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Abstract
The roadblock to wide acceptance of asynchronous methodology is
poor CAD support. Current asynchronous design tools require a
significant re-education of designers, and their capabilities are far
behind synchronous commercial tools. This paper considers the
testing methodology for a particular subclass of asynchronous
circuits (Null Convention Logic or NCL) that entirely relies on
conventional CAD tools available at today“s market. It is shown
that for acyclic NCL pipelines a test pattern generation for stuck-at
faults could be effectively solved through the construction and
checking of the synchronous circuit with a set of faults
” equivalentˆ  to the original NCL circuit. This result is extended to
arbitrary NCL structures by applying the partial scan technique to
break computational loops.  The method guarantees 100% stuck-at
fault coverage in NCL systems, which is confirmed by experimental
data.

1. Introduction
Asynchronous designs have been proven capable of

delivering:
• Higher speed because of the average case

performance versus worst case in synchronous
circuits [1, 2]

• Less power consumption due to the absence of
clock trees and natural support of idle mode [3, 4]

• Low EMI and noise due to even distribution of
switching activity  in time [5, 6]

Nevertheless, the few success stories did little to change
the public acceptance of asynchronous approaches. In the
current design landscape, asynchronous methodologies are
considered either as exotic (an optimistic opinion from
academia) or as non-observable (a pessimistic opinion
from industry). The blame is partially on the asynchronous
community because for several decades it persistently
ignored the trends and standards in synchronous
methodologies which are the mainstream for the rest of the
world. Most asynchronous approaches use particular non-
conventional models (Burst-mode machines [7,8],
Communicating Processes [9,10], Signal Transition Graphs
[11,12], etc.) which are supported by custom in-house
tools.  This leaves few hopes to compete with synchronous

methodologies that are supported by the full power of EDA
industry.

Recently, the ideas of using commercial CAD tools and
conventional HDLs with an asynchronous approach have
gained much interest.  In [13] a tool for automated
translation of CSP-like specifications into VHDL programs
was developed. Blunno and Lavagno [14] suggested a
compiler from a RTL description in Verilog to an
asynchronous controller and a synchronous datapath
supporting the micro-pipeline design style. The closest to
our work [15] has presented a new synthesis framework for
the design of Null Convention Logic (NCL) circuits [16]
from VHDL specifications using commercial CAD tools.
These works have made an important step in covering the
gap between the ease of use of asynchronous and
synchronous approaches. Providing conventional synthesis
and simulation capabilities in an asynchronous design flow
removes the roadblock of reeducating the designers and
shifts the choice of ” usage/non-usage„  of asynchronous
circuits into an objective ground of estimating their trade-
offs: area, speed, power, etc.

Note however, that synthesis and simulation address
only part of the design problems. A methodology cannot be
complete if it does not provide means for design testing.
There is no common agreement about the comparative
complexity of asynchronous vs synchronous testing. On
one hand, many asynchronous circuits enjoy the well-
known self-checking properties for output stuck-at faults
[12,17]. On the other hand, asynchronous systems tend to
have more sequential gates and are difficult to pause, thus
creating a more complex test environment. The brute force
approach, based on an exhaustive exploration of the
reachability space, shows that asynchronous circuits might
have high potential test coverage [18] but its application is
limited to circuits of very moderate size. Restricting
implementation choices allows a designer to use more
efficient ad hoc techniques. Micro-pipelined architectures,
[19,20] provide regular methods to ensure high coverage of
stuck-at and delay faults.  Testability in these methods
comes at the expense of a structural modification of
asynchronous latches (C-elements) and might be costly.
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Another effective test approach is suggested in [21,22] for
the design of handshake circuits. It covers both structural
modifications of handshake components and a partial scan
application to increase the testability of designs. However,
the methodology as a whole is based on a non-
conventional specification means (Tangram language) and
in-house CAD tools (Tangram compiler), which is an
obstacle in accepting it externally.

This paper targets the development of test methods that
support NCL design flow. The main distinctive feature of
the suggested approach is the use of conventional
Automatic Test Pattern Generation (ATPG) tools to
generate test vectors for NCL circuits.  The key is to
substitute inside the ATPG engine an original NCL system
by a synchronous circuit with an ” equivalent„  to NCL fault
set. It is proved that for acyclic pipelines the ATPG
approach guarantees detection of all input stuck-at faults in
a NCL circuit.  Together with the application of partial
scan techniques [26] (to break up computational loops) it
shows that NCL systems are fully testable with respect to
stuck-at faults.

The paper is organized as follows. Section 2 introduces
the main theoretical notions.  Section 3 discusses the
ATPG setting for testing acyclic NCL pipelines and then
extends the approach for arbitrary NCL structures. Section
4 presents experimental results for the suggested flow.

2. Theoretical Background
2.1 NCL Combinational Circuits
NCL circuit inputs and outputs use a delay-insensitive

encoding [19]. A circuit assumes a two-phase functioning
in which data communication alternates between set and
reset phases [20]. Data changes from the spacer (NULL)
to a proper codeword (DATA) in the set phase, and then
back to NULL in the reset phase.

In NCL this behavior is pushed down to the level of each
particular gate of a circuit.  If the current state of a gate is
NULL, then the gate keeps its output in NULL while
NULL is present in at least one of its fan-ins.   When all
gate fan-ins receive a codeword (DATA), the output of the
gate changes to DATA.  A gate has a symmetric behavior
in the reset phase ’ it keeps output in DATA until all the
fan-ins receive NULL; after which the output changes to
NULL.  It is easy to see that such gates guarantee the
delay-insensitivity of implementation because the gates…
outputs acknowledge any changes at their inputs.

This behavior is naturally expressed in a multi-value
logic. Let a signal in NCL take three logic values: data
values ” 1„  and ” 0„  and the value ” N„   (NULL). The
behavior of basic NCL gates is described like in Figure
1(a) (gates are assumed to be initially in a state NULL).
The description of behavior of basic NCL gates is

accomplished by symbolic tables for initial state DATA
(see Figure 1(b), where H stands for holding the previous
DATA state of the gate (1 or 0) while one of the inputs
changes to NULL).

From the above explanation it follows that NCL gates
have sequential behavior because they switch differently
depending on the current value on the output.

a
b 1

1 1

0

0
000

N

N

N

NNNN

a
b 1

1 1

0

1
010

N

N

N

NNNN

AND OR

a
b 1

1 1

0

0
000

N

H

0

N0HN

a
b 1

1 1

0

1
010

N

1

H

NH1N

AND OR
(a) (b)

Gate in NULL Gate in DATA

Figure 1.  Symbolic tables for basic NCL gates
For physical implementations of 3-value gates, each

logical signal a is represented by two wires a.1 and a.0
resulting in a well-known dual-rail encoding (see left
portion of Table 1).

a a.0, a.1 a a.0,a.1,a.2,a.3
0
1
N

1    0
0    1
0    0

0
1
2
3
N

1     0    0     0
0     1    0     0
0     0    1     0
0     0    0     1
0     0    0     0

Table 1 . One-hot  encodings

In general, NCL is not restricted to dual-rail
implementations only. Other schemes based on one-hot
encoding are used as well. In the right portion of Table 1 a
4-rail encoding of 5-value NCL (data values
” 0„ ,„1„ ,…2„ ,„3„  and NULL value ” N„ ) is shown. This
encoding is known to be beneficial for low-power
implementations [23].

A representation of sequential NCL gates through set S
and reset R functions  (g=S +gR…) might be refined based
on the following specific features of NCL behavior and
one-hot encoding with a spacer ” 000ˆ„ :
1) in a multi-rail circuit a transition from NULL to

DATA is monotonic
2) a transition from DATA to NULL at primary inputs

sets all gates in a combinational circuit to NULL state
From (1) it follows that a set function S of a gate must be

positively unate, i.e. every variable is met in function S
without inversion.

(2) concludes that an NCL gate changes its output to
NULL when all its inputs are at NULL.  Since DATA
values are one-hot encoded we arrive at:

  R‘(x1,� ,xn) = x1 + x2 + � + xn
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Figure 2. NCL gate implementations

A semi-static CMOS implementation of an NCL gate is
shown in Figure 2(a), while Figure 2(b)(c) show an
implementation and notation for a particular NCL gate
with the function g=x1x2 + g(x1+x2), known from
literature as a Muller…s C-element.

Breaking a single logical signal a into several physical
instances a.0, a.1, a.2 , �  under a one-hot encoding in an
implementation, might destroy the delay-insensitive
properties which multi-value NCL gates naturally provide.
In an automated design flow, delay-insensitivity can be
ensured by using correct-by-construction synthesis
methods [15]. For manual designs, delay-insensitivity
should be verified by checking that primary outputs
acknowledge every transition of an internal gate or input.
If some gates or wires of a circuit are unable to translate
the results of their firings into the changes at primary
outputs, a circuit is said to contain so-called orphans [24].
An orphan can be characterized by a path p in a circuit
such that a transition propagates through p but its
propagation does not affect output values. If p consists of a
single wire then it is called a wire orphan. Orphan
analysis is a part of NCL design flow and the method of its
efficient implementation is described in a companion
paper. From now on we assume that a properly designed
NCL circuit has no orphans other than wire orphans.

2.2 NCL Systems
At an architectural level, NCL systems show a clear

separation of sequential and combinational parts, much in
the same way as with synchronous systems.

Figure 3 (a) shows a structure of a NCL dual-rail register.
The register consists of transparent latches implemented by
C-elements, with a common enabling signal Req. Data
inputs to the register come in a dual-rail form from the
preceding combinational logic while data outputs are
forked to the next combinational logic and to a completion
detector (see Figure 3(b)). For a one-hot encoded set of
wires a.0, a.1, a.2, �  only one of the wires can take the
value ” 1„  in a set phase,  while in a reset phase all wires
will take values of ” 0„ . From this it follows that to detect a
proper codeword (or a spacer) at a.0, a.1, a.2, �  one can
simply use an OR gate. The common completion detector
for the register combines the detectors for each bit (OR
gates) through a C-element (see Figure 3(b)).
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Figure 4. NCL system

The general structure of a NCL system is shown in
Figure 4. To explain how the NCL system functions, let us
assume that all registers are initially in the NULL state.
These register states are detected by completion detectors,
and all acknowledgement signals Ack are asserted to ” 1„ .
The latter asserts the request signals (Req) and prepares
the registers for accepting DATA codewords on their
inputs.  When DATA arrives, the outputs of a register
transition from NULL to DATA (the register stores the
DATA value), and the DATA wavefront propagates
through a combinational circuit to the inputs of the next
register. Simultaneously, a completion detector checks for
a DATA codeword at its inputs, and replies by de-asserting
the Ack signal.  This signal disables the request line of the
previous register and prepares the register for storing the
next NULL wavefront. The request-acknowledgement
mechanism of register interaction [12] ensures a two-
phase discipline in NCL system functionality and prevents
collisions between different DATA wavefronts (any two
DATA wavefronts are separated by a NULL wavefront
between them).



4

3. Test Pattern Generation for NCL systems
3.1 Type of faults
Testing procedures most commonly target the following

types of faults: a) stuck-at faults b) delay faults c) bridging
faults.

Stuck-at faults are modeled by assigning a fixed 0 or 1
value to a circuit gate input or output. In this case, a gate is
considered as a ” black box„  which allows a designer to
separate a gate…s functionality from its technology
dependent implementation.  Checking for stuck-at faults in
NCL circuits is fully addressed by the suggested approach.
Note, that due to considering gates as atomic instances the
faults in internal feedbacks of NCL gates (node g“  in Figure
2) are not checked. We see the significance of this
limitation in the advocated approach and put the task of
testing the internal feedbacks as an important direction for
future investigation.

Delay-insensitive NCL systems are immune to timing
failures. Delay faults in these circuits influence the circuit
performance but not the correctness of behavior. However,
testing for delay faults in NCL circuits might still be
meaningful due to two reasons 1) from a practical point of
view a circuit whose response time is arbitrary has little
use and 2) other types of faults (beyond stuck-at) could
show up as delay faults.  Though the presented approach is
restricted to stuck-at faults only the suggested framework
might be useful in delay fault testing as well. Here one can
exploit the idea of checking delay faults through the
reduction to stuck-at faults testing which is well known in
synchronous methodology [25].  This issue is however
beyond the scope of this paper.

For testing bridging faults, stuck-shorts and stuck-opens
our method provides no help. These faults might be
approached by applying an IDDQ technique which is
orthogonal to the suggested ATPG-based approach.

3.2 Acyclic Pipelines
Let us first confine ourselves by considering NCL

systems that are free from computational loops. These
ssytems are represented by acyclic pipelines, where data
travels from primary inputs (PI) to primary outputs (PO) as
in Figure 4 (the pipeline should not necessarily be linear but
may contain arbitrary forks and joins).

During testing we assume that an acyclic pipeline is
controlled only from PI and is observed only at PO, i.e. no
additional controllable or observable points are added to
the pipeline and testability is checked under zero area
overhead.

In general a designer might choose test vectors that are
never propagated in normal circuit functionality. However,
for NCL pipelines, using valid DATA patterns (respecting
one-hot encoding) and following the conventional NULL-
DATA protocol is preferable for two reasons:

1. Ease of propagation (if test vectors follow DATA-
NULL convention, they are easily propagated through
the system since setting the PI of a fault-free pipeline to
DATA (NULL) eventually sets the PO to DATA
(NULL) while propagation is not guaranteed with
arbitrary vectors)

2.  Speed of testing (a pipeline can store several DATA
and NULL items which are safely separated by pipeline
stages and never interfere)

Therefore, the suggested approach suggests a test
procedure that applies valid DATA/NULL pairs at the PI
of a pipeline and observes the corresponding
DATA/NULL pairs at the PO of a pipeline.

3.2.1 Faults in pipeline registers
The acyclic pipeline contains registers and feedbacks

due to request-acknowledge interaction and therefore
combinational ATPG methods cannot be applied directly.
However, the problem can be simplified by using fault
grading.

Faults are separated according to the location of their
occurrence. Stuck-at faults in the register include:
1. Enabling lines (wire Req and its forks in Figure 3)
2. Register outputs  towards the completion detector

(wires x_d.0 and x_d.1 e.g. in Figure 3)
3. Internal nodes and the output of the completion detector

(wires x_d ,  y_d  and Ack in Figure 3)
The remaining faults are referred to as faults in

combinational logic.
In a fault-free NCL pipeline all internal nodes and

outputs of completion detectors toggle in each phase.  A
stuck-at fault at any internal node of a completion detector
freezes its output and eventually stalls the pipeline since
data propagation through the register is possible only upon
the consistent switching of data and enabling lines
(switching to ” 1„  for set phase and to ” 0„   for reset).

Proposition 1. For an acyclic NCL pipeline with M
stages, checking the faults in all completion detectors can
be performed by applying at most M/2+1 (NULL,DATA)
input patterns.

Proof. Suppose that the pipeline is in a settled but
unknown initial state. The NCL pipeline of M stages might
have at most M/2 DATA items (because each DATA item is
separated by a stage in the NULL state). Let us perform
M/2+1 handshakes at the input of a pipeline. Every time
primary outputs PO settle to valid DATA or NULL, Req is
changed to prepare for the next wavefront (NULL or
DATA) propagation. If the output handshake is performed
M/2+1 times, then it is guaranteed that at least one DATA
and one NULL wavefront will have propagated all the way
through from PI to PO. The latter means that every
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completion detector has toggled to ” 1„  and ” 0„  and is free
from stuck-at faults. ♦

Note that the test procedure referred to by Proposition 1
does not depend on the particular value of DATA pattern
but relies only on the alternation of wavefronts at pipeline
inputs. In fact the same DATA item might be repeated
M/2+1 times. The latter shows that stuck-at faults in
completion detectors are easy to check and this circuitry
might be dropped from further consideration.

The rest of the faults in the registers could be eliminated
by fault collapsing based on dominance relation [26].

 The faults at enabling lines and their forks are
dominated by faults at data inputs to registers.  If a test
vector checks the propagation of a rising (falling)
transition at data input a through a latch x of a register,
then it also checks that the corresponding rising (falling)
transition has properly occurred at the enabling line of x.

Faults at register outputs connected to completion
detectors and to combinational logic are also related.
Indeed, suppose that data output from register latch x forks
to x_c connected to the next stage logic and x_d connected
to completion detector (see e.g. wires x_c.0 and x_d.0 in
Figure 3(a)). For checking a stuck-at-0 (stuck-at-1) fault at
x_c, a rising (falling) transition on x_c must be propagated
through the pipeline. In a faulty circuit this transition does
not propagate and the pipeline stalls. It is easy to see that
application of the same transition will stall the pipeline for
a stuck-at fault at x_d as well because the completion
detector for x will not switch.

From the above discussion, it follows that register
circuitry can also removed from consideration when
generating test patterns for NCL pipelines. Intuitively this
is easy to understand because transparent latches under
monotonic changes at data inputs behave like buffers and
do not influence testability of a system. Therefore, for the
purpose of test pattern generation one might take a
simplified view of the NCL pipeline as a connection of
combinational logic networks in sequence, which is
equivalent to a single combinational logic network (see
Figure 5).

3.2.2 Faults in combinational logic
Checking stuck-at 1 and 0 faults is performed by

propagating falling and rising transitions through a circuit
respectively. From the rules of functionality of a NCL
combinational circuit, it follows that rising (falling)
transitions at gate outputs occur only in a set (reset) phase.
Therefore, if the testing is performed by applying (DATA,
NULL) testing patterns at primary inputs, stuck-at-0 faults
would be checked in a set phase while stuck-at-1 faults
would be checked during a reset phase.

The two-phase operation of NCL circuits also helps in
simplifying the analysis of a network of sequential NCL
gates. Let us assume that before applying a new test

pattern, a NCL network is in a settled state.  Then it is easy
to see that the behavior of sequential NCL gates g(x1,� ,xn)
= S + g(x1+x2+� + xn) is specified by their set functions S
for set phase and by their reset functions x1+x2+� + xn in a
reset phase.  This lays a foundation for reduction of
analysis of sequential NCL gates behavior to the check of
corresponding combinational networks for set and reset
phases.

Figure 5. Removal of registers from NCL pipeline

Figure 6 shows a NCL implementation CNCL of a dual-
rail MUX that selects one of the two data flows a.0,a.1 and
b.0,b1 according to the value of control signals s.0,s.1
(Figure 6 (a)).  The behavior of the MUX in set and reset
phases is captured by  its Boolean ” images„   CBool_set
(Figure 6(b)) and CBool_reset  (Figure 6 (c)).
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Figure 6. Reduction of a NCL network to Boolean networks

Proposition 2. An irredundant combinational circuit
CNCL of NCL gates is fully testable for all stuck-at faults.

The proof of Proposition 2 immediately follows from:
1. A set of stuck-at 0 faults of CNCL being the same

as a set of stuck-at 0 faults of its Boolean image
CBool_set for a set phase.

2. A set of stuck-at 1 faults of CNCL being the same
as a set of stuck-at 1 faults of its Boolean image
CBool_reset for a reset phase.

3. Full testability of irredundant networks from
unate Boolean gates with respect to stuck-at faults
[27]

According to Proposition 2, a test pattern generation for
a NCL circuit could be solved by the generation of tests for
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two Boolean networks (CBool_set and CBool_reset). Further
simplification of this task is possible based on establishing
a correlation between test patterns for stuck-at-0 and stuck-
at-1 faults.

Proposition 3. Let a vector Dk from a valid DATA set
be a test for a stuck-at 0 fault at input i of a NCL gate g.
Then the test pair (Dk,NULL) tests a stuck-at 1 fault at
input i of gate g.

Proof. Dk is a test for a stuck-at 0 fault at input i of gate
g if it propagates a rising transition through some path p =
a,� ,i,g,� ,y  from a primary input a to a primary output y.
All nodes of p settle to a value ” 1„  at the end of a set
phase. In a fault-free circuit the following application of
NULL at primary inputs results in a propagation of a
falling transition through the path p that is observed at
primary output y.  If a node i of path p is stuck-at 1, then
gate g cannot switch to ” 0„  because its reset function is
simply an OR of g fan-ins. From the similar consideration
it follows that any node of path p in a transitive fanout of g
(including primary output y) will also keep the value ” 1„
and the stuck-at 1 fault is observable at y. ♦

Proposition 3 shows that analysis of a Boolean network
CBool_reset is redundant during test pattern generation
because if T0={D1,� ,Dm} is a set of test patterns detecting
stuck-at-0 faults then stuck-at-1 faults are automatically
detected by applying test patterns
T={(D1,NULL),� ,(Dm,NULL)}.

The above considerations result in the following test
scenario for acyclic NCL pipelines:
1. Convert a pipeline into a NCL combinational circuit

Cncl by removing register circuitry.
2. Convert Cncl into a Boolean combinational circuit

CBool_set by replacing every NCL gate with the
corresponding Boolean gate implementing the
equivalent function.

3. Derive a set of test vectors D1,� , Dm for checking
stuck-at-0 faults in  Cbool_set (to guarantee that D1,� ,
Dk are valid DATA patterns, a constrained ATPG
respecting one-hot encoding must be used).

4. Test the original pipeline by a testing sequence
(D1,NULL),� ,(Dm,NULL)

 The suggested testing procedure has an additional
advantage. If in a pipline with M stages a stuck-at fault
occurs at stage i, then a completion detector of stage i does
not produce a proper acknowledgment backward to stage i-
1. Therefore new waverfronts could not propagate through
i-1 stage and finally the pipeline stalls. The fact of stalling
the pipeline is observed by a stuck-at of Ack line.  Hence a
comparison of responses of fault-free and faulty circuits at
primary outputs is not needed for NCL pipelines because
their faults are always observable at a single line (Ack).
Note however, that to propagate the information about

stalling the pipeline from the last stage to the first one, the
last pair of testing patterns (Dm,NULL) might  need to be
applied  M/2+1 times (see the proof of Proposition 1 for
explanation).

Finally we arrive to the following conclusion:
irredundant acyclic NCL pipelines are 100% stuck-at
faults testable.

Note, that this conclusion is stronger than the known
result on stuck-at testability in arbitrary delay-insensitive
circuits [28]. This is because in an NCL circuit the
premature firings coming from stuck-at faults and
occurring in one phase necessarily show up as a stall in the
next phase of operation 1.

3.3 Cyclic Pipelines
In general, NCL circuits contain computational loops

and are described by pipelines with one or more feedback
paths. Figure 7 shows an example of a cyclic pipeline,
which is the NCL equivalent of a typical accumulator
circuit where the sum is fed back as one of the arguments.

+
Data In

Break this loop!

Sum Out
Ack

Req
C

Figure 7. Cyclic pipeline with a computational loop

To employ the testing methods from Section 3.1 for
cyclic pipelines, one needs to convert them into acyclic
pipeline components.  This can be done by applying a
partial scan technique to break data-path loops.

3.3.1 Partial scan
The purpose of inserting scan cells in NCL pipelines is

two-fold: a) to break the computational loops and b) insert
test vectors into the data paths. The correctness of the
pipeline under test is checked through observing the
consistent changes of the Ack signals coming to the scan
cells and acknowledging a propagation of wavefronts
through the pipeline.  This is done in the same way as
discussed for acyclic pipelines.

                                                                
1 Unfortunately this is not true for other types of faults:

stuck-at faults in internal feedbacks e.g. result in
premature firings which do not lead to stalls of a
pipeline.
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Figure 8. Cycle Scan cell model

Table 2. Scan cell truth table

Figure 8 illustrates an implementation of a scan register
through the example of a 4-rail register with four scan
cells.  It targets LSSD style clocking [29] (2 phased non-
overlapping clocks) for its single serial line.  Table 2
defines the logic functionality of the scan cell, where M0
and M1 define the scan mode, C0 and C1 are non-
overlapping clocks, Sin and Sout are scan input and output,
d is a data input used in normal functioning and En is an
enabling signal that is tied to Ack of the next registration
stage.

The cell contains an input D-latch, an internal
transparent latch (based on a C-element with additional
control signals for scan modes) and the output AND gate
(see Figure 8). Its static implementation requires 44 CMOS
transistors.

Although it is not necessary to capture the resulting
vectors from the stimuli, the scan cell provides that option
with the Load Mode (M0=0, M1=1).  The latter might be
useful for fault localization. The scan register serves both

as the source of scan vectors at the front of the pipeline as
well as the detector of the proper changes of  Ack signals.

Figure 9. Scan protocol

In Figure 9, the scan protocol is illustrated graphically.
Item 1 shows an example of a DATA test vector with the
value ™ 00100001… that is shifted into the scan register.
Item 2 shows two possible results after the vector has been
allowed to propagate down the pipeline.  If the
acknowledge signal is received from the downstream
” registration„  stage, then the contents of the scan register
will be cleared to NULL.  Subsequently, a NULL value
will be shifted out when the new DATA vector is shifted
in.  On the other hand, if a fault has occurred and the
pipeline is stalled, the acknowledge signal will not be
received from the downstream ” registration„  stage, and the
contents of the scan register will keep DATA.  In this case,
the corresponding DATA pattern will be observed shifting
out of the scan register, indicating that a fault has occurred.

The following steps outline the test procedure using scan
registers.  Initially, RESET is asserted and the scan chain is
set to Serial Mode (M0=0, M1=0).
1. Release RESET.  The Q outputs of the scan chains

stay NULL due to the AND gate at the output.  In
Serial Mode the ™ dn… inputs are isolated from the C-
latch.

2. While in Serial Mode (M0=0, M1=0) load the scan
chain with the desired vector with the SIN pin using
non-overlapping clocks C0 and C1.

3. Set M0 = 1 (M1 remains at 0) to switch the scan chain
to Parallel Mode.  In this mode the acknowledge
signal from the next downstream stage (En for a scan
register) is at ” 1„  (unless the pipeline under test is
stalled), and data from the scan cells are passed to the
data bus.  At this time ™ dn… inputs are blocked from
loading into the scan chain register (see Table 2).

4. Wait for a predetermined amount of time to allow the
slowest propagation of data through a single pipeline
stage. If no faults have occurred the acknowledge
signal on En goes to ” 0„  and resets the transparent
latch of the scan cell (scan register is reset to NULL).

M0 M1 Sin C0 C1 d En Qn Sout
0 0 0 ↓ � ↓ � x 1 0 0

1 ↓ � ↓ � x 1 0 1
x x x x 0 0 0

0 1 x 0 ↓ � 0 1 0 0
x 0 ↓ � 1 1 0 1
x x x x 0 0 0

1 0 x 0 0 x 1 QLA QLA

x 0 0 x 0 0 0
1 1 x 0 0 0 0 0 0

x 0 0 0 1 QLA QLA

x 0 0 1 0 QLA QLA

x 0 0 1 1 1 1

LA

LA

LA

LA

d0

d1

d2

d3

Q0

Q1

Q2

Q3

M1
M0
C1
C0
Sin

Sout

LA

D

E

QSin

C0
C1

d
En

M0

M1

Qn

Sout

Test: Serial Mode
Test: Load Mode
Test: Parallel Mode
NORMAL Mode

00
10
01
11

M0 M1 FUNCTON

En

Stimulus for pipeline

0 0 10 0 0 0 0 0 10 10 0 1 0Vect  =

Vector is shifted into 4-rail scan register1.

0 00 0 0 0 0 0 0 00 0 0 0
NULL vector is shifted out after successful acknowledge2.

0 010 0 0 0 0 0 1 0 10 0 1 0
DATA vector is shifted out after detecting fault

0 0

illegal
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The corresponding NULL wavefront propagates
through the next stage of the pipeline, and sets En to
” 1„  (unless the pipeline is stalled).

5. After the wait period, M0 is reset to 0 (M1 remains at
0).  This forces the scan chain to switch into Serial
Mode and produces NULL at all the scan chain
outputs. The procedure goes back to step 3 and
iterates.

When the system deadlocks because of a fault, the
acknowledge signal that is fed to the scan register (input
En of the scan cells) will be stuck either at DATA or at
NULL.  The latter can be detected by shifting a single
DATA bit through the complete scan chain and analyzing
Sout pin.  One simply adds this extra DATA bit to the front
of each scan vector.

At step 5 in the above procedure it is possible to load the
contents of the last registration stage into the scan register
before serial shifting the data out.  This is useful for
observing the resulting vectors after propagation through
the pipeline.  Load is enabled by a short positive pulse
applied to M1 while in the Serial Mode.

After all the vectors have been processed, it is necessary
to perform extra handshakes to flush the pipelines (see the
discussion on Proposition 1).  The number of handshakes is
defined by the length of the longest pipeline.

4. Experimental Results

The approach from Section 3.1 for test pattern
generation in NCL combinational circuits was checked on
more than 20 examples from the NCL regression suite. The
examples  include encoders, decoders, simple control
structures, adders, shifters, etc.  These circuits were
constructed with the NCLé  Design Flow tool from
Theseus Logic, Inc.  The TetraMAX ATPG tool from
Synopsys was used to generate test vectors for stuck-at
faults. For all examples but one (encoder16to4) TetraMax
showed a 100% test coverage. Lower than 100% test
coverage (96%) for the encoder example stems from the
redundancy of the  implementation obtained by NCL
automatic design flow.    Note that this problem is not
specific to NCL flow  because the very same specification
pushed through Design Compiler from Synopsys produces
a redundant synchronous circuit due to poor optimization
for hierarchical specifications. The redundancy is
eliminated when using flattened (rather than hierarchical)
encoder specification.  The latter showed 100% test
coverage as expected from theory.

Table 3. Experimental results

Three major NCL designs, the Viterbi Decoder, the
Single DES, and the NCL8051 ALU, were used as test
cases to verify the test methodology using scan.    In all
cases, the use of partial scan together with TetraMax
ATPG tool resulted with near 100% stuck-at fault
coverage. Table 3 gives a summary of the results.

In the experiments, the points of partial scan insertion
were defined manually by a designer.  In the future this
task can be automated using Theseus Logic…s NCL shell
CAD tool.  NCL shell analyzes the  structure of cycles  in a
design, thus insertion of scan is possible following the
min-cut algorithm e.g.

The ATPG setting for TetraMax was done exactly in the
way presented in Section 3.1. The test patterns generated
by TetraMax are applied to the NCL circuit using the
ModelSim simulator from Mentor Graphics.  A fault
grading tool confirmed 100% stuck-at fault coverage.  The
only exception was the Single DES design which had a
98.4% coverage ’ a result that would most likely go to
100% with refinement of ATPG settings.

Figure 10. NCL system with Scan insertion

During ATPG the complicated functional model of the
NCL Cycle Scan register is replaced in TetraMax by a
clock primitive scan cell flip-flop without influencing the
test coverage.

NCL8051
ALU

VITERBI
DCDR

SINGLE
DES

 NCL gate count 1188 2290 3615

 Transistor count w/o scan 22284 50632 65448

 Transistor count with scan 24324 62272 72888

 Length of scan chain 68 388 240

 Number of I/O pins 177 24 396

 Number of Test Vectors 120 429 348+369

 Area penalty due to scan 9.2% 23.0% 11.4%

CL CL

CLCLCLCL

CLCLCL

CL CL

Sin

Sout

Ack

Inp
ut

Req

Ou
tpu

t

Scan Register

C

C
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Note that partial scan insertion does not require balanced
pipeline lengths.  For example, Figure 10 shows loops of
varying sizes, resulting in different linear pipeline lengths
when they are broken.  It follows that as the lengths of the
pipelines increase, the area impact of scan insertion will
decrease.  This is because only a single scan register is
required per acyclic pipeline.

The minimum length allowed for an NCL data loop is 3
” registration„  stages.  The Viterbi Decoder circuit exhibits
the worst case scan overhead because all its loops are
shallow (see Figure 11 where scan registers are shown by
shadowing).

The Load Mode for the scan register was simulated for the
Viterbi Decoder circuit, and the shift-out vectors matched
perfectly the unload vectors generated by the TetraMAX ATPG
tool.

CL CL

CL

CL
64

CL
16

CL
24

CL
24

CL
64

2

2
Load

DataIn

Count

X Y

DataOut

Error

Registration Stage

2

Figure 11. Viterbi Decoder architecture

5. Conclusion

The paper presents the new methodology for testing
NCL circuits. The  major advantages of the methodology
are:

1. It is highly effective (allows a designer to achieve
100% stuck-at fault coverage)

2. Its overhead is relatively low because of the use of
partial scan techniques rather than full scan.

3. It targets the use of commercial testing CAD tools
available in today…s market.

In this way the methodology benefits from both worlds:
the known simplicity of stuck-at fault testing in
asynchronous circuits with the ease of testing procedures
from synchronous design.
Future improvements are possible that will:

1. Automate the scan insertion and reduce the scan
overhead

2. Extend the approach beyond the input stuck-at fault
model (testing the gate internal feedbacks e.g.)

3. Use of other than partial scan techniques (combine
functional testing of microprocessors with the
ATPG techniques for choosing the data content of
instructions e.g.)
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