patterns are the same for all modules to be
tested, so that they can be tested simultaneously

− the test time is significantly lower for the BIST approach
than for the full-scan one

− such patterns are generated and applied one for each
clock cycle and results read in the end of the execution,
while Sequential and Full scan patterns have to be sent
serially by the ATE and results uploaded serially after
each operation, thus drastically increasing the ATE
storage requirements

− the test patterns are applied by the BIST engine at the
nominal frequency of the circuit while the Sequential and
Full scan patterns are applied at the ATE frequency that
could be lower, guaranteeing more efficiency in the fault
coverage.

In table 4, the measure of the performance reduction in terms of

frequency lost is reported. This is due to the introduction of the
BIST engine and the wrapper. This value is compared with the
ones coming from the analysis of the Sequential and Full Scan
approach, supposing that:

− for the Sequential approach, patterns are applied using a
standard P1500 wrapper

− for the Sequential approach, patterns are applied using a
standard P1500 wrapper and introducing into the design
multiplexed scan cells.

Table 3: Fault coverage.

Component BIST
patterns

Sequential
patterns

Full scan
patterns

Fault type SAF TDF SAF TDF SAF TDF
Faults [#] 7,532 7,532 7,532 7,532 7,836 7,836
FC [%] 97.8 95.6 93.8 84.3 98.5 91.2

clock cycles 4,096 4,096 11,340 16,580 21,248 39,168
 BIT NODE

CPU time - - 489 sec 2,628 sec 197 sec 277 sec
Faults [#] 86,104 86,104 86,104 86,104 89,412 89,412
FC [%] 91.6 90.7 82.9 76.4 93.1 87.1

Clock cycles 4,096 4,096 8374 7844 380,064 866,272
 CHECK NODE

CPU Time - - ~ 54 h ~ 43 h 428 sec 692 sec
Faults [#] 3,038 3,038 3,038 3,038 3,216 3,216
FC [%] 97.5 95.3 89.8 84.0 98.6 91.3

Clock cycles 4,096 4,096 3060 4,860 16,965 27,405

 CONTROL UNIT

CPU time - - 2422 sec 5909 sec 91 sec 123 sec

 Original
design

BIST
engine

Sequential
approach

Full scan
approach

frequency
[MHz] 438.6 431.03 434.14 426.62

Table 4: Performance reduction for the investigated
approaches.

Finally, table 5 shows the size of the equivalent fault classes for
the three components obtained for the BIST engine, Sequential
patterns and Full Scan approach applying the number of patterns
reported in table 2. That result have been obtained exploiting an
in-home developed tool in C language: this tool is able to build
and analyze the diagnostic matrix by collecting each fault syn-
dromes obtained by using Synopsys Tetramax as a fault simulator.

Component BIST
patterns

Sequential
patterns

Full scan
Patterns

 Max
size

Med
size

Max
size

Med
size

Max
size

Med
size

BIT_NODE 3 1.2 7 4.4 3 1.6
CHECK_NODE 4 1.9 12 6.9 7 2.7
CONTROL_UNIT 2 1.3 8 5.1 2 1.3

Table 5: Equivalent fault classes maximum and medium size
obtained by the investigated approach.

5. Conclusions

In this paper we presented a case study in which a logic core for
telecom applications was equipped with test features suitable to
guarantee a high fault coverage (especially with respect to delay
faults) and a high modularity and easy integrability into a SoC,
even from the point of view of testing.

The adopted approach is based on a BIST engine that is in
charge of applying test patterns and observing the module behav-
ior. Such BIST engine has been designed to allow high flexibility
in order to easily adopt the same approach to a large set of differ-
ent core models and easily allow the upload of test results.
Thanks to the adopted solution, the test can be applied at-speed,
thus reaching a very high fault coverage with respect to delay
faults. The proposed architecture exploits the current test stan-
dards interface (IEEE 1149.1 and P1500 standards) in order to
simplify the design effort. Moreover, the P1500 wrapper eases
the integration of the core into the overall SoC test strategy. The
test architecture is transparent to the core user, thus guaranteeing
the protection of the intellectual property.

6. References
[1] Y. Zorian, E. J. Marinissen, and S. Dey, "Testing embedded-core

based system chips", in Proc. International Test Conference, Oct.
1998, pp. 130-143

[2] N. Touba, and B. Pouya, "Using Partial Isolation Rings to test Core-
Based Designs", IEEE Design and Test of Computers, vol. 14, Oct.-
Dec. 1997, pp. 52-59

[3] F. Bouwman, S. Oostdijk, R. Stans, B. Bennetts, and F. Beenker,
"Macro Testability: the results of production device applications",
IEEE International Test Conference, 1992, pp. 232-241

[4] I. Ghosh, N. Jha, and S. Dey, "A Fast and Low-Cost Testing Tech-
nique for Core-Base System-Chips", IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems, Vol. 19, No.
8, Aug. 2000, pp. 863-877

[5] C.A. Papachristou, F. Martin, and M. Nourani, "Microprocessor
based testing for core-based system on chip", in Proc. Design
Automation Conference, 1999, pp. 586-591

[6] R. Rajsuman, "Testing a System-On-a-Chip with Embedded Micro-
processor", in Proc. International Test Conference, Oct. 1999, pp.
499-508

[7] C.-H. Tsai, C.-W. Wu, "Processor-Programmable Memory BIST for
Bus-Connected Embedded Memories", in Proc. of the ASP-DAC

2001, Asia and South Pacific Design Automation Conference, 2001,
pp. 325-330

[8] C. E. Stroud, "A designer´s Guide to Built_In Self_Test", Kluwer
Academic Publisher, 2002

[9] P. H. Bardell, W. H. McAnney, J. Savir, "Built-In Test for VLSI:
Pseudorandom Techniques", Wiley Interscience, 1987

[10] Q. Zhang, I.G. Harris, "A data flow fault coverage metric for valida-
tion of behavioral HDL descriptions", ICCAD-2000. IEEE/ACM In-
ternational Conference on, pp. 369 - 372

[11] D.T. Smith, B.W. Johnson, N. Andrianos, J.A. Profeta, "A variance-
reduction technique via fault-expansion for fault-coverage estima-
tion" IEEE Transactions on Reliability, Vol. 46 , N. 3 , Sept. 1997,
pp. 366-374

[12] E.J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, L. Whetsel, "To-
wards a Standard for Embedded Core Test: An Example", IEEE In-
ternational Test Conference, 1999, pp. 616-627

[13] R.G. Gallagher,"Low Density Parity Check Codes", IEEE Transac-
tion on Information Theory, Vol. 8, N. 1, 1962, pp. 21-28

[14] D.J. MacKay, "Correcting Codes Based on Very Spares Matrices",
IEEE Transaction on Information Theory, Vol. 45, N. 2, March
1999, pp. 399-431

[15] G. Masera, F. Quaglio, "Reconfigurable Serial LDPC De-
coder Architecture", PRIMO technical Internal Report,
CERCOM, N.1, May 2004

[16] F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda, “GARDA:
a Diagnostic ATPG for Large Synchronous Sequential Circuits”,
ED&TC95: IEEE European Design and Test Conference, 1995

