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TESTING NON-NESTED NONLINEAR REGRESSION MODELS 

BY M. H. PESARAN AND A. S. DEATON 

In Pesaran [9], the test developed by Cox for comparing separate families of hypo- 
theses was applied to the choice between two non-nested linear single-equation 
econometric models. In this paper, the analysis is extended to cover multivariate 
nonlinear models whenever full information maximum likelihood estimation is possible. 
This allows formal comparisons not only of competing explanatory variables but also of 
alternative functional forms. The largest part of the paper derives the results and shows 
that they are recognizable as generalizations of the single-equation case. It is also shown 
that the calculation of the test statistic involves very little computation beyond that 
necessary to estimate the models in the first place. The paper concludes with a practical 
application of the test to the analysis of the U.S. consumption function and it is demon- 
strated that formal tests can give quite different results to conventional informal selection 
procedures. Indeed, in the case examined, five alternative hypotheses, some of which 
appear to perform quite satisfactorily, can all be rejected using the test. 

1. INTRODUCTION 

THE NEED FOR STATISTICAL PROCEDURES for testing separate families of 

hypotheses has become more acute with the increased use of econometric 
techniques in practice. The usual F tests can only be applied to test nested 
hypotheses, i.e. those which are members of the same family. However, in 
practice, one is frequently faced with the problem of testing non-nested hypo- 
theses. 

In an earlier article, Pesaran [9] applied the test developed by Cox [3, 4], for 
separate families of hypotheses to single-equation linear regression models both 
with autocorrelated and nonautocorrelated disturbances. In that paper, the 
question was confined to the selection of appropriate explanators for a given 
dependent variable. However, in much applied work, the investigator is 
required not merely to select variables but simultaneously to find an appropriate 
functional form. This problem can be especially acute since in many areas of 
research, economic theory can guide us in the choice of variables, but helps very 
little in the choice of functional form. As computing capacity has increased, and 
nonlinear estimation has become routine, the use of linearity has become more a 
matter of choice than of necessity; the criteria for such a choice are thus of 
considerable practical importance. In this paper, we extend the earlier analysis 
to cover these problems by deriving the comparable statistics without assuming 
linearity of the models. This allows formal comparisons of different explanatory 
variables, of different functional forms, and of the interactions between the two. 
We also extend the results to cover competing systems of nonlinear equations 
whenever full-information maximum-likelihood estimation is possible. This 
allows the test to be applied to non-nested simultaneous equation models as well 

IAn earlier version of this paper was presented to the European meeting of the Econometric 
Society, Helsinki, September, 1976. 
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as to systems of regression equations such as are frequently encountered in 
demand analysis or in investment and employment studies. Finally, we present 
some illustrative calculations of how the test can be used in practical situations 
involving nonlinear models. 

We believe that, in the final analysis, the usefulness and importance of this 
class of tests can only be established by practical experience. However, there has 
in recent years been a continuing debate on the appropriate methodology for 
non-nested testing; see, for example, the papers by Atkinson [1], Quandt [10], 
and Gaver and Geisel [6]. Consequently, it is desirable that we make our 
position clear at the outset. This can best be done by a clear statement of what 
we believe to be involved in the use of the Cox test and the grounds for our belief 
that alternative procedures are unsatisfactory by comparison. 

We are faced with a body of data and a set of alternative hypotheses. Since the 
latter are non-nested by assumption, we cannot rank them by level of generality 
as can be done when the models are nested. There is thus no maintained 
hypothesis; each model is on an equal footing with every other model. To follow 
Cox's procedure we take the alternatives one at a time, assuming each one in 
turn to be true and inferring from the behavior of the alternatives against the 
data whether or not our temporarily maintained or working hypothesis can or 
cannot explain what we then observe. We thus make pairwise tests of each pair 
of hypotheses and we ask the question, is the performance of Hi against the data 
consistent with the truth of Hi? By making such tests, we are using the hypo- 
theses in the same way that one usually uses the data; for example, the formula- 
tion of a previously unconsidered hypothesis can lead to new inferences about 
existing models just as would the discovery of new data. This highlights a basic 
feature of empirical methodology, that hypotheses are responsible for organizing 
data in order to yield meaningful information and that, without such organiza- 
tion, observations are meaningless, if not impossible. We thus consider that not 
only are procedures such as the Cox test necessary to make comparisons 
between hypotheses, but that the ability to make meaningful inferences about 
the truth of any single hypothesis demands the presence of at least one non- 
nested alternative. In econometrics, we never have a maintained hypothesis 
which we believe with certainty; we must always use the models we possess to 
organize the evidence in different ways and to ask whether the patterns which 
result are consistent with the views we currently hold. 

It is important that notions of the absolute fit or performance of individual 
models play no part in the analysis. Indeed, it should be clear from the previous 
discussion that, apart from the nested case, we regard such indicators as mean- 
ingless. In considering whether an alternative hypothesis, together with the data, 
contains sufficient information to reject the currently maintained hypothesis, the 
question of whether that alternative "fits" well or badly, even if meaningful, is 
certainly irrelevant. An hypothesis, which one would not wish to consider 
seriously in its own right, can be a perfectly effective tool for disproving an 
alternative, even if that alternative may in some respects seem much more 
promising. It is thus important that tests between non-nested hypotheses or 
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models should encompass the possibility of rejecting both, as does the Cox 
procedure. This is notably not the case for tests which compare relative fits, for 
example comparisons of R2 statistics or likelihoods. Nor is it true of Bayesian 
procedures which, in the absence of discriminatory prior information, reduce to 
comparisons of likelihoods. Since the Bayesian approach assumes that the 
models under consideration exhaust all the possibilities, we are led to select that 
model which, when prior and sample evidence are combined, does least violence 
to the facts. This is quite reasonable as the solution of a statistical decision 
problem but we do not find it convincing as a general basis for statistical 
inference in applied economics. And even if one accepts this framework, there 
appear to be quite serious problems in the formulation of satisfactory priors in a 
number of important cases; see the discussion in Gaver and Geisel [6, 69-72]. 

The other possible approach to non-nested hypothesis testing consists of 
embedding the alternatives in a general combined model against which the 
original alternatives may be compared using standard techniques. Variants of 
this methodology have been suggested by Atkinson [1] and, more recently, by 
Quandt [10]. The original comments by Pesaran [9, p. 155] still seem pertinent: 
there is a degree of arbitrariness in the way a comprehensive model is con- 
structed; the redefinition of the problem poses a quite different question from 
the original one and will only yield answers to the original problem in special 
cases; and on practical grounds, collinearity between variables will often prevent 
satisfactory estimation of the general model at all. This last point is likely to be 
even more serious in discriminating among functional forms containing the same 
variables, and when a large number of non-nested alternatives is being consi- 
dered, a comprehensive model is likely to be so general as to be useless in 
practice. In our view, there are very few economic hypotheses, if any, that we 
really are prepared to maintain, so that it is a great advantage of the Cox 
procedure that we do not have to do so. The construction of artificial composite 
hypotheses to which we are forced to become committed, without possibility of 
test, only avoids the problems of inference with which we are concerned. 

Many statisticians would hold that statistical inference can only reject hypo- 
theses in favor of a well-defined alternative; see for example the persuasive 
arguments put forward by Hacking [7]. From this point of view, one should look 
with suspicion upon any test which allows even the possibility of rejecting all 
hypotheses under consideration. While it is clear that in many practical situa- 
tions it is necessary to select a particular hypothesis as a basis for further action, 
such a choice does not necessarily imply a belief that the chosen model is correct. 
In natural sciences, at least historically, theories have tended to be rejected only 
in the face of strong evidence in favor of a particular alternative. In economics, 
where firmly established models are much less frequent, this has been less true. 
To take an example, the resurgence of monetarism over the last decade has 
convinced many economists that the naive Keynesian models are no longer 
tenable. But few have been wholeheartedly converted to monetarism; many 
would assert that the insights gained from the Keynesian view of macro- 
economics are still sufficient to cast severe doubt on many of the monetarist 
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positions. Consequently, many economists find themselves believing neither 
Keynesian nor monetarism; each contains enough to invalidate the other. We 
believe that in economics, at least, there is much to commend a statistical test 
which gives formal recognition to the possibility of ignorance of this kind. 

2. THE DERIVATION OF THE STATISTIC 

The discussion in this section is carried out in terms of the most general case, 
when the competing hypotheses are each systems of nonlinear regression equa- 
tions. In order to make the exposition more transparent, we shall give the 
single-equation results separately; this also enables a fairly direct comparison to 
be made with the single-equation linear results derived in Pesaran [9]. 

The two competing models, Ho and H1, will be written in the form 

(1) Ho: yti = fi (0o; xt)+ utio, 

(2) H1: yti = gi(01; Zt)+Ut 

for i1, . . ., n and t= 1, . . ., T. 
In each case we have n equations (index i) defined over T observations (index 

t). yti is thus the tth observation on the ith dependent variable. The functions 
fi ( ) and gi( ) are continuous and second order differentiable with respect to all 
their arguments; fi *( ) is not nested within gi() nor vice versa. 0o and 01 are 
vectors of parameters of length ko and k1 respectively. Note that these vectors 
are not indexed by i. There are many important cases where individual 
parameters appear in several different equations; note that our notation does not 
imply that every parameter appears in every equation. xt and zt are vectors of 
predetermined variables. The expressions utio and util are random disturbances, 
for each t independently and identically multinormally distributed with means 
zero and covariance matrices flO and ?h respectively. A wide class of models can 
be written in this form; for example, we can regard (1) and (2) as the reduced 
forms of systems of simultaneous linear equations where the 0 parameters are 
the structural rather than reduced-form coefficients. 

The systems (1) and (2) may be written in vector form as 

(3) Ho: y =f(0o; X)+ uo, 

(4) H1: y = g(0i; Z)+ u1, 

where y is the nT x 1 vector of observations on all the n dependent variables, 
f(* ) and g( ) are the corresponding nT x 1 vectors of predictions, uo and u1 of 
errors, and X and Z are matrices of predetermined variables. We denote the 
complete parameter sets of each model by the vectors a0 and a1 so that 

a' = {0', st(Qo)'} and a' = {0', st(U1)'} 

where st (nO) and st (f2) are the vectors formed by stacking the matrices fQO and 
!2i by columns. Denoting the log likelihood functions of Ho and H, by Lo(ao) 
and Li (a,), respectively, and by LIo the log of the maximum likelihood ratio, then 
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if we maintain Ho against H1, the Cox statistic is given by 

To~ ~ o TL 20a (5) L 1 lm 

where plimo denotes the probability limit when Ho is true, Lio = Lo('o) 
and ao and a1 denote the maximum likelihood estimators of ao and a1 under Ho 
and H1, respectively. Given that Ho is true, Cox [3] shows that To is asymptotic- 
ally normally distributed with mean zero and variance V(To). Defining LIo 
Lo(ao) - L 1 (a lo), where a 10 = plima a1, then 

(6) Vo(To) = Vo(L 1 o) --q 'Q 
- 

71, 
T 

where Q is the asymptotic information matrix of Ho, i.e. 

1 a2Lo 
(7) Q = -plimo - 

T aatoaa() 
and 

T[plimo(L 10/ T)j 
(8) rn-T - a( aa() 

Our main task is to derive expressions for (5) and (6) with Ho and H1 given by 
(3) and (4). In order to do so, we shall first make the following assumptions: 

(i) u0 and u1 are distributed as multivariate normal with mean zero and 
covariance matrices 9o2?I and f2j1I, respectively, where 0 denotes the 
Kronecker product and I is a T x T identity matrix. Uo and U1 are assumed to 
be nonsingular. 

(ii) The number of observations, T, is at least as large as the number of 
equations, n, so that the maximum likelihood estimators of f2Q and f2l are also 
nonsingular. (In practice T may have to be very much larger than n.) 

(iii) Either the x, and zr variables are nonstochastic, or we require that the 
functions f(0o; X) and g(01; Z), as well as their derivatives, are distributed 
independently of the disturbances u0 and u1. 

(iv) We require that the following limits exist and be finite: 

lI a3f(Oo)\ ?pA' f00)\- 
plim0 Ii d (Q?2 (i) 

a = 0 

T_[o T a d(0 0) (dg0 ) T-oo [T 30o I \ 

The matrices Eoo and 11, are nonsingular, i.e., 00 is asymptotically identified 
under Ho as is 01 under HI. 

(v) Ho and HI are both non-nested and non-orthogonal. 
(vi) The regularity conditions on the likelihood functions are satisfied so that 

we can write 

plimoao=ao ard plima 1=a,. 
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We shall adopt the following notation. Variables are subscripted by numerical 
and literal subscripts; the former relate to the hypotheses Ho or H1, the latter to 
vector or matrix elements. Thus wiio is the i, jth element of the matrix Qo; the 
literal subscripts always precede the numerical ones. The numerical subscript 10 
refers to an asymptotic expectation of a parameter of H1 given that Ho is true. 
Superscripts denote elements of matrix inverses, e.g., w'8 is the i, jth element of 
the inverse of QO. Superimposed hats denote maximum likelihood estimates. We 
shall also use y.i to denote the vector of T observations on the ith dependent 
variable; similarly for f.i(Oo) and g.i(Oo). 

Given this notation and our assumptions, the log-likelihood functions for Ho 
and H1 may be written 

(9) Lo(ao)= -- -log (2 r) - Tlog Inol - 2{y -f(0o)}'((2o I){y -f(Oo)}, 2 22 

(10) LI(al)= 
nT 

log (2Tr)-- Tlog InlI - {y -g(0l)} '(D l (I){y -g(01)}, 

where, for brevity, we have suppressed the X and Z arguments of f and g. As is 
well known, the maximum likelihood estimates of QO and f2, QO and f2, are 
given by 

(1 1) Wjjo = {Yi f. i (o)}'{y f-i(0o)}, 
T 

(12) wi 1 = -{y.' - gAi(Ol)}'{Y.i -_fi(Al)}, T 

where tijO and wij1 denote the (i, j)th elements of matrices QO and f2, respec- 
tively. The estimates Oo and 01, used in (11) and (12), are the maximum 
likelihood estimates of 00 and 01 which are derived by solving the equations 

(13) (3f(o))'(Dl I_)y _Xf(Oo)} =0, 

Equations (1 1)(14) together define QO~, f21, Go, and &1. Substituting (11) and 
(12) in (9) and (10), we have 

(15) L10--Lo(Co)-L1(& )_=2_log 1 -) . 

Thus, from (5), 

(16) To={log I }, 

where in o is a maximum likelihood estimator of f20=plim0f2. In order to 
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obtain estimates of U1o and 6Oo, we follow Cox and solve for a10 the asymptotic 
equation 

(17) plimo(1 aL1(alo)\ = 0. 
T 3aalo 

Clearly, from (10), we have 

(18) Ll(alo)= -n log(27r)-Tlogj21ol-1j{y-g(Olo)}'(Qf dI)X 2 2 21 

{y - g(010)}. 

Differentiating with respect to a typical element of Qf0A, 

3Li(alo) T 

which, given that Ho is true, becomes, from (1), 

( T ilO-24{fi(O0)+ U.io-g i(O1o)} 'f.1(Oo)++ U.-jo-g-j(O - 
31o 2 

Hence in view of assumptions (i) to (iii) 

1 3Li(alo)1 1 1 
plimo T=awLJ 2Wij1- f2T ti(Oo)-g.i(O1o)}'{fi(Oo)-g-j(Olo)} 

-2 plimo (u iou jo 

Equating to zero, and rearranging the terms, we have an estimate of n2o, 

A A ~~1 
iA _giAj j,fi A _gi A0 . (19) WtijlO = Wiio + -,--(O)- gf1(01o)}'{f(40)-0 gj(0&)} 

T 

Similarly, differentiating (18) with respect to 0O we get 

d L, (a, e)_ = g(0 l) 12 10o -1X I{- g(0 10)}- 

Taking probability limits gives, if Ho is true, 

(1 aLi(ajo)y 1 (g(6lo) (Qj ( 0 I)f(G1)-g(O) 
V T a6lo I T a\ Olo / 

If we equate this to zero, we get 

(20 ( 010) (f2_, (i)I}tf(A )_g(Alo)}O (20) (aaJo))r(Qi 
0 I)f(o-g&)}= 0. 

Equations (19) and (20) may be solved together for Olo and f2jo in terms of 0o 
and QO. 

The steps for the calculation of To can now be clearly seen and are the obvious 
analogue of the calculation in the single equation linear case. At the first step, Ho 
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and H1 are e3timated by full information maximum likelihood and estimates of 
0o, 0A, Qo, and Q1 are calculated in the usual way, i.e. according to formulae 
(13), (14), (11) and (12). We then take the predicted values from Ho, f(Oo), and 
use these as dependent variables in a second FIML regression of H,. The 
estimated variance-covariance matrix of this regression is then added to Qo to 
derive fl2o according to (19). To is then immediately derived from (16). We thus 
require only one additional nonlinear regression, and numerical procedures are 
much eased in that the parameters 01 make excellent starting values for the 
estimation of 010. 

If we have only one equation, rather than n, the key expressions can easily be 
simplified in the following manner. The matrices (2 and (2o are replaced by 
scalars (r and Or2 and we have 

T __1 
(16') To log |2 2 0- lo 

Corresponding to (11)-(14) and (19)-(20) we have 

(1 1') 5? = {y -f(0o)}'{Y f(0o)}, 

T 
(12') 5J2 = { - g(Oi)}'{y - () 

(13 ) f(00 ly _ 
fY-(0())} = o, 

(13') ( f(o)) {y _fg()} A 0, 

(19') o2, = ( 00 - 
(0Wf(0\ 

02 
A T 

A 
)g(A(1,tfJA0)_g(Aio)j, 

(20') 
( 
I(O){tf(00)_g(010)} 0. 

a0oo 

These may immediately be recognized as the nonlinear equivalents of the linear 
single equation results of Pesaran [9]. 

Derivation of V((To) 

We first calculate the variance of L1o = Lo(ao)- LI(a1()a. From (9) and (18) 

T ( n -1 

L,I(=--log ? l {f((00)- g (0 )}'(Q(l X I){fV(0) - g (O Io )} 

-Iu {(f2( -[ 2(I )?I}u(+tf(6o)-g(Olo)} (flol (?I)uo. 
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Since uo is distributed as multivariate normal, it is a relatively simple exercise to 
calculate the variance of LIo. Some manipulation yields 

(21) V(L1o) = {f(Oo)- g( IO)}'(Q o 1 QOQ10 ( I){f(Ho)- g(Oio)} 

+ 2 trace [{(O1 - Qil )Q}-] 

In order to compute V((To) we also need to derive q; see (8). Using (15) and 
(19), we have 

(22) r1 =- {log IQ1ol -log IQo}, 
2 aao 

where a( = (0k, st (QO)'), and 

(23) wjio = wOijo + Itf. i (0o)- i (01o)}'{f.1 (0G)- j (O0o)}. T 

Differentiating with respect to 0(, 

__ 3log~~~~~Q10~~~ 3Wni1 
{log 10ol -- a l oog}= I Z, W jlO 

doo doo i=1 i=1 d o 

Substituting from (23) we obtain 

dlog IQ10ol = 
__ I__ _ _g(o0) 

doo T dSo dao ) 0 8)( 10 

x (Qj ) ? L ){f(Oo) - g(0 I )} 

But, by virtue of (17) and especially (20), 

30( ) ( I ){f(0o)-g (0 I o)} = 0. 

Hence 

(24) 
a 

logjIol - 2{ df(0) 1 u -1t" + afH0\(0go)I. 

The derivatives in (22) with respect to QO can be evaluated as follows: 

{logj01oj-logQ01j}= a dlog QI10| aDrslO a log IQOI 

dzoiio r=1 s=1 &Ors 10 a(0)ijo awijO 

But from (23) aft)rsl/03jijo = 8ril5sj so that 

{log IQ1ol-log |Qo|}=woio -wo, 
a(oiio 

iP.e., 

(25) t {log Q12ol-log IQol} = St (Qn - QO1 ) a st (Qo) 
0 
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Substituting (24) and (25) in (22) we reach 

f(f(OO (n ))' ] )O)-g( ) 
(26) T~ 

L -St(Q-lQ 

The derivation of the information matrix Q (see (7)) is straightforward; again 
we consider derivatives with respect to 00 and QO, respectively. Differentiation 
of Lo twice yields 

1 a2Lo(ao) 1 ?Jf(o) (af(00o) 
(27) plimol - 3 Iplim) ( \o J 

a Ooa3O' P TX ) a'o' 3oo 

- Loo, 

which, by assumption (iv), is nonsingular. We also have 

1 a2Lo(ao)1 
(28) plimo T - 1=0O (i, j= 1, , n), 

and 

(29) pmo j -1 32Lo(aO) 1 ir I's (29) plimo T- L3ij?Wrl = 2WOW (i,j, r, s = 1, n). T aCWijOaW'rO 
2000 

Combining relations (27) to (29), the asymptotic information matrix of Ho 
becomes 

(30) Q = (j 1(91?91)) 

Consequently, from (26) and (30), 

T2 (31) q7xQ I 7= R'E1R +T -Ist (n 
- 

-f-1 o)1} (no( f2oxst (n lo-2-1 O)}, 

where 

R (= ))'(Q -l 0 I)fOO)-g (O i)}. 

The second expression on the right hand side of (31) is equal to 4T2 trace 

[{(QJl - U7 )QO}2], so that combining (31) and (21) according to (6) gives 

(32) Vo(To) =f(Oo)-g(olo)}'{Q loQoQ loj 1I 

_(Q_1 
j 

1) 1 af(Oo) _laf(00)'(Qlol f(oo)-g(o10)}. 10 
T a0o 00 -oo 

This is the basic result for the variance; Vo(To) is derived by replacing each of 
the expressions by consistent, i.e. maximum-likelihood, estimates. 
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To simplify expression (32), define 

h = (QoQ jo (?I){f(0o)- g(Go)} 

so that 

Vo (To) = h'{(Qol (n I) - (n 
- 
lD 3I1 af( 0) If 

, 

3f( (G 1f1 (oI))h ?I-( 0~ a1)o~o 'IQ'I} 
T aoo~ 3G 

and its maximum likelihood estimate can be simply written as 

(33) Vo(To) = d'(P d, 

where 

d = {I - t(t' 1tyF) tF$i 1 }ih, 

A (af(0o)0 
a 8o J0,=0o 

= (noQ0X 0?I){f(0)- g(01o)}, 

'jo= Qo?)I. 

If we define No = To!/V V0o(Tj), we know from Cox's results that, given the truth 
of Ho, No is asymptotically distributed as N(O, 1). Similarly, we may compute 
T1, V1(Tl), and N1 when H1 is assumed to be correct. 

The form (33) is particularly convenient for seeing clearly how the estimate of 
the variance may be calculated. Note that h is the residual vector of the 
regression of f(0o) on H1, transformed by premultiplication by (09oco (01). 
Using h and the (known) covariance matrix (P0, we compute a generalized least 
squares regression of h on F yielding residuals d. The variance is then given by 
(33) immediately. In other words, as in the single equation linear case, the 
estimator of Vo(To) can be evaluated in a straightforward manner by performing 
one additional linear regression. 

In the case of only one nonlinear equation the result given in (32) and (33) can 
be written in the simpler form 

A2 

VO(To) =~ {f(04 ) - gQ0Fo)}'{I - FF( 'F 'f'}f&0) - g(0)} 
O'io 

where, as before, F is the derivative af(0o)/aGo evaluated at 0o = 0o. Clearly 
then, apart from the scalar cJ-/ci0, V(To) is calculated by regressing on F the 
residuals from the regression of f(Oo) on H1 and calculating the residual sum of 
squares. This is the direct analogue of the linear case. We can thus see that the 
computational problems involved are not severe given that Ho and H1 have to be 
estimated in any case. In addition to the original nonlinear regressions, in order 
to calculate both To and T1 and their variances, we need only compute two extra 
nonlinear regressions (for both of which we have excellent starting values) and 
two linear regressions. The artificial variables required for the latter are in most 
cases calculated automatically by the numerical algorithms used for the 
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nonlinear estimation. There are thus no computational grounds to prevent 
widespread use of the test. 

3. AN APPLICATION 

In this section we give an example of how the tests described above may be 
used in practice. The problem we have chosen is the analysis of the relationship 
between consumption and income using U.S. quarterly data. The equations 
which have been estimated should not be regarded as a serious contribution to 
the analysis of the consumption function; rather, we have deliberately kept the 
analysis as simple as possible in order to illustrate how the test can be applied in 
practice. It should also be emphasized that these examples are not a substitute 
for simulation experiments with the technique; these we hope to present at a 
later date. Inevitably then, our experiments can only illustrate a few of the 
potential applications. 

In any given study, the applied econometrician has a wide range of tests, 
formal and informal, which can be used to help choose among alternative 
specifications and functional forms. The tests which we are proposing are in no 
way a replacement for current practices; they are an addition to them, and, we 
believe, a valuable addition. Consequently, in the analysis below, we shall 
proceed very much as an applied econometrician might, bringing in, as we go 
along, the additional information provided by the tests. 

The data we use are quarterly, seasonally adjusted, observations on real, 1958 
price, consumers' expenditure on non-durable goods and on personal disposable 
income. These were collected from the Survey of Current Business [12] and are 
presented in Appendix, Table A. Observations from 1954, second quarter, to 
1974, third quarter were used (82 observations in all) although the additional 29 
observations on real personal disposable income from the first quarter of 1947 
were used in the construction of lags. 

We shall consider a variety of models, embodying alternative functional forms 
and alternative specifications of the lag structure between income and expen- 
diture. 

The first, and simplest, model postulates a linear relationship between 
consumption, income, and wealth; the influence of lagged income is thus indirect, 
and operates entirely through the wealth term. Denoting consumption by c, 
income by y, and wealth by w, we postulate 

(34) H1: c=a,+f31y+ y1w+u, 

where u is normally distributed as N(O, o,2). For simplicity, we follow the 
practice of Stone [11] in defining wealth as the accumulated value of real saving, 
i.e., 

(35) w - Bw = B(y - c), 

where B denotes the backward shift operator. We may thus construct a series for 
w around some base point (the variable was taken to be zero in 1954 II) and 
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absorb into the intercept the (constant) value of w in that quarter. Estimation 
gives the following results: 

2 (36) c = 26.510 + 0.84960y +.0084700w, R = 0.997959 and 
A2 (9.766) (0.03592) (.0057178) 5' = 17.3915. 

2~~~~A The figures in brackets are asymptotic standard errors ; o-2 is also the asymptotic, 
i.e. maximum likelihood, estimate of o-2. 

The wealth term in this equation is not very well determined and, whatever its 
validity on other grounds, it seems very unlikely to be capturing the full effects of 
lagged incomes. An obvious alternative is to estimate an equation containing 
lagged consumption as an explanator. We thus have a partial adjustment model 
of consumption of the type first estimated by Brown [2]; this may also be thought 
of as a natural variant of Duesenberry's [5] relative income hypothesis. We thus 
have 

(37) H2: c = a2? + 2Y +?Y2Bc + u, 

where again u is distributed as N(O, o-2). Note that this last assumption rules out 
interpreting (37) as the Koyck transformation of an equation linking consump- 
tion to a declining geometric lag function of income; a variant of this latter 
hypothesis will be considered below. 

Estimation of (37) yields 

(38) c = 5.6294+0.33838y +0.62827Bc, R2= 0.998722, 
(1.7888) (0.07794) (0.08673) (2 = 10.8887. 

This yields a long run marginal propensity to consume of 0.91 which is in line 
with the usual estimates. In other respects, the results are more satisfactory than 
those for Hi. On conventional informal grounds, although H1 and H2 are 
non-nested, we should thus expect the N test to lead us to reject H1 in favor of 
H2. Taking H1 as the maintained hypothesis first, we fit the predicted values of 
(36) to equation (37) and calculate 0'2 1 to be 17.8116, which, with 82 obser- 
vations, gives a T value, conditional on the validity of Hi, of -20.1772. The 
variance of this statistic is estimated at 0.1837 so that the N ratio, which is 
asymptotically distributed as N(0, 1) under H1, takes a value of -47.08. Clearly, 
we cannot maintain the validity of H1 on this evidence. We may now reverse the 
procedure and take H2 as the maintained hypothesis. This, by a similar sequence 
of calculations, leads to an N ratio of 0.37, i.e., to the conclusion that H2 cannot 
be rejected against the evidence of the data and H1 combined. Thus in this 
simple example, the N test supports the judgement that would be made 
informally in practice, that H1 should be rejected in favor of H2. 

We may now turn from the choice of variables to the choice of functional 
form. The linearity of (37) was not chosen on any strong theoretical grounds but 
rather for convenience. We shall thus examine an alternative possibility, that the 
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relationship is multiplicative. This can be derived from long-run proportionality 
between consumption and income, coupled with an adjustment procedure 
formulated in terms of ratios rather than differences. We thus write 

(38) H3: c=ea3yO3(Bc)Y3+u, 

with u -N(0, a 2). Note that the constant of proportionality is written as an 
exponential; this guarantees that c be positive, and by narrowing the range of 
search for a3, improves rapidity of convergence of the numerical algorithm. The 
parameter estimates for H3 are 

(39) a3= 0.075693, ,3= 0.3835L, y3 = 0.60029, R2 = 0.998756, 
(0.02506) (0.08351) (0.08591) (J= 10.6016. 

The long-run elasticity of consumption to income is thus estimated to be 0.96 
which is comparable with the long-run marginal propensity to consume of 0.91 
estimated from H2. Note that H3 is very similar to H2: the fit is marginally better 
but hardly enough to suggest any strong preference for one rather than the 
other. Applying the N test, if H2 is the maintained hypothesis we calculate a 
value of -3.38 against H3, while if H3 is maintained against H2, the value is 
2.68. Each of these values is significantly different from zero and, on the face of 
it, we should reject both H2 and H3. The negative value when H2 is maintained 
suggests that the true model deviates from H2 in the direction of H3, presumably 
'beyond' it given the positive and significant ratio when H2 is maintained. Note 
however that we are using an asymptotic statistic in a small sample situation and 
these two ratios are not so large as to justify confident rejection of both models. 
Consequently, it would not be difficult to defend a slight preference for H3, again 
giving a formal result in support of our informal supposition. 

It is also possible to consider H1 against H3, and by doing so, we can draw up 
Table I for all possible pairs. Each row relates to a particular maintained 
hypothesis while each column relates to the alternative. We have filled in the 

2 matrix by listing along the diagonals the values of 5 for each model to give an 
idea of absolute fit as well as of comparative performance. 

TABLE I 

N-STATISTICS AND (2 FOR HI, H2, AND H3 

Alternative hypothesis: H1 H2 H3 

Maintained hypothesis: H1 17.3915 -47.08 -29.30 
H2 0.37 10.8887 -3.38 
H3 1.08 2.68 10.6016 

Note from the table that testing H, against H3 and vice versa gives very similar 
results to testing H1 and H2 as a pair; this reflects further the close cor- 
respondence of H2 and H3. 

So far, the formal results have simply supported our intuition. This is 
satisfactory enough; indeed we should have been justified in being suspicious of 
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our formal test if it had not been so. However, we now consider two more 
complex formulations of lag structures and we shall see that intuition is often 
neither sufficiently precise nor sufficiently well-informed. The first more complex 
hypothesis is that, from the second period onwards, the weight of lagged income 
in the consumption function is subject to a declining geometric progression. 
Hence 

(40) H4: c=a4+4y+1Y4By +u, 

where division by the expression involving the lag operator is short-hand for the 
infinite series of weights. As written, (40) is highly nonlinear in the parameter 84 
but it can be directly estimated using the values of y which are available prior to 
the sample period. This yields estimates: 

(41) a4= 31.668, p84= 0.75293, )Y4= .0031090, 64-=.98528, 
(17.715) (0.045096) (.0022297) (.022041) 

2 A R = 0.998332, 5r2= 14.2151. 

These results should be handled with some care. The lag parameter, 84, is 
sufficiently close to unity to cast doubt on the estimation procedure since the 
omitted terms in the lag will have sizable weights, even with 29 additional 
observations preceding the estimation period on y. The method could be 
improved by appropriate treatment of the truncation remainder (for example as 
suggested by Pesaran [8]) but in any case it is clear that the third term on the 
right-hand side of (40) is effectively acting as a large constant; note also the large 
standard error of a4 and the small value of 'Y4. Clearly then, whatever is the true 
lag structure on y, it cannot adequately be represented by H4. 

The final model we shall consider is the hypothesis that the lag structure can 
be approximated by a second-order Almon polynomial, i.e., 

20 

(9) H5: c=a5+f+5y+E (Y5+8Si+E5i2)Bi+ly + U, 
i-i 

and we have taken a lag stretching back altogether 21 periods, i.e., 51 years. The 
parameter estimates are 

(10) a5 = 11.868, f85 = 0.95274, y5 = -0.030902, 
(2.291) (0.06809) (.030001) 

65= .0073125, E5 = -.00032576, R2= 0.997933, 
(.0074149) (.00034966) O2 = 17.6131. 

(The sum of lags is -.043423, so the long-run marginal propensity to consume is 
again estimated to be 0.91.) 

In (10) none of the Almon lag parameters is significantly different from zero 
and it is evident that this formulation is no better at capturing the shape of the 
lag than was the geometric formulation. Indeed H5 has an absolute fit which is 
worse even than the original model H1. 
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However, once H5 is brought into the comparisons, the N tests yield a rather 
more complex picture. Table II reproduces the results of Table I and completes 
all the pairwise comparisons. 

TABLE II 

N-STATISTICS (3 AND or FOR H1 TO H5 

Alternative hypothesis: H1 H2 H3 H4 H5 

Maintained hypothesis: H1 17.39 -47.08 -29.30 -28.30 -6.42 
H2 0.37 10.89 -3.38 -2.58 -6.03 
H3 1.08 2.68 10.60 -1.86 -5.84 
H4 2.19 -11.20 -12.09 14.22 -6.21 
H5 -14.89 -73.04 -39.66 -121.3 17.61 

Taking the comparison between H4 and H5 first, we see that each model 
rejects the other. The extremely poor fit of H5 is reflected in the N ratios in the 
final row; maintaining H5 against any alternative generates a large negative 
ratio. H4is not greatly superior; with the exception of H1, which is itself rejected 
against all alternatives (see row 1), all the hypotheses provide evidence against 
the truth of H4. More surprisingly, H5, which is clearly the least satisfactory 
model, contains evidence sufficient to reject both H2 and H3 (N = -6.03, and 
-5.84), the two models which so far have not been conclusively falsified. This 
forcefully makes the point that the N statistics are quite different from 
comparisons of R2 statistics or likelihoods. The model which fits the worst (H5) 
can yield sufficient information to reject a model (H3) which not only fits better 
than any of the other alternatives considered, but which cannot be firmly 
rejected in pairwise comparisons with any of the other models, all of which fit 
better than the one responsible for the rejection. The N test is not a measure of 
relative fit; it is a measure of whether a given hypothesis can or cannot explain 
the performance of an alternative hypothesis against the evidence. There is no 
requirement that that alternative should itself yield a satisfactory explanation of 
the phenomena under consideration. 

In conclusion, it will be noticed that we are left without a satisfactory model; 
every formulation we have considered has been rejected against one or more 
alternatives. Considering the simplicity of the models, this is not surprising. Even 
so, the use of the technique in applied econometric work is likely to lead to this 
situation quite frequently in actual practice. We do not consider this to be to its 
disadvantage. It is our belief that too many hypotheses are accepted too readily 
in econometric work and it is our hope that the techniques discussed here will 
prove sufficiently powerful in practice to convince more researchers of the 
difficulties of establishing economic hypotheses. This can only enhance the status 
of those models which survive the tests. 

Bank Markazi Iran, Tehran 
and 

University of Bristol 
Manuscript received November, 1976; revision received May, 1977. 
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APPENDIX 

THE DATA 

TABLE A 

EXPENDITURE, INCOME & WEALTH; U.S. 1954 ii-1974 III 
(Seasonally adjusted annual rates, $1958 billions) 

1954 II 253 270 0 1964 I 366 387 760 
III 257 274 17 II 371 397 781 
IV 262 279 34 III 379 402 807 

1955 I 268 282 51 IV 379 407 830 
II 273 289 66 1965 I 388 411 858 
III 276 294 82 II 393 416 881 
IV 280 299 100 III 400 430 904 

1956 I 280 300 118 IV 409 438 933 
II 280 302 138 1966 I 415 442 962 
III 281 303 160 II 415 443 989 
IV 285 308 182 III 421 450 1017 

1957 I 287 308 205 IV 421 454 1045 
II 287 309 226 1967 I 424 459 1079 
III 289 311 249 II 430 463 1114 
IV 290 310 271 III 432 468 1147 

1958 I 286 307 291 IV 434 472 1183 
II 288 308 312 1968 I 445 480 1220 
III 292 315 333 II 448 486 1255 
IV 295 319 356 III 458 488 1293 

1959 I 302 323 380 IV 460 491 1323 
II 307 328 401 1969 I 466 492 1354 
III 310 326 422 II 469 496 1381 
IV 310 328 437 III 470 504 1408 

1960 I 314 332 455 IV 472 508 1442 
II 318 334 473 1970 I 474 511 1478 
III 316 334 489 II 478 522 1514 
IV 316 332 507 III 481 528 1559 

1961 I 316 334 522 IV 478 524 1605 
II 320 340 540 1971 I 490 535 1652 
III 324 345 559 II 494 541 1697 
IV 330 352 581 III 498 542 1744 

1962 I 333 355 603 IV 504 547 1789 
II 336 359 624 1972 I 513 552 1832 
III 340 360 647 II 523 559 1871 
IV 345 363 667 III 531 567 1906 

1963 I 349 367 685 IV 542 584 1942 
II 351 369 703 1973 I 553 599 1984 
III 356 374 721 II 554 602 2030 
IV 358 379 739 III 555 605 2078 

IV 546 606 2128 
1974 I 540 594 2187 

II 543 587 2242 
III 547 587 2286 
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TABLE B 

REAL INCOME 1947 I-1954 I 

1947 I 217 1950 I 245 1953 I 269 
II 213 II 243 II 272 
III 218 III 247 III 271 
IV 216 IV 249 IV 271 

1948 I 220 1951 I 248 1954 I 271 
II 226 II 253 
III 231 III 254 
IV 231 IV 254 

1949 I 227 1952 I 254 
II 227 II 256 
III 228 III 262 
IV 230 IV 265 
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