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Abstract
Objectives—We recommend confidence intervals as measures of precision for reliability
coefficients, regression modeling as supplements for such omnibus reliability statistics, and
unreliability detection as a goal of reliability testing distinct from reliability inference.

Methods—Illustrative reliability analyses are conducted of measures selected from a study of
clinical features associated with urinary tract infection in older nursing home residents.

Results—Standard methods for reliability testing, e.g., kappa coefficients, are often inappropriate
for small samples and exact methods or descriptive reliability statistics are viable alternatives.

Discussion—Supplementation of omnibus statistics by loglinear regression modeling is especially
appropriate for aging research because it facilitates tests of marginal homogeneity and comparisons
of reliability results for relatively young and old subgroups. Latent class regression analysis is useful
for older samples because multifactorial health conditions are often measured in multiple ways and
assessment of their reliability can be integrated, granting certain assumptions, with validity
assessment.
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Introduction
Reliability testing in clinical aging research includes comparisons of results of measurements
given on separate occasions test—retest reliability—and measurements obtained by different
raters—inter-rater reliability. Such testing seeks to determine whether results obtained by
measurement instruments will likely be replicated. Cohen’s kappa coefficient is most often
used for categorical measurements and the intraclass correlation coefficient for continuous
measurement scales (Cohen, 1960; Fisher, 1925). The objectives of this article are three-fold:
to recommend that confidence intervals as measures of precision accompany reliability
coefficients, to indicate that regression modeling can overcome some limitations of these
omnibus reliability statistics, and to distinguish between reliability inference and unreliability
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detection as goals of reliability testing. Clarity about these three points will allow us to address
practical problems that arise in testing reliability in an illustrative study of clinical features
associated with urinary tract infection in older nursing home residents.

Confidence Intervals Recommended
Even conscientiously conducted reliability studies that compare results to some minimally
acceptable level of reliability often fail to include measures of precision with kappa or intraclass
correlation coefficients (Gregson et al., 2000; Wolinsky, Miller, Andresen, Malmstrom, &
Miller, 2005). A kappa coefficient of 0.45 alone does not provide sufficient evidence to infer
that the tested measurement instrument satisfies the often-cited Landis and Koch level of >0.40
for “moderate” reliability (Landis & Koch, 1977:165). Also required is a 90% confidence
interval whose lower bound is greater than 0.4, thereby documenting that a null hypothesis is
rejected for a one-sided significance level of 0.05. If a measurement instrument has a kappa
value of 0.45 but a confidence interval whose lower bound extends considerably below 0.40,
then the next study participant randomly drawn from the same population might be measured
with less than moderate reliability.

Minimum acceptable values of an intraclass correlation coefficient have been discussed. Fleiss
describes values from 0.40 to 0.75 as “fair to good”(Fleiss, 1986:7); Streiner and Norman
recommend values > 0.75 for continuous scales used in health research (Streiner & Norman,
1995). (These criterial levels should be used with care and common sense; a recent article
described them as “hopelessly arbitrary.”(de Mast, 2007:152)) Flack and colleagues and Walter
and colleagues have provided sample size formulae for the kappa and intraclass correlation
coefficients, respectively, so that reliability studies can be correctly powered (Flack, Afifi,
Lachenbruch, & Schouten, 1988; Walter, Eliasziw, & Donner, 1998) (Table 1).

The practice of not reporting measures of precision for reliability test results originates,
perhaps, from the irrelevance of p-values from hypothesis tests whose null values are zero,
e.g., reliability assumed to be only marginally greater than chance is hardly worth the effort to
assess. Measures of precision, such as confidence intervals, are not required for Cronbach’s
alpha coefficient because it is mathematically already the lower bound of a reliability
coefficient (Cronbach, 1951). Its reporting may have set an historical precedent for reporting
kappa coefficients and intraclass correlation coefficients. Whatever the origin of the practice
might be, when these kappa and intraclass correlation coefficients are used for statistical
inference they should be accompanied by confidence intervals.

Omnibus Statistics
Kappa and intraclass correlation coefficients can be described as “omnibus quantities” because
they summarize several dimensions of relevant data in a single number, and, thus, this same
number can represent a plurality of dimensional configurations (van Belle, 2002:6–7:).
(Compare Tables 2a and 2b.) This omnibus status makes them easy to calculate and to interpret;
however, it also has limitations. Reliability studies often present results for several
measurement instruments and at least implicitly claim to indicate which of the tested
instruments are most reliable. Even when accompanied by suitable measures of precision,
kappa coefficients, and intraclass correlation coefficients for ordinal data (which are
approximately equivalent to kappa values when quadratically weighted (Fleiss & Cohen,
1973)), cannot adequately discriminate between the reliability of two instruments unless an
unrealistic presupposition is met. This presupposition posits that the distributions of what is
being measured are approximately the same for the two tables (Thompson & Walter, 1988).
Even for a single table, if marginal totals (summations across specific rows or columns in a
contingency table representing agreement data) vary from one rater to another, the kappa
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coefficient may take on different values even though the total proportion of agreement remains
the same (Feinstein & Cicchetti, 1990).

In discussing the ambiguities introduced by kappa coefficients with unbalanced distributions,
i.e., the prevalence of the condition of interest differs for two ratings summarized in the same
table, Cicchetti and Feinstein recommend supplementing reports of the coefficient with the
proportion of agreement for each level of the measurement variable (Cicchetti & Feinstein,
1990). (Proportions of positive and negative agreement discriminate between Tables 2a and
2b for which the kappa coefficients are the same; also, they suggest that the kappa value from
Table 2c is more readily comparable to the kappa value for Table 2b than for Table 2a.)
Although proportions of agreement are convenient and valuable, supplementing omnibus
reliability statistics with relevant regression modeling techniques is a more informative and
more general approach.

Reliability and Regression Modeling
In the case of the intraclass correlation coefficient, the advent of linear mixed effect models
allows for its calculation from a single regression model. It can be obtained as an item in the
model’s correlation matrix (SAS/STAT User’s Guide, Version 9.1.3, 2005). It provides the
flexibility of calculating different versions of the intraclass correlation coefficient, ones for
only randomly selected study participant samples, ones with only randomly selected raters,
and ones with random terms for both study participants and raters. Confidence intervals and
subgroup analyses can easily be calculated. Two other regression modeling techniques are
especially helpful for evaluating reliability for nominal and ordinal scales.

Loglinear Regression Models
Loglinear regression models have been used to analyze rater agreement since the mid 1980’s
(Tanner & Young, 1985a, , 1985b). Loglinear models are used instead of standard linear models
because agreement data occur as discrete counts rather than on continuous scales. Counts can
be treated as independent observations from a Poisson distribution. Loglinear models lend
themselves to modeling agreement beyond chance because their simplest form—the
independence model—assumes that the mean values of cells in a 2 × 2 table, mij, can be
estimated by the product of the table sample size, n, and the probabilities of counts occurring
in a specified row, πi+, and column, π+j. The natural logarithm of the mean number of counts
is used because this transformation makes the above multiplicative relationship additive, i.e.,
linear in the parameters. Modifications of this model attempt to capture patterns of agreement
beyond chance.

Results from loglinear agreement models overcome the shortcomings of the kappa omnibus
reliability statistic in several ways. Its primary measure of association, the agreement odds
ratio, is more discriminating, e.g., it is less liable to give the same numerical value for different
data configurations. (Note the distinct odds ratios in Tables 2a–2c; Table 2d shows odds ratios
to be invariant under transposition of both rows and columns.) The agreement odds ratio for
two raters can be defined in an analogous way to an odds ratio used in cohort studies. Assuming
for pairs of subjects that each rater classifies them in one of two categories, i and j:

Like the kappa and intraclass correlation coefficients, larger values of the agreement odds ratio
indicates that observers are more likely to agree for the given pair of categories (Agresti,
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2002). (Although the agreement odds ratio is interpretable in a way analogous to traditional
odds ratios it is actually calculated differently.) When there are only two response categories,
the agreement odds ratio is calculated from a parameter δ that represents the extent of exact
agreement beyond chance. For models with ordinal response categories a second parameter
(β) can be estimated that represents beyond chance agreement due to a linear association
between ratings obtained from two raters. Thus, in these models agreement can not only be
decomposed into agreement due to chance and beyond chance agreement, but beyond chance
agreement is further decomposed into parts attributable to exact agreement and linear
association (Velema, Blettner, Restrepo, & Munoz, 1991).

Table 3a shows an agreement table relevant to reliability testing of a measure of ease of
distraction administered to an older nursing home population. It is one of several variables
designed to measure changes in mental status that are thought to be clinical features of urinary
tract infections in this population. The weighted (quadratic) kappa coefficient for this table is
0.34 (90% CI 0.12, 0.57). This is not an acceptable level of reliability and one might be
interested in the nature and sources of the unreliability. One might assess the marginal
homogeneity of the agreement table, i.e., whether the probability of falling in any category of
the row classification is equal to the probability of falling in any category of the corresponding
column classification. Intuitively, it tests whether disagreements—cell counts occurring off of
the left-to-right table diagonal—occur in a differential pattern that might be amenable to
correction by further training, or in a more random way that might simply reflect a limitation
of the measurement instrument.

Two-by-two tables can be tested for marginal homogeneity using a McNemar test for symmetry
(McNemar, 1947). Rejection of the null hypothesis of symmetry in this case implies rejection
of a null hypothesis of marginal homogeneity and this indicates that differential disagreement
occurs to an extent statistically significant at some specified level, usually 0.05. This approach
to testing marginal homogeneity is applicable to 2 × 2 tables but not for larger square tables.
Loglinear regression techniques provide a more general way to test for marginal homogeneity.
A loglinear model can be fit that assumes that counts occurring off of the main diagonal of a
square contingency table are symmetrically distributed. A likelihood ratio chi-square statistic
measures model goodness of fit. With only a slight modification a second loglinear model can
be fit that relaxes the symmetry assumption to allow for marginal heterogeneity (Darroch &
McCloud, 1986). Comparison of the likelihood ratio chi-square from this quasi-symmetry
model and the above symmetry model allows for a statistical test of a null hypothesis of
marginal homogeneity. Rejection of this null hypothesis indicates that differential
disagreement between raters occurs in a way that is statistically significant. For Table 3a the
symmetry model yields a likelihood ratio chi-square statistic of 4.53 with 3 degrees of freedom
(df), and the quasi-symmetry model yields values of 0.19 with 1 df. Hence, upon subtracting
the latter values from the former, a chi-square test of 4.34 for 2 df has a p-value of 0.114. In
some cases, especially for small sample sizes, results will be questionable due to poor fitting
models; this topic will be addressed subsequently.

A second issue that a clinical researcher might want to investigate for the ease of distraction
measure is whether the reliability of this instrument differs for two subgroups. Often of interest
are possible differences in reliability when the younger versus the older portions of the cohort
are compared. Tables 3b1 and 3b2 represent agreement data for two age-related subgroups.
The weighted kappa for the younger half (65–86) is 0.27 (90% CI 0.00, 0.53) and it is 0.47
(90% CI 0.17, 0.77) for the older half (87+). A test for the equality of the two kappa coefficients
fails to reject the null hypothesis of equality (χ2 = 0.68, df=1, p=0.411). Two factors require
that this test for equality be interpreted with caution. First, the marginal distributions of the
two age-related agreement tables are different and so comparison of the two coefficients is
problematic. Second, the small sample size makes the test underpowered. Geriatric researchers
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are also often interested in knowing whether reliability differs for proxy responses versus older
study participant responses. A similar subgroup analysis would be insightful for investigating
this issue.

An advantage of the loglinear regression approach is that it can incorporate a binary covariate
into the model that allows for statistical inferences as to whether the reliability of an instrument
differs for two groups (Graham & Jackson, 2000). It allows for the calculation of agreement
odds ratios for pairs of levels in the measurement scale and thereby avoids some of the
ambiguity in comparing kappa coefficients of differently distributed agreement tables.

Latent Class Regression Models
The dependence of the kappa coefficient to imbalances in marginal distributions of agreement
data motivates its supplementation with additional information that can be provided effectively
by loglinear regression models. A second consideration motivates supplementation of omnibus
reliability statistics with latent class regression models. Testing a measurement instrument for
reliability pragmatically implicates that it successfully measures what it is intended to measure;
it implicates validity understood as diagnostic accuracy. An instrument that consistently misses
its mark is little redeemed by the consistency of its errors. Validity is difficult to test statistically.
Latent class models provide some insight.

Latent variable regression models (also describable as finite mixture models) differ from
traditional regression models by containing parameters that describe unobserved variables.
When modeling rater agreement, they model the joint distribution of ratings as a mixture of
distributions for levels of a latent variable. They effectively relax the traditional assumption
that the same probability model holds for the entirety of the data set being analyzed. In clinical
reliability analyses, the latent variable might be disease severity such that the rating scale posits
certain disease thresholds that correspond to rating levels. These thresholds might be
understood to mark points on continuum of disease severity (latent trait models) or to specify
transitions between homogenous stages of disease progression (latent class models). The
simplest case of a latent class model posits two classes of a health condition—its presence and
absence (John S. Uebersax, 1992; J. S. Uebersax & Grove, 1990).

Measurement error in this context is relative and its assessment is based on an important
assumption and a key data requirement. It is assumed that if two ratings disagree one is correct
and the other incorrect, and that if a plurality of ratings gives the same result that this result is
correct. These assumptions allow some assessment of validity in the absence of a definitive
criterion, but obviously require that there be data from at least three, and preferably more,
raters. Some latent variable models permit inferences about rating sensitivity, specificity, and
the area under a Receiver Operating Characteristic (ROC) curve. These model results have the
advantage of being easily interpretable in a clinical context and readily comparable to other
relevant information.

A useful application of latent class modeling addresses the multifactorial nature of many health
conditions among older persons. For instance, ease of distraction is not the only dimension of
a change in mental status that might be relevant to diagnosing a urinary tract infection. Others
are measures of altered perception, disorganized speech, restlessness, lethargy, and daily
mental variability. The latent classes of change and no change in mental status are identified
as a function of the covariances among the six variables (Lanza, 2007) (Table 4). The lethargy
and daily mental variability variables are least sensitive, with the lethargy variable also having
the worst specificity. (Confidence intervals should likewise accompany measures of sensitivity
and specificity (Ely et al., 2001).) This suggests that the lethargy variable is poorly measuring
the change in mental status that one intends to measure with the other variables and might best
be deleted from the group in study analyses. Note that the ease of distraction has fairly strong
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sensitivity and specificity results despite its apparently limited inter-rater reliability. Using
regression techniques like latent class analysis provides additional perspectives on
measurement instruments and makes possible informed discrimination in instrument selection
and/or correction.

Reliability Inference and Unreliability Detection
In formal reliability studies in which inferences are drawn, statistics like the kappa and
intraclass correlation coefficients should be accompanied by confidence intervals. Evaluation
of measurement reliability, however, is often undertaken for more practical purposes such as
detecting unreliability in instrument administration that might be corrected by further training
or scale modification. In clinical aging research small sample sizes are often used for such
practical purposes, rendering statistically significant results unlikely. What is especially
important in these circumstances is to avoid bias introduced by small sample sizes. Exact
versions of kappa coefficients are available as are exact tests of marginal homogeneity
(StatXact User’s Guide, Version 7, 2006). (For data in Table 3a exact methods yield
substantively similar analytic results as reported above.) Unbalanced distributions can be
especially pronounced in small agreement tables and thereby generate kappa coefficients that
are hard to interpret. Alternatives to the kappa might be sought that are less influenced by such
imbalances and so more easily interpreted (Brennan & Prediger, 1981); (Munoz & Bangdiwala,
1997).

Finally, descriptive reliability statistics might have to suffice for small samples. Using the
percentage of overall agreement Byrt and colleagues propose for 2-by-2 tables a “prevalence-
adjusted and bias-adjusted kappa” (PABAK) that is equal to two times the overall percentage
of agreement minus one (Byrt et al., 1993). They also propose a bias index for such tables that
provides insight comparable to a test for marginal homogeneity and a prevalence index that
integrates information from percentages of positive and negative agreement. These descriptive
statistics sometimes yield results that concur with the kappa coefficient (Table 5a) and in other
cases suggest different reliability results (Table 5b.) Use of such simple descriptive statistics
is preferable to inferential methods in circumstances for which the latter are not applicable.
This point emphasizes that the goal of reliability testing, being the effective selection and
application of measurement instruments, should be pursued by different methods as
circumstances require.
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Table 1
Power Tables for the Kappa Coefficient (κ) and the Intraclass Correlation Coefficient (ICC)

Power Table for Kappa Coefficients with Two Observations per Subject for a Binary Variable with .40 Prevalence Using a One-Sided Test at Alpha =
0.05 and with a κ = 0.40 Null Hypothesis*

Observed κ

Sample Size .60 .70 .80 .90

20 .22 .40 .66 .94

30 .30 .56 .86 .99

50 .44 .79 .98 .99

100 .72 .98 .99 .99

Power Table for Intraclass Correlation Coefficients with Two Observations per Subject Using a One-Sided Test at Alpha = 0.05 and with a ICC = 0.75
Null Hypothesis#

Observed ICC

Sample Size .80 .85 .90 .95

20 .13 .34 .70 .98

30 .16 .45 .85 .99

50 .22 .63 .97 .99

100 .35 .88 .99 .99

*
(Nee, 1998)

#
(Hinze, 2004)
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Table 2
Comparison of the Kappa Coefficient (κ) and the Odds Ratio (OR) as Omnibus Statistics in Agreement Tables

Table 2a

Rater 2

Rater 1 35 15 50

15 35 50

50 50

κ = 0.40 (90% CI* 0.25, 0.55)

OR = 5.44

proportion + agreed = 0.70 = 2a/[N + (a – d)]#

proportion − agreed = 0.70 = 2d/[N − (a – d)]#

Table 2b

45 5 50

25 25 50

70 30

κ = 0.40 (90% CI 0.26, 0.54)

OR = 9.00

proportion + agreed = 0.75

proportion − agreed = 0.625

Table 2c

45 15 60

15 25 40

60 40

κ = 0.375 (90% CI* 0.22, 0.53)

OR = 5.00

proportion + agreed = 0.75

proportion − agreed = 0.625

Table 2d

25 15 40

15 45 60

40 60

κ = 0.375 (90% CI 0.22, 0.53)

OR = 5.00

proportion + agreed = 0.625

proportion − agreed = 0.75

*
CI = Confidence Interval

#
(Cicchetti & Feinstein, 1990) Agreement tables are lettered consecutively by rows, from left to right and top to bottom.
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Table 3
Subgroup Decomposition by Age of a 3 × 3 Agreement Table for a Measure of Ease of Distraction (N=30)

Table 3a

Rater 2

Rater 1 8 6 1

2 9 3

0 1 0

Table 3b1: Age ≤ 86

3 4 1

0 4 2

0 1 0

Table 3b2: Age > 86

5 2 0

2 5 1

0 0 0
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Table 4
Results of a Latent Class Analysis of Six Change of Mental Status Variables (N = 62)

Latent Class Prevalence Estimates1

% No Change % Change

0.65 0.35

Diagnostic Accuracy Estimates1

Variable Sensitivity Specificity

(95% Confidence Interval) (95% Confidence Interval)

Ease of Distraction 0.78 (0.61, 0.95) 0.87 (0.77, 0.97)

Altered Perception 0.73 (0.55, 0.92) 0.87 (0.77, 0.97)

Disorganized Speech 0.88 (0.75, 1.00) 0.98 (0.94, 1.00)

Restlessness 0.71 (0.52, 0.90) 0.86 (0.75, 0.97)

Lethargy 0.63 (0.43, 0.83) 0.77 (0.64, 0.90)

Daily Mental Variability 0.64 (0.44, 0.84) 0.88 (0.78, 0.98)

1
Likelihood ratio chi-square statistic = 57.73 with 50 degrees of freedom and a p-value of 0.211, so there is a failure to reject the null hypothesis of

goodness of fit.
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Table 5
Descriptive Reliability Statistics for Two Urine-Related Measures (N = 20)

Table 5a: Change in Odor

5 1

1 13

PABAK = 0.80 = [(2*(a+d)/N)−1]#

Bias Index = 0.00 = (b − c)/N#

Prevalence Index = − 0.40 = (a − d)/N#

Kappa = 0.76 (90% CI* 0.50, 1.00)

Table 5b: Change in Incontinence

0 2

1 17

PABAK = 0.70

Bias Index = 0.05

Prevalence Index = − 0.85

Kappa = − 0.07 (90% CI - 0.16, 0.01)

#
(Byrt, Bishop, & Carlin, 1993) Agreement tables are lettered consecutively by rows, from left to right and top to bottom.

*
CI = Confidence Interval

J Aging Health. Author manuscript; available in PMC 2009 September 29.


