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Network forms of organization, unlike hierarchies or marketplaces, are agile and are
constantly adapting as new links are added and dysfunctional ones dropped. We
review some of the theoretical and methodological accomplishments and challenges
of contemporary research on organizational networks. We then offer an analytic
framework that can be used to specify and statistically test simultaneously multilevel,
multitheoretical hypotheses about the structural tendencies of organizational net-
works. We conclude with an empirical study illustrating some of the capabilities of

this framework.

The past decade has witnessed considerable
scholarly interest in conceptualizing twenty-
first-century organizational forms as "network
organizations” (Miles & Snow, 1995; Monge &
Fulk, 1999; Nohria, 1992; Poole, 1999; Powell,
1990). The network organization, these advo-
cates argue, will supplant bureaucracies (and
their descendants, the multidivisional form and
the matrix form) as the twenty-first-century or-
ganizational coin of the realm. Network forms of
organization are neither vertically organized hi-
erarchies like their bureaucratic predecessors
nor unorganized marketplaces governed by sup-
ply and demand (Powell, 1990; Williamson,
1991). Rather, network organizational forms use
flexible, dynamic communication linkages to
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connect multiple organizations and people into
new entities that can create products or ser-
vices. These new forms are agile and are con-
stantly adapting as new links are added and
dysfunctional ones dropped. Thus, the evolving,
emerging network form is the organization.
The changes looming in the organizational
landscape signal the need for a new generation
of organizational theory and research that re-
sponds to the assumptions, aspirations, and ad-
versities that will characterize these twenty-
first-century organizational forms. While there
has been a long-standing interest in the study of
organizations from a social network perspective
(for reviews, see Krackhardt & Brass, 1994; Mizru-
chi & Galaskiewicz, 1994; Monge & Eisenberg,
1987), the fundamental changes outlined above
suggest that the research agenda needs to
evolve from studying networks in (or between)
organizations to grappling with the notion that
the network is the organization. This nuanced
yet significant change in perspective has sub-
stantial—and substantive—implications for the
deployment of a comprehensive network ana-
lytic framework to specify and statistically
model the structural tendencies of network
forms on the basis of multiple theories and at
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multiple levels of analysis. Toward that goal,
we begin by reviewing some of the theoretical
and methodological accomplishments and chal-
lenges of contemporary research on organiza-
tional networks. We then offer an analytic
framework that can be used to specity and sta-
tistically test simultaneously multilevel, multi-
theoretical hypotheses about the structural ten-
dencies of organizational networks. We
conclude with an empirical study that illus-
trates some of the capabilities of this frame-
work.

RECONCEPTUALIZING ORGANIZATIONS AS
NETWORKS

A social network consists of a set of actors and
one or more relations between the actors. The
network perspective is flexible in its applicabil-
ity to different kinds of actors and to different
kinds of relations. Actors may be any kind of
meaningful social unit, including individuals,
collective entities, firms, organizations, and di-
visions within organizations, as well as nonhu-
man agents, such as knowledge repositories
(Carley, 2002; Contractor, 2002; Contractor &
Monge, 2002). The relations may be any kind of
linkage between actors, including formal role
relations, affective expressions (friendship, re-
spect), social interactions, workflows, transfers
of material resources (money, goods), publish-
ing and retrieval of knowledge, flows of nonma-
terial resources (information, advice), and busi-
ness alliances, to name but a few.

The social network approach to organizations
is entirely fitting, since, as O'Reilly observes,
"Organizations are fundamentally relational
entities” (1991: 446). The focus on relations natu-
rally leads to representation and analysis of
organizations as social networks. Indeed, Noh-
ria asserts, "All organizations are in important
respects social networks and need to be ad-
dressed and analyzed as such” (1992: 4). More-
over, this claim holds whether the focus is on
interacting individuals within a single organi-
zation, divisions within a firm, or networks of
interacting firms. Again, Nohria notes these dif-
ferent levels of foci: “The premise that organiza-
tions are networks of recurring relationships ap-
plies to organizations at any level of analysis—
small and large groups, subunits of organiza-
tions, entire organizations, regions, industries,

national economies, and even the organization
of the world system” (1992: 4).

As we enter the new millennium, the new net-
work forms of organizing, precipitated by tech-
nological developments, are eroding the distinc-
tion between formal and emergent structural
categories that traditionally have been used to
characterize organizations. Contrary to tradi-
tional views, contemporary organizations are in-
creasingly constructed out of ephemeral com-
munication linkages, where the

networks of relations span across the entire orga-
nization, unimpeded by preordained formal
structures and fluid enough to adapt to immedi-
ate technological demands. These relations can
be multiple and complex. But one characteristic
they share is that they emerge in the organiza-
tion, they are not preplanned (Krackhardt, 1994:
218).

These developments offer new challenges for
tuture research on organizational networks both
from a theoretical and a methodological stand-
point.

THEORETICAL AND METHODOLOGICAL
CHALLENGES

Theoretically, the increasing irrelevance of re-
search contrasting formal and emergent struc-
tures has prompted researchers to advocate a
shift in focus from examining “emergent” (i.e.,
informal) networks to understanding the “emer-
gence” of organizational networks. In other
words, the focus has shifted toward modeling
the dynamics through which flexible organiza-
tional forms emerge. Based on a review of the
empirical literature, Monge and Contractor
(2001) identify nine families of theoretical mech-
anisms that have been used to explain the cre-
ation, maintenance, dissolution, and reconstitu-
tion of organizational networks. These are (1)
theories of self-interest, (2) theories of mutual
interest and collective action, (3) cognitive theo-
ries, (4) cognitive consistency theories, (5) conta-
gion theories, (6) exchange and dependency the-
ories, (7) homophily theories, (8) proximity
theories, and (9) theories of network evolution
and coevolution. The theoretical mechanisms
are summarized in Table 1.

Monge and Contractor’s review demonstrates
four theoretical implications for studying the
emergence of organizational networks. First, a
wide array of social theories are amenable to
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TABLE 1
Selected Social Theories and Their Theoretical Mechanisms

Theories

Theoretical Mechanisms

Self-interest theories
Social capital
Structural holes
Transaction costs
Mutual self-interest and collective action theories
Public good
Critical mass
Cognitive theories
Semantic/knowledge networks
Cognitive social structures
Cognitive consistency theories
Balance
Cognitive dissonance
Contagion theories
Social information processing
Social learning
Institutional
Structural theory of action
Exchange and dependence theories
Social exchange
Resource dependence
Network exchange
Homophily theories
Social comparison
Social identity
Proximity theories
Physical proximity
Electronic proximity
Network evolution and coevolution theories
Organizational ecology
Complex adaptive systems

Individual value maximization

Investments in opportunities

Control of information flow

Cost minimization
Joint value maximization

Inducements to contribute

Number of people with resources and interests
Cognitive mechanisms leading to

Shared interpretations/expertise

Similarity in perceptual structures
Choices based on consistency

Drive to avoid imbalance and restore balance

Drive to reduce dissonance
Exposure to contact leading to

Social influence

Imitation, modeling

Mimetic behavior

Similar positions in structure and roles
Exchange of valued resources

Equality of exchange

Inequality of exchange

Complex calculi for balance
Choices based on similarity

Choose comparable others

Choose based on own group identity
Choices based on proximity

Influence of distance

Influence of accessibility
Variation, selection, retention

Competition for scarce resources

Network density and complexity

network formulations. Second, in some cases,
different theories, using similar theoretical
mechanisms, offer similar explanations but at
different levels of analysis. Third, different the-
oretical mechanisms sometimes offer comple-
mentary as well as contradictory explanations
at the same level of analysis. Fourth, there is
considerable variation in the depth of concep-
tual development and empirical research across
the different theories and theoretical mecha-
nisms. Thus, their review highlights the need for
network research that is not only theoretically
motivated but also cognizant of incorporating
multiple theoretical mechanisms at multiple
levels of analysis.

Methodologically, the shift in focus from ex-
amining emergent networks to explaining emer-
gence has challenged network analysts to make
three moves: from (1) exploratory and descrip-
tive techniques to confirmatory and inferential

techniques, (2) single-level, single-theoretical
network analyses to multitheoretical, multilevel
analyses, and (3) purely network explanations to
hybrid models that also include attributes of the
actors. These are discussed in greater detail
below.

Confirmatory Network Analysis

In the past two decades there has been con-
siderable progress in the development of de-
scriptive network metrics. Since network data
are, by definition, relational, nonindependent
observations, "standard” statistical methods
that assume independent units simply are not
appropriate. The efforts to develop statistical
models for network processes have been rela-
tively sparse, disparate, and esoteric, thereby
making them inaccessible to the larger research
community (see Part V of Wasserman & Faust,
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1994). For instance, there are measures that can
be used to describe the level of reciprocity in a
network—that is, the extent to which communi-
cation links from actor A to actor B are recipro-
cated, for all pairs in the network, and there are
statistical tests of whether the level of reciproc-
ity in a network is more than one would expect
by chance (Wasserman & Faust, 1994: Chapter
13). However, standard statistical procedures
cannot be applied to determine if the number of
triangles in the network (a property of triples of
actors, all of whom are tied to each other) is
greater than expected, given the number of two-
stars (an actor connected to two others). Testing
such a hypothesis is problematic, because the
triads are not independent of one another.

Multilevel Network Analysis

One of the key advantages of a network per-
spective is the ability to collect, collate, and
study data at various levels of analysis (actor,
dyadic, triadic, group, organizational, and inter-
organizational). However, for the purposes of
analysis, most network data are either trans-
formed to a single level of analysis (e.g., the
actor or the dyadic level), which necessarily
loses some of the richness in the data, or are
analyzed separately at different levels of anal-
ysis, thus precluding direct comparisons of the-
oretical influences at different levels. For in-
stance, social exchange theory suggests that the
tendency to have a communication tie from ac-
tor A to actor B is predicated on the presence of
a communication tie from actor B to actor A.
However, balance theory suggests that the ten-
dency to have a communication tie from actor A
to actor B is predicated on the configuration of
ties the two actors have with third actors, C
through, say, Z.

While social exchange theory makes a predic-
tion at the dyadic level, balance theory makes a
prediction at the triadic level. Jones, Hesterly,
and Borgatti extend this dilemma even beyond
the triadic level, noting that although many or-
ganizational studies adopt a network perspec-
tive, "these studies most often focus on ex-
change dyads, rather than on the network'’s
overall structure or architecture” (1997: 912). Yet,
by limiting attention to dyads and ignoring the
larger structural context, “these studies cannot
show adequately how the network structure in-
fluences exchanges” (Jones et al., 1997: 912). This

is the problem of “dyadic atomization” noted by
Granovetter (1992).

Gnyawali and Madhavan (2001) propose a
multilevel network model for capturing compet-
itive dynamics phenomena. At the actor level,
they propose firm network centrality and struc-
tural autonomy; at the dyadic level, they pro-
pose structural equivalence; and at the global
level, they propose network density as influenc-
ing “(1) the likelihood of a firm's initiating a
competitive action ... and (2) the likelihood of a
competitor responding to that action” (Gnyawali
& Madhavan, 2001: 434). However, as they ac-
knowledge, while network analysis offers inde-
pendent statistical tests for theoretical predic-
tions at each of these levels of analysis,
combining and comparing effects simulta-
neously necessitates an analytic framework
that offers multilevel hypothesis testing. In fact,
it is often difficult to determine the appropriate
level at which a network property applies. Two
actors are structurally equivalent if they occupy
identical structural positions; thus, structural
equivalence might be viewed as a dyadic prop-
erty, yet determining the nature and identity of
the positions requires information about global
properties of the network. Indeed, the opportu-
nities and challenges of multilevel theory build-
ing extend beyond just the study of organization-
al networks (Klein, Tosi, & Cannella, 1999).

Hybrid Network Attribute Models

There has been a long-standing debate
among structural scholars about the merits and
feasibility of incorporating information about an
actor’s attributes (e.g., an individual’s organiza-
tional affiliation in an interorganizational net-
work) into studies examining the actor’s network
(Wellman, 1988). Setting aside the "Simmelian
sensibility” (Wellman, 1988: 25) of the formalists,
who dismiss the utility of looking at actors’ at-
tributes, the majority of network scholars em-
brace the idea but are deterred by the feasibility
of creating hybrid models that incorporate infor-
mation about actors’ attributes to explain their
network patterns. Although there has been con-
siderable empirical network research that incor-
porates data on actors’ attributes, these studies
are often limited, as described previously, to one
level of analysis. For instance, theories of ho-
mophily would suggest that in an interorgani-
zational network actors with similar organiza-
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tional affiliations are more likely to have
communication ties with one another than with
actors from other organizations. In a potentially
confilicting prediction, theories of collective ac-
tion would argue that actors with similar orga-
nizational affiliations are more likely to be
structured in centralized networks among them-
selves than with actors across different organi-
zations. Thus, theories of collective action lead
to the expectation that ties will not be more
likely between actors with similar characteris-
tics. Simultaneously combining and contrasting
these two predictions involving actors’ at-
tributes goes beyond the capabilities of most
contemporary network analytic methods.

In summary, there is a pressing need for or-
ganizational network analyses to extend the fo-
cus from descriptive network metrics to statisti-
cal approaches. These statistical techniques
need to simultaneously incorporate multiple
theoretical explanations at all relevant levels of
analysis—the actor, dyadic, triadic, and, possi-
bly, even the global level. Further, techniques
need to incorporate theoretical explanations
that are based on information about the actors'
attributes.

We now describe an analytic model that con-
siders the genres of multitheoretical, multilevel
hypotheses that might influence the structural
tendencies of a network. This model has three
potential benefits. First, it serves as a template
to stimulate a conscious attempt to specify hy-
potheses grounded in multiple theories and at
multiple levels. Second, it seeks to make the
appropriate selection and deployment of net-
work statistical techniques more accessible to
the larger research community, rather than re-
maining in the hands of the network methodol-
ogists. Finally, it serves network methodologists
by highlighting attention on the theoretically
challenging areas where there remains a need
to develop new statistical techniques.

MULTITHEORETICAL, MULTILEVEL MODELS

We adopt the position that network organiza-
tional forms need to be studied as relational
systems; consequently, we now introduce a sta-
tistical vocabulary for investigating hypotheses
about the relational properties of organizations
as social networks. The focus is on hypotheses
that are explicitly relational and, thus, make
claims about the patterns or structures of orga-

nizational networks. The problem is that since
these hypotheses concern interdependencies
(relations) among actors, they are not testable
using “standard” statistical methods that as-
sume independent observations. To overcome
this obstacle, in this section we frame these
hypotheses in terms of the probabilities of graph
realizations with specific structural tendencies.
The section begins by introducing the notion of
graph realization and the logic of statistical
modeling of social networks using random
graph models.

Graph theorists use the term graph to de-
scribe a network. Here we assume that the
graph under consideration is random; hence, the
observed network (i.e., the empirical data) is
only one graph realization among (usually)
many theoretical possibilities. Consider an in-
terorganizational consortium of 17 members rep-
resenting various industry and government or-
ganizations. The observed communication
network (i.e., the data collected) is one realiza-
tion of a graph consisting of 17 nodes and the
possible ties (or edges) among them.

Theoretically, there are many possible graphs
that could arise on communication ties among
the 17 members. All of these are possible graph
realizations. The number of possible graph real-
izations can be quite large. In a network of 17
individuals, each individual can have ties to 16
other individuals. Hence, the network of 17 indi-
viduals can have a total of 272 (17 times 16) ties.
If the ties are dichotomous (i.e., ties to individu-
als are either present or absent) and the relation
is directed (the graph is a directed graph), each
of the 272 ties can be in one of two states. Hence,
there are 2?72 possible configurations of the net-
work, or approximately 7.5885 X 108 —that is,
the number of configurations is over 7 followed
by 81 zeros! The set of possible configurations of
the network is referred to as the sample space
(Wasserman & Faust, 1994).

The observed network is only one of these
possible graph realizations. It is worth noting
that we are interested in graphs with a fixed
numbers of nodes. So, in the example above, the
sample space only comprises graphs on 17
nodes. This distinguishes the focus of our re-
search from sections of mathematical graph the-
ory where node numbers are allowed to in-
crease with a view to determining asymptotic
results or phase transitions as networks reach a
certain size.
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The probability of the observed graph relates
to the probability distribution across the sample
space. For instance, the probability of the ob-
served graph is vastly different in the uniform
distribution of graphs (in which case it is very
small indeed!) compared to certain other distri-
butions. Hypotheses about network properties in
etfect pick out different types of graphs as more
probable within the sample space. There is
nothing unusual about this: it is exactly the
same logic for statistical inference regarding
individuals, the only difference being that we
have a distribution of graphs, rather than a dis-
tribution of individual scores. The question of
interest in statistical modeling of social net-
works is whether the observed graph realization
exhibits certain hypothesized structural tenden-
cies. The extent to which these tendencies are
exhibited is captured by parameters, which are
estimated by quantifying the effects of the hy-
pothesized structural property on the probability
of ties being present or absent in the network.
These parameters describe a distribution of
graphs with the hypothesized properties, in
which the observed graph is the most typical
representative. If a parameter is statistically
significant, then the hypothesized property is
statistically important for understanding the
structural tendencies of the observed network.

This logic is central to random graph models
and to statistical models including Markov ran-
dom graph models (Frank & Strauss, 1986;
Strauss & Ikeda, 1990) and the p* family of mod-
els (Anderson, Wasserman, & Crouch, 1999; Pat-
tison & Robins, 2002; Pattison & Wasserman,
1999; Robins, Elliott, & Pattison, 2001; Robins,
Pattison, & Wasserman, 1999; Wasserman & Pat-
tison, 1996). In many of these models, nodes are
assumed to be homogeneous—that is, they do
not have distinguishing labels. As a conse-
quence, graphs of the same type may have rel-
atively large probabilities if graphs that are iso-
morphic are considered to be equivalent.

Table 2 summarizes various genres of network
hypotheses in terms of the probabilities graph
realizations will exhibit the hypothesized rela-
tional property. In each case, the hypothesis is
that graph realizations with the hypothesized
property have larger probabilities of being ob-
served. In other words, the probability of ties
being present or absent in the graph reflects the
hypothesized relational property. Consistent
with the multilevel focus of the hypotheses that

we investigate, these models allow conclusions
both about global network properties (the prob-
ability of the graph or, more precisely, the na-
ture of the graph distribution) and about the
probability of network ties, given properties of
their surrounding network (a local property).

Table 2 begins by distinguishing endogenous
and exogenous variables that influence the
probability of ties being present or absent in the
focal network. It should be noted that the exog-
enous-endogenous distinction being made here
is not equivalent to similar terminology used in
the development of causal models in general
and structural equation models in particular.
Unlike their use in causal modeling, endoge-
nous variables here are not predicted by exog-
enous variables. Rather, both explain structural
tendencies of the network. Structural tendencies
based on configurations of the focal relation it-
self—in this case, the communication relation—
are defined as endogenous variables. In con-
trast, structural tendencies that incorporate
factors other than the focal relation itself—for
instance, the attributes of actors in the net-
work—are defined as exogenous variables.
Hence, all variables "outside” the focal commu-
nication relation are defined as exogenous vari-
ables.

Endogenous variables (rows 1 through 4 in
Table 2) refer to various relational properties of
the focal network itself that influence the prob-
ability ties will be present or absent in the same
network. From a metatheoretical perspective,
these endogenous variables capture the extent
to which relational properties of the network
influence its self-organization. It is important to
clarity that, as in any attempt to explain self-
organization, endogenous variables do not rep-
resent a tautology or circularity in argument.
Instead, they suggest that the configuration of
ties in the observed realization reflects an un-
derlying structural tendency that is consistent
with the hypothesized network property. Exoge-
nous variables (rows 5 through 10 in Table 2)
refer to various properties outside the focal net-
work that influence the probability ties will be
present or absent in the focal network. Hence,
exogenous variables include the attributes of
the actors in the network and additional net-
work relations among the actors, as well as the
same network relation at previous points in
time. Within each of these two categories (i.e.,
endogenous and exogenous variables), the table
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Summary of a Multilevel, Multitheoretical Framework to Test Hypotheses

About Organizational Networks

Null Hypothesis: All Ties Are Independent with Equal Probability

Independent Variable

Examples of
Specific Measures

Hypotheses: Graph realizations where . ..

L.

Endogenous (same network):

Actor structural

... high structural autonomy has a higher

actor level autonomy probability of occurring (e.g., theory of
structural holes)
2. Endogenous (same network): Mutuality, ... high mutuality has a higher
dyadic level reciprocation probability of occurring (e.g., social
exchange theory)
3. Endogenous (same network): Transitivity, .. .high cyclicality has a higher
triadic level cyclicality probability of occurring (e.g., balance
theory)
4. Endogenous (same network): Network ... high centralization has a higher
global level centralization probability of occurring (e.g., collective
action theory)
5. Exogenous (shared actor Age, gender, ...ties between actors with similar
attributes): actor level organization type, attributes have a higher probability of
education occurring (e.g., theories of homophily)
6. Exogenous (shared actor Differential ... mutual ties between actors with
attributes): dyadic level mutuality and similar attributes have a higher
reciprocation probability of occurring (e.g., exchange
theory)
7. Exogenous (shared actor Differential ... transitive (or cyclical) ties between
attributes): triadic level transitivity and actors with similar attributes have a
cyclicality higher probability of occurring (e.g.,

. Exogenous (shared actor

attributes): global level

Differential network
centralization

balance theory)

... network centralization among actors

with similar attributes has a higher
probability of occurring (e.g., collective
action theory)

10.

. Exogenous (network): other

relations

Exogenous (network): same
relation at previous point in time

Advice, friendship
network

Communication
network

... communication ties co-occuring with

ties on a second relation have a higher
probability of occurring (e.g., cognitive
theories)

... ties between actors co-occurring with

ties at preceding points in time have a
higher probability of occurring (e.g.,
evolutionary theories)

offers a tfurther subclassification based on the
extent to which the probability of ties being
present or absent in the network is influenced
by properties at the actor, dyadic, triadic, and
global levels.

In the remainder of this section, we review the
influence of endogenous variables and discuss
the exogenous variables at each of the actor,
dyadic, triadic, and global levels. We make a
concerted effort to illustrate each of these cate-
gories and subcategories by using hypotheses
derived from the nine families of theoretical
mechanisms for the emergence of organization-

al networks identified by Monge and Contractor
(2001).

Endogenous Influences on Network Structural
Tendencies

Actor level. The actor level refers to various
actor-level network properties that influence the
probability ties will be present or absent in the
network. In the case of endogenous variables
(row 1 in Table 2), these actor-level properties
could include network metrics, such as an ac-
tor's centrality, prestige, or structural autonomy
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in the network. These are actor-level properties
because they characterize the position of an in-
dividual actor in the network. For instance, the
theory of structural holes (Burt, 1992) suggests
that actors seek to enhance their structural au-
tonomy by forging ties with two or more uncon-
nected others, thus creating indirect ties be-
tween the people with whom they are linked.
This hypothesis would be supported if there
were greater probabilities for graph realizations
in which actors had a high degree of structural
autonomy. In other words, this hypothesis would
be supported if the probability of ties being
present or absent in the network reflected ac-
tors’ tendencies to exhibit structural autonomy.

Figure 1 shows a hypothetical six-person net-
work. If there is a tendency for actors to abide by
the theory of structural holes, actor A is less
likely (shown with a negative sign) to have a tie
with actor C, because it would be redundant
with the indirect tie actor A has with actor C via
actor B. However, there will be a greater ten-
dency (represented with a positive sign) for ac-
tor A to have a tie with actor D, since this would
represent a nonredundant tie.

It is worth noting here, and in the discussions
accompanying Figures 2 through 10, that we are
describing probabilistic tendencies for ties to be
present or absent. Therefore, in Figure 1, there
may well be some occasions where a tie exists
from A to C. However, the probability of these
ties will diminish if there are ties from actor A to
actor B and from actor B to actor C.

Dyadic level. The dyadic level refers to vari-
ous dyadic counts that influence the probability
ties will be present or absent in the network. In

FIGURE 1
Endogenous Actor Level: Structural Hole
Theory

the case of endogenous variables (row 2 in Ta-
ble 2), these dyadic-level properties could in-
clude mutuality and reciprocation. For instance,
theories of social exchange (Blau, 1964; Homans;
1958), network exchange (Willer & Skvoretz,
1997), and resource dependence (Emerson,
1972a,b; Pieffer & Salancik, 1978) suggest that
actors (individuals or organizations) forge ties
using a calculus of exchange of material or in-
formation resources. In its most elemental form,
this hypothesis would be supported if there
were greater probabilities for graph realizations
in which pairs of actors had a high degree of
reciprocated (or mutual) ties. In other words, this
hypothesis would be supported if the probabil-
ity of ties being present or absent in the network
reflected actors’ tendencies to exhibit mutuality
or reciprocity.

In Figure 2, social exchange theory would sug-
gest a positive tendency for a tie from actor F to
actor A, since it would reciprocate the tie from
actor A to actor F. However, social exchange
theory would posit a negative tendency for a tie
from actor D to actor C, since it would not recip-
rocate a tie from actor C to actor D.

This example also offers a simple illustration
of the cross-level implication of a dyadic-level
theoretical mechanism. By increasing the ten-
dency of reciprocity at the “local” dyadic level,
we observe a graph with a large proportion of
reciprocated ties, with implications for global
outcomes.

Triadic level. The triadic level refers to vari-
ous triadic network configurations that influ-
ence the probability ties will be present or ab-
sent in the network. In the case of endogenous

FIGURE 2
Endogenous Dyadic Level: Social Exchange
Theory
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variables (row 3 in Table 2), these triadic-level
properties include transitivity or cyclicality. A
triad is transitive if, when actor A has a tie to
actor B and actor B has a tie to a third actor, C,
actor A has a tie to actor C. Tendencies for tran-
sitivity can be interpreted in a number of ways,
depending on the substance of the relation un-
der study. If the relation is one of sentiment
(such as liking or friendship), then theories of
cognitive balance (Heider, 1958; Holland & Lein-
hardt, 1975, 1981) suggest a tendency toward
consistency in relations. Colloquially, a friend'’s
friend should be one’s own friend, and one
should like one's friend's friends. In contrast,
transitivity in formal relations, such as exercise
of authority, reflects a hierarchical tendency—
one’s boss's boss is also one's boss. Hypotheses
about transitive behavior would be supported it
there were greater probabilities for graph real-
izations in which triads of actors in the network
exhibited a high degree of transitivity.

Cyclicality in triads occurs when there is a tie
from actor A to actor B, a tie from actor B to actor
C. and a tie from actor C to actor A, completing
the cycle. Interpretation of cyclicality depends
on the substance of the relation. When the tie is
one of flow of resources (such as doing favors or
providing information), then cyclicality can be
thought of as illustrating the theory of general-
ized exchange (Bearman, 1997). Actor A does a
favor for B, and B, rather than return the favor
directly to A, does a favor for C, who, in turn,
does a favor for A, returning A's favor to B indi-
rectly. Hypotheses about cyclical behavior
would be supported if there were greater prob-
abilities for graph realizations in which triads of
actors in the network exhibited a high degree of
cyclicality.

In Figure 3, theories of balance would posit a
greater tendency for actor A to have a tie to actor
C. because actor A has a tie to actor B and actor
B has a tie with actor C. However, theories of
balance would posit less tendency for a tie from
actor A to actor E, because it does not complete
a triad.

Global level. The global level refers to overall
network measures that influence the probability
ties will be present or absent in the network. In
the case of endogenous variables (row 4 in Ta-
ble 2), these global properties include the net-
work’s degree of centralization. A network has a
high degree of centralization when some actors
in the network have a much higher degree of

FIGURE 3
Endogenous Triadic Level: Balance Theory

centrality than other actors in the network. For
instance, theories of collective action (Coleman,
1973, 1986; Marwell & Oliver, 1993) and public
goods theories (Fulk, Flanagin, Kalman, Monge,
& Ryan, 1996; Monge et al., 1998) suggest that
actors in a network are more likely to obtain a
collective good if the network is centralized
(Marwell, Oliver, & Prahl, 1988). This hypothesis
would be supported if there were greater prob-
abilities for graph realizations in which net-
works had a high degree of centralization. In
other words, this hypothesis would be supported
if the probability of ties being present or absent
in the network reflected the network’s tenden-
cies to exhibit a high degree of centralization.

In Figure 4, theories of collective action would
suggest that actor A has a greater tendency to
forge a tie with actor E, since the tie enhances
the relative centrality of actor E and thereby the
overall network'’s centralization.

FIGURE 4
Endogenous Global Level: Collective Action
Theory
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Exogenous Influences on Network Structural
Tendencies

In addition to the influence of actor, dyadic,
triadic, and global properties of the endogenous
variable (i.e., the focal network itself), exoge-
nous variables (i.e., various properties outside
the focal network) also influence the probability
ties will be present or absent in the focal net-
work. As mentioned earlier, these exogenous
variables include attributes of the actors in the
network (rows 5 through 8 in Table 2), as well as
additional networks of relations among the ac-
tors (row 9 in Table 2) and the same network of
relations at previous points in time (row 10 in
Table 2). These cases are discussed below.
While rows 1 through 4 consider structural ten-
dencies for the formation of network ties be-
tween any two actors, rows 5 through 8 consider
the structural tendency for differential network
tie formation specifically among actors who
also share common attributes, such as organi-
zational affiliation. It is worth noting that, in
some cases, the differential network tie forma-
tion may be privileged among actors who do not
share common attributes—for instance, buyers
and sellers. While our illustration here focuses
on theories of homophily that posit ties among
similar actors, theories of exchange might well
posit ties among actors who differ in certain
attributes.

Actor level. The actor level for exogenous vari-
ables (row 5 in Table 2) refers to various actor
attributes that influence the probability ties will
be present or absent in the network. These actor-
level properties include such attributes as age,
gender, membership in an organization, and the
type of organization. For instance, theories of
homophily suggest that individuals have ties to
others with whom they share similar attributes.
Homophily has been studied on the basis of
similarity in age, gender, education, prestige,
social class, tenure, and occupation (e.g.,
Coleman, 1957; Ibarra, 1992, 1993, 1995; McPher-
son, Smith-Lovin, & Cook 2001). Hypotheses
based on homophily would be supported if there
were greater probabilities for graph realizations
in which actors with shared attributes were
more likely to have ties with one another. In
other words, these hypotheses would be sup-
ported if the probabilities of ties being present
or absent in the network reflected actors’ ten-
dencies to choose others with similar attributes.

Figure 5 indicates that theories of homophily
would posit a greater tendency for a tie from
actor A to actor C, since they both share a com-
mon attribute (both being from government), and
a lower tendency for a tie from actor A to actor E,
because they do not share a common attribute
(actor F being from industry).

Dyadic level. The dyadic level for exogenous
variables (row 6 in Table 2) refers to various
shared attributes that influence the probability
ties will be present or absent in the network.
These dyadic-level properties include mutuality
and reciprocation (defined previously in the dis-
cussion of row 2 in Table 2). In an extension of
the theories of social exchange and resource de-
pendence, the argument proposed here is that
there is a greater tendency for exchange ties
(i.e., mutual or reciprocated ties) to occur among
pairs of actors who share similar attributes. Hy-
potheses based on this differential mutuality or
reciprocation would be supported if there were
greater probabilities for graph realizations in
which actors with shared attributes were more
likely to have mutual (or reciprocated) ties with
one another. In other words, these hypotheses
would be supported if the probability of ties
being present or absent in the network reflected
actors’ tendencies to reciprocate ties with other
actors sharing similar attributes.

Figure 6 shows how theories of resource de-
pendence would posit a greater tendency for
mutual ties between government actors A and B

FIGURE 5
Exogenous Attribute Actor Level: Homophily
Theories
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FIGURE 6
Exogenous Attribute Dyadic Level: Resource
Dependence Theory

FIGURE 7
Exogenous Attribute Triadic Level: Balance
Theory

and a lower tendency for mutuality between
government actor A and industry actor F.

Triadic level. The triadic level for exogenous
variables (row 7 in Table 2) refers to various
shared triadic attributes that influence the prob-
ability ties will be present or absent in the net-
work. These triadic-level properties include
transitivity and cyclicality (defined previously
in the discussion of row 3 in Table 2). In an
extension of the theories of cognitive balance
and generalized exchange, the argument pro-
posed here is that there is a greater tendency for
transitive and cyclical ties, respectively, among
actors who share similar attributes. Hypotheses
based on this differential transitivity and cycli-
cality would be supported if there were greater
probabilities for graph realizations in which ac-
tors with shared attributes were more likely to
have transitive and cyclical ties with one an-
other. In other words, these hypotheses would
be supported if the probability of ties being
present or absent in the network reflected ac-
tors’ tendencies to engage in transitive or cycli-
cal relations with other actors sharing similar
attributes.

Figure 7 indicates that theories of cognitive
balance would posit a greater tendency for a tie
from actor A to actor C, since it completes a
transitive triad among government actors. How-
ever, there is a lower tendency for a tie from
actor A to actor E, since it completes a triad that
includes both government and industry actors.

Global level. The global level for exogenous
variables (row 8 in Table 2) refers to various
shared global attributes that influence the prob-
ability ties will be present or absent in the net-
work. These global properties include network
centralization (defined previously in the discus-
sion of row 4 in Table 2). In an extension of the
theories of collective action and public goods,
the argument proposed here is that there is a
greater tendency for network centralization to
occur among subgroups of actors who share
similar attributes. Hypotheses based on differ-
ential network centralization would be sup-
ported if there were greater probabilities for
graph realizations in which actors with shared
attributes were more likely to have higher levels
of subgroup network centralization. In other
words, these hypotheses would be supported it
the probability of ties being present or absent in
the network reflected actors’ tendencies to forge
more centralized subgroup networks with other
actors sharing similar attributes.

In Figure 8, theories of collective action would
suggest a greater tendency for a tie from actor A
to fellow government actor C, since it would
enhance the centralization within government
actors, but a lower tendency for a tie from actor
A to industry actor E, since it would enhance
centralization between government and indus-
try actors.

Other relations in the network. In addition to
attributes of the actors, additional relations
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FIGURE 8
Exogenous Attribute Global Level: Collective
Action Theory

among the actors represent a second set of ex-
ogenous variables that influence the probability
ties will be present or absent in the focal net-
work (row 9 in Table 2). For instance, the conver-
gence theory of communication (Richards &
Seary, 1997; Rogers & Kincaid, 1981), cognitive
theories (Carley, 1986; Carley & Krackhardt,
1996; Krackhardt, 1987a; Stohl, 1993), and trans-
active memory theory (Hollingshead, 1998; Mo-
reland, 1999; Wegner, 1995) offer arguments that
can be used to map the influence of actors’ cog-
nitive or semantic networks (Monge & Eisen-
berg, 1987) onto their communication networks.
These theories argue that the presence or ab-
sence of a cognitive or semantic tie between
these actors is associated with the presence or
absence of a communication tie between the
actors. Hypotheses based on the influence of
exogenous networks would be supported if there
were greater probabilities for graph realizations
in which the actors' ties in the focal network
corresponded to their ties in the exogenous net-
works. In other words, these hypotheses would
be supported if the probability of ties being
present or absent in the focal network reflected
the presence or absence of ties in the exogenous
networks.

It may appear that the objective sought here
could be obtained far more easily by computing
a simple correlation between the two relations
in the network. While that is indeed the case, the
lack of independence among the observations

and the fact that the individual variables under
study are usually dichotomous preclude the use
of standard statistical techniques to assess the
significance of this correlation. Techniques in-
troduced by Hubert (Hubert 1978; Hubert &
Schultz 1976) based on permutation tests (one of
the solutions to the Quadratic Assignment Prob-
lem) have been used to test the significance of
association between two relations in a network.
While organizational network researchers have
used such permutation tests extensively (Krack-
hardt, 1987b), the technique does not generalize
to the multirelational, multilevel framework pro-
posed here. Recently, these situations have
been viewed as multivariate networks (Wasser-
man & Pattison 1999) and the relations modeled
simultaneously.

Figure 9 indicates that there is a greater ten-
dency for a friendship tie from actor A to actor B,
because they communicate with one another,
and a lower tendency for a friendship tie from
actor C to actor D, because they do not commu-
nicate with one another.

Relations at previous points in time. Finally,
the probability ties will be present or absent in
the primary relation can also be influenced by
the presence or absence of ties in that same
relation at previous points in time (row 10 in
Table 2). In their most primitive form, theories of
evolution (McKelvey, 1997) would argue that in-
ertia alone would predict that a tie between
actors at a previous point in time would in-
crease the tendency of the tie to be maintained

FIGURE 9

Exogenous Other Relations: Cognitive Theories
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at a subsequent point in time. For instance, Gu-
lati hypothesizes that “the higher the number of
past alliances between two firms, the more
likely they are to form new alliances with each
other” (1995: 626). Hypotheses based on the influ-
ence of the same network at previous points in
time would be supported if there were greater
probabilities for graph realizations in which the
actors’ ties in the focal network corresponded to
their ties in the preceding networks.

Figure 10 indicates that evolutionary theories
would posit a greater tendency for a future tie
from actor A to actor B because of an existing tie
from actor A to B, and a lower tendency for a
future tie from actor A to actor D because of the
lack of an existing tie from actor A to actor D.

The treatment of exogenous variables de-
scribed here is intentionally attenuated to re-
flect the lack of statistical techniques address-
ing the plethora of hypotheses that can be
studied by considering the interactions among
the exogenous variables described above. Two
scenarios are worth considering. First, the influ-
ence of exogenous networks (either of different
relations in the same network of actors or the
same network at previous points in time) on the
focal network can be moderated based on a
third set of exogenous variables: the attributes
of the actors. In other words, the tendency to
build on preexisting ties may be different for
actors with different shared attributes. An illus-
tration of this situation is represented in Steven-

FIGURE 10
Exogenous Prior Relations: Evolutionary
Theories

O Future communication

son and Gilly's study of organizational problem-
solving networks, where they note that
"managers are more likely than non-managers
to use preexisting ties when forwarding organi-
zational problems” (1993: 103).

A second scenario would be the influence on
the focal network of an exogenous network
(which is a different relation in the same net-
work of actors and at a previous point in time).
This is the case when new kinds of ties might be
established against the backdrop of existing re-
lationships of a different type. For example, as
Granovetter (1992) has argued, economic trans-
actions are often “embedded” in social rela-
tions. This would suggest that economic rela-
tionships between actors might be more likely
when they have a prior social relationship.
While the statistical models, including the p*
family of models, have incorporated techniques
to test hypotheses in the ten situations de-
scribed in this section, additional etforts are be-
ing made to address the more complicated sce-
narios, such as the two illustrated above
(Pattison & Robins, 2002; Snijders, 2001).

In summary, we have introduced an integra-
tive analytic framework that seeks to examine
the extent to which the structural tendencies of
organizational networks are influenced by multi-
theoretical hypotheses operating at multiple
levels of analysis. The exigencies of noninde-
pendence in relational data preclude the use of
standard statistical testing procedures. Hence,
we introduced the notion of graph realizations
and described how the hypothesized properties
of networks influence the probabilities of graph
realizations. In the next section we illustrate
how some of these hypotheses can be tested in
an empirical study.

EMPIRICAL EXAMPLE: THE CRADA NETWORK
Sample

The example here is based on a subset of data
from a larger research project examining the
social and organizational issues surrounding
the creation of "virtual work communities” (Fulk,
Lu, Monge, & Contractor, 1997). The community
under study was composed of representatives
from three agencies of the U.S. Army and four
private corporations, who forged a Cooperative
Research and Development Agreement
(CRADA). The goal of this CRADA, a network
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organization, was the commercial production of
software for improving the building design pro-
cess for large institutional facilities. The four
private companies were a CAD operating sys-
tems developer, a construction software firm, a
software development company, and an archi-
tectural firm. The U.S. Army partners included a
research laboratory, a district office, a unit of the
army reserves, and members from headquar-
ters. The software to be produced through this
CRADA would offer advanced "virtual” coordi-
nation capabilities through its object-oriented
technology and modular design system.!
CRADAs, which were first authorized by the
1986 Technology Transfer Act, enable govern-
ment and industry to negotiate patent rights and
royalties before entering into joint R&D projects.
They were conceived as an incentive for indus-
try, to facilitate investment in joint research by
reducing the risk that the products of the re-
search would fall into the public domain and be
exploited by both domestic and international
competitors. Since 1989, there has been an expo-
nential growth in the creation of CRADAs,
reaching over 2,200 by 1993. The Departments of
Energy, Commerce, Agriculture, and Defense
initiated a large proportion of these. CRADAs
involve large, medium, and small businesses in
a wide variety of industries, including computer
software, materials, agricultural chemicals, bio-
medical research, and electronic networking.
Unlike most other CRADAs, which are dyadic
arrangements involving only one partner from
private industry and one from government, the
CRADA studied here involved multiple private
and government organizations. As a result, the
private organizations needed not only to ham-
mer out an agreement with the multiple govern-
ment agencies but also to work through the dif-
ficult process of negotiating an agreement for
how their own private partnership was to func-
tion and how the benefits of the alliance were to
be distributed among the partners. After a com-
plex set of negotiations, a partnership frame-
work was developed among the business partic-
ipants, and the CRADA agreement was signed
in a formal ceremony. Hence, the structure and
practices of this CRADA reflect many of the fea-

! Additional information about this project can be ob-
tained from http://impact.usc.edu/impact/J[IVE/contents.htm.

tures of the new network forms of organizing
described in the introduction.

Data

The network being analyzed in this example
was the communication that occurred in the
month prior to the signing of the CRADA agree-
ment among the seventeen members represent-
ing the various private and government organi-
zations. In this network a tie was directed from a
member in one organization to a member in the
same or another organization if the member re-
ported communication during the month of
study—a dichotomous relationship (either
present or absent).

Hypotheses

We test eight hypotheses derived from four
theories at three levels (dyadic, triadic, global).
The first four hypotheses being tested here posit
that the probabilities of graph realizations (of
which the observed network is but one realiza-
tion) are influenced by endogenous properties of
the network itself at the dyadic, cyclical triadic,
transitive triadic, and global levels. Exchange
and dependence theories would suggest a struc-
tural tendency toward mutuality among the ac-
tors at the dyadic level (Hypothesis 1). Cognitive
consistency theories would suggest a structural
tendency toward transitivity and cyclicality
among the actors at the triadic level (Hypothe-
ses 2 and 3). And collective action theories
would posit a structural tendency toward
greater network centralization—variance in out-
degrees (Hypothesis 4a)—and prestige—vari-
ance in indegrees (Hypothesis 4b).

The remaining four hypotheses examine the
influence of one exogenous attribute of the
members in the network—whether they repre-
sented a government agency or industry. These
four hypotheses posit that the probabilities of
graph realizations are influenced by the exoge-
nous attribute at the actor, dyadic, transitive
triadic, and global levels. Homophily theories
would suggest a structural tendency for actors
with the same attribute (belonging to govern-
ment or industry) to exhibit greater communica-
tion (Hypothesis 5), mutuality (Hypothesis 6),
transitivity (Hypothesis 7), and centralization/
prestige (Hypothesis 8a and b) with others shar-
ing their attribute. The hypotheses shown in Ta-
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TABLE 3
Multitheoretical, Multilevel Hypotheses About the Structural Tendencies of an Interorganizational
Network

Independent Variable

Hypotheses: Graph realizations where. . .

Endogenous (same network): actor level

Endogenous (same network): dyadic level Hl: ... actors have a high degree of reciprocated (or mutual) communication
ties
Endogenous (same network): triadic level H2:...triads of actors in the network exhibit a high degree of cyclicality
H3: ... triads of actors in the network exhibit a high degree of transitivity
Endogenous (same network): global level H4: ... the network has a high degree of outdegree centralization (4a) and

prestige (or indegree) centralization (4b)

Exogenous (actor attributes): actor level

HS: ... actors in the network who belong to the same type of organization

(i.e., government or industry) are more likely to have ties with one

another
Exogenous (actor attributes): dyadic level

HB: ... actors in the network who belong to the same type of organization

(i.e., government or industry) are more likely to have mutual (or
reciprocated) communication ties

Exogenous (actor attributes): triadic level

H7:...actors in the network who belong to the same type of organization

(i.e., government or industry) are more likely to be embedded in transitive
ties with one another

Exogenous (actor attributes): global level

HB8: ... actors in the network who belong to the same type of organization

(i.e., government or industry) are more likely to have higher levels of
subgroup (outdegree) centralization than the overall network’s
centralization (8a) and higher levels of subgroup prestige (or indegree)
centralization than the overall network’s prestige network centralization

(8b)

ble 3 are presented so that they map directly
onto the framework summarized in Table 2 and
described previously. As is evident, the eight
hypotheses tested in this empirical illustration
map directly onto seven of the ten cells de-
scribed in Table 1.

As discussed below, we test these multitheo-
retical, multilevel hypotheses by statistically es-
timating the extent to which structural tenden-
cies implied by these hypotheses influence the
probabilities of observing certain realizations of
the network.

p* Statistical Models for Testing
Multitheoretical, Multilevel Hypotheses

The hypotheses tested here use the p* family
of statistical models. This family was first intro-
duced in the mid 1980s (Frank & Strauss, 1986;
Strauss & Ikeda, 1990) and popularized in the
late 1990s by a number of researchers (e.g., Pat-
tison & Wasserman, 1999; Robins et al., 1999;
Wasserman & Pattison, 1996).2 In brief, these

2 A thorough history of this family can be found in the
chapters on p* in Carrington, Scott, and Wasserman (2003),

models are based on the fact that the Hammers-
ley-Clifford theorem (Besag, 1974) provides a
general probability distribution for a socioma-
trix X from a specification of which pairs of tie
random variables are conditionally dependent,
given the values of all other random variables.
These conditional dependencies express hy-
pothesized structural tendencies in the network.
Specifically, a dependence graph D with node
set N(D) = {X;;:i,j €N, i # j} and edge set E(D) =
{(X;j, Xip): X;j and X;;} is assumed to be condition-
ally dependent, given the rest of X. We can use
D to obtain a model for Pr(X = x), denoted p*, in
terms of parameters and substructures corre-
sponding to cliques of D. The model has the form

Pr(X = x) = p*(x) = (1/c)exp{Zpcnmyarzp(x)}
where

1. the summation is over all cliques P of D
(with a clique of D defined as a nonempty
subset P of N(D) such that |P| = 1 or (X, X;,)
€ ED) for all X;, X,, € P);

ijs

ije

especially in the Wasserman and Robins (2003) chapter. We
refer readers to these chapters for further mathematical and
statistical details about p*.
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2. zp(x) = lly;;epx; is the (observed) network
statistic corresponding to the clique P of D;
and

3. ¢ = X exp{Spapzp(x)} is a normalizing quan-
tity.

The quantities zp(x) are calculated from the
observed network and correspond to the hypoth-
esized structural tendencies expressed in the
dependence graph. The ap are parameters cor-
responding to the cliques P of D. These param-
eters express the importance of the associated
structural tendency for the probability of the
graph.

One possible dependence assumption is
Markov, in which (X;;, X;;) € E(D) whenever {i, j}
N {k, I} # . This assumption implies that the
occurrence of a network tie from one node to
another is conditionally dependent on the pres-
ence or absence of other ties in a local neigh-
borhood of the tie. A Markovian local neighbor-
hood for X;; comprises all possible ties involving
i and/or j. We primarily make a Markov depen-
dence assumption in our models. Many other
dependence assumptions are also possible, and
the task of identifying appropriate dependence
assumptions in any modeling venture poses a
significant theoretical challenge. The multi-
level, multitheoretical hypotheses that we in-
vestigate here illustrate the flexibility and gen-
erality of this approach.

Analysis and Results

The p* family of models was used to simulta-
neously test the eight hypotheses. We used lo-
gistic regression to fit a series of nested models
where the response variable was the presence
or absence of a tie between each pair of actors.
The explanatory variables were the changes in
the hypothesized network statistic when that
specific tie changed from a 1 to 0.2 These vari-
ables were computed using Prepstar (see
Crouch & Wasserman, 1998) and the MultiNet
network analysis software programs (Seary &
Richards, 2001), and then fitted using standard
logistic regression techniques (see Crouch &
Wasserman, 1998). This maximum pseudo-
likelihood method of estimation is, at best, ap-
proximate, and in particular provides standard
errors that may be too large. As such, this

3 Wasserman and Pattison algebraically derive the ration-
ale for this approach (1996: 407).

method provides only an approximate basis for
null hypothesis statistical testing.

There have been considerable and promising
recent efforts to develop Monte Carlo maximum
likelihood procedures, which produce reliable
standard errors more appropriate for formal sta-
tistical testing (for a review, see Wasserman &
Robins, 2003). Estimation procedures for five of
the simpler models hypothesized here have
been implemented in SIENA (Snijders, 2001,
2002). Algorithms for the more complex models
are expected to be available in the near future.
Where possible, we estimated each model using
Monte Carlo maximum likelihood procedures
and compared the results with those obtained
from the maximum pseudo-likelihood proce-
dures. In all cases, there were modest differ-
ences in the values of the estimates, with the
similarity of the estimates decreasing as the
number of the parameters estimated increased.
However, the estimates using the two proce-
dures led to the same conclusions about support
(or lack thereof) for the hypotheses. Again, we
issue to the reader a cautionary note about mak-
ing inferential decisions based on approximate
techniques.

The results for the fitted models using maxi-
mum pseudo-likelihood are shown in Table 4.
The first column indicates the variables in-
cluded in the model. The second column indi-
cates the number of parameters estimated in the
model. The number of parameters estimated cor-
responds to the number of variables in the
model. The third column reports the fitness of
the model. The fitness value is twice the nega-
tive of the log pseudo-likelihood of the model,
sometimes referred to as the pseudo-likelihood
deviance. Hence, the magnitude of this value
should be interpreted as a "badness of fit” mea-
sure. Models that have a lower deviance can be
assumed to better predict the observed network.
Pseudo-likelihood estimates are approximate;
in particular, the standard errors may be too
large. Although the decrease in the badness of
fit values between two nested models does not
approximate a chi-squared distribution (where
the degrees of freedom are the ditfference in the
number of parameters estimated in the two
models), a large difference in fit may be evi-
dence that an effect is present. As such, these
values can be used as an effective heuristic
guide. The fourth column reports the mean of the
absolute residuals across all 272 (17 times 16)
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TABLE 4
Goodness of Fit for the Hypothesized Models
Pseudo-likelihood Mean of the
Number of Deviance —2 (log Absolute
Model Parameters pseudo-likelihood) Residuals
1. Choice (intercept term — uniform distribution of ties) 1 354.39 0.459
2. Choice + mutuality (H1) 2 254.25 0.294
3. Choice + mutuality + cyclicality (H2) 3 241.97 0.281
4. Choice + mutuality + transitivity (H3) 3 228.84 0.266
5. Choice + mutuality + transitivity + cyclicality 4 228.01 0.265
6. Choice + mutuality + transitivity + choice within 4 222.75 0.259
shared attribute (HS5)
7. Choice + mutuality + transitivity + choice within 5 221.72 0.256
shared attribute + mutuality with shared attribute
(H6)
8. Choice + mutuality + transitivity + choice within 5 218.93 0.254
shared attribute + transitivity within shared
attribute (H7)
9. Model 6 + degree centralization (H4a) + degree 6 211.66 0.241
prestige (H4b)
10. Model 6 + degree centralization + degree prestige + 8 202.21 0.232

degree centralization within shared attribute (H8a) +
degree prestige within shared attribute (H8b)

ties. The residuals are the difference between
the observed ties and the probabilities for those
ties predicted by the model. The mean of the
absolute residuals, along with the pseudo-
likelihood deviance, serves as a simple badness
of fit measure.

The first model (Model 1) is a baseline model
where the single explanatory variable, some-
times referred to as choice, is always valued at
1. This model estimates one parameter, for the
variable choice, and reflects the null hypothesis
that the probabilities for ties in the network are
a constant, given by the total number of ties in
the network, and there are no additional struc-
tural effects. As such, it is the equivalent of an
intercept term or a grand mean in regression or
ANOVA, respectively. The pseudo-likelihood de-
viance or badness of fit value, 354.39, reported
for this model was large, indicating a poor fit.
Further, the mean of the absolute residuals was
quite high (0.459). Clearly, the probabilities for
graph realizations were not constant and were
dependent on other structural properties of the
network, such as mutuality, transitivity, central-
ization, and so on. The etfects of these hypothe-
sized structural properties are tested in the mod-
els below.

Model 2 tests the first hypothesis that there is
a greater probability for graph realizations in

which actors have a high degree of mutuality or
reciprocation. The two parameters estimated in
this model include the parameter for the choice
(the baseline) variable estimated in Model 1 and
the change statistic associated with the dyadic
endogenous network property of mutuality. A
large decrease in the badness of fit value from
Model 1 to Model 2 (354.39 — 254.25 = 100.04, d.1.
= 1) indicates support for Hypothesis 1. The
mean of the absolute residuals fell from 0.459 to
0.294. Consistent with social exchange theory,
given the number of other possible realizations
of the observed graph, there were more mutual
communication ties than would be expected by
chance. That is, there was a greater-than-
chance probability for mutual ties in the CRADA
network. Substantively, this suggests that indi-
viduals involved in this software collaboration
were more likely to be engaged in mutual inter-
actions than in some form of a linear (or possibly
hierarchical) set of unidirectional interactions.
Models 3 and 4 test, individually, the second
and third hypotheses, which state, respectively,
that there is a greater probability for graph re-
alizations in which triads of actors are embed-
ded in cyclical and transitive relations. Models 3
and 4 incorporate the parameters specified in
Model 2, in order to test the hypotheses about
triads controlling for the influence of dyads. The
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large decrease in the badness of fit values from
Model 2 to Model 3 (254.25 — 241.97 = 12.28, d.f. =
1) and Model 4 (254.25 — 228.84 = 25.41, d.f. = 1)
lends evidence to the importance of both cycli-
cality and transitivity. However, the mean of the
absolute residuals was higher for Model 3 with
cyclicality (0.281) than it was for Model 4 with
transitivity (0.266). Consistent with balance the-
ory, these findings support the hypotheses that,
given the number of other possible realizations
of the observed graph, there were more transi-
tive and cyclical structures in the CRADA com-
munication network than would be expected by
chance. Substantively, these findings suggest
that individuals involved in this software col-
laboration had a tendency to work collectively
in triads rather than to rely on unitary chain-of-
command or independent dyadic links.

Model 5 tests, collectively, Hypotheses 2 and 3,
regarding transitivity and cyclicality, respec-
tively. There was a very small drop in the bad-
ness of fit measure from Model 4 (which tested
Hypothesis 3, regarding transitivity) to Model 5
(228.84 — 228.01 = 0.83, d.f. = 1). Likewise, the
mean of the absolute residuals fell marginally
from 0.266 (for Model 4 with transitivity) to 0.265
(for Model 5 with cyclicality and transitivity).
This indicates that when both transitivity and
cyclicality effects are included (Model 5), little
gain in fit is realized over a model containing
transitivity alone (Model 4). This finding sug-
gests that, in the CRADA network, the actors'
tendency to engage in cyclical communication
triads was not substantial after controlling for
their tendency to engage in transitive communi-
cation triads. In other words, after taking into
account the greater-than-chance probability of
transitive triads in the CRADA communication
network, there was no greater-than-chance
probability of finding cyclical triads in the net-
work. Substantively, this would suggest that in-
dividuals in the network did demonstrate some
level of hierarchy. If actor A went to actor B and
actor B went to actor C, there was a greater
tendency for actor A to also seek communication
with actor C (transitivity), rather than for actor C
to seek actor A (cyclicality).

From a statistical standpoint, the minimal
gain in fit resulted in dropping the cyclicality
variable in the estimation of subsequent nested
models. It is worth noting that our model did not
estimate tendencies for other triadic structures,
such as 2-in stars (where one actor receives a

link from two other actors), 2-out stars (where an
actor sends links to two other stars), or mixed
stars (where an actor receives a link from one
star and sends a link to another star). A strictly
hierarchical model should include those effects.
However, we chose not to include them because
we did not identity a sufficiently strong theoret-
ical argument for their inclusion. Technically,
even if these parameters were estimated, we
would expect to retain the triadic effects we
report here.

Models 6, 7, and 8 test Hypotheses 5, 6, and 7,
which state, respectively, that there is a greater
probability for graph realizations in which ac-
tors in the network who belong to the same type
of organization (government or industry) are
more likely to have ties with one another, that
these ties are mutual, and that these ties are
transitive. Model 6 results in an appreciable
gain in fit over earlier models, suggesting indi-
viduals were more likely to report ties to other
individuals in their own organizational type
than to individuals in the other organizational
type. The mean of the absolute residuals
dropped further, to 0.259. In other words, after
controlling for the previously tested hypotheses
(ceteris paribus), there was still a greater-than-
chance probability that actors would have com-
munication ties with others within their own
organizational type (government or industry).
This provides support for theories of homophily.
It should be noted that this model posits that the
densities of ties within organizations are the
same. That is, the model does not posit a differ-
ent propensity for actors within government
agencies to form ties among themselves as com-
pared to actors within industry to form ties
among themselves.

Given only a minor decrease in fit from Model
6 to Model 7 (222.75 — 221.72 = 1.03, d.f. = 1) and
Model 8 (222.75 — 218.93 = 3.82, d.f. = 1), little
evidence exists for differential mutuality or dif-
ferential transitivity effects over and above dif-
ferential choice. The mean of the absolute resid-
uals also dropped marginally, from 0.259 to
0.256. Substantively, this suggests that individ-
uals involved in this software collaboration
were not more likely to be engaged in mutual
interactions with individuals in their own type
of organization compared to individuals from
the other type of organization. Further, it sug-
gests that the tendency of individuals to interact
in transitive triads was no more pronounced
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within organizations of their own type (be it gov-
ernment or industry) than it was in the other
type. Here again, the mean of the absolute re-
siduals dropped minimally, from 0.256 to 0.254.
In other words, ceteris paribus, there was not a
greater-than-chance probability for actors in
one organizational type to forge mutual ties or
transitive ties involving other actors from the
same organizational type. The lack of support
for the hypothesized differential effects for mu-
tuality and transitivity suggests that individu-
als were not “ganging up” in dyads or triads
within their respective government or industry
sectors. Given the goal of the CRADA to collab-
orate across these boundaries, this may be in-
terpreted as a promising sign. From a statistical
standpoint, the lack of improvement in fit im-
plies that the exogenous variables associated
with mutuality and transitivity should be
dropped from subsequent nested models.

Model 9 tests Hypotheses 4a and 4b, which
state that there is a greater probability for graph
realizations in which the network has a high
degree of centralization and prestige, respec-
tively. The substantial improvement in the fit of
Model 9 over previous models indicates support
for Hypothesis 4. The mean of the absolute re-
siduals dropped substantially, to 0.241. In other
words, ceteris paribus, there was a greater-
than-chance probability for actors to forge ties
that would enhance the overall centralization of
the network. Substantively, this means that, con-
sistent with theories of collective action, the
CRADA communication network exhibited a
strong structural tendency toward centraliza-
tion. We acknowledge that adding centraliza-
tion and prestige parameters to the model goes
beyond Markov dependence assumptions. Mod-
els that incorporate non-Markov dependence as-
sumptions can lead to estimation problems. This
is an active area of research (see Carrington et
al., 2004).

Finally, Model 10 tests Hypothesis 8, which
states that there is a greater probability for
graph realizations in which actors in the net-
work who belong to the same type of organiza-
tion (government or industry) are more likely to
have higher levels of network centralization
than the overall network’s centralization. Here
again, the substantial improvement in the fit of
Model 10 over Model 9 (211.66 — 202.21 = 9.45, d.1.
= 1) suggests a strong etfect of differential cen-
tralization on the probability for graph realiza-

tions. Further, the mean of the absolute residu-
als dropped from 0.241 (for Model 9) to 0.232.
However, before substantively interpreting this
finding and concluding that this indicates sup-
port for Hypothesis 8, it is important to examine
the individual parameter values associated
with the variables fitted in Model 10.

While Table 4 reports global measures of fit
for each of the ten models, Table 5 reports the
parameter estimates and the associated tests of
significance for the best-fitting model (Model
10). The first column lists the variables included
in Model 10. The second column is the parameter
estimate for the corresponding explanatory vari-
able. A large positive value of a parameter sug-
gests the presence of the associated network
structural component, while a large negative
value suggests its absence. One can also inter-
pret the parameters in terms of log odds. Thus,
for a unit increase in the explanatory variable,
the odds ratio that the response equals 1 (i.e., a
tie is present) changes by a factor of exp(6,). (The
magnitude of this effect depends on a number of
possibilities. For instance, there can only be one
possibility for mutuality, but an arc might be
involved in several triads so that what appears
as a modest transitivity effect may actually be
substantial.)

The third column indicates the Wald statistic,
which is defined as the {(parameter estimate)/
Standard Error(parameter estimate)}?. It should
be noted that the pseudo-likelihood estimates of
the standard errors used to compute the Wald
Statistic are approximate. The fourth column in
Table 5 indicates the extent to which each vari-
able contributes to a change in the odds ratio of

TABLE 5
Parameters for the Best-Fitting Model
(Model 10)

Wald
Variable B Statistic Exp(B)
Choice (intercept term) —5.61 54.99
Mutuality (H1) 2.11 32.21 8.25
Transitivity (H2) 26 24.72 1.30
Choice within shared attribute (H5) 2.48 15.37 11.94
Degree centralization (H4a) 2.84 867 17.12
Degree prestige (H4b) 2.33 6.46 10.28

Centralization within shared —-5.50 4.53 0.004
attribute (H8a)
Prestige within shared attribute

(H8b)

—435 2.75 0.01
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a tie being present. Consider Hypothesis 1,
where, in the second column, the mutuality pa-
rameter is estimated to be 2.11. The fourth col-
umn indicates that if there is a tie from actor B to
actor A, the odds of a mutually reciprocated tie
from actor A to actor B will increase by a factor
of exp(2.11), which is 8.25. Likewise, according to
Hypothesis 2, if actor A is connected to actor C
and actor C is connected to actor B, the odds of a
tie from actor A to actor B (which would com-
plete a transitive triad) increases by a modest
factor of 1.30. Further, considering Hypothesis 3,
if actor A and actor B both represent the same
organization, the likelihood of a communication
tie between them increases by a factor of
exp(2.48), which is 11.94. In contrast, considering
Hypothesis 8, since the parameter for centraliza-
tion within a shared attribute (i.e., organization
type) is —5.50, the odds of a tie that contributes
to a more centralized network among govern-
ment or industry organizations are substantially
decreased by a factor of exp(—5.50), which is
0.004. This is a strong effect, albeit not in the
direction hypothesized. Hence, despite the sub-
stantial improvement of fit in Model 10 (reported
in Table 4), the negative coefficient associated
with this variable indicates a significant effect
in the direction opposite that proposed by Hy-
pothesis 8.

These results indicate that there is a lower-
than-chance probability that actors would forge
ties that would enhance the centralization of the
network involving other actors within their own
type of organization. Given that the goal of the
CRADA was to mobilize a collective agreement
across government and industry organizations,
this finding is (in retrospect) plausible. It indi-
cates a structural tendency to downplay central-
ization within organizational type (government
or industry). This finding, taken in conjunction
with a tendency to centralize in the overall
CRADA network (Model 9, Hypothesis 4), would
suggest that individuals’ propensity for collec-
tive action across organizational types super-
ceded any parochial attempts to centralize
within their own organizational type.

The positive overall centralization/prestige
parameters and the negative subgroup central-
ization/prestige parameters are best considered
together. The overall parameters counteract the
subgroup parameters in circumstances when
the node has many ties to actors outside the
subgroup. One interpretation, then, is that ac-

tors are more likely to seek ties to popular actors
within their organization if those actors have
cross-organization ties. That is, actors who are
more popular within their organization tend to
be boundary spanners. However, from a statis-
tical standpoint, the subgroup negative param-
eters could also reflect the fact that the variance
in outdegrees (indicating centralization) is
smaller within subsets of similar organizations,
simply because the actors are fewer in number.

In summary, the results of this empirical illus-
tration suggest that there were structural ten-
dencies in the CRADA network to reciprocate
communication ties (Hypothesis 1, see Figure 2),
engage in transitive communication triads (Hy-
pothesis 2, see Figure 3), foster a centralized
overall network (Hypothesis 4, see Figure 4), and
communicate more with individuals in organi-
zations of their own type, be it government or
industry (Hypothesis 5, see Figure 5). Further,
contrary to Hypothesis 8, there was a structural
tendency to eschew centralization within the
network comprising members of their own or-
ganizational type. The remaining three hypoth-
eses were not supported. In addition to its sub-
stantive implications, this empirical example
offers a modest illustration of how the frame-
work for testing multitheoretical, multilevel hy-
potheses introduced in the previous section can
be used to explain the emergence of an inter-
organizational network. Specifically, Model 10
nested variables at the dyadic, triadic, and
global levels that were simultaneously esti-
mated.

CONCLUSION

The advent of digital technologies has ush-
ered in a radical reconceptualization of our con-
ventional notions of organizing (Contractor,
2002; Contractor & Monge, 2003). New network
forms of organizing are supplanting hierarchies
and markets that dominated the better part of
the twentieth-century “workscape.” While net-
work researchers have made substantial
progress in examining networks in organiza-
tions, they are less well prepared to understand
organizing as networks. The characteristics of
twenty-first-century network organizational
forms challenge us to extend our efforts from
examining emergent networks to a more theo-
retically and methodologically sophisticated
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approach to explaining the emergence of net-
works.

Building on recent efforts to identify the mul-
tiple theoretical mechanisms that contribute to
the emergence of organizational networks, we
have proposed, and illustrated empirically, an
analytic framework that has the potential to test
multitheoretical, multilevel hypotheses about
the structural tendencies of networks. The
framework, by its very organization, also re-
veals the substantial theoretical and method-
ological limitations in current research on or-
ganizational networks. More important, the
framework brings into focus the specific areas
where new network methodologies need to re-
spond to theoretical concerns and new theoreti-
cal issues can leverage some of the methodolog-
ical advances.
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