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APPENDIX B: BAYESIAN LEARNING ALGORITHM IN INCOMPLETE INFORMATION

MODELS

IN THIS APPENDIX, we describe the algorithm for computing the actions in the complete
and incomplete information Bayesian model.

B.1. Setup

We follow the notation in Osborne and Rubinstein (1994) and Geanakoplos (1994),
modeling agents’ information in the experiment by means of dynamically consistent models
of action and knowledge (DCMAK), a natural multi-period generalization of Aumann
(1976). Following Geanakoplos (1994), a DCMAK consists of a set of states of the world
ω ∈ Ω, information functions Pi�t : Ω → 2Ω, and action functions ai�t : Ω → {0�1}. In what
follows, we define these objects for our experimental setup, which we use to calculate the
predicted behavior of Bayesian agents ai�t(ω).

B.2. States of the World

In both the complete and incomplete information models, we model agents’ informa-
tion as partitions over ω ∈ Ω, where ω = (ω1�ω2� � � � �ωn) is the vector of agents’ ini-
tial private information. In the incomplete information model, we model the state of the
world as ωi = (si�ηi), where si ∈ {0�1} is the color of the observed ball, and ηi ∈ {0�1}
denotes agent i’s type: she is either a Bayesian type (ηi = 1) who guesses the most likely
state following Bayes’s rule, or a DeGroot agent (ηi = 0) who decides her guess based
on an average of her neighbors’ and own previous guesses. Both si and ηi are drawn i.i.d.
across agents and types and signals are independent of each other as well. Bayesian agents
have a common prior belief over states ω ∈ Ω, conditional on the realization of θ ∈ {0�1}
(i.e., which bag has been chosen), which we denote by ρ(ω | θ). Then

ρ(s�η | θ) := p
∑

j sj

θ (1 −pθ)
n−

∑
j sj

[
π

∑
j ηj(1 −π)n−

∑
j ηj

]
� (B.1)
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where π := P(ηi = 1). The set of all type configurations is denoted by H = {0�1}n, and in
this model, Ω := S ×H = {0�1}n × {0�1}n.

Let pθ = P(si = 1 | θ). In our experiment, pθ = 5/7 if θ = 1 and pθ = 2/7 if θ = 0.

B.3. Recursive Definition of Information and Action Functions

The function Pi�t(ω) ⊆Ω denotes the information set of agent i at round t, under state
ω. At round t = 1, agent i only observes ωi out of state ω, and hence, her information set
is

Pi�1(ω) :=
{
ω′ ∈ Ω :ω′

i =ωi

}
� (B.2)

In words, the possible states of the world are those compatible with the private informa-
tion she has received (which includes her signal si ∈ {0�1} and her type).

Based on this information, all agents initially choose to match their signal; that is,

ai�1(ω) := si� (B.3)

For t > 1, we compute Pi�t(ω) and ai�t(ω) inductively, for each ω ∈ Ω. In our experi-
mental setup, at round t, agent i observes all the actions taken by her neighbors j ∈ N(i)
(including herself) up to s = t − 1. Therefore, the states of the world that are consistent
with agent i’s observations (i.e., her information set) are

Pi�t(ω) :=
{
ω′ ∈ Ω :ω′

i = ωi and aj�s

(
ω′) = aj�s(ω) for all j ∈ N(i)� s ≤ t − 1

}
� (B.4)

Clearly, we have Pi�t(ω) ⊆ Pi�t−1(ω) for all i�ω ∈ Ω (i.e., Pi�t(·) corresponds to a filtra-
tion).1 The round-t action function ai�t(ω) is then given by

ai�t(ω) :=

⎧
⎪⎨
⎪⎩

1

{
Ii�t(ω) >

1

2

}
if Ii�t(ω) �=

1

2
�

ai�t−1(ω) if Ii�t(ω) =
1

2
�

(B.5)

where Ii�t(ω) is the “belief index” at state ω, which depends on the agents’ type. If agent
i is Bayesian (i.e., under the complete information model, or if ηi = 1 in the incomplete
information model), then Ii�t(ω) := P(θ = 1 | Pi�t(ω)), which is calculated using Bayes rule
conditioning on the event Pi�t(ω):

P
(
θ = 1 | Pi�t(ω)

)
:=

∑

ω′∈Pi�t (ω)

ρ
(
ω′ | θ = 1

)

∑

ω′∈Pi�t (ω)

ρ
(
ω′ | θ = 1

)
+ ρ

(
ω′ | θ = 0

) � (B.6)

When i is not Bayesian at ω, then Ii�t(ω) :=
∑n

j=1 Tijaj�t−1(ω), where [Tij]ij are the
DeGroot weights.

1We can also define Pi�t recursively, starting at Pi�1 as in (B.2), and for t ≥ 1 let Pi�t(ω) := Pi�t−1(ω) ∩ {ω′ ∈
Ω : aj�t−1(ω

′)= aj�t−1(ω
′) for all j ∈N(i)}.
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B.4. Numerical Implementation

The algorithm used is based on the inductive step defined above, calculating iteratively
the objects Pi�t(ω) and ai�t(ω) for all i, t and ω.

ALGORITHM 1—Bayesian Learning Algorithm:
Inputs:

1. An n-person network G= (V �E) with adjacency matrix An×n;
2. A row stochastic matrix of DeGroot weights Tn×n; and
3. Probability π ∈ [0�1].

Output: Information and action functions Pi�t(ω) and ai�t(ω).
Step 1: Initialize algorithm by defining:
1. State space Ω= S ×H = {ω = (s�η) where s ∈ S := {0�1}n�η ∈H := {0�1}n};
2. Measures ρ(ω | θ) = ρ(s�η | θ) according to (B.1), for θ ∈ {0�1}; and
3. Information functions Pi�t(ω) and actions ai�t(ω) according to (B.2) and (B.3) for all

i = 1� � � � n and ω ∈ Ω.
Step t > 1: Given (Pi�s(ω)�ai�s(ω))i=1�����n�s=1�����t−1�ω∈Ω, calculate Pi�t(ω) and ai�t(ω) for all i
and ω ∈ Ω according to (B.4) and (B.5), where Ii�t(ω) = P(θ = 1 | Pi�t(ω)) if ηi = 1 and
Ii�t(ω) =

∑
j Tijaj�t(ω) if ηi = 0.

It is worth noting that an alternative way of modeling the knowledge structure is by
including the true state θ in the description of the state of the world; that is, define ω =
(θ� s) in the complete information case, and ω = (θ� s�η) in the incomplete information
case, which would need the definition of just one common prior ρ(ω), instead of having
to define it conditional on θ. While this would perhaps be a better fit for most epistemic
models, the description of the algorithm is slightly easier in our model, given the fact that
ω = s in the complete information model and ω = (s�η) in the incomplete information
models are, respectively, sufficient statistics for the actions sequence of players, since θ
is never in any information set of any of the players, significantly reducing the relevant
state space. In fact, these are the minimal state spaces we can consider, exactly because
of sufficiency.

APPENDIX C: IMPLICATIONS FOR REAL-WORLD NETWORKS

The above results show that whether asymptotic efficiency is reached or not depends
on the structure of networks in question. In this section, we explore real-world network
data to assess whether the problems due to coarse DeGroot learning might be a concern
in real-world network settings.

We consider data from Banerjee, Chandrasekhar, Duflo, and Jackson (2019) Wave 2
sample consisting of detailed network data in 75 villages in Karnataka, India. We use
graphs constructed from the links through which information is transmitted between
households in the networks.

We use the results in Section 2.4.2 and Corollary 1. For every graph G in the sample, we
compute the second eigenvalue of the Laplacian: λ2(L(G)). Recall that if λ2(L(G)) > 1

2
,

then the graph cannot have any clans.2

We then simulate a learning model. We assume every agent is DeGroot operating in
our coarse communication environment where agents can only communicate their best

2We use the bound, as counting the number of clans is an NP-hard problem.
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FIGURE 4.—Share of households stuck in each village plotted against λ2(L(G)) which bounds the conduc-
tance of the graph. Larger values of λ2(G) correspond to greater expansiveness. We present results from 200
simulations per village, with p = 0�6 and T = 200.

guesses in every period. This is motivated both by the fact that we have found a very low
share of Bayesian agents in our experiment in the Indian village context but also by the
fact that simulating the incomplete information model is an NP-hard problem and we
have a large number of agents, rendering this infeasible. The coarse DeGroot model here
sets p= 0�6 and we run 200 simulations per village.

Figure 4 presents the results. First, observe that no value of λ2(L(G)) exceeds 0.4, let

alone
√

2
2

, and so every village can have at least a clan. In fact, the values of λ2(L(G)) can
be quite low, and while this does not guarantee clan presence of course, it is suggestive.

Second, we find that the share stuck is high. Panel A shows that the fraction of villagers
stuck can range as high as over 45% for villages with very low expansiveness, and, across
the range of expansiveness that we see in the data, the average share of nodes stuck re-
mains between 20% and 25%. Importantly, the share of villagers stuck is decreasing in
the expansiveness of the village network.

Third, we look at the share of agents stuck among those who initially received an in-
correct signal. This directly measures the share of agents who failed to learn. We see that
this can be up to nearly a 60% share stuck, and the average is around 30%. As before,
the share of villagers that fail to learn is decreasing in the expansiveness of the village
network.

Taken together, the results suggest that real-world networks have significant clan pres-
ence. Furthermore, nodes have a large propensity to fall into misinformation traps, and
especially so when village networks have low expansiveness.

APPENDIX D: CONSISTENCY OF STRUCTURAL ESTIMATION

D.1. Setup

There are V villages, each with n individuals who are arranged in a network. Our
asymptotic sequence will take V → ∞.3

3In what follows, we use the terminology of our experiment in India but we could just as well have v index
session with a total of V sessions.
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Every network of n individuals will play a learning game as follows. Each of n indi-
viduals has a type (Bayesian or DeGroot), so ηi ∈ {B�D}. This type is drawn i.i.d. with
probability π = P(ηi = B) before the start of the game. This is commonly known by all
agents.4

Our goal is to estimate π from the data generated in our experiment.
At time 0, there is a vector of binary signals s = (s1� � � � � sn) drawn i.i.d. conditional on

the state (θ ∈ {0�1}). Agents are trying to learn θ. The signals are distributed

si =

{
θ with probability p= 5/7�

1 − θ with probability 1 −p�

The agents are engaging in a learning task wherein in every period, given the history,
they take their best guess about the state of the world (1 or 0). Agents observe all their
own previous actions as well as those of their network neighbors from prior periods. The
type space here is therefore the cross between agent type (Bayes or DeGroot) and signal
endowment. Let ω = (η� s). Note that the most information an agent could theoretically
use to assess the value of θ is (s1� � � � � sn).

In every period τ, there is an action taken by i, a⋆
iτ. The type of the agent and the history

determine the action. Given a history At−1 = (aiτ)
n�t−1
i=1�τ=1, there is a prescribed action under

the model of behavior which can depend on the agent’s type ηi, the history of observed
play, and the prior probability that an agent is Bayesian:5

a⋆
it

(
At−1;η�π

)
�

Then, given the prescribed option, the observed data for the econometrician (and agents)
are

ait =

{
a⋆
it with probability 1 − ǫ�

1 − a⋆
it with probability ǫ�

for any t = 2� � � � �T . Note that the history is the history of observed actions, which can dif-
fer from the prescribed action. We assume that this mistake is not internalized by agents.
For the network-level approach, we can take any T ≥ 3, whereas for the individual-level
approach, assume T = 3.6

The matrix AT
v = [ait�v] is the data set for a given village v. Suppressing v until it is

needed, the likelihood is

L
(
π�ǫ;AT

)
= P

(
AT |π�ǫ

)
= P

(
aT |AT−1�π�ǫ

)
· P

(
aT−1|AT−2�π�ǫ

)
· · ·P(a1|π�ǫ)�

Notice that P(a1|π) and P(a2|π) are both independent of π, because they are indepen-
dent of η: in period 1, every agent plays their signal, and in period 2, every agent plays the
majority (subject to a fixed tie breaking rule).

4Note that DeGroot agents are mechanical and do not use this information so it really matters for Bayesian
agents.

5In the network-level approach, this is a⋆
it(A

t−1;η�π) = a⋆
it((ai0)

n
i=1;η�π), and in the individual-level ap-

proach, this is a⋆
it(A

t−1;η�π) = a⋆
it(A

t−1
i ;ηi�π).

6As discussed in the text, we say that the model is defined until the first t at which some i encounters a zero
probability information set, which we denoted as T ⋆. This cannot happen at T = 3, so for simplicity, consider
this to be the case which defines a valid sample from which to construct a consistent estimator.
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D.2. Estimation of ǫ

Observe that for any graph v for any node i such that the majority of their neighbors
and their own signal is unique, both the Bayes and DeGroot models, irrespective of π,
prescribe the majority. Therefore, recalling that N∗

i = {j : gij = 1} ∪ {i},

ǫ̂ :=

∑

v

∑

j

1
{
aj2 �= majority

(
aj1 : j ∈N∗

i

)}
· 1

{
unique majority

(
aj1 : j ∈N∗

i

)}

∑

v

∑

j

1
{
unique majority

(
aj1 : j ∈ N∗

i

)} �

By standard arguments, ǫ̂ −→p ǫ and
√
V ǫ̂−ǫ

ǫ̂(1−ǫ̂)
� N (0�1), since this is just a set of

Bernoulli trials.

D.3. Estimation of π

For simplicity of exposition, we take ǫ as known, though in practice this will be a two-
step estimator.

We can now consider

L
(
π;AT � ǫ

)
=

T∏

t=3

P
(
at |At−1�π�ǫ

)
�

It is useful to expand the term noting that A1 = s,

P
(
at |At−1�π�ǫ

)
=

n∏

i=1

P
(
ait |At−1�π�ǫ

)
=

n∏

i=1

∑

η

P
(
ait |At−1�η�π�ǫ

)
P(η|π)

by independence and then

P
(
ait |At−1�η�π�ǫ

)
= 1

{
ait = a⋆

it

}
P
(
ait = a⋆

it |a
⋆
it

(
At−1

)
�At−1�η�π�ǫ

)
P
(
a⋆
it |A

t−1�η�π�ǫ
)

+ 1
{
ait �= a⋆

it

}
P
(
ait �= a⋆

it |a
⋆
it

(
At−1

)
�At−1�η�π�ǫ

)
P
(
a⋆
it |A

t−1�η�π�ǫ
)

= 1
{
ait = a⋆

it

(
At−1;η�π

)}
· (1 − ǫ)+ 1

{
ait �= a⋆

it

(
At−1;η�π

)}
· ǫ�

Let xit = 1{ait = a⋆
it(A

t−1;η�π)}, which computes whether the observed action matches
that which was prescribed by the model given the history, type vector, and parameter
value. So,7

P
(
at |At−1�π�ǫ

)
=

n∏

i=1

∑

η

(1 − ǫ)xitǫ1−xitP(η|π)�

7It is worth noting that if we could pass the logarithm, then this is

T∑

t=3

n∑

i=1

∑

η

(
xit

[
At−1;η�π

]
log(1 − ǫ)+

(
1 − xit

[
At−1;η�π

])
logǫ

)
· P(η|π)�

and for small ǫ this is a reweighted divergence.
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Recalling xit = xit[At−1;η�π], we can consider the log likelihood for a given v,

ℓv
(
π;AT � ǫ

)
=

T∑

t=3

n∑

i=1

log

{∑

η

(1 − ǫ)xit [A
t−1;η�π]ǫ1−xit [At−1;η�π] · P(η|π)

}
�

And, since villages are independent, the full log likelihood is

ℓ
(
π;AT � ǫ

)
=

V∑

v=1

T∑

t=3

n∑

i=1

log

{∑

η

(1 − ǫ)xit [A
t−1;η�π]ǫ1−xit [At−1;η�π] · P(η|π)

}
�

Then, let us define

log f (Av|π) :=
T∑

t=3

n∑

i=1

log

{∑

η

(1 − ǫ)xit [A
t−1;η�π]ǫ1−xit [At−1;η�π] · P(η|π)

}
�

D.4. Consistency of π̂

In what follows, for simplicity assume that ǫ is known. Standard arguments will allow
us to extend the below to joint consistency. Now we demonstrate that

π̂ := argmax
π

Q̂V (π) := argmax
π

1

V

∑

v

log f (Av|π)

generates a consistent estimator of π. The limit object is Q0(π) := E[log f (Av|π)].

PROPOSITION D.1: Under the above assumptions, π̂ →p π0 as V → ∞.

PROOF: This serves only as a sketch, but follows the arguments of Theorem 2.1
in Newey and McFadden (1994). First, by the arguments of Lemma 2.2 in Newey
and McFadden (1994), there is a unique maximum of Q0(π) at the true value π0,
since

Q0(π0)−Q0(π) = Eπ0

[
− log

f (Av|π)
f (Av|π0)

]
>− logEπ0

[
f (Av|π)
f (Av|π0)

]
= 0

by the information inequality.
Second, we can take compactness as given since π ∈ [0�1].
Third, the objective is continuous in π with probability 1. To see this, notice that

P(η|π) is continuous in the parameter since it consists of binomial draws with prob-
ability π. Further, xit[At−1;η�π] is continuous a.e. in π because it is a step func-
tion.

Last, we need to establish that the finite sample objective function converges uniformly
in probability to its limit. To show that, we argue that Q̂V (π) := 1

V

∑
v log f (Av|π) is

stochastically equicontinuous and converges pointwise. Pointwise convergence is self-
evident. To show stochastic equicontinuity, we check the Holder inequality which is a
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sufficient condition. Consider any two π so we that have

log

{∑

η

(1 − ǫ)xit [A
t−1;η�π]ǫ1−xit [At−1;η�π] · P(η|π)

}

− log

{∑

η

(1 − ǫ)xit [A
t−1;η�π′]ǫ1−xit [At−1;η�π′] · P

(
η|π ′)

}
�

which is

∣∣∣∣∣∣∣∣
log

⎧
⎪⎪⎨
⎪⎪⎩

∑

η

(1 − ǫ)xit [A
t−1;η�π]ǫ1−xit [At−1;η�π] · P(η|π)

∑

η

(1 − ǫ)xit [A
t−1;η�π′]ǫ1−xit [At−1;η�π′] · P

(
η|π ′)

⎫
⎪⎪⎬
⎪⎪⎭

∣∣∣∣∣∣∣∣

≤ 0 +
∣∣π −π ′

∣∣

∣∣∣∣∣∣∣∣∣∣

∂

∂π

{∑

η

(1 − ǫ)xit [A
t−1;η�π]ǫ1−xit [At−1;η�π] · P(η|π)

}

∑

η

(1 − ǫ)xit [A
t−1;η�π]ǫ1−xit [At−1;η�π] · P(η|π)

∣∣∣∣∣∣∣∣∣∣

�

Then,

∂

∂π

{∑

η

(1 − ǫ)xit [A
t−1;η�π]ǫ1−xit [At−1;η�π] · P(η|π)

}

=
∑

η

[
∂

∂π
(1 − ǫ)xit [A

t−1;η�π]
]
ǫ1−xit [At−1;η�π] · P(η|π)

+
{∑

η

(1 − ǫ)xit [A
t−1;η�π]

[
∂

∂π
ǫ1−xit [At−1;η�π]

]
· P(η|π)

}

+
∑

η

(1 − ǫ)xit [A
t−1;η�π]ǫ1−xit [At−1;η�π] ·

∂

∂π
P(η|π)

P(η|π)
· P(η|π)�

Then, the first two terms are 0 a.e. and therefore certainly bounded by 1, and the final
term is just

E
[
(1 − ǫ)xit [A

t−1;η�π]ǫ1−xit [At−1;η�π] · Score(η|π)
]
≤ n2n�

which is a constant since n is fixed. This follows from

E
[
(1 − ǫ)xit [A

t−1;η�π]ǫ1−xit [At−1;η�π] · Score(η|π)
]

=
∑

η

(1 − ǫ)xit [A
t−1;η�π]ǫ1−xit [At−1;η�π] ·

(
zπz−1(1 −π)n−z + (n− z)πz(1 −π)n−z−1

)
≤ n2n�

So, we have a parameter-independent bound that satisfies the Holder condition. Q.E.D.
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FIGURE 5.—Objective functions for MLEs of π for simulated data generated at various π (network-level
estimation).

D.5. Simulations

We now show that, if we generate data with parameters (π�ǫ), we can use our estimator
to recover both parameters. Figures 5 and 6 show the results. We have generated data with
ǫ = 0�13 (the level estimated in both data sets) and π ∈ {0�0�1� � � � �0�9�1}. We show that
across the board, the objective function is maximized exactly at the right parameter value
in both the network- and individual-level estimations in Figures 5 and 6, respectively.
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FIGURE 6.—Objective functions for MLEs of π for simulated data generated at various π (individual-level
estimation).
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