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ABSTRACT

Competing models that account for the construction of the Tibetan Pla-

teau include continental subduction, underthrusting, distributed shortening, 

channel flow, and older crustal-structure inheritance. Well-constrained esti-

mates of crustal shortening strain serve as a diagnostic test of these plateau 

formation models and are critical to elucidate the dominant mechanism of 

plateau development. In this work we estimate the magnitude of Cenozoic 

shortening across the northern Qilian Shan–Nan Shan thrust belt, along the 

northeastern plateau margin, based on detailed analysis and reconstruction of 

three high-resolution seismic reflection profiles. By integrating surface geol-

ogy, seismic data, and the regional tectonic history, we demonstrate that this 

thrust system has accumulated >53% Cenozoic strain (~50 km shortening), 

accommodated by several south-dipping thrust faults. Based on the observed 

strain distribution across northern Tibet, including lower strain (30%–45%) 

within the interior of the Qilian Shan–Nan Shan thrust belt, we suggest that a 

combination of distributed crustal shortening and minor (<250 km) southward 

underthrusting of the Asian lithosphere is responsible the development of the 

northern Tibetan Plateau. Focused shortening along the Qilian Shan frontal 

thrust system accommodates much of the present-day convergence between 

Tibet and North China, which implies that the northern plateau margin may 

have developed in a similar manner to that of southern Tibet through Hima-

layan-style continental underthrusting. We also argue that the Qilian Shan–

Nan Shan, North Qaidam, and Qaidam Basin thrust systems have absorbed 

a minimum of 250–350 km north-south Cenozoic shortening, which is double 

the commonly cited value of ~150 km.

INTRODUCTION

Understanding how the Tibetan Plateau (Fig. 1) was constructed greatly 

affects our knowledge of continental tectonics (Molnar, 1988; Yin, 2010). 

End-member models for plateau formation and evolution include (Table 1) 

(1) Cenozoic distributed shortening of the Asian crust (Dewey and Bird, 

1970; Dewey and Burke, 1973) or its entire lithosphere (England and House-

man, 1986), (2) Cenozoic underthrusting of Indian (Argand, 1924; Powell and 

Conaghan, 1973; Powell, 1986; DeCelles et al., 2002; van Hinsbergen et al., 2011, 

2012) and/or Asian lithosphere (Willett and Beaumont, 1994; Kind et al., 2002; 

Zhao et al., 2011; Feng et al., 2014; Ye et al., 2015) beneath the Tibetan Plateau, 

(3) Cenozoic vertical inflation of Tibetan crust by lateral channel flow in the 

middle or lower crust (Zhao and Morgan, 1987; Bird, 1991; Royden et al., 1997, 

2008; Clark and Royden, 2000), (4) discrete Cenozoic intracontinental subduc-

tion coupled with lateral extrusion along major strike-slip faults (Tapponnier 

et al., 2001), and (5) pre-Cenozoic crustal thickening (e.g., Worley and Wilson, 

1996; Murphy et al., 1997; Wallis et al., 2003). These models make specific pre-

dictions regarding the spatial distribution, magnitude, and temporal variation 

of Cenozoic strain (Table 1; Fig. 2).

Estimates of shortening magnitude provide a quantitative and diagnostic 

test for differentiating between these tectonic models, especially along the 

plateau margins where the effects predicted by intracontinental subduction, 

underthrusting, and crustal inflation models are most pronounced (e.g., Clark 

and Royden, 2000; DeCelles et al., 2002; Hubbard and Shaw, 2009; Lease et al., 

2012). For example, the predictions of the lower crustal flow model of Clark 

and Royden (2000) were initially supported by early observations of minimal 

east-west horizontal crustal shortening across the Longmen Shan along the 

eastern margin of the plateau (Fig. 1B) (Burchfiel et al., 1995; King et al., 1997). 

More recent seismic reflection analysis and balanced cross-section restoration 

indicate that crustal shortening alone is significant enough to generate the 

elevation and crustal thickness of the eastern Tibetan Plateau (Hubbard and 

Shaw, 2009). In the Laji Shan–West Qinling of northeastern Tibet (Fig. 1B), the 

present-day crustal thickness (45–55 km) (Yue et al., 2012) can be reconciled 

with crustal shortening strain of 10%–12% and pure shear crustal thickening 

(Lease et al., 2012).

Although investigations of Cenozoic shortening along the southern and 

eastern margins of the plateau have been robust (e.g., Burchfiel et al., 1995; 

Johnson, 2002; DeCelles et al., 2002; Robinson et al., 2006; McQuarrie et al., 

2008; Hubbard and Shaw, 2009; Webb et al., 2011; Webb, 2013), our under-

standing of Cenozoic deformation along the northern plateau margin is  lacking. 
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Figure 1. (A) Map of the Himalaya-Tibetan orogen and surrounding regions, showing the location of Figure 1B. The southern edge of Asian lithosphere is from Kind et al. (2002) and Ye et al. (2015). (B) Cenozoic fault map of the northeastern 

Tibetan Plateau showing the location of the detailed geologic map (Fig. 5), the seismic reflection profiles (Figs. 7–9), and location of C. Structures are from Burchfiel et al. (1991), Gaudemer et al. (1995), Taylor and Yin (2009), and Gao et al. 

(2013). (C) Contoured crustal thickness estimates derived from receiver-function analysis of Yue et al. (2012). Also shown for comparison is the Moho depth imaged by seismic reflection analysis of Gao et al. (2013). (D) Topographic profiles 

across northeastern Tibet (profiles A–A′ and B–B′ in B). The digital topographic basemaps and profiles from GeoMapApp software (Ryan et al., 2009) are available at http:// www .geomapapp .org/.
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Figure 2. Competing end-member models for the 

development of the northeastern Tibetan Plateau. 

Ci and Cf represent the initial and final thickness 

of the crust, respectively, and Mi and Mf represent 

the initial and final thickness of the mantle litho-

sphere, respectively (see text). Red lines indicate 

major detachment surfaces or strike-slip faults. 

(A) Continental lithosphere prior to deformation.  

(B) The distributed shortening model predicts verti-

cally uniform strain, evenly spaced thrust faults, 

and pure shear thickening of the entire continental 

lithosphere. (C) The intracontinental subduction 

model requires subduction of the mantle litho-

sphere, which is decoupled from the deforming 

crust. The concentrated mixed-mode deformation 

(i.e., left-slip and thrust faulting) and subduction 

occur along older suture zones. (D) The under-

thrusting model predicts crustal shortening at 

the plateau margins to accommodate southward 

motion of the Asian mantle lithosphere: strain at 

this margin is either large (>60% strain) if the Asian 

mantle lithosphere is underthrust to central Tibet 

(e.g., Kind et al., 2002) or more minor (~50% strain) 

if it is only under thrust to Qaidam Basin (e.g., Ye 

et al., 2015). Little crustal shortening should occur 

away from the plateau margins. (E) The channel 

flow models predict lateral motion of the lower 

crust and little shortening in the upper crust. Verti-

cal inflation of a ductile channel leads to thickening 

of the crustal lithosphere. (F) The present- day thick-

ness may be inherited from an older pre-Cenozoic 

collisional event; in this case, the final present-day 

crustal thickness Cf is equal to the pre-Cenozoic 

crustal thickness Ci2, which was attained during a 

pre– India-Asia collision thickening process.

TABLE 1. COMPARISON OF MODEL PREDICTIONS FOR THE FORMATION OF THE TIBETAN PLATEAU

Predictions

Models Temporal evolution Spatial distribution Shortening at plateau margins References

Distributed shortening Northward propagation of shortening 
across Tibet 

Cenozoic thrusts and folds are uniformly 
distributed across Tibet 

30%–40% crustal shortening to explain 
the crustal thickness of Tibet

Dewey and Bird (1970); Dewey and Burke 
(1973); England and Houseman (1986)

Discrete intracontinental 
subduction 

Stepwise, northward propagation of the 
intracontinental subduction zones 

Cenozoic thrusts in discrete zones along 
older sutures and coeval strike-slip faults 

Little shortening away but >50% 
shortening along the subduction zones

Meyer et al. (1998); Tapponnier et al. 
(2001)

Underthrusting of Indian 
and/or Asian lithosphere

Shortening propagates inward from 
underthrust margins (e.g., north from 
Himalaya and south from Qilian Shan)

Cenozoic structures contributing to crustal 
thickening are minor features in Tibet

>50% crustal shortening along plateau 
margins but little shortening within 
plateau

Argand (1924); Powell and Conaghan 
(1973); Powell (1986); Kind et al. (2002); 
Zhao et al. (2011); Ye et al. (2015)

Vertical inflation by channel 
flow

Propagating surface uplift from plateau 
interior to plateau margins

Minor Cenozoic shortening particularly 
along plateau margins

Little crustal shortening (<5%), 
particularly along plateau margins

Zhao and Morgan (1987); Bird (1991); 
Royden et al. (1997); Clark and Royden 
(2000); Karplus et al. (2011)

Inherited thickness Deformation and structures predate 
India-Eurasian collision

Structures related to pre-Cenozoic tectonic 
settings

Mainly pre-Cenozoic structures and 
minimal erosion

Worley and Wilson (1996); Murphy et al. 
(1997); Wallis et al. (2003)
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This margin is defined by the 350-km-wide and 1300-km-long Qilian Shan–

Nan Shan thrust belt (Molnar and Tapponnier, 1975; Gaudemer et al., 1995; 

Meyer et al., 1998; Yin and Harrison, 2000; Taylor and Yin, 2009), which occu-

pies about one-fifth of the Tibetan-Himalayan orogen and is one of the widest 

active thrust belts in the India-Asia collisional zone (Fig. 1) (Yin, 2010). The 

absence of detailed structural observations, including systematic geologic 

mapping and subsurface seismic data, inhibits our understanding of plateau 

growth mechanisms. The timing and magnitude of deformation in this region, 

which is located more than 1500 km north of the India-Asia collisional front 

(Fig. 1), has implications for strain transfer and partitioning across the Tibetan- 

Asian lithosphere (e.g., Wang et al., 2011; Yuan et al., 2013).

Here we investigate the magnitude of shortening across the northern Qilian 

Shan frontal thrust system and the adjacent Hexi Corridor foreland by integrat-

ing surface geology and subsurface data. The Hexi Corridor is rich in petroleum 

resources (e.g., Wang and Coward, 1993; Chen and Yang, 2010; He and Pang, 

2013) and has been surveyed extensively by seismic reflection profiling (e.g., 

J. Wu et al., 2006; Yang et al., 2007a, 2007b). We acquired and interpreted three 

seismic reflection profiles to estimate horizontal strain by constructing and 

restoring balanced cross sections that adhere to the known surface geology 

and regional tectonic history. We use our strain estimates together with other 

published shortening estimates across northern Tibet (Fig. 3; Table 2) to eval-

uate plateau construction mechanisms. Specifically, our results suggest that 

the Qilian Shan frontal thrust system has absorbed a minimum of 53% north-

south Cenozoic shortening, which was accommodated by the north-directed 

thrust faults that place Mesozoic and Paleozoic rocks over Cenozoic sediments. 

Our estimated strain magnitudes are comparable to the results of a seismic 

reflection study ~450 km to the east (Gao et al., 2013) but higher than those ob-

tained within the Qilian Shan–Nan Shan from surface geologic mapping alone 

(~5%–30% strain) (e.g., Gaudemer et al., 1995; Meyer et al., 1998; Lease et al., 

2012; Craddock et al., 2014) (Fig. 3). This discrepancy may be due to a com-

bination of factors. First, this may highlight the limitations of some existing 

regional structural studies, including the tendency for the actual shortening to 
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TABLE 2. EXISTING CROSS SECTIONS AND SHORTENING ESTIMATES ACROSS NORTHERN TIBET

Location Section label* Orientation
Shortening

(km)[strain %]

Restored 
length
(km)

Ti
†

(km) Reference

Qilian Shan-Nan Shan thrust belt

North A–A′ NE–SW 8.2 [26] 31.3 41–52 Zheng et al. (2010)

North

S–S′ NNE–SSW 25 [54] 46 23–29

This studyT–T′ NNE–SSW 33 [53] 64 26–34

U–U′ NNE–SSW 12 [36] 33 35–45

Regional

b NE–SW 90 [22] 415 43–55

Meyer et al. (1998)

d NE–SW 35–45 [13–18] 258–268 46–59

f NE–SW 50–70 [23–35] 200–220 39–50

Composite b, d, f NE–SW 150 [31] 485 38–48

C1 NE–SW 188.5 ± 98 [30] 630 39–49

C2 NE–SW 141 ± 84 [26] 540 41–52

Mass balance NE–SW 120 ± 30 [14–23] 640 45–57

Regional – NE–SW 360 [50] 710 28–35 Yin and Harrison (2000)

East A–A′ NNW–SSE 25 [25] 100 41–53 Gaudemer et al. (1995)

Baiyin thrust Baiyin thrust§ NNW–SSE 22.3 [46] 47.9 30–38 Gao et al. (2013)

Jishi Shan

A–A′ W–E 14.3 [14.2] 100.6 47–60

Lease et al. (2012)B–B′ W–E 10.5 [10.4] 100.8 49–63

C–C′ W–E 8.4 [26] 32.4 41–52

West Qinling D–D′ NE–SW 4.3 [14.2] 30.3 47–60 Lease et al. (2012); Clark et al. (2010)

Laji Shan E–E′ NE–SW 5.1 [46] 11.1 30–38 Lease et al. (2011, 2012)

Qinghai Nan Shan

a NNE–SSW 2.2 [4.2] 52.2 53–67

Craddock et al. (2014)

b NNE–SSW 0.8 [1.6] 50.8 54–69

c NNE–SSW 1.4 [2.7] 51.4 54–68

d NNE–SSW 1.3 [2.5] 51.3 54–68

e NNE–SSW 0.9 [1.8] 50.9 54–69

f NNE–SSW 1.6 [3.1] 51.6 53–68

g W–E 0.8 [0] 32.3 55–70

Gonghe Nan Shan

a NE–SW 5.1 [9.3] 55.1 50–63

Craddock et al. (2014)b NE–SW 6.4 [11.3] 56.4 49–62

c NE–SW 6.9 [12.1] 56.9 48–62

North Qaidam thrust system

North Qaidam

(1) NE–SW 26 [34] 60 36–46

Yin et al. (2008a)

(2) NE–SW 19 [36] 53 35–45

(3) NE–SW 26 [29] 91 39–50

(4) NE–SW 10 [21] 48 43–55

(5) NE–SW 46 [31] 149 38–48

(6) NE–SW 29 [27] 103 40–51

(7) NE–SW 50 [58] 86 23–29

(8) NE–SW 40 [53] 68 26–33

Gaoquan NE–SW 9.8 [63] 15.6 20–26

Lulehe NE–SW 31 [63] 49 20–26

Luliang Shan NE–SW 34 [55] 62 25–32

Gaqiu NE–SW 22 [38] 57.5 34–43

Xiaoqaidam NE–SW 6.5 [23] 33.5 42–53

Lenghu-4 NE–SW 1.6 [35] 4.6 36–46

Lenghu-4 NE–SW 16 [39] 41 34–43

Qaidam Basin thrust system

Qaidam Basin

1 NE–SW 84 [32.3] 257 37–47

Yin et al. (2008b)

2 NE–SW 68 [35.1] 270 36–45

3 NE–SW 41 [17.7] 231 45–58

4 NE–SW 20 [10.7] 187 49–63

5 NE–SW 17 [12.1] 147 48–62

6QB NE–SW 2 [1] 52 54–69

6QS NE–SW 12 [30] 40 39–49

Qaidam Basin
2 NE–SW 13.74 [9.6] 143.06 50–63

Zhou et al. (2006)
6 + 9 NE–SW 19.98 [9] 219.82 50–64

Qimen Tagh thrust belt 

West 7 NE–SW 25 [30] 74 39–49 Yin et al. (2008b)

West A–D NE–SW 58 [48] 120 29–36 Yin et al. (2007a)

West – NE–SW 270 [57] 470 24–30 Yin and Harrison (2000)

*As reported in original reference.
†Apparent initial predeformational crustal thickness given shortening estimate.
§Restoration above regional Paleozoic unconformity.
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be underestimated by surface-based studies that miss hidden structures (e.g., 

detachments, blind faults, and duplexes). Second, there may be a real differ-

ence in strain magnitude between the plateau margin and within the northern 

plateau interior, suggesting mixed plateau formation processes. By integrating 

our estimates with existing studies, we propose that the following mechanisms 

are operating in northern Tibet: (1) southward underthrusting of Asian  mantle 

lithosphere by 200–250 km results in high strain (>53%) along the northern 

 Qilian Shan thrust system, and (2) 250–350 km of distributed crustal shortening 

throughout the Qaidam Basin, North Qaidam, and Qilian Shan–Nan Shan thrust 

belts (>30%–45% strain) (Fig. 1) leads to pure shear crustal thickening.

REGIONAL GEOLOGY

The high elevation (~5 km) of the Tibetan Plateau (Fielding et al., 1994) was 

created in the Cenozoic, as a result of the India-Asia collision (Yin and Harrison, 

2000; Tapponnier et al., 2001; Royden et al., 2008), or in the Mesozoic, as sug-

gested for the southern and possibly eastern portions of Tibet (e.g., Worley and 

Wilson, 1996; Murphy et al., 1997). The average elevation of the northeastern 

plateau is slightly lower (~4.5 km) and this high topography drops off rapidly to 

<1.5 km to the northeast in the Hexi Corridor foreland (Fig. 1D). The present-day 

Qilian Shan–Nan Shan is composed of northwest-trending thrust-bounded 

ranges and intermontane basins spaced at 30–40 km (Fig. 1B). Crustal thickness 

estimates across this area range from 55 to 65 km (Fig. 1C) as constrained by 

receiver function (Yue et al., 2012; Ye et al., 2015), seismic refraction (Zhao et al., 

2001), and seismic reflection (Gao et al., 2013) studies. The Ordos Basin, north-

east of the Hexi Corridor (Fig. 1B), has far fewer earthquakes than the adjacent 

plateau and thus is considered a relatively stable block with an average crustal 

thickness of ~42 km (Chen et al., 2005; Liu et al., 2006; Pan and Niu, 2011).

The Cenozoic Qilian Shan–Nan Shan thrust defines the northeastern margin 

of the Tibetan Plateau, more than 1500 km to the north of the Himalayan collision 

front, between North China to the north and Qaidam Basin to the south (Fig. 1). 

The thrust belt is constructed in a region that had a complex pre-Cenozoic his-

tory involving multiple phases of Proterozoic basement deformation, early 

Paleo zoic orogeny, and Jurassic–Cretaceous extension (e.g., Vincent and Allen, 

1999; Gehrels et al., 2003a, 2003b; Yin and Harrison, 2000; Yin et al., 2007b).

Early Paleozoic Qilian Orogen and Related Basement Rocks

The Qilian orogen records the early Paleozoic closure of the Qilian Ocean 

as the Kunlun-Qaidam terrane collided against the southern margin of the 

North China craton (Yin and Nie, 1996; Şengör and Natal’in, 1996; Sobel and 

Arnaud, 1999; Yin and Harrison, 2000; Gehrels et al., 2003a, 2003b; Yin et al., 

2007b; Xiao et al., 2009; Song et al., 2013). The Qilian orogen is composed 

of Silurian flysch sequences, Ordovician–Silurian plutonic bodies and arc-type 

assemblages, ophiolitic mélange, and low- to high-grade metamorphic rocks. 

The distribution of ophiolitic material indicates that a Cambrian–Ordovician 

Qilian Ocean separated Qaidam and North China (Smith, 2006; Xiang et al., 

2007; Tseng et al., 2007; Zhang et al., 2007; Xia and Song, 2010; Song et al., 

2013). The convergence of these continents was facilitated by middle Cam-

brian–Ordovician subduction and related arc magmatism (Qian et al., 1998; 

Cowgill et al., 2003; Gehrels et al., 2003a; Su et al., 2004; C. Wu et al., 2004, 

2006, 2010; Hu et al., 2005; Y.J. Liu et al., 2006; Quan et al., 2006; He et al., 2007; 

Tseng et al., 2009; Dang, 2011; Xia et al., 2012; Xiong et al., 2012; Song et al., 

2013); intracontinental deformation and ocean closure occurred in Late Ordovi-

cian–Silurian time (Song et al., 2006; Y.J. Liu et al., 2006; Zhang et al., 2007; Lin 

et al., 2010). The orogen is an important preexisting weakness that may have 

controlled Cenozoic structures in northern Tibet: the present-day Qilian Shan 

thrust belt and Haiyuan left-slip fault closely follow the trace of the orogen and 

suture (Fig. 1B) (Taylor and Yin, 2009).

Jurassic and Cretaceous Extensional Setting

The Mesozoic closure of the Paleo-Tethys and Meso-Tethys Oceans (Pullen 

et al., 2008; Zhang et al., 2014) and associated with slab rollback to the south 

may have led to regional extension that affected much of the continent to the 

north, including the Altyn Tagh range, Qaidam Basin, Qilian Shan–Nan Shan, 

and Hexi Corridor, from southwest to northeast, respectively (Fig. 1) (Huo and 

Tan, 1995; Vincent and Allen, 1999; Chen et al., 2003; Yin et al., 2008a, 2008b). 

This extension is expressed by the development of extensive Jurassic and 

Cretaceous extensional and transtensional basins in the Altyn Tagh range, 

Qaidam Basin, the Hexi Corridor, and North China (Vincent and Allen, 1999; 

Chen et al., 2003; Yin et al., 2008a, 2008b). Although no extensional faults have 

been documented at the surface in the northern Qilian Shan, Jurassic and Cre-

taceous strata are widespread and record a transition from marginal  marine 

and lacustrine to mostly terrestrial sedimentation. Jurassic strata consist of 

sandstone interbedded with siltstone, carbon-rich shale, and coal (Gansu 

Geological Bureau, 1989; Qinghai BGMR, 1991). Upper Jurassic beds are often 

lacustrine. Cretaceous terrestrial red beds that fine upward from coarse sand-

stone to lacustrine deposits that are prominently exposed along many basins 

in northern Tibet, from the Xining Basin in the south to the Hexi Corridor in the 

north (Fig. 1B) (Horton et al., 2004; Pan et al., 2004).

Cenozoic Structures

Cenozoic shortening in northern Tibet is accommodated in the north-

west-trending Qilian Shan, North Qaidam, and Qimen Tagh thrust belts (Jolivet 

et al., 2003; Yin et al., 2007a, 2008a, 2008b), from north to south, respectively 

(Fig. 1B). These major thrust belts link with the active >1000-km-long east-strik-

ing Haiyuan, Qinling, and Kunlun left-slip faults (Fig. 1B) (e.g., Taylor and Yin, 

2009). The Haiyuan fault and ~350-km-wide Qilian Shan–Nan Shan thrust belt 
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define the northeastern margin of the Tibetan Plateau, and the Hexi Corridor 

foreland basin bounds the plateau to the northeast (Fig. 1B). Thrusting initiated 

locally at 50–45 Ma in the southern Qilian Shan–Nan Shan and North Qaidam 

thrust belts, and deformation migrated southward to the Qimen Tagh and 

northward to the northern Qilian Shan thrust belts by 25–20 Ma (Mock et al., 

1999; Jolivet et al., 2001; Dupont-Nivet et al., 2004; Horton et al., 2004; Yin et al., 

2008a, 2008b; Clark et al., 2010; Duvall et al., 2011). The region underwent a 

major pulse of deformation marked by the development of left-slip fault sys-

tems by 20–15 Ma (Jolivet et al., 2001; Craddock et al., 2011; Duvall et al., 2013; 

Yuan et al., 2013). Along the outer plateau margins, thrust initiation occurred at 

10–8 Ma (Zheng et al., 2006, 2010; Godard et al., 2009).

Inversion of the global positioning system (GPS) velocity field across the re-

gion yields a N30°E contractional strain field (Zhang et al., 2004; Allmendinger 

et al., 2007). GPS velocity differencing between North China and Qaidam  Basin 

suggests overall north-south convergence rates of ~5.5 mm yr–1 across the 

 Qilian Shan–Nan Shan thrust belt (Zhang et al., 2004). Fault slip and shortening 

rates across the Qilian Shan–Nan Shan thrust belt range from <1 to 5 mm yr–1 

(Hetzel et al., 2004; W.J. Zheng et al., 2009, 2013; D. Zheng et al., 2010; Cham-

pagnac et al., 2010; Yuan et al., 2011; Craddock et al., 2014). The variability and 

uncertainty of these rates arise because the magnitude of Cenozoic fault offset 

and total shortening remains poorly constrained throughout most of the Qilian 

Shan–Nan Shan. A detailed description of existing Cenozoic crustal shortening 

estimates is discussed herein.

TESTING PLATEAU FORMATION MODELS WITH 
CRUSTAL SHORTENING ESTIMATES

A combination of mechanisms (Table 1) probably operates to generate the 

modern Tibetan Plateau (e.g., Molnar et al., 1993; Yuan et al., 2013). Geo physi-

cal studies of the lithosphere are valuable to understand geologic processes 

operating in the subsurface, but indirect observations and nonunique inter-

pretations of detailed structures limit the extent to which hypotheses can be 

satisfactorily tested (e.g., Ammon et al., 1990; Brown et al., 1996; Makovsky 

and Klemperer, 1999; Vergne et al., 2002, 2003; Frederiksen et al., 2003; Sher-

rington et al., 2004). An alternative quantitative approach for distinguishing 

among plateau construction models is to evaluate the spatial and temporal 

variations in the magnitude and style of Cenozoic crustal shortening strain 

via balanced cross-section construction and restoration (Dahlstrom, 1969). Al-

though strain estimates from balanced cross-section restoration can be asso-

ciated with large uncertainties and the solutions are often nonunique (e.g., Yin, 

2006; Yin et al., 2010a; Judge and Allmendinger, 201l), our understanding of 

thrust systems (Boyer and Elliott, 1982) allows for well-constrained minimum 

strain estimates that are based on direct field observations (e.g., bedding trun-

cations, fault cutoffs, unit juxtapositions, and fault geometry requirements). 

These strain estimates place constraints on the vertical thickening and possi-

ble outward growth of the plateau.

Tectonic Models and Implications for Shortening along 
the Tibetan Plateau’s Northeastern Margin

Here we briefly summarize the proposed tectonic models for the construc-

tion of the Tibetan Plateau (Table 1), including their predictions for the dis-

tribution, magnitude, and timing of Cenozoic crustal strain across the Qilian 

Shan–Nan Shan thrust belt. The distributed shortening model (Fig. 2B) pre-

dicts vertically uniform shortening and pure shear thickening of the Asian 

crust (Dewey and Bird, 1970; Dewey and Burke, 1973) or its entire lithosphere 

( England and Houseman, 1986). Following the onset of India-Eurasian collision 

in the south (Zhu et al., 2005; van Hinsbergen et al., 2011), deformation and 

crustal thickening propagates northward, either steadily throughout the Ceno-

zoic (England and Houseman, 1986) or rapidly with deformation occurring in 

the north soon after collision (i.e., within millions of years) (e.g., Horton et al., 

2002; Yin et al., 2008a, 2008b; Wang et al., 2008; Dayem et al., 2009; Rohrmann 

et al., 2012). These models predict ~30%–40% shortening strain throughout 

Tibet to explain the present-day crustal thickness.

Meyer et al. (1998) and Tapponnier et al. (2001) suggested that deformation 

propagates northward across the plateau in discrete steps. Preexisting Paleo-

zoic and Mesozoic sutures (Fig. 1B) focus deformation in zones of intra conti-

nental subduction that are associated with post–India-Asia collision volcanic 

belts that also young to the northeast. Furthermore, oblique convergence 

causes deformation to occur in a mixed mode of thrust and left-slip faulting 

(Fig. 2C). This concept is supported by the observation that active strike-slip 

faults follow the trace of Phanerozoic sutures (Fig. 1B) (Taylor and Yin, 2009). 

Deformation predictions of the intracontinental subduction model include 

(1) northward-propagating deformation starting in the south in the early Ceno-

zoic and reaching the northeastern margin of the plateau by Pliocene–Qua-

ternary time, (2) focused deformation along Phanerozoic suture zones, and 

(3) coupled left-slip and oblique thrust faulting (Fig. 2C).

Receiver function analyses suggest that the Asian mantle lithosphere is 

under thrusting northern Tibet (Fig. 2D). Large-scale underthrusting models 

(Kind et al., 2002; Zhao et al., 2011) require as much as ~1400 km of crustal 

shortening (~80% strain) across the 350-km-wide Qilian Shan–Nan Shan thrust 

belt on the northern margin of the plateau to accommodate such motion of the 

Asian mantle lithosphere (Fig. 1A), whereas the smaller scale underthrusting 

models (Feng et al., 2014; Ye et al., 2015) suggest 300 km of shortening (~46% 

strain). Both iterations of these models involve a southward propagation of 

structures from the Hexi Corridor foreland and minimal Cenozoic strain in the 

Qaidam Basin and Qimen Tagh thrust belts to the south (Fig. 1B).

Several groups of models argue that a lateral pressure gradient drives 

lower crustal channel flow and vertical inflation of the crust (e.g., Zhao and 

Morgan, 1987; Bird, 1991; Royden et al., 1997, 2008; Clark and Royden, 2000; 

Clark et al., 2004) (Fig. 2E). These models predict the outward flux of low-vis-

cosity material from the southern and central regions of the plateau and a 

similar outward propagation of surface uplift. Lateral channel flow should be 

decoupled from the upper crust so that Cenozoic crustal strain on the plateau 

 as doi:10.1130/GES01254.1Geosphere, published online on 5 February 2016

http://geosphere.gsapubs.org


Research Paper

8Zuza et al. | Testing models of Tibetan Plateau formation with Cenozoic shortening estimatesGEOSPHERE | Volume 12 | Number 2

surface must be minimal (<5%) and the upper crust undergoes only vertical 

motion (Fig. 2E). Although the channel flow model of Clark and Royden (2000) 

only predicts crustal flow in eastern Tibet and does not specifically refer to the 

Qilian Shan, the overall channel-flow process (Zhao and Morgan, 1987; Bird, 

1991; Royden et al., 2008) should be considered as a general mechanism for 

thickening and thinning of the Tibetan crust.

Although most of the present-day topography of the Tibetan Plateau 

(Fig. 1) was likely created in the Cenozoic as a result of the India-Asia collision 

(Yin and Harrison, 2000; Tapponnier et al., 2001; Royden et al., 2008), several 

regions inherited their crustal thickness from older collisional events (e.g., 

Worley and Wilson, 1996; Murphy et al., 1997). Based on the regional tectonic 

history, pre-Cenozoic crustal thickening in northern Tibet could have occurred 

either during the early Paleozoic Qilian orogen (e.g., Yin and Harrison, 2000; 

Gehrels et al., 2003a, 2003b; Xiao et al., 2009; Song et al., 2013) or as a result 

of far-field uplift during the latest Paleozoic–early Mesozoic collisions between 

North China and South China or Qiantang and Asia (e.g., Yin and Nie, 1993; 

Pullen et al., 2008). If either case is correct, topography in the region must have 

persisted until today (Fig. 2F), the majority of deformational structures should 

be pre-Cenozoic, and erosion must be minimal over a period of hundreds of 

millions of years.

Existing Shortening Estimates across the 
Qilian Shan–Nan Shan Thrust Belt

A compilation of existing Cenozoic shortening estimates across north-

ern Tibet (Fig. 3) are listed in Table 2. Gaudemer et al. (1995) constructed a 

north-northwest–trending cross section in the eastern Qilian Shan based 

mainly on interpreted satellite images and existing regional geologic maps 

(Fig. 3 and 4A); their cross section (Fig. 4A) involves south-dipping thrust faults 

that sole into a 10°–20° south-dipping detachment surface that merges with the 

Haiyuan fault at ~25 km depth. Gaudemer et al. (1995) estimated a minimum 

of 25 km shortening of a section that has a restored length of 100 km (~25% 

strain) by restoring the unconformity overlying early Paleozoic and older base-

ment rocks back to subhorizontal (Fig. 4A). By using a regionally correlative 

marker horizon (i.e., the Paleozoic unconformity surface), strain within the 

pre-Cenozoic strata can be considered. Although the cross section is located 

near the Haiyuan fault (Fig. 3), out-of-plane motion (i.e., parallel to the Haiyuan 

fault) is unconstrained on the mapped faults.

The shortening estimates presented by Meyer et al. (1998) (Fig. 3) are based 

on two independent methods (Table 2). First, they developed several serial 

north-northeast–trending cross sections across the western Qilian Shan–Nan 

Shan (Fig. 3) using satellite image analysis with minor field checks. The resto-

ration of Cretaceous and Cenozoic marker horizons yields 20%–30% shorten-

ing strain with an overall minimum of 150 km north-south shortening (>31% 

strain) across the entire Qilian Shan–Nan Shan thrust belt. Second, Meyer et al. 

(1998) derived bulk shortening estimates of 120 ± 30 km (Table 2) from a re-

gional mass balance of eroded sediments, assuming isostatic compensation 

and an initial crustal thickness of 47.5 km. Meyer et al. (1998) noted that an 

unconstrained left-slip component on strike-slip faults (i.e., the Qinling and 

Haiyuan faults) adds uncertainties to their estimates.

In the northern Qilian Shan, adjacent to our study area, Zheng et al. (2010) 

used apatite (U-Th)/He (AHe) data (Fig. 3) to show rapid cooling ca. 10 Ma. The 

preservation of a paleo–partial retention zone (PRZ) in the hanging wall and 

growth strata in the footwall (Fig. 4C) allowed Zheng et al. (2010) to estimate 

the horizontal shortening magnitude of 8.2 ± 1.8 km (26% strain) (Fig. 4C) and 

an average shortening rate of ~1 mm yr–1. These estimates are based on the 

assumption that shortening was accommodated by a single 30° south-dipping 

planar thrust (Fig. 4C) initiated ca. 10 Ma. Lease et al. (2012) constrained short-

ening across the West Qinling thrust fault using existing AHe ages (Clark et al., 

2010) to obtain a ca. 110 Ma marker horizon in the footwall and hanging wall. 

The restoration of this horizon along a single south-dipping fault (average dip 

of 45°–50°) yields 4.3 km of horizontal shortening of a section that has a re-

stored length of 30.3 km (~14.2% strain). Similarly, AHe ages were used (Lease 

et al., 2011, 2012) to develop a north-east–trending cross section across the 

Jishi Shan (Fig. 1B) and to estimate 14.4 km shortening of a section that has a 

restored length of 100.6 km (~14.2% strain) (Fig. 4B).

A seismic reflection analysis across the eastern Haiyuan fault was con-

ducted by Gao et al. (2013) (Fig. 3); they balanced and restored a 26-km-long 

section of a 180-km-long seismic reflection profile to estimate Cenozoic strain 

(Fig. 4D). The section crosses the Baiyin fault, and despite having no kinematic 

data to determine if it is a thrust or strike-slip fault, Gao et al. (2013) inferred 

this fault to be a thrust on the basis of its low-angle geometry in cross-section 

view and an oblique relationship with the left-slip Haiyuan fault in map view 

(Fig. 1B). Line-length balancing of their cross-section model yielded 22.3 km 

of shortening across a 25.7-km-long deformed section (~46% strain) (Fig. 4D).

Craddock et al. (2014) presented 10 line-length balanced north-south cross 

sections across the Qinghai and Gonghe Nan Shan, south of Qinghai Lake 

(Fig. 3), that are restored by bringing Neogene strata to horizontal (Fig. 4E). 

They suggested 1.5 ± 0.7 km shortening across the Qinghai Nan Shan. Shorten-

ing estimates in the Gonghe Nan Shan to the south are higher, ranging from 5.1 

to 6.9 km (6.0 ± 0.9 km). These estimates were coupled with low-temperature 

thermochronologic and stratigraphic data (Craddock et al., 2011; Zhang et al., 

2012) to suggest relatively low north-south shortening rates of ~0.2 mm yr–1 

and ~0.7 mm yr–1 across the Qinghai and Gonghe Nan Shan, respectively.

The diversity in strain and strain rate estimates across the northeastern 

margin of the plateau (Figs. 3 and 4) may be attributed to both real variations in 

plateau-construction processes and/or limitations of the balanced cross section 

restoration method. Due to the remoteness of northern Tibet, many estimates 

are based primarily on satellite image analysis and reconnaissance-scale sur-

face mapping, which can miss important structures such as blind or hidden 

faults, detachments, and duplexes. In addition, many studies only consider slip 

estimates on faults that cut Cenozoic strata and rarely consider deformation 

of pre-Cretaceous rocks. Especially in the Qilian Shan–Nan Shan thrust belt, 
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where deformation is often thick-skinned and duplicates successions of the 

early Paleozoic Qilian arc and orogen (e.g., Yin et al., 2007b), much of the 

Cenozoic strain is recorded as deformation that affects early Paleozoic and 

older metamorphic rocks. To overcome these issues, an integrated knowl-

edge of subsurface geology and the regional geologic history is required to 

develop the most reasonable, testable, and restorable geologic cross-sec-

tion models.

Shortening in Qaidam Basin and the North Qaidam Thrust Belt

The Qaidam Basin and the North Qaidam thrust belts are to the south of 

the Qilian Shan (Fig. 1B) (Yin et al., 2008a). Balanced cross sections developed 

primarily from geologic mapping in the North Qaidam thrust belt indicate 

hetero geneous northeast-southwest crustal shortening that varies from >20% 

to 60% (Yin et al., 2008a) (Fig. 3; Table 2). In another study, Yin et al. (2008b) 

used seismic reflection data to develop a series of northeast-trending balanced 

cross sections across Qaidam Basin that reveal an eastward-decreasing strain 

gradient, ranging from ~35% strain in the west to >11% in the east (Fig. 3; 

Table 2). Both of these studies suggest that Cenozoic crustal shortening is the 

primary mechanism for developing the topography and crustal thickness of 

Qaidam Basin and the North Qaidam thrust belt.

SEISMIC REFLECTION PROFILES AND 
BALANCED CROSS SECTIONS

We interpreted three seismic reflection profiles across the northern Qilian 

Shan frontal thrust system and adjacent foreland that were acquired by the 

China National Petroleum Company (see Figs. 1 and 5 for their locations) (e.g., 

J. Wu et al., 2006; Yang et al., 2007a, 2007b). All three uninterpreted high-reso-

lution seismic reflection profiles can be found in Supplemental File 11. First we 

compiled a regional geologic map from unpublished 1:200,000 scale maps, 

satellite analysis (i.e., Google Earth and Landsat images), and our own field 

observations (Fig. 5). The structures imaged in our seismic reflection profiles 

must be compatible with the local surface geology. Where available, age 

assign ments in the seismic profiles are from drill hole and magneto stratig-

raphy data (e.g., Yang et al., 1993; Li, 1994; Li and Yang, 1998; Fang et al., 2004; 

J. Wu et al., 2006; Yang et al., 2007a, 2007b), or surface geology is projected 

onto the seismic profiles.

Surface Geology in the Northern Qilian Shan

The northern Qilian Shan thrust system and its frontal Yumu Shan thrust 

~30 km to the northeast (e.g., Tapponnier et al., 1990) represent the northern-

most structures of the Qilian Shan–Nan Shan thrust belt (Fig. 1B). The Yumu 

Shan is a diverging fault splay (Boyer and Elliott, 1982) that merges with the 

northern Qilian Shan thrust fault to the southeast (Fig. 1B). These fault systems 

are bounded to the north by the Hexi Corridor foreland basin (Figs. 1 and 5), 

which is dissected by several isolated backthrust systems (e.g., the Longshou 

Shan thrust). The south-dipping Qilian Shan frontal thrust system places 

Protero zoic–early Paleozoic rocks over the Cenozoic strata of the Hexi Corridor 

foreland basin (Figs. 5 and 6) (e.g., Li et al., 1998; Fang et al., 2004). Observa-

tions of downdip slickenlines and asymmetric folds indicate that the faults are 

primarily dip-slip thrust faults (e.g., Tapponnier et al., 1990; Reith, 2013). The left-

slip Haiyuan fault is located >100 km to the south (Fig. 1) and does not appear to 

influence the local deformational regime of the northern Qilian Shan.

Hanging-wall rocks are mostly related to the early Paleozoic Qilian orogen, 

which juxtaposed Proterozoic high-grade gneiss and schist against Ordovi-

cian–Silurian low-grade metasediments. It is difficult to determine the age of 

deformational structures that are mapped entirely within the early Paleozoic 

units (Fig. 5), and without direct crosscutting relationships or more detailed 

mapping, these structures may be Paleozoic and/or Cenozoic in age. Ordovi-

cian and Silurian strata are often isoclinally folded and bedding is transposed. 

Early Paleozoic plutons are also widespread throughout the Qilian Shan (e.g., 

Gehrels et al., 2003a; Song et al., 2013). Two of our seismic profiles cross a 

>60-km-long Silurian granitoid intrusion, known as the Jinfosi pluton (Zhang 

et al., 1995), that intrudes Ordovician–Silurian rocks (Gehrels et al., 2003a; Wu 

et al., 2010) (Fig. 5). This pluton is thrust to the north over Mesozoic–Ceno-

zoic strata and was the focus of a nearby AHe traverse (Zheng et al., 2010) 

(Fig. 5). The early Paleozoic strata and the plutonic rocks provide no reflective 

surfaces and are difficult to interpret with seismic reflection analysis because 

they appear transparent. Because of this issue, our analysis is mostly focused 

on the geometry of late Paleozoic and younger bedded strata that provide 

strong reflectors.

Carboniferous (locally Devonian) through Triassic deposits unconformably 

overlie early Paleozoic rocks (Fig. 5). There are limited surface exposures of 

Triassic rocks in the study area, and the sedimentary relationship between Late 

Triassic strata and the overlying Jurassic–Cretaceous sediments is not directly 

observed in this region. Triassic strata are much more prevalent in the cen-

tral Qilian Shan–Nan Shan to the southwest (Pan et al., 2004), where the beds 

are variably subparallel to discordant with the overlying Jurassic–Cretaceous 

strata. Cretaceous rocks often exhibit a growth strata geometry and are in-

terpreted to have been deposited in extensional grabens (Yin et al., 2008b). 

Jurassic through Cenozoic strata (Table 3) display the clearest reflectors in our 

seismic reflection profiles and are most useful for cross-section development. 

Jurassic rocks consist of coal-rich sandstone and siltstone beds that reach a 

thickness of ~800–1000 m (Gansu Geological Bureau, 1989; Zhiyi and Dean, 

1996). Lower Cretaceous strata are widespread along the northern Qilian Shan 

and Hexi Corridor, consist of red conglomerate and coarse sandstone, and 

have a total thickness >2600 m. The more localized upper Cretaceous strata 

consists of fluvial and lacustrine sandstone that are generally <500 m thick 

(Zhiyi and Dean, 1996).
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Figure 5. Geologic map across the northern Qilian Shan frontal thrust zone compiled from unpublished maps, Gansu Geological Bureau (1989), Qinghai BGMR (1991), and our own structural inter-

pretations. See Figure 1 for location. Satellite image viewpoint (Google Earth) of Figure 6 is shown. Also shown are the locations of three seismic reflection profiles (Figs. 7–9), a drill hole described 

in J. Wu et al. (2006), and the AHe traverse of Zheng et al. (2010). PRZ—partial retention zone.
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Figure 6. Southward-looking view of Qilian Shan range front from Google Earth. White arrows point to a major thrust fault that juxtaposes Silurian granitoid and metasedimentary rocks against 

Neogene and Quaternary rocks; the yellow arrows point to a separate thrust fault splay that brings Jurassic–Neogene strata over Quaternary sediments. See Figure 5 for location.

TABLE 3. MESOZOIC AND CENOZOIC STRATIGRAPHY OF THE HEXI CORRIDOR

Unit names Symbol Geologic time Age Description

Quaternary (undifferentiated) Q Quaternary 2.5 Ma to present Boulders and gravels

Yumen Formation N2-Q1 Pliocene–Pleistocene(?) ca. 4–2(?) Ma Pebble to boulder conglomerate with minor sands

Shulehe Formation N1 Miocene–Pliocene 23 to ca. 4 Ma Reddish conglomerate, sandstone, and mudstone

Baiyanghe Formation PE3 Oligocene ca. 28–23 Ma Red-orange sandstone mudstone with gypsum

Huoshaogou Formation PE3 Oligocene 33.9 to ca. 28 Ma Red conglomerate, mudstone, and sandstone

Xinminbao Group K Cretaceous 145–66 Ma Red-orange conglomerate and coarse sandstone

Bolou/Dashankou Group J Jurassic 201–145 Ma Coal-rich sandstone and siltstone
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The Hexi Corridor foreland is made up of >2.5 km of Cenozoic sediments, 

mostly Miocene (locally Oligocene) through Pliocene in age (Li et al., 1998; 

Bovet et al., 2009; Zhuang et al., 2011). The Cenozoic strata are exposed along 

drainages and localized structural uplifts (e.g., Li, 1993; Bovet et al., 2009). Qua-

ternary sediments are often >1 km thick (Zhang et al., 1990) and consist of 

alluvial, fluvial, and glaciofluvial deposits (Li and Yang, 1998; Zhao et al., 2002).

Timing of Cenozoic Deformation

Several lines of evidence suggest that contractional deformation and 

crustal shortening of post-Devonian units across the northern Qilian Shan ini-

tiated in the middle Miocene. First, we infer that deformation of Carboniferous 

through Cretaceous strata occurred in the Cenozoic based on the following 

observations: (1) thrust faults link with the present-day range-bounding Qilian 

Shan frontal thrusts (Figs. 5–9), (2) these faults truncate Cenozoic nonmarine 

deposits and offset Quaternary alluvium (Figs. 5 and 6), (3) regionally, Carbon-

iferous–Triassic strata are conformable and parallel to subparallel, indicating 

that deformation involving these units was post-Triassic, and (4) Jurassic–

Creta ceous strata are extension related (e.g., Vincent and Allen, 1999; Chen  

et al., 2003; Yin et al., 2008a, 2008b), so contractional deformation of Juras-

sic–Cretaceous strata must be Cenozoic in age. Second, AHe ages obtained 

along a nearby traverse (Fig. 5) suggest that rapid cooling across the Qilian 

Shan frontal thrust system began ca. 10 Ma (Zheng et al., 2010). Lastly, the 

Cenozoic strata in our seismic reflection profiles, generally Miocene and Plio-

cene sedimentary rocks, exhibit growth strata relationships with the frontal 

thrusts (Figs. 7–9).

Approximate Vertical Scale of Seismic Sections 
and Associated Uncertainties

The vertical axes in the seismic profiles are two-way traveltime, and an 

approximate depth scale was created assuming an average P-wave velocity of 

5.5 km/s (Liu et al., 2006; Gao et al., 2013). Although the use of a single average 

seismic velocity distorts the geometry of the structures, we assume these ef-

fects to be negligible given that the sections are imaging only the uppermost 

~15 km of crust and that we are primarily interested in assessing horizontal 

motion and shortening. The sediment in the foreland may have a lower seis-

mic velocity (e.g., He and Pang, 2013), and therefore our profiles likely over esti-

mate the apparent thickness of Cenozoic sediments. However, our choice of an 

average seismic velocity leads to very minor uncertainties for our horizontal 

calculations. If we assume that our approximation of an upper crustal seismic 

velocity of 5.5 km/s has an associated error of ±0.5 km/s, which is reasonable 

based on other regional geophysical studies (e.g., Liu et al., 2006) and the 

global distribution upper crustal p-wave velocities (Christensen and Mooney, 

1995), then these uncertainties in the vertical scale affect the actual length of 

any inclined reflectors. The magnitude of this distortion depends on the ap-

parent dip angle of the reflector. The original length of reflector that dips 45° 

would be distorted by 3%–4%, whereas more shallowly dipping beds would 

undergo less elongation. Thus, our line-length balancing analyses of horizon-

tal shortening produce conservative uncertainties of 3%–4%. Our conversion 

of traveltimes to depth yields apparent bed thicknesses that are consistent 

with what is observed at the surface (see preceding description), strengthen-

ing the validity of our assumption.

Seismic Reflection Profiles

Three seismic reflection profiles (Figs. 7–9) show sequences of finely lami-

nated reflectors, which are interpreted to represent sedimentary strata, and 

zones of diffuse low reflectivity, which may represent either large plutons or 

the strongly deformed and transposed Ordovician–Silurian strata. The great 

density of highly reflective layers allows us to understand the subsurface 

geom etry, and the truncation of these closely spaced reflectors is due to fault-

ing, unconformable deposition, or pluton intrusion. Overall, these three pro-

files image a south-dipping thrust system involving two major thrust faults 

that places Paleozoic and older rocks over a relatively undeformed Hexi Corri-

dor foreland to the northeast (Fig. 5). The foreland consists of Mesozoic–Ceno-

zoic sedimentary rocks unconformably overlying older bedded units.

Jurassic strata display the strongest and most continuous reflectors (Figs. 

7–9), possibly because of the laterally continuous coal seams in these rocks. 

These beds generally are 6–8 km below the surface of the Hexi Corridor, but 

also are exposed along the base of the northern Qilian Shan range (Fig. 5). 

Cretaceous strata are subparallel to Jurassic strata and also display finely lami-

nated reflectors (Figs. 7–9). Truncations of these reflectors are pronounced and 

highlight major structures. Growth strata relationships occur in both the Creta-

ceous and Cenozoic strata; sedimentary rocks thicken to the south-southwest. 

Sequences of strong reflectors that have apparent thicknesses similar to either 

the Jurassic or Cretaceous reflectors in the undeformed foreland footwall are 

interpreted to be the same units in the hanging wall. No clear regional-scale 

detachment surface at depth is observed in any of the sections, although the 

hanging-wall and footwall flats are often confined to Cretaceous strata. The 

transparent granitoid and Ordovician–Silurian units are ambiguous and we 

refrain from overinterpreting structures within these units. Paleozoic units at 

depth cannot be subdivided further unless surface extrapolation is possible, 

and are assigned a general Paleozoic age (Pz).

Seismic reflection profile 1 (Fig. 7) (line S–S′ in Fig. 5) is an ~31-km-long sec-

tion that images two south-dipping thrusts, which place the Silurian pluton on 

relatively undeformed Mesozoic–Cenozoic sedimentary rocks in the Hexi Corri-

dor (Fig. 5). The set of strongest reflectors are interpreted to be Jurassic strata 

(e.g., Yang et al., 1993; Li, 1994; Li and Yang, 1998), 6 km below the surface in the 

Hexi Corridor (label 1 in Fig. 7), which is conformably overlain by Cretaceous 

and Cenozoic rocks. Minor north-dipping faults disrupt Jurassic and older strata.  
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Jurassic strata are interpreted to overlie Carboniferous–Triassic rocks with a 

minor (10°–15°) angular unconformity (between labels 1 and 6 in Fig. 7), al-

though the distinct units beneath the Jurassic strata are not constrained. The 

coherent layer of Jurassic strata pinches out in the south end of the profile 

(Fig. 7). This interpretation is further supported by the lack of Jurassic rocks 

exposed at the surface to the south-southwest of this profile location (Fig. 5). 

The relatively transparent Silurian granitoid and Ordovician–Silurian meta-

sedi mentary rock compose most of the southern portion of the acquired image 

(label 5 in Fig. 7). The truncation of poorly organized, tightly folded, and diffuse 

reflectors represents an intrusive contact of granitoid against Ordovician–Silu-

rian metasedimentary rocks.

This profile images two major thrust faults (Figs. 5 and 6). The most north-

ern structure (f1 in Fig. 7) involves a nearly continuous and parallel set of 

south-dipping (25°–35°S) reflectors juxtaposed against horizontal reflectors 

near the middle of the image (3 and 4 in Fig. 7). We interpret this structure as 

a hanging-wall flat–footwall ramp thrust fault. Hanging-wall rocks are inter-

preted to be Cretaceous in age based on projecting surface geology to depth 

(Figs. 5 and 7). The Jurassic strata pinch-out could alternatively be interpreted 

as a footwall ramp truncation, which would require a matching Jurassic cutoff 

in the hanging wall. We do not prefer this interpretation because this relation-

ship is not observed. Slip along f1 is at least 15–20 km. The second major fault 

(f2 in Fig. 7) truncates the Cretaceous hanging-wall strata of fault f1 and places 

the relatively transparent Ordovician–Silurian units against the Cretaceous 

rocks (Fig. 7). Based on the observed fault geometries and unit juxtapositions, 

slip along this second fault, f2, is likely 5–10 km. Some of the observed uncon-

formities (i.e., beneath the Jurassic strata) could be low-angle hanging-wall 

bedding-parallel thrusts, but we prefer the unconformity interpretation based 

on the regional geology and because this assumption minimizes estimated 

shortening.

Seismic reflection profile 2 (Fig. 8) (line T–T′ in Fig. 5) is an ~39-km-long 

section located ~40 km to the southeast of profile 1 (Fig. 5). This section images 

the same south-dipping thrust structures and undeformed foreland observed 

in profile 1. Strongly reflective Jurassic strata are ~8 km below the surface 

of the Hexi Corridor (1 in Fig. 8) and are overlain by Cretaceous–Quaternary 

sedimentary rocks (2 in Fig. 8). Middle Miocene rocks at the base of the range 

(N in Fig. 5) are syntectonic because they unconformably overlie Cretaceous 

strata and are truncated by the current range-bounding thrust (Fig. 8). This 

supports middle Miocene fault initiation. Jurassic strata overlie Triassic or 

Paleo zoic rocks with an apparent angular unconformity of ~15° (between 1 and 

6 in Fig. 8), similar to profile 1 (Fig. 7). Minor south-dipping faults disrupt Paleo-

zoic through Jurassic strata in the north.

The southwestern side of the seismic profile shows also shows two major 

faults. The first brings Jurassic strata from a depth of ~8 km to ~5 km along 

a thrust fault (f1 in Fig. 8). This juxtaposition, along with the observed fault 

geometry, requires a minimum fault slip of ~15 km. The hanging-wall rocks 

in f1 are truncated by another major fault (f2 in Fig. 8) that brings Ordovician–

Silu rian and Jurassic strata over Jurassic–Cretaceous rocks (3 in Fig. 8), which 

requires ~10–15 km of slip. Another minor south-dipping fault transports early 

Paleozoic rocks and truncates north-dipping Jurassic strata. Slip on this fault 

is poorly constrained but must be large enough (2–4 km) to expose Silurian 

rocks in this range (Fig. 5) and to cut through and obscure Jurassic strata at 

the surface (Fig. 8).

Seismic reflection profile 3 (Fig. 9) (line U–U′ in Fig. 5) is an ~25 km-long 

section located ~10 km to the southeast of profile 2 (Fig. 5). This is the only 

section that is parallel and aligned with shortening in the Yumu Shan to the 

northeast (Figs. 1 and 10), and the imaged structures may be kinematically 

linked with those to the north (Tapponnier et al., 1990). The prominent reflector 

sequence that is interpreted to represent Jurassic strata is located at a depth 

of 3–4 km below the Hexi Corridor (label 1 in Fig. 9), compared to depths of 

6–8 km in the other two profiles (Figs. 7 and 8). Thus, Cretaceous–Cenozoic 

deposits in this section are 2–4 km thinner than the other sections, although 

the relative thickness of each different-aged deposit is ambiguous (e.g., Cre-

taceous versus Neogene versus Quaternary strata). This thickness difference 

may be caused by either a Cretaceous or Cenozoic paleohigh that impeded the 

deposition of Cretaceous or Cenozoic sediments, or earlier localized Cenozoic 

uplift that allowed for more erosion of the youngest sedimentary rocks. Juras-

sic strata overlie Triassic or Paleozoic rocks with an angular unconformity of 

~10° (between labels 1 and 5 in Fig. 9).

Unlike the other profiles, at least five north-dipping faults cut through 

Hexi Corridor sedimentary rocks with small-magnitude offsets. These south- 

directed faults may originate from deformation in the Yumu Shan (Figs. 1 

Restored northern margin of the Qilian Shan

Yum
u  Shan

Qilian Shan

Hexi 

~50 km 

(~52%)

~34 km 

(~36%)
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P2

P3

50 km

N
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Figure 10. Sketch map showing reconstruction of the pre-Cenozoic northern margin of the 

frontal Qilian Shan relative to the present-day based on the shortening estimates obtained in 

this study. This map highlights the fact that lower magnitude shortening in the east are bal-

anced by an overall wider zone of deformation, as strain is also occurring in the Yumu Shan. P1, 

P2, and P3 refer to profiles 1, 2, and 3, respectively. Note that P3 is in line with the Yumu Shan 

thrust system whereas the other seismic profiles are not.
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and 10). Two major thrusts are imaged in the southern portion of this profile. 

The first thrust (f1 in Fig. 9) creates the geometric relationship of south-dipping 

Cretaceous strata in the hanging wall against nearly horizontal strata in the 

footwall, near the middle of the section (4 in Fig. 9). This juxtaposition requires 

a minimum ~3–5 km of slip. The second major thrust (f2 in Fig. 9) is imaged at 

the southern edge of profile 3 and involves the movement of Jurassic–Creta-

ceous rocks to within 1–2 km of the surface along a south-dipping fault. A back-

thrust in the hanging wall truncates Jurassic strata, and only Silurian rocks are 

exposed at the surface along the profile surface trace (Fig. 5). Jurassic beds are 

exposed south of profile 3 (Fig. 5).

Cross-Section Models and Cenozoic Shortening Estimates

Given that contractional deformation of Carboniferous and younger beds is 

interpreted to be Cenozoic in age, the restoration of our balanced cross sections 

provides constraints on the minimum magnitude of Cenozoic shortening strain. 

The following assumptions went into balanced cross-section construction and 

restoration. (1) When hanging-wall cutoffs are eroded, minimum fault offsets 

were used in the restorations. (2) Deformation is plane strain in the north-north-

east–trending sections; this is validated by direct field observations of dip-slip 

fault kinematics (e.g., fault slickenlines and asymmetric minor folding analysis; 

Reith, 2013; our field observations), present-day north-northeast–south-south-

west convergence as indicated by GPS velocities, and a northeast contractional 

strain field (Zhang et al., 2004; Allmendinger et al., 2007). (3) The unconformity 

at the base of the Jurassic strata has no initial relief and is restored to horizontal. 

The contact between Jurassic and Triassic strata, where it is directly observed 

in the field, is parallel to subparallel (~<15° discordance) and was likely initially 

horizontal. (4) The pin lines are placed in the relatively undeformed footwall of 

the Hexi Corridor foreland, pinning Jurassic–Quaternary strata. (5) Shortening 

estimates are a minimum because of hanging-wall erosion (Boyer and Elliott, 

1982), bed-length changes during deformation (Groshong et al., 2012), cleav-

age formation, unrecognized additional detachment surfaces at depth (e.g., Yin 

et al., 2008a), and unconstrained deformation in the early Paleozoic granite and 

metasediments. (6) Although significant pre-Cenozoic deformation affected the 

region, following the logic presented here, restoration of Jurassic–Cretaceous 

strata provides an estimate of Cenozoic strain. (7) The use of a single average 

seismic velocity leads to horizontal length errors of <4%. The balanced and re-

stored cross sections are presented in Figures 7–9.

Because the Jurassic strata in seismic reflection profile 1 (Fig. 7) are not 

observed in the hanging wall, either because it pinches out or is truncated 

by a fault, and the Cretaceous hanging-wall cutoff is also eroded, line-length 

balancing of either of these units would lead to large uncertainties. An alter-

native method is required to constrain shortening. Profile 1 is located within 

2 km of the parallel traverse by Zheng et al. (2010) (Fig. 5), allowing us to use 

their AHe data in our deformed and restored cross-section models. Their study 

locates a ca. 10 Ma apatite paleo-PRZ in the hanging wall of the north-directed 

thrust system (e.g., Fig. 4C), which can be used to estimate the location of a ca. 

10 Ma paleoland surface at ~2.6 km above the paleo-PRZ, assuming a typical 

continental geothermal gradient and reasonable AHe closure temperature (see 

discussion in Zheng et al., 2010). We place this paleo-PRZ and ca. 10 Ma paleo-

land surface in our deformed-state cross section (Figs. 7B, 7C) and use it in our 

restoration to align this ca. 10 Ma marker horizon (i.e., the paleoland surface) 

within middle Miocene strata in the Hexi Corridor footwall (Fig. 7D). The same 

method was used by Zheng et al. (2010), but with only one fault strand and an 

oversimplified fault geometry. Our seismic interpretation and knowledge of 

the fault geometries at depth allows for a better constrained restoration. We re-

store the paleo-PRZ within the Silurian granitoid along the imaged thrust faults 

until the inferred ca. 10 Ma paleoland surface is at the same vertical position as 

the ca. 10 Ma strata in the footwall (Fig. 7D). This restoration requires a good 

vertical scale to be meaningful, but the vertical scale of our seismic sections is 

only an approximation. To overcome this issue, we use three independent ob-

servations to verify the vertical position. First, we compare the relative scale of 

our cross-section model with that presented by Zheng et al. (2010) that shows 

that the paleo-PRZ in the hanging wall is located ~2.1 km above the ca. 10 Ma 

surface in the Hexi Corridor. Our cross-section model shows a similar vertical 

relationship. Second, Cretaceous beds are ~3 km thick (see preceding discus-

sion) and we can compare the apparent thickness of these beds in the seismic 

section to create a local vertical scale. Third, we note that the Carboniferous 

strata unconformably overlying the Silurian pluton (Figs. 5, 7B, and 7C) must 

be restored to a viable pre-Cenozoic position to avoid creating an unreason-

able buttress unconformity, which would indicate large-scale relief during the 

deposition of Cretaceous strata.

We position the Silurian pluton to minimize shortening (Fig. 7D), although 

allowing more slip would give the implied unconformities a more realistic 

geom etry with less pre-Cenozoic relief. To the south of the Silurian pluton, 

the lack of bedded units and coherent reflectors makes restoration difficult. 

Silurian and Ordovician strata are involved in imbricate thrusting that may 

be  either Paleo zoic or Cenozoic in age (Figs. 5 and 7). With our restoration 

method, we calculate a minimum horizontal shortening magnitude of 25 km 

with a deformed section length of 21 km, which yields a minimum shortening 

strain of 54% (Fig. 7D). Alternatively, if we ignore the AHe data and retro-

deform the strata along the observed footwall fault geometries, minimum 

shortening is 22 km (53% strain). The latter method does not adequately re-

store the Carboniferous unconformity to a reasonable elevation, so we pre-

fer the former shortening estimate (i.e., 25 km or 54% strain). A line-length 

balance of Cretaceous strata yields a shortening magnitude of 15 km and a 

corresponding strain of 40%, which can be regarded as absolute minimum 

estimates. If the strain was accommodated over the past ~10 m.y. (Zheng 

et al., 2010), the corresponding horizontal shortening rate and strain rate are 

2.2–2.5 mm yr–1 and 1.7 × 10–15 s–1, respectively.

Profile 2 (Fig. 8) is retrodeformed to an undeformed pre-Cenozoic state by 

restoring the Jurassic beds (i.e., the prominent reflectors labeled 1; Figs. 8A, 

8B) to a continuous and horizontal position (Fig. 8D). The minimum magni-
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tude of horizontal shortening calculated by this restoration is ~33 km across a 

deformed section length of ~29 km (Fig. 8D), which yields a shortening strain 

of 53%. The surface exposure of Jurassic strata in the hanging wall in the 

 Qilian Shan range (Fig. 5) and the reasonably constrained location of Jurassic 

rocks in the Hexi Corridor footwall (Fig. 8) require a minimum vertical throw 

of 8–10 km. This observation corroborates our interpretation and requires 

shortening of this approximate magnitude. Given that this strain was accom-

modated since ca. 10 Ma (Zheng et al., 2010), the corresponding horizontal 

shortening rate and strain rate are 3.3 mm yr–1 and 1.7 × 10–15 s–1, respectively.

Seismic reflection profile 3 (Fig. 9) is also restored using the Jurassic unit as 

a marker horizon (i.e., the prominent sequence of reflectors labeled 1 in Fig. 9). 

Motion on fault f2 is poorly constrained because of erosion of the hanging-wall 

cutoff, but there must be enough slip on fault f2 to expose Silurian strata at the 

surface (e.g., Fig. 5). The minimum magnitude of horizontal shortening calcu-

lated in this restoration is ~12 km across a deformed section with a length of 

21 km, yielding a minimum strain of 36%. Assuming that deformation initiated 

ca. 10 Ma (Zheng et al., 2010), the corresponding horizontal shortening rate and 

strain rate are 1.2 mm yr–1 and 1.1 × 10–15 s–1, respectively.

DISCUSSION

Cenozoic Shortening across the Northeastern Tibetan Plateau

Our analysis of seismic reflection profiles yields minimum north-south 

shortening estimates of 25 km (54% strain), 33 km (53% strain), and 12 km 

(36% strain), from west to east (Figs. 3 and 5). Although our seismic reflection 

interpretations, cross-section models, and section restorations are nonunique 

solutions, the geometric compatibility between the three sections adds robust-

ness to our interpretations. All three profiles image two south-dipping strands 

of the northern Qilian Shan frontal thrust system. In all three cross sections, 

Quaternary sediments cover fault 1, and fault 2 represents the range-bounding 

fault (Fig. 5), suggesting that fault 1 is inactive and fault 2 is active. This trailing 

imbricate system may have first exploited the relative weaknesses within the 

bedded Cretaceous rocks before cutting through early Paleozoic strata.

Profiles 1 and 2 yield similar shortening magnitude and strain estimates. 

One explanation for profile 3 having a lesser magnitude of Cenozoic short-

ening is that deformation may be partitioned between the Qilian Shan and 

Yumu Shan thrust systems, ~25 km northeast of profile 3 (e.g., Tapponnier 

et al., 1990) (Fig. 10). Profile 3 is the only section that is directly in line with the 

Yumu Shan. Estimated north-south shortening rates across the Yumu Shan are 

0.4–1.9 mm yr–1 (Tapponnier et al., 1990) and if faulting also initiated ca. 10 Ma, 

the magnitude of shortening should be between 4 and 19 km. Summation of 

the shortening magnitudes and rates from the Yumu Shan and the Qilian Shan 

frontal thrust system imaged in profile 3 yields 16–31 km (33%–49% strain) 

and 1.6–3.1 mm yr–1, respectively, consistent with the shortening observed in 

profiles 1 and 2 to the west (Fig. 10).

Shortening estimates derived from the longest profile (i.e., profile 2; Fig. 8) 

indicate that the northern Qilian Shan minimum Cenozoic shortening magni-

tude and strain were 33 ± 6 km and 52% ± 4%, respectively, including the un-

certainties associated with using a single uniform seismic velocity. Other seis-

mic reflection analyses across the northern Qilian Shan frontal thrust system 

obtain comparable strain values of 40%–55% (J. Wu et al., 2006; Yang et al., 

2007a, 2007b). Assuming that this strain can be applied across the width of the 

northern Qilian Shan frontal range (40–50 km), a possible restored position of 

the northern margin of the Qilian Shan prior to Cenozoic shortening is shown 

in Figure 10. Note that all three profiles restore to a similar position.

The north-south shortening rate across the northern Qilian Shan thrust sys-

tem derived from this study, 3.3 ± 0.6 mm yr–1, is much higher than most other 

rate estimates across northern Tibet (Hetzel et al., 2004; W.J. Zheng et al., 2009, 

2013; D. Zheng et al., 2010; Yuan et al., 2011), but is consistent with the esti-

mates of Champagnac et al. (2010) (i.e., ~2.5 mm yr–1), also along the northern 

Qilian Shan. If correct, these high deformation rates indicate that deformation 

is currently focused along the northern margin of the plateau, and that the 

northern Qilian Shan thrust faults accommodate more than half of the entire 

geodetic shortening across the Qilian Shan–Nan Shan thrust belt (i.e., ~5.5 mm 

yr–1) (Zhang et al., 2004).

The Cenozoic shortening documented in this study is also higher than 

other estimates around the northeastern Tibetan Plateau (Fig. 3). This disparity 

may be due to either a heterogeneous strain distribution in northern  Tibet or 

an artifact of the limitations of strain estimates that are calculated from obser-

vations of the surface geology alone. Estimates derived from restoring only 

Cenozoic strata are significantly lower (<15% strain) (e.g., Lease et al., 2012; 

Craddock et al., 2014) than those that incorporate subsurface data (>40% 

strain) (J. Wu et al., 2006; Yang et al., 2007a, 2007b; Yin et al., 2008b; Gao 

et al., 2013; this study). However, the variable topography, eastward-tapering 

thrust belts (Fig. 1), complex interaction between strike-slip and thrust faulting, 

and heterogeneous strain estimates in different cross sections from the same 

study (e.g., Fig. 3) suggest that strain is not spatially constant across northern 

Tibet. By integrating our calculations with other seismic analyses and regional 

bulk shortening estimates (e.g., Yin et al., 2008b; Meyer et al., 1998; Gao et al., 

2013), we suggest that the bulk Cenozoic strain across the Qilian Shan–Nan 

Shan thrust system is >30% (215–300 km shortening) (Fig. 3; Table 2); higher 

strain (>53% or ~50 km shortening) is concentrated in the northern Qilian Shan 

thrust belt along the plateau margin. Thus, the higher strain observed along 

the northern Qilian Shan should not be extrapolated across the entire Qilian 

Shan–Nan Shan thrust belt.

Our analysis suggests that a significant portion of the convergence between 

North China and Tibet (~5.5 mm yr–1) is accommodated by concentrated short-

ening across the northern Qilian Shan frontal thrust system (3.3 ± 0.6 mm yr–1). 

This result indicates that focused deformation along the northern margin of 

the Tibetan Plateau is similar to Himalayan shortening along the southern mar-

gin of the plateau, where strain is highly concentrated along the Main Frontal 

Thrust (Lavé and Avouac, 2000; Burgess et al., 2012).
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Crustal Shortening, Thickening, and Denudation

To quantitatively evaluate plateau formation mechanisms, we first deter-

mine the significance of distributed shortening in crustal thickening and pla-

teau development. A well-constrained estimate of the pre-Cenozoic crustal 

thickness of northern Tibet is required to assess the role that crustal shorten-

ing has in crustal thickening. Although such an estimate does not exist, sev-

eral lines of evidence suggest that the pre-Cenozoic thickness of the northern 

 Tibet was ~40 km. The global average thickness of modern continental crust 

is 41 ± 6 km (Christensen and Mooney, 1995). Although Mesozoic rifting is 

widespread across northern Tibet (Vincent and Allen, 1999; Chen et al., 2003) 

and rifted crust can be as thin as 36 ± 8 km (Christensen and Mooney, 1995), 

nonmarine Cretaceous deposits require the crust to be at least 32–34 km thick 

to be above sea level, given Airy isostatic compensation (e.g., Schubert and 

Sandwell, 1989). Furthermore, the Ordos Basin to the northeast of the plateau 

(Fig. 1) represents relatively stable crust, with a lack of earthquakes and a 

lower average elevation (i.e., ~1.3 km). Its current crustal thickness of ~42 km 

(Liu et al., 2006) is a good approximation for crustal thickness in the adjacent 

northern Tibet prior to Cenozoic deformation.

The horizontal crustal shortening observed across northern Tibet (Table 2) 

contributes to crustal thickening of this initially ~40-km-thick crust, assuming 

that surface and mantle erosional processes and/or lateral material transport 

(i.e., not plane strain shortening) are not outpacing crustal thickening. Vertical 

thickening results from horizontal shortening assuming the following: 

(1) vertically uniform horizontal plane strain shortening of the crust (i.e., 

upper, middle, and lower crust), (2) two-dimensional (2-D) pure shear crustal 

thickening, and (3) minor, or at least well-constrained, denudation. Horizontal 

shortening strain, εh, is defined as ε
h

=

l
f
− l

i

l
i

, where lf and li are the final and 

initial cross-section lengths, respectively. Horizontal shortening strain can 

be converted to horizontal stretch strain, s
h

=
l

f

l
i

= ε
h

+1 , which is inversely 

related to the vertical stretch strain, s
v

=

1

s
h

. The apparent present-day crustal 

thickness, Tf, relates to vertical stretch strain (sv) as Tf = Ti × sv, where Ti is the 

initial crustal thickness. This same approach can be used to back-calculate 

the apparent predeformational crustal thickness of the Tibetan Plateau (Table 2).

This simple approximation excludes the effects of denudation; however, 

we have determined <5 km of Cenozoic denudation across northern Tibet. 

The Silu rian–Carboniferous unconformity in the hanging wall of the Qilian 

Shan frontal thrust system (Figs. 5 and 7) constrains how much material was 

removed to expose this marker horizon. Carboniferous–Jurassic strata are 

~4–4.5 km thick and Jurassic–Cretaceous rocks record a transition from mar-

ginal marine to nonmarine deposits (Gansu Geological Bureau, 1989; Qinghai 

BGMR, 1991). The exposure of the base Carboniferous beds (i.e., the unconfor-

mity surface) requires 4–4.5 km denudation since the beginning of the Creta-

ceous, when terrestrial sedimentation began (Vincent and Allen, 1999) and ero-

sion could have commenced. The magnitude of Cretaceous versus Cenozoic 

erosion and/or denudation is not constrained, and so this estimate provides a 

maximum Cenozoic denudation magnitude of 4.5 km. The AHe study of Zheng 

et al. (2010) shows erosion and denudation magnitudes of ~2 km since ca. 

10 Ma. We assume a conservative maximum denudation magnitude of 5 km 

across the northern Qilian Shan thrust system and assume that all of northern 

Tibet underwent a similar magnitude of denudation.

Assuming that the crustal thickness of northern Tibet prior to India-Asia 

collisions is ~40 km, we calculate the crustal thickness that develops due to 

horizontal shortening (Table 2), and compare this value to the present-day 

crustal thickness (55–65 km) (e.g., Fig. 1C) of northern Tibet (Fig. 11). When 

crustal shortening alone generates a crustal thickness that agrees with modern 

observations, no additional mechanisms are favored for plateau development, 

but if the shortening estimates overthicken or underthicken the crust, alterna-

tive processes, including channel flow or underthrusting (e.g., Fig. 2), are re-

quired. We conduct this analysis on two northeast-trending cross-section lines 

across northern Tibet (lines J–J′ and K–K′ in Fig. 3) (Fig. 11).

In the west, along line J–J′ in Figure 3, the observed crustal shortening esti-

mates in the Qimen Tagh, Qaidam Basin, and Qilian Shan–Nan Shan thrust 

belts can effectively explain the present-day crustal thickness (Fig. 11). The 

shortening observed in our seismic profiles at the northern edge of the Qilian 

Shan is high and predicts thicker crust (i.e., 75–80 km) than what is observed. In 

the east, along line K–K′ in Figure 3, shortening estimates south of the Haiyuan 

fault near the Gonghe Basin (Fig. 3) are too low to adequately explain the ob-

served crustal thickness (Fig. 11); an extra crustal thickness of ~10 km is needed. 

To the north of the Haiyuan fault crustal shortening is sufficient to develop the 

observed ~50-km-thick crust (Fig. 11). The higher shortening reported by Gao 

et al. (2013) predicts thicker crust than what is observed (~70–75 km) (Fig. 11).

This integrated analysis can ascertain the importance of distributed short-

ening as a plateau formation mechanism. For most of northern Tibet, away 

from the plateau margins, distributed crustal shortening and pure shear thick-

ening can adequately generate the observed 55–65 km crustal thickness (Fig. 

11), which suggests that distributed shortening is the dominant crustal thicken-

ing process operating through most of this region. The higher strain observed 

by our seismic reflection analysis along the plateau margin may result from 

either southward underthrusting of the Asian mantle lithosphere or continen-

tal subduction (Table 1). Given that this higher magnitude deformation is fo-

cused along the northern margin of the plateau and not along existing sutures 

(Fig. 1), the underthrusting model is favored. If the Asian mantle lithosphere is 

underthrust to a position near Qaidam Basin, as suggested by Ye et al. (2015) 

(Fig. 1A), ~300 km shortening (~50%) is required to accommodate this motion.

Coherent Model for the Cenozoic Development 
of the Northeastern Tibetan Plateau

We integrate existing work across northern Tibet to develop a litho-

spheric-scale model for the Cenozoic development of the northeastern 

Tibetan Plateau (Fig. 12). We suggest that the crustal thickness and eleva-
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tion of the northeastern Tibetan Plateau are the results of bulk north-south 

shortening of the Tibetan-Asian lithosphere by at least 250–350 km, from 

the Kunlun fault in the south to the Hexi Corridor in the north (Figs. 1 and 

12). This shortening is accommodated by southward underthrusting of the 

Asian mantle lithosphere beneath the northern margin of the plateau and 

a similar magnitude of crustal shortening and pure shear crustal thickening 

(Fig. 12). Strain observed away from the margins of the northeastern plateau 

is ~30%–45%, which is sufficient to thicken an initially ~40-km-thick crust to 

the present-day crustal thickness solely by distributed crustal shortening and 

pure shear thickening. With this scenario, the Tibetan crust has thickened 

by ~20 km via distributed contractional folding and faulting as a result of 

deformation that transferred rapidly from the south, as early as ca. 50 Ma 

(Yin et al., 2008a; Duvall et al., 2013). Localized higher strain (>53%) along 

the northern plateau margin results from southward underthrusting of the 

Asian mantle lithosphere to a position beneath northern Qaidam Basin. This 

is supported by receiver function studies that image the south-dipping North 

China mantle lithosphere beneath the Tibetan Plateau (Feng et al., 2014; Ye 

et al., 2015). However, our observations are not consistent with the high of 

magnitude of underthrusting envisioned by Kind et al. (2002) (Fig. 1A) that 

would require significantly more upper crustal shortening (Fig. 2D). The rela-

tively recent initiation of faulting (Zheng et al., 2010) and high strain rates 

(Champagnac et al., 2010; this study) along the northern plateau margin sug-

gest that this interpreted underthrusting is a young feature of plateau devel-

opment that initiated at around 10 Ma.
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tion; solid green line = 5 km denudation) 

given pure shear thickening at estimated 
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ness of 40 km (dashed orange line). Section 

lines J–J′ and K–K′ are shown in Figure 3. 
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Although most of the observed strain distribution (Fig. 3) can be explained 

by our lithospheric-scale model (Fig. 12), the low shortening magnitudes 

(<15%) near the Gonghe Basin and the Jishi-Laji Shan to the southeast require 

explanation (Lease et al., 2012; Craddock et al., 2014). These relatively low short-

ening estimates may be the result of shortening underestimation because of 

the lack of subsurface data, although Lease et al. (2012) argued that these low 

shortening magnitudes are sufficient to generate the observed crustal thickness 

from crust with an initial thickness of 45 ± 5 km. Alternatively, these low strain 

magnitudes may indicate that a different mechanism is operating in this east-

ern region of northern Tibet (Fig. 1B), such as northeast-east–directed lower 

crustal flow around Sichuan Basin (Clark and Royden, 2000) that could lead to 

additional vertical crustal thickening without horizontal crustal strain at the sur-

face. The lateral flow of low-viscosity material may be driven by the northward 

indentation of India into the Tibetan lithosphere from the south or the south-

ward underthrusting of the Asian mantle lithosphere beneath northern Tibet.

Accommodation Mechanisms of India-Asia Convergence

There has been 2000–2500 km of convergence between India and Asia 

since the onset of collision at 65–55 Ma (e.g., Molnar and Tapponnier, 1975; 

Dewey et al., 1989; Le Pichon et al., 1992; Zhu et al., 2005; van Hinsbergen et al., 

2011). Efforts to document this convergence in crustal shortening generally 

come up short, with 600–900 km shortening in the Himalaya (DeCelles et al., 

2002; Robinson et al., 2006; Yin et al., 2010b; Long et al., 2011; Webb, 2013) 

and 300–400 km of north-south shortening reported across all of Tibet (e.g., 

Yakovlev and Clark, 2014). These low values for Tibetan shortening need to be 

reconsidered in light of detailed field and seismic subsurface data. By integrat-

ing our results across the northern Qilian Shan thrust system with other robust 

estimates discussed in this paper (e.g., Gaudemer et al., 1995; Meyer et al., 

1998; Yin et al., 2008a, 2008b; Reith, 2013; Gao et al., 2013), we suggest that 

the entire 350-km-wide Qilian Shan–Nan Shan thrust belt accommodates a 
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minimum of 215–300 km Cenozoic shortening. Higher strain of >53% is occur-

ring along the northern plateau margin, whereas lower strain of 30%–45% is 

occurring within the thrust belt interior (Table 2). Given that similar strain mag-

nitudes have been documented in the Qimen Tagh, Qaidam Basin, and North 

Qaidam thrust belts (Yin and Harrison, 2000; Yin et al., 2007a, 2008a, 2008b; 

Wang et al., 2011) (Figs. 1 and 3; Table 2), at least 250–350 km of north-south 

Cenozoic shortening may have been absorbed between Hexi Corridor and the 

Kunlun fault (Figs. 1 and 12). These extrapolations require further testing, but 

demonstrate that crustal shortening and the construction of the northeastern 

Tibetan Plateau play a significant role in accommodating the >2000 km conver-

gence between India and Asia.

CONCLUSIONS

The following conclusions can be drawn from the integration of our seismic 

reflection analysis with other existing structural studies across northern Tibet.

1. Many satellite- and field-based Cenozoic shortening estimates across 

the Qilian Shan–Nan Shan thrust belt are low (e.g., <15%–20%). We posit that 

these studies underestimate crustal strain across northern Tibet by missing 

blind structures and detachments. More robust studies, including other seis-

mic reflection analyses and regional bulk shortening estimates, suggest that 

strain across most of northern Tibet, from the Qimen Tagh in the south to the 

Qilian Shan in the north, is >30%–45%.

2. Our seismic reflection analysis across the northern Qilian Shan reveals 

a south-dipping Cenozoic thrust system that places Paleozoic and Mesozoic 

strata on undeformed Mesozoic–Cenozoic sediments in the Hexi Corridor 

foreland. Our upper crustal north-south shortening estimates are 25 km (54% 

strain), 33 km (53% strain), and 12 km (36% strain). The lowest shortening esti-

mate is likely due to deformation being partitioned between the Qilian Shan 

and the Yumu Shan thrusts. We prefer the values from our longest seismic 

reflection profile and suggest that the northern Qilian Shan accommodates a 

minimum crustal shortening strain, shortening rate, and strain rate of ~53%, 

3.3 ± 0.6 mm yr–1, 1.7 × 10–15 s–1, respectively. Assuming that this shortening 

strain can be extrapolated across the entire northern frontal range in the Qilian 

Shan, our analyses suggest that 50 km of north-south Cenozoic shortening has 

been accommodated along the northern margin of the Tibetan Plateau.

3. The internal regions of northern Tibet (i.e., the Qaidam Basin, North 

 Qaidam, and Qilian Shan–Nan Shan thrust belts) and the northern plateau 

margin have absorbed >30%–45% and >53% Cenozoic shortening strain, re-

spectively. To explain this strain distribution, we suggest that the dominant 

processes of plateau construction operating in northern Tibet are a combina-

tion of distributed crustal shortening, pure shear thickening, and southward 

underthrusting of the Asian mantle lithosphere. Most of the modern crustal 

thickness across the region can be explained by 30%–45% shortening of crust 

with an initial thickness of ~40 km. The higher strain recorded along the north-

ern plateau margin may result from the southward underthrusting of Asian 

mantle lithosphere, which is supported by recent receiver function analysis (Ye 

et al., 2015). We present a 2-D lithospheric-scale model that relates these two 

deformation mechanisms to the observed strain in north Tibet.

4. We suggest that the 350-km-wide Qilian Shan–Nan Shan thrust belt has 

accommodated a minimum of 215–300 km of Cenozoic north-south shorten-

ing. Although detailed shortening estimates from the central Qilian Shan–Nan 

Shan thrust belt are lacking, we tentatively extrapolate the observed strain 

distribution to suggest that more than 250–350 km of north-south Cenozoic 

shortening has been absorbed within the Tibetan Plateau between the Kunlun 

fault in the south and the Hexi Corridor in the north, which is almost double the 

commonly cited shortening value of ~150 km.

5. Our analysis across the Qilian Shan frontal thrust system indicates that 

most of the present-day convergence between North China and Tibet is fo-

cused along the northern plateau margin, similar to Himalayan shortening 

where strain is concentrated along the Main Frontal Thrust (Lavé and Avouac, 

2000; Burgess et al., 2012).
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