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Abstract 

In this paper we describe how we applied a BIST-based ap-
proach to the test of a logic core to be included in System-on-a-
chip (SoC) environments. The approach advantages are the 
ability to protect the core IP, the simple test interface (thanks 
also to the adoption of the P1500 standard), the possibility to run 
the test at-speed, the reduced test time, and the good diagnostic 
capabilities. The paper reports figures about the achieved fault 
coverage, the required area overhead, and the performance slow-
down, and compares the figures with those for alternative ap-
proaches, such as those based on full scan and sequential ATPG.  

1. Introduction 

Continuous technological improvements allow designing a 
complex system into a single chip (System-On-Chip or SoC). A 
SoC is composed of different reusable functional blocks, called 
embedded cores. Typical embedded cores include processors 
(such as CPUs, DSPs, and microcontrollers), memories (such as 
ROMs, DRAMs, SRAMs, and flash), I/O devices, etc. System 
designers can purchase cores from core vendors and integrate 
them with their own User-Defined Logic (UDL) to implements 
SoCs. Core-based SoCs present important advantages: the size 
and the cost of the end-product are decreased, and thanks to the 
design re-use, the time-to-market is greatly reduced. 

Conversely, testing a core-based SoC is a major challenge [1]. 
The main problem is that accessibility to cores and UDL is 
greatly reduced. Traditional approaches [1-2] for testing core-
based SoCs completely rely on additional Design for Testability 
(DfT) structures such as test busses for test transfers from/to the 
core under test. The access mechanism requires additional logic 
(such as a wrapper around the core) and wiring (such as a test 
access mechanism or TAM) to connect cores to the test source 
and sink. A critical point to be solved in SoC testing is the extra 
cost introduced by the DfT logic, i.e., the area, delay and test 
application time overheads. Some approaches have been pro-
posed to solve this problem. A class of test approaches [3-4] 
adopts the reuse of existing functionalities for test access. These 
methods assume that every core has a transparent mode in which 
data can be propagated. However, these methods are not general 
enough to handle all the possible kinds of cores and all the possi-
ble test schemes, such as scan or Built-In Self-Test (BIST). Some 
researchers [5-7] proposed to exploit an embedded processor to 
test the other components of the SoC: first the processor core is 
tested (e.g., by means of functional patterns or full-scan test), and 
then a test program, executed by the embedded processor, is used 
to test the on-chip memories and other cores.  The use of embed-
ded processors to test cores presents many advantages: the size of 
the test controller is normally negligible, the test program (being 

in software) guarantees a high flexibility, and the testing process 
can often be done at-speed. Moreover, the test process is done 
inside the chip and the tester can work at a lower speed, thus 
reducing the costs for the test equipment. The main disadvantage 
is related to the need for an on-chip processor and to the depend-
ence on the one possibly present in the SoC. In case of different 
processors, the test program has to be adapted to each of them 
causing an increased cost in the test development. Moreover, this 
approach cannot be applied to embedded cores not suitably con-
nected to the processor. 

When considering logic cores, the adoption of deterministic 
BIST is becoming increasingly popular, mainly due to the avail-
ability of efficient commercial tools supporting this technique. 
However, this approach has serious limitations when delay faults 
are of interest, since it relies on scan chains to access the internal 
points of the circuit. 

In this paper we report the experience gathered by adopting a 
test strategy for logic cores based on a custom BIST engine 
wrapped to the embedded device under test. From the test point 
of view, the core complies with the P1500 standard, thus easing 
the connection of the core to other test resources on the chip (e.g., 
a 1149.1 TAP controller for accessing the SoC from outside). The 
advantages of this solution are first the high re-usability of the IP 
core, even in terms of testing features: only the test protocol must 
be delivered to the user (no vectors). As a second advantage there 
is the high fault achieved by the BIST engine (especially in terms 
of delay faults, as it performs the test at-speed). Finally, the 
approach provides the test engineer with some diagnostic feed-
back about the executed test; low area overhead and negligible 
costs in terms of wiring and performance reduction are the main 
drawbacks. The P1500 standard structure integrated with the 
BIST finally provides plug and play characteristics to the core to 
be easily inserted into powerful SoC level test structures. A case 
study will be reported allowing to better evaluating the advan-
tages and disadvantages of the adopted test strategy. 

Section 2 summarizes the possible architectural solutions for 
core-based SoC testing and introduces the one adopted in our 
work. Section 3 describes the proposed test architecture in terms 
of internal organization, detection and diagnosis properties 
evaluation, and external layers. Section 4 describes the consid-
ered case study and, finally, section 6 draws some conclusions. 

2. Core test architectures 

Testing core-based SoCs is a complex problem that can be di-
vided in two parts: core-level and chip-level testing. Core-level 
testing involves making each core testable, i.e., inserting the 
necessary test structures and generating test sequences. Chip-
level testing involves defining a test access mechanism architec-
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ture for applying the test sequences to the input peripheries of the 
cores, and for propagating the test responses from the core out-
puts to the chip outputs. 

In this paper we mainly focus on the core-level testing problem, 
resorting to a custom TAM for connecting the core to a standard 
1149.1 TAP controller, thus providing an easy interface between 
the SoC and an external ATE.  

Different approaches can be adopted for testing logic cores; 
they are normally grouped in the following classes: 

• scan based 
• pseudo-random based [8-9] 
• logic BIST. 
 
In scan based and logic BIST approaches, a set of patterns are 

generated using automatic tools (ATPGs) and applied to the 
circuit. In the sequential approach, the calculated patterns are 
sequentially sent to the circuit and responses read after each 
application and any additional internal structure is added in order 
to improve the effectiveness of the patterns. On the contrary, in 
the scan approach, the controllability and the observability of the 
circuit are improved by modifying the common flip flop: the so-
called scan cells allow writing and reading the content of the 
memory element during the test apply, and are connected to 
compose a scan chain. However, as a serial process is required to 
load and upload the scan chain, that approach requires onerous 
application time and heavy ATE requirements in terms of storage 
needed for test data and test application program. 

An alternative technique is the pseudo-random pattern genera-
tion. Such approach is based on the Galois theories for the gen-
eration of pseudo-random number sequences starting from the 
definition of a characteristic polonium. Particular structures, 
called Autonomous Linear Feedback Shift Registers (ALFSR) 
provides a perfect hardware implementation for such kind of 
pattern generation strategy.  

In this paper, a BIST implementation based on pseudo-random 
pattern generation is proposed and its effectiveness in coping 
with cores composed of many functional modules is underlined. 
In particular we focussed on the definition of a low-intrusive 
techniques guaranteeing high performance in term of fault cover-
age and high reusability in SoC structured. The proposed archi-
tecture is accessible through the test standard interfaces (IEEE 
1149.1 and P1500) in order to make the test completely accessi-
ble from the outside: the test of the core can thus be executed by 
means of 1149.1 instructions and the core test details are com-
pletely transparent to core designers, maintaining the core Intel-
lectual Properties.  

3. The adopted approach 

The approach adopted in this paper is based on the insertion of 
a BIST engine in charge of generate and apply patterns to the 
device under test. The adopted BIST circuitry has been designed 
to achieve two goals: on one hand we want to simplify the intro-
duction of any modification in the pattern generation algorithm; 
on the other hand we aim at adopting the same architecture to a 
large set of logic cores. The adopted architecture exploits the 
current test standard interface in order to simplify the designer 
effort. The BIST engine is not directly visible from the outside, 
since the core is P1500 compliant, and includes a P1500 wrapper.  

3.1. The BIST engine 

The BIST engine internal architecture is divided into the fol-
lowing functional blocks:  

• a Control Unit to manage the test execution; 
• a Pattern Generator to produce and apply the test pat-

terns; 
• a Result Collector to manage the memory access timing.  
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Fig. 1: The general architecture of the adopted approach. 
 

In figure 2 a generic environment for the considered approach 
is presented: the A, B and C modules are parts of the same logic 
core and communicate among them in order to process inputs and 
generate outputs. In the picture, inputs and outputs of each mod-
ule are considered separately to ease the test approach compre-
hension. 
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Fig. 2: BIST engine overall structure. 
 
The Control Unit manages the test execution; by receiving and 

decoding commands from the control signals, this module is able 
to manage the test execution and the upload of the results. In 
particular, it covers three tasks: 

• it receives from the data signals the number of patterns to 
be applied 

• it drives the test_enable signal that starts and stops 
the test execution and provides the information about the 
end of the test 

• it selects the result to be uploaded. 
 
This choice allows easy reuse in different applications, like the 

application of test vectors generated according to different algo-
rithms, or the test of logic cores with different characteristics. 

The Pattern Generator is in charge of the application of the 
patterns to the DUT and is composed of: 

• an ALFSR module[8-9] 
• a set of Constraints Generators (CG). 
 
The ALFSR module generates pseudo-random patterns accord-

ing to the chosen polynomial characteristics; for cores composed  
of many functional blocks, only one ALFRS circuitry can be 
employed. On the contrary, a Constraint Generator is a custom 
circuitry able to drive constrained inputs. The adoption of such 
blocks provides great improvements in terms of effectiveness of 
the applied test, where a particular state machine controls the 



behavior of the circuit.  
In the design of the pattern generation circuitry, we identified 

four architectural situations: 
a. the block under test does not have constrained inputs and 

the ALFRS size fits the input port width 
b. the block under test does not have constrained inputs and 

the input port width is larger than the ALFRS dimension 
c. the block under test does have constrained inputs and the 

ALFRS size fits the input port width 
d. the block under test have constrained inputs and the input 

port width is bigger than the ALFRS dimension. 
 
While in a) the designer task consists just in connecting the 

ALFRS output with DUT input port, in b), c) and d) scenarios 
more care in choosing connections is required. Respectively, 
designers have to  

− replicate the ALFSR outputs to reach the input port width 
− identify the constrained inputs to build the CG and  

connect the ALFRS output to the remaining inputs. 
− identify the constrained inputs to build the CG and  

replicate the ALFRS outputs to drive all the remaining 
inputs. 

 
These three situations are shown in figure 2 where respectively 

w_B > w_ALFSR, w_A < w_ALFSR + w_CG_A and w_C > 
w_ALFSR + w_CG_C. 

The Result Collector is in charge of storing and making the 
results reachable from the outside. It is composed of  

• a set of MISR modules[8-9] 
• an Output Selector module. 
 
The ability of MISR modules to compact information with a 

low percentage of aliasing makes them suitable to store the re-
sults of the test. In our approach we coupled each module under 
test with a MISR: whereas the size of the MISR cannot exceed a 
predefined size, a xor cascade has been used. Each MISR module 
is reachable from the outside by programming the Output Selec-
tor. 

This organization allows reducing the re-design operations and 
supports the reuse of the internal structures: changing ALFSRs 
and MISRs dimension is a trivial task. Only the individuation of 
inputs constraints and the design of the Constraints Generator 
require a bigger effort to designers.  

3.2. Fault coverage and diagnosis ability 
evaluation 

To obtain high fault coverage and guarantee high ability in 
terms of fault location, we identified three steps: 

1. Statement coverage and toggle activity evaluation 
2. Fault coverage measure 
3. Equivalent fault classes computation. 
 
In the first step, pseudo-random patterns are applied to the RTL 

description of the modules composing the logic core and the 
measure of the percent number of VHDL lines executed is per-
formed. Such measure, usually called statement coverage, to-
gether with the calculation of the percent number of variables 
toggled by the patterns, called toggle activity, gives to the de-
signer a first degree of confidence about the effectiveness of the 
generated patterns [10] and can be performed using a simulation 
tool. Until this step, the evaluated patterns can be generated using 
the VHDL description of the Pattern Generator or simply calcu-
lated with ad-hoc tools generating pseudo-random sequences. 
Figure 3 represents the first step.  

The second step refers to the synthesized component and can be 
performed using a fault simulator. In order to obtain reliable 
results, the design to be evaluated in this step should already 

include the Pattern Generator and the MISRs embedded into the 
Result Collector, as the final layout optimization will merge their 
circuitry with that of the device under test.  

 
 
Whereas the fault coverage reached is less than the required, 

three actions can be performed: 
− apply a larger number of patterns 
− modify the ALFSR or MISRs structure  
− redefine the Constraints Generator where included. 
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Fig. 3: Statement coverage and toggle activity evaluation loop. 

 
While the first action does not require any modification in the 

designed circuitry, the number of patterns can be increased only 
until the time for test requirements are not exceeded. In this case, 
the flow backs to the first step with the evaluation of new pat-
terns. This loop, reported in figure 4, ends when the desired fault 
coverage is reached or when exceeding the manufacturing con-
strains. 
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Fig. 4: Statement coverage and toggle activity evaluation loop. 

 
The thirst step aims at reaching high diagnosis ability: this 

characteristic of the performed test can be evaluated by means of 
the size of the equivalent fault classes [11]. Such measure allows 
establishing the precision in terms of fault location provided by 
the analyzed patterns. The size of the equivalent fault classes 
mainly depends on the ability of the chosen patterns to produce a 



different syndrome for every fault possibly affecting the DUT. 
To reach this purpose, a tool able to apply patterns and store the 

circuit response is needed. The collected information, by means 
of the obtained syndromes, can be used to build the so-called 
diagnostic matrix [16], allowing to identify the faults belonging 
to the same equivalent fault class. 

To improve the diagnostic properties of the generated patterns, 
it is possible to operate in two ways: 

− adding test patterns 
− changing the test structure characteristics. 

3.3. The P1500 wrapper module 
The wrapper, shown in Fig. 5, contains the circuitry necessary 

to interface the test processor with the outside in a P1500 compli-
ant fashion, supporting the commands for running the BIST 
operation and accessing to its results. The wrapper is compliant 
with the suggestions of the P1500 standardization group [12]. 
The wrapper can be connected to the outside via a standard TAP. 
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Fig. 5: Details of the Wrapper Architecture. 

 
In addition to the mandatory components we propose the intro-

duction of the following Wrapper Data registers: 
• Wrapper Control Data Register (WCDR): through this 

register the TAP controller sends the commands to the core 
(e.g., core reset, core test start, the Status register read, 
etc.).  

• Wrapper Data Register (WDR): it is an output register. 
The TAP Controller can read the test information stored 
into the status register.  

4. The case study 

We applied the outlined approach to a Reconfigurable Serial 
Low-Density Parity-Checker decoder core [13-15]. This core was 
developed by our institution in the frame of a project involving 
several semiconductor, equipment, and telecom companies; to 
make it more easily usable by core integrators, a test solution was 
required: in the following we give details about the adopted 
solution. 

Low-Density Parity-Check (LDPC) codes are powerful and 
computationally intensive error correction codes, originally pro-
posed by Gallagher [13] and recently rediscovered [14] for a 
number of applications, including Digital Video Broadcasting 
(DVB) and magnetic recording. LDPC codes can be represented 
as a bipartite graph (Fig. 1), where two classes of processing 
elements iteratively exchange information according to the Mes-
sage Passing [14-13] algorithm: Bit Nodes (BN) correspond to 
the codeword symbols, while Check Nodes (CN) are associated 
to the constraints the code poses on the bit nodes in order for 
them to form a valid codeword; at each iteration, the reliability of 

the decoding decisions that can be made on basis of the ex-
changed information is progressively refined. 

Fully and partially parallel solutions for the implementation of 
the decoder exploit the regularity of the bipartite graph mapping 
directly CN’s and BN’s into hardware blocks; graph edges either 
are mapped to proper interconnect infrastructures or are imple-
mented by means of memory banks. The complexity of check and 
bit nodes is strongly related to the number of incoming/outgoing 
edges; additional complexity comes from the requirement of 
supporting different edge numbers that is typical in the most 
powerful, irregular codes. 

Fig. 6: Bipartite graph for an LDPC code  
 
In [15] the implementation of an LDPC decoder is proposed, 

based on the use of a shared memory that emulates the intercon-
nection between BIT_NODEs and CHECK_NODEs. In [15], a 
further implementation is proposed, introducing programmability 
in the architecture proposed in [14]. In this approach, a configur-
able BIT_NODE and a configurable CHECK_NODE are de-
scribed. Their ability consists in emulating more than one mod-
ule, by mapping more “virtual” nodes to the two physically avail-
able processing elements; the interconnections are simulated by 
means of two “interleaving memories” and thanks to its recon-
figurable characteristics, this decoder is able to support codes of 
different sizes and rates, up to a maximum of 512 check nodes 
and 1,024 bit nodes. A CONTROL UNIT is introduced in order 
to manage the memory access and the reconfiguration informa-
tion. The schematic of this enhanced circuitry is reported in 
Figure 7.  Additionally to the use of the showed core in conjunc-
tion with external memories to achieve a serial reconfigurable 
decoder, it can also be adopted as the basic building block for the 
implementation of a fully parallel architecture. 

Fig. 6: Architecture of the Reconfigurable Serial Low Density 
Parity Checker decoder [15]. The BIT_NODE (BN), the 
CHECK_NODE (CN) and the CONTROL_UNIT (CU) are con-
nected to the two interleaved  memories to perform error 
detection and correction during transmission of high data 
volumes 

 
As far as this design is considered, we partitioned the analyzed 

logic core in BIT_NODE, CHECK_NODE and 
CONTROL_UNIT modules. The characteristics of each module 
in terms of input and output port size is reported in table 1. The 
test of the two interleaved memories and the buffers is not con-
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sidered in this paper. 
 

Component Input port size 
[bits] 

Output port size 
[bits] 

BIT_NODE 54 55 
CHECK_NODE 53 53 

CONTROL_UNIT 45 44 
Table 1: Input and output port size in bits. 

The BIST engine has the following structure. The Control Unit 
contains a counter register (pattern_counter) on 12 bits, 
allowing to apply up to 4,096 patterns for each test execution, and 
generates a 2 bits signal connected with the Result Collector, in 
charge of selecting the output to be read. 

The Pattern Generator is equipped with a 20-bit ALFRS mod-
ule and only one Constraints Generator connected both to the 
BIT_NODE and the CHECK_NODE of the serial LDPC while 
the CONTROL UNIT does not need it. The Constraints Genera-
tor manages a 4 bits sized port that internally selects the data path 
into the circuitry: it allows applying a limited number of patterns 
when a small data path is selected, while holding selection values 
that maximize the used circuitry.  

The Result Collector is composed of three 16 bit sized MISR 
modules, each one connected to the DUT outputs through a xor 
cascade, and a Output Selector, whose behavior is driven by the 
Control Unit. 

The total area occupied by the DfT additional logic is reported 
in Tab. 2, and have been worked out by using a commercial tool 
(Synopsys Design Analizer) using an industrial 0.13 µm techno-
logical library. 

The TAM logic (which includes the Wrapper module) repre-
sents a fixed cost necessary to manage the chip-level test. Its area 
overhead can be quantified as the 16% of the global cost of the 
additional core-level test logic. 

 
Component Area  [µm^2] Overhead [%]
Serial LDPC 165,817.88 - 
BIST engine 22,481.63 13.5 

P1500 Wrapper 4,566.94 2.8 
TOTAL 192,866.51 16.4 

Table 2: Area overhead evaluation.  
The fault coverage percentage reached by our approach is re-

ported in table 3 and refers to both Stuck At Faults (SAF) and 
Transition Delay Faults (TDF). Such results have been obtained 
employing a commercial fault injection tool (Synopsys Tetra-
max). In order to provide the reader with reference  figures, we 

also included in the table the data related to the cases in which 
sequential and full scan patterns produced by a commercial 
ATPG tool (again Synopsys Tetramax) are used.  It is important 
to note that these patterns could not be easily applied to the core, 
if embedded in a SoC, while the BIST approach is very suitable 
to deal with this situation. The number of scan cells inserted is 75 
for the BIT_NODE, 803 for  the CHECK_NODE and 42, divided 
in two scan chains including 14 and 28 cells, for the 
CONTROL_UNIT. These values have been calculated using a 
SUN workstation equipped with a SPARC V8 microprocessor 
and the CPU times reported in the above table working at 431.03 
Mhz in the case of the BIST engine approach (at-speed testing) 
and at 100 Mhz (supposed ATE frequency) in the Sequential and 
Full scan approach.  

With respect to the Sequential and Full Scan approaches, the 
use of the BIST approach is desirable for at least the following 
reasons: 

− the fault coverage reached is higher than Sequential 
patterns coverage and comparable with Full Scan  

− the BIST patterns are the same for all modules to be 
tested, so that they can be tested simultaneously 

− the test time is significantly lower for the BIST approach 
than for the full-scan one 

− such patterns are generated and applied one for each 
clock cycle and results read in the end of the execution, 
while Sequential and Full scan patterns have to be sent 
serially by the ATE and results uploaded serially after 
each operation, thus drastically increasing the ATE 
storage requirements 

− the test patterns are applied by the BIST engine at the 
nominal frequency of the circuit while the Sequential and 
Full scan patterns are applied at the ATE frequency that 
could be lower, guaranteeing more efficiency in the fault 
coverage.  

 
In table 4, the measure of the performance reduction in terms of 

frequency lost is reported. This is due to the introduction of the 
BIST engine and the wrapper. This value is compared with the 
ones coming from the analysis of the Sequential and Full Scan 
approach, supposing that: 

− for the Sequential approach, patterns are applied using a 
standard P1500 wrapper 

− for the Sequential approach, patterns are applied using a 
standard P1500 wrapper and introducing into the design 
multiplexed scan cells. 

 

 
Table 3: Fault coverage. 

 

Component BIST 
patterns 

Sequential 
patterns 

Full scan 
patterns 

Fault type SAF TDF SAF TDF SAF TDF 
Faults [#] 7,532 7,532 7,532 7,532 7,836 7,836
FC [%] 97.8 95.6 93.8 84.3 98.5 91.2

clock cycles 4,096 4,096 11,340 16,580 21,248 39,168
  BIT NODE 

CPU time   - - 489 sec 2,628 sec 197 sec 277 sec
Faults [#] 86,104 86,104 86,104 86,104 89,412 89,412
FC [%]  91.6 90.7 82.9 76.4 93.1 87.1

Clock cycles 4,096 4,096 8374 7844 380,064 866,272
  CHECK NODE 

CPU Time - - ~ 54 h ~ 43 h 428 sec 692 sec
Faults [#] 3,038 3,038 3,038 3,038 3,216 3,216
FC [%] 97.5 95.3 89.8 84.0 98.6 91.3

Clock cycles 4,096 4,096 3060 4,860 16,965 27,405
        
   CONTROL UNIT 

CPU time - - 2422 sec 5909 sec 91 sec 123 sec



 Original 
design 

BIST 
engine 

Sequential 
approach 

Full scan 
approach 

frequency 
[MHz] 438.6 431.03 434.14 426.62 

Table 4: Performance reduction for the investigated 
approaches. 

Finally, table 5 shows the size of the equivalent fault classes for 
the three components obtained for the BIST engine, Sequential 
patterns and Full Scan approach applying the number of patterns 
reported in table 2. That result have been obtained exploiting an 
in-home developed tool in C language: this tool is able to build 
and analyze the diagnostic matrix by collecting each fault syn-
dromes obtained by using Synopsys Tetramax as a fault simulator.  

 

Component BIST  
patterns 

Sequential 
patterns 

Full scan 
Patterns 

 Max 
size 

Med 
size 

Max 
size 

Med 
size 

Max 
size 

Med 
size 

BIT_NODE 3 1.2 7 4.4 3 1.6 
CHECK_NODE 4 1.9 12 6.9 7 2.7 
CONTROL_UNIT 2 1.3 8 5.1 2 1.3 

Table 5: Equivalent fault classes maximum and medium size 
obtained by the investigated approach. 

5. Conclusions 

In this paper we presented a case study in which a logic core for 
telecom applications was equipped with test features suitable to 
guarantee a high fault coverage (especially with respect to delay 
faults) and a high modularity and easy integrability into a SoC, 
even from the point of view of testing. 

The adopted approach is based on a BIST engine that is in 
charge of applying test patterns and observing the module behav-
ior. Such BIST engine has been designed to allow high flexibility 
in order to easily adopt the same approach to a large set of differ-
ent core models and easily allow the upload of test results. 
Thanks to the adopted solution, the test can be applied at-speed, 
thus reaching a very high fault coverage with respect to delay 
faults. The proposed architecture exploits the current test stan-
dards interface (IEEE 1149.1 and P1500 standards) in order to 
simplify the design effort. Moreover, the P1500 wrapper eases 
the integration of the core into the overall SoC test strategy. The 
test architecture is transparent to the core user, thus guaranteeing 
the protection of the intellectual property. 
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