
INFORMATICA, 2009, Vol. 20, No. 2, 255–272 255
© 2009 Institute of Mathematics and Informatics, Vilnius

Testing of Hybrid Genetic Algorithms
for Structured Quadratic Assignment Problems

Alfonsas MISEVIČIUS
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Abstract. In this paper, an efficient hybrid genetic algorithm (HGA) and its variants for the well-
known combinatorial optimization problem, the quadratic assignment problem (QAP) are dis-
cussed. In particular, we tested our algorithms on a special type of QAPs, the structured quadratic
assignment problems. The results from the computational experiments on this class of problems
demonstrate that HGAs allow to achieve near-optimal and (pseudo-)optimal solutions at very rea-
sonable computation times. The obtained results also confirm that the hybrid genetic algorithms are
among the most suitable heuristic approaches for this type of QAPs.
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1. Introduction

The quadratic assignment problem (QAP) can be formulated as follows. Given integer
matrices A = (aij)n×n, B = (bkl)n×n and a set Π of permutations of the integers
from 1 to n, find a permutation p = (p(1), p(2), . . . , p(n)) ∈ Π that minimizes z(p) =∑n

i=1

∑n
j=1 aijbp(i)p(j).

The interpretation of n, A, B, and p is as follows (Koopmans and Beckmann, 1957):
n represents the number of facilities (economic activities); the entries aij of the matrix
A can be seen as the transportation costs (flows) for one unit of distance from facility i

to facility j; B is the matrix that contains distances between all the pairs of locations of
the facilities; the permutation p = (p(1), p(2), . . . , p(n)) corresponds to the assignment
of facilities to locations, one facility to each location (p(i) denotes the location to which
the facility i is assigned); the product aijbp(i)p(j) may be interpreted as the transportation
cost between facilities i and j in locations p(i) and p(j). Thus, solving the QAP means
searching for an assignment that minimizes the total transportation cost (z) between all
the facilities.
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A neighbourhood function Θ: Π → 2Π assigns for every p ∈ Π a set Θ(p) ⊆ Π
of neighbouring solutions of p. With the QAP, a common way is to usethe 2-exchange
neighbourhood function Θ2 which is defined in the following way: Θ2(p) = {p′ |p′ ∈
Π, ρ(p, p′) = 2}, where ρ is the Hamming distance. (Remind that the Hamming distance
between two permutations p and p′ may be declared as ρ(p, p′) = | {i|p(i) �= p′(i)}|.)
The solution p• ∈ Π is said to be locally optimal with respect to the neighbourhood Θ2

if z(p•) � z(p′) for each p′ ∈ Θ2(p•). The solution p′ ∈ Θ2(p) can be obtained from
the current solution p by a corresponding move m(p, i, j), which swaps the ith and jth
element in the given permutation, i.e., p′(i) = p(j), p′(j) = p(i), p′(k) = p(k), k =
1, 2, . . . , n, k �= i, k �= j. A shorter notation of the form mij may be used, such that
p′ = p ⊕ mij means that p′ is obtained from p by applying m(p, i, j).

The QAP is known to be NP-hard (Sahni and Gonzalez, 1976) and pose a real chal-
lenge for many researchers. Since there are no polynomial-time exact algorithms for this
problem, heuristic methods are usually applied. (For the exhaustive surveys of the heuris-
tic algorithms for the QAP, see, for example, (Burkard et al., 1998; Çela, 1998; Loiola
et al., 2007; Voß, 2000).) Among the numerous heuristic approaches, genetic algorithms
(GAs) (in particular, hybrid GAs (HGAs)) have been proven to be highly efficient in solv-
ing the QAP (Ahuja et al., 2000; Drezner, 2003; Fleurent and Ferland, 1994; Lim et al.,
2000; Misevicius, 2004, 2006; Vázquez and Whitley, 2000). This is especially true for
so-called structured quadratic assignment problems.

Most of structured QAPs are real-life problems from practical applications. As a rule,
these problems are of small size (n � 32). In 1995, Taillard proposed the real-life like
QAP instances of larger size (up to 150 facilities). These instances are generated pseudo-
randomly in such a way that the entries of the matrices A and B resemble a distribution
from real-world problems (Taillard, 1995). The entries of A and B are thus quite irregular
(with many zero values) (see the library of the QAP – QAPLIB; Burkard et al., 1997).
On the other hand, there exist some regularities in the solution space. In particular, the
landscapes of such problems are rather structured with large basins of attraction and a
relatively few number of isolated local optima.

The remaining part of this paper is organized as follows. In Section 2, the hybrid
genetic algorithm and its variants for the QAP are described in more details. The results
of the experiments on the structured QAP instances taken from the electronic library
QAPLIB are presented in Section 3. The paper is completed with concluding remarks.

2. Hybrid Genetic Algorithm and its Variants

2.1. Preliminaries: Framework of the Hybrid Genetic Algorithm

Genetic algorithms are based on imitation of the natural process of evolution (Goldberg,
1989). Over generations, less fitted individuals fail to have offspring and disappear, while
more fitted ones tend to predominate1. Selection, crossover (reproduction), mutation, and

1For the QAP, the solutions (permutations) p1 = (p1(1), p1(2), . . . , p1(n)), . . . , pi =

(pi(1), pi(2), . . . , pi(n)), . . . may be thought of as chromosomes of the individuals; then, the single ele-
ment pi(j) corresponds to a gene occupying the jth locus of the ith chromosome. The fitness of the individuals
is directly associated with the objective function z.
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replacement (culling) are the standard genetic operations, which are applied in an iterative
way to seek super-quality solutions2.

The main drawback of the genetic algorithms in their canonical form is that the con-
vergence time is slow, especially when large populations are maintained. One of the
ways to speed up the convergence is to incorporate additional components into the or-
dinary GAs. Here, we are speaking of the local search-based algorithms (improving algo-
rithms) which are combined with the standard genetic operators. The resulting genetic-
local search algorithms are commonly known as hybrid genetic algorithms.

The basic features of HGAs are as follows. Firstly, a high-quality initial population is
created by means of a local search (LS) algorithm (like hill climbing, simulated annealing
or tabu search). Secondly, the improving algorithm (as a post-crossover procedure) is ap-
plied to each offspring produced. Similarly, the parents may be improved. These features
ensure that every population consists solely of the outstanding quality individuals.

For the local improvement of solutions, we use an iterated tabu search (ITS) algo-
rithm, which, in turn, is based on an enhanced tabu search (ETS) procedure (Misevi-
cius, 2005) and a special type of mutation called a chained mutation (CM). Very roughly
speaking, ETS iteratively explores the neighbourhood of the current solution by finding a
locally optimal solution, while CM randomly perturbs the current local optimum in order
to escape from it and move towards new regions in the solution space. The mutated so-
lution is then again improved by ETS, and so on. This type of proceeding helps avoiding
stagnation of the search and makes the iterated tabu search algorithm more efficient than
the ordinary tabu search algorithms. The other favourable aspect of ITS is that there is no
need in the mutation operation within the genetic algorithm itself: each solution already
undergoes random transformations during the execution of the ITS algorithm.

We will call the genetic algorithm outlined above as a basic hybrid genetic algo-
rithm. The high-level description of this algorithm is given in Fig. 1. The description of
the iterated tabu search algorithm used within HGA is shown in Fig. 2. (In Appendix
(Figs. A1, A2) we also present the descriptions of the ETS and CM procedures, which
are used in the ITS algorithm.)

Implementing the hybrid genetic algorithm in a straightforward naive manner does,
however, not necessarily imply that good solutions are obtained at reasonable run (CPU)
time. Further, we will demonstrate how the performance of the straightforward HGA may
be improved considerably by means of introducing new modifications and enhancements.

2.2. Variants of the Hybrid Genetic Algorithm

There exist many variations in designing the components of HGA (like the selection,
crossover and mutation operators, improving procedures, population replacement rules,
etc.). Several variants of HGA will be described below in some more detail.

2A more thorough description of the principles of GAs can be found in Goldberg (1989; Reeves and
Rowe (2001).
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procedure HybridGeneticAlgorithm;
// input: n – the problem size, A, B – the flow and distance matrices,
// PS – the population size, Ngen – # of generations,
// Noffspr – # of offspring (crossovers) per generation,
// Q – # of improvement iterations, τ – the search depth
// output: p∗ – the resulting solution
begin
create the high quality initial population P ⊂ Π such that PS = |P |;
p∗ = arg min

p∈P

z(p); // p∗ denotes the best so far solution

for i := 1 to Ngen do begin // main cycle of HGA
sort the members of P in the ascending order of their fitness;
for j := 1 to Noffspr do begin // creation of the offspring
select parents p′, p′′ ∈ P ;
apply crossover to p′ and p′′ , get the offspring p′′′ ;
p• := IteratedTabuSearch(p′′′, Q, τ ); // improving the solution produced by the crossover operator
P := P ∪ {p• };
if z(p•) < z(p∗) then p∗ := p•

end; // for j
update the population P

end // for i

end.

Fig. 1. Pseudo-code of the hybrid genetic algorithm.

2.2.1. Compounded approach
It is very important that the genetic algorithm starts with as good a population as possi-
ble. The compounded approach (CA) is along this line of thinking. In the original ver-
sion of CA (Drezner, 2005), one starts with several populations (sub-populations). The
members of every sub-population are independently optimized by the local improvement
procedure. So, it is like having evolving parallel populations. Only PS best individu-
als are then selected from these sub-populations to form the single initial population P

(|P | = PS). This resembles migration of the best species to a super-quality population.
We may also use only one initial population instead of many sub-populations (this

is just the case used in this paper). However, we have to spend much more time at the
local optimization phase than in the first case. This may be simply achieved by using
the increased number of improving iterations at the initialization phase – Qini. In our
implementation, Qini = cQ, where Q is the usual number of improving iterations and c

is an integer coefficient (c � 1).
Results of computational experiments show the effectiveness of the compounded ap-

proach despite of its evident simplicity.

2.2.2. Quick local search vs. time-expensive local search
Generally speaking, genetic-local search is, in fact, based on the intensification and di-
versification policy, where intensification (improving algorithm) aims at concentrating
the search into specific (promising) regions of the solution space, while diversification
(crossover, mutation) helps to avoid getting stuck at local optima (Blum and Roli, 2003,
pp. 292–302). The properly chosen intensification strategy may have a crucial influence
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function IteratedTabuSearch(p, Q, τ);
// input: p – the current solution, Q – the number of ITS iterations,
// τ – the tabu search depth (the number of ETS iterations)
// parameters: ηmin, ηmax – the minimum and maximum mutation levels
// output: p∗ – the best solution found
begin

ηmin := �0.3 · n�; ηmax := �0.4 · n�;
p• :=EnhancedTabuSearch(p, τ);
// preliminary improvement of the current solution by the enhanced tabu search
p∗ := p•; η := ηmin − 1;
for q := 1 to Q do begin // main cycle of ITS
if η < ηmax then η := η + 1 else η := ηmin; // updating the mutation level
p∼ :=ChainedMutation(p•, η); // applying perturbation to p• with the mutation level η
p• :=EnhancedTabuSearch(p∼, τ); // improving the mutated solution by the enhanced tabu search
if z(p•) < z(p∗) then begin

p∗ := p• ; η := ηmin − 1 // saving the best so far local optimum, resetting the mutation level
end // if

end; // for q
return p∗

end.

Fig. 2. Pseudo-code of the iterated tabu search algorithm.

on the resulting efficiency of the hybrid genetic algorithm. In this work, we use the it-
erated tabu search-based improving algorithm which includes the enhanced tabu search
combined with the chained mutation procedure, as mentioned above. In order to have a
flexible control of the improvement process, the ITS algorithm is organized according to a
(Q, τ, 1)-strategy. In this case, the total number of global iterations is equal to Q, whereas
τ is the search depth, i.e., the number of internal iterations of the tabu search. In addition,
the mutation procedure is performed once every τ iterations (see Fig. 2). We found during
the preliminary experimentation that the solution quality is much more sensitive to the
value of Q than τ . We therefore keep τ fixed (more precisely, τ is equal to the problem
size n), whereas the intensity of local search (i.e., the total number of ITS iterations) is
controlled by increasing (decreasing) the value of Q. This value is of high importance for
HGA. If it is small (this is the case of a quick local search), then the convergence time
may possibly be slow; if it is large (this is the case of a time-expensive local search), then
the overall computational time increases. In our basic variant of HGA, we use the small
value of Q (in particular, it is equal to 5). In the expensive variant of HGA, the value of Q

is increased (in particular, it is set to 10). (In the last case, it is important that the small
population is maintained to save CPU time.)

2.2.3. Reinforced improvement
In the reinforced approach, the idea of the combination of genetic and local search is
further exploited. The underlying principle is to apply the improving algorithm to the
selected parents. This improvement is followed by the crossover procedure (of course, the
improving algorithm is applied to the produced offspring, too). With the pre-crossover
improvement, we are a bit closer to the nature – indeed, in the real life, only the best
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(young and healthy) members of a population are usually “licensed” to produce their
offspring. The reinforced improvement just takes this aspect into account.

In this work, we tried a slightly modified variation of the above approach. In particular,
only one of the parents – the better parent – undergoes the reinforced improvement. It is
to prevent the significant increase in the run time of the algorithm. In our implementation,
the number of iterations of the reinforced improvement, Qreinforced, is equal to 5Q, where
Q is the usual number of improving iterations.

2.2.4. Blind selection vs. fitness-based selection
By selecting parents for the crossover, we can choose between the blind (random) selec-
tion and fitness-based selection. So, assume that the members of the population are sorted
in the ascending order of their fitness (objective function value). Then, a simple way to
achieve the fitness-based selection is to apply a rank based rule (Tate and Smith, 1995).
In this case, the actual positions (u and v) of the parents within the sorted population are
determined by the formulas: u = �ξσ

(1)�, v = �ξσ
(2)�, u �= v, here ξ(1), ξ(2) are uniform

random numbers from the interval [1, PS1/σ], where PS is the population size, and σ is
a real number in the interval [1, 2] (it is referred to as a selection factor). It is obvious that
the better the individual, the larger probability of selecting it for the crossover.

Note that the pure random selection can be easily obtained by setting the value of the
selection factor σ to 1. We use blind selection in the basic variant of our hybrid genetic
algorithm.

2.2.5. Gender modification
The central idea of a gender modification is that the individuals of a population are differ-
entiated according to their gender (Drezner and Drezner, 2006). This modification is eas-
ily to implement. All we need to do is to ensure that the parents selected for the crossover
are of opposite sex. Only one additional bit (identifying the gender – male or female) per
individual is required. Also, it is convenient (but not necessary) that the number of the
population members is even and the number of males is equal to the number of females.

2.2.6. Swap path crossover vs. cohesive crossover
The recombination of solutions remains one of the critical things by creating state-of-
the-art genetic algorithms. In hybrid genetic algorithms, the role of crossover operators
is probably even more important. It is highly desirable that the crossover be strong (dis-
ruptive) enough to allow to escape the current local optimum and to move to new areas
of the search space.

We experimented with two crossover operators: the swap path crossover (SPX; Ahuja
et al., 2000) and the cohesive crossover (COHX; Drezner, 2003) slightly modified by the
authors of this paper. Let us describe them in more details.

So, let p′ and p′ ′ be two solutions (parents). SPX starts at the first (or some random)
gene, and the parents (chromosomes) are examined from left to right until all the genes
have been considered. If the genes at the position being looked at are the same, one moves
to the next position; otherwise, one performs a swap (interchange) of two genes in p′ or in
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Fig. 3. Example of producing children in the swap path crossover.

p′ ′ so that the values at the current position become the same. For example, if the current
location is i and x = p′(i), y = p′ ′(i), then, after a swap, either p′(i) becomes y, or p′ ′(i)
becomes x. It is suggested to perform the swap for which the corresponding solution has
a lower objective function value. The genes in the two resulting chromosomes are then
considered, starting at the next position, and so on. The best solution obtained serves as
an offspring. The illustrative example of the swap path crossover is shown in Fig. 3. SPX
is used in the basic configuration of HGA.

The key principle of the cohesive crossover is based on maintaining a set of
special distance vectors. In Drezner (2003), it is proposed to maintain n vectors
d(1),d(2), . . . ,d(i), . . . ,d(n) such that d

(i)
j = bij , i = 1, 2, . . . , n, j = 1, 2, . . . , n,

where bij is the “real distance”, i.e., the corresponding entry of the matrix B.
The ith recombined solution (child) p(i) (i = 1, 2, . . . , n) is then created in the fol-

lowing four steps:
– the median, ω, of d(i) is calculated;
– the positions which are closer than the median to the ith (pivot) position are as-

signed the genes from the first (better) parent, i.e., p(i)(j) = pbetter(j) if d
(i)
j < ω,

j = 1, 2, . . . , n, pbetter = arg min{z(p′), z(p′ ′)};
– all other positions are assigned the genes from the second (worse) parent, i.e.,

p(i)(j) = pworse(j) if d
(i)
j � ω, j = 1, 2, . . . , n, pworse = arg max{z(p′), z(p′ ′)};

– it is possible that some genes are assigned twice and some are not assigned at all;
so, a list of unassigned genes is created and all genes from the second parent that are
assigned twice are replaced with genes from the list.

The illustrative example of producing a child in the cohesive crossover is shown in
Fig. 4.

There are in all n different children. Only the best child (the child that has the smallest
objective function value) is returned by the COHX operator.

2.2.7. One offspring vs. many offspring
In the basic variant of HGA, one offspring per generation is produced. However, we may
not limit ourselves with a single offspring only. We empirically found that the larger num-
ber of the offspring seems to be better than the smaller one. It should however be stressed
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Fig. 4. Example of producing a child in the cohesive crossover.

that an inadequate (enormous) number of the offspring would increase the computation
time. In our modified version of HGA, the offspring number (Noffspr) is equal to a half of
the population size, PS

2 . Note that if the offspring number is increased, then the number
of generations should be accordingly decreased to keep the run time fixed.

2.2.8. Random replacement vs. elitism
Two main population replacement strategies (schemes) are termed as the “μ, λ” strategy
and “μ+λ” strategy. Suppose that the size of a population is equal to μ and the number of
newly created individuals is equal to λ(in our algorithm, μ = PS, λ = Noffspr). Then, in
the case of “μ, λ” strategy, λ new individuals replace the corresponding members of the
current population. Typically, the child replaces its worse parent. The fitness of the child
is not taken into consideration. Thus, we call this strategy as “random replacement”. This
strategy was used in the basic variant of our genetic algorithm.

In the case of “μ + λ” scheme, the individuals chosen for the next generation are the
best μ members of Pμ ∪ Pλ , where Pμ is the population at the beginning of the current
generation and Pλ denotes the set of newly created individuals. If λ = 1, then the single
offspring simply replaces the worst member of the population (provided that the offspring
is better than the worst population member – otherwise, the offspring is ignored). The last
approach is called “elitism”.

2.2.9. Using restarts
The performance of HGA can be further enhanced by incorporating a restart-based diver-
sification mechanism. The restart-based approach ensures a very high degree of genetic
variance of individuals of a population, which is extremely important in avoidance of the
premature convergence and stagnation of the genetic process. The other advantage of us-
ing restarts is that compact (tiny) populations are enabled, which allow saving both the
computational time and memory resources.

More specifically, the restart-based genetic algorithm exploits the entropy of popu-
lations – as a quantitative measure of diversity of individuals within populations. The
entropy of the population, e, is calculated according to the following formula (Taillard,
1995)

e =
n∑

i=1

n∑
j=1

εij/n log2 n, where εij =
{

0, νij = 0,
− νij

PS log2
νij

PS , otherwise;
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here, PS denotes the population size and νij is the number of times that the gene i occu-
pies the locus j in the current population. Note that the entropy e takes values between 0
and 1.

Thus, we test whether the entropy of the current population, e, is below a certain
small value, ET (entropy threshold). If it is (this just indicates the loss of diversity), then
the restart process takes place; otherwise, the algorithm is continued with the current
population. After the restart, GA proceeds in the standard way. There are two main steps
during the restart: a) mutation of the members of the population, b) improvement of the
mutated solutions. Mutation enables to maintain a sufficient degree of diversity within
the population, avoiding stagnation in unpromising areas of the solutions space. The goal
of the improvement step is to guarantee the local optimality of all the members of the
restarted population.

In the next sections, we will use the following short notations for the described vari-
ants of HGA: CA – compounded approach, ELS – expensive local search, RI – reinforced
improvement, FBS – fitness-based selection, GM – gender modification, COHX – cohe-
sive crossover, MO – many offspring, E – elitism, R – restarts. The basic variant of HGA
is denoted as BASIC.

3. Computational Experiments

To investigate the performance of our hybrid genetic algorithm and its variants, a number
of computational experiments were carried out. In the experiments, we used the structured
QAP instances taken from the publicly available electronic library of the QAP instances –
QAPLIB (Burkard et al., 1997). In particular, the real-life like instances proposed by
Taillard (1995) were used. In QAPLIB, these instances are denoted by tai20b, tai25b,

tai30b, tai35b, tai40b, tai50b, tai60b, tai80b, tai100b, and tai150b (tai*b) (the corresponding
numeral in the instance name indicates the size of the problem).

All the experiments were performed on a 900 MHz personal computer. The algorithms
were coded by programming language PASCAL.

As a performance criterion for the algorithms, we use the average relative deviation (θ̄)
of the solutions from the best known (pseudo-optimal) solution (BKS). It is defined by
the following formula: θ̄ = 100(z̄ − zbks)/zbks[%], where z̄ is the average objective
function value over 10 runs of the algorithm, while zbks denotes the objective function
value that corresponds to BKS (i.e., the best known value – BKV). (BKVs can be found
in QAPLIB.)

Firstly, we have conducted preliminary experiments to determine the most suitable
values of the control parameters. In particular, we experimented with the different values
of population size, number of offspring, selection factor, and entropy threshold. The re-
sults of the experimentation are presented in Fig. 5. It may be seen that the population
size and the entropy threshold have a considerable influence on the quality of solutions,
whereas the effect of the remaining parameters is less significant. The very important ob-
servation is that our hybrid algorithms operate with quite miniature populations. For the
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Fig. 5. Results of the preliminary experimentation with the different values of population size (a), number of
offspring (b), selection factor (c), and entropy threshold (d). Note. Three instances (tai40b, tai50b, tai60b) were
used in the experiments.

Table 1

Main control parameters of the basic variant of HGA and its variants

Parameter Value Remarks

Total number of generations, Ngen 10n 1. In CA, Ngen = 8n.

2. In ELS, Ngen = 6n.

3. In RI, Ngen = 8n.

4. In MO, Ngen = 10n/Noffsprn
Number of offspring per generation, Noffsprn 1 In MO, Noffsprn = PS/2

Number of improving iterations, Q 5 1. In CA, Qini = 7Q.

2. In ELS, Q = 10.

3. In RI, Qreinforced = 5Q

Tabu search depth, τ n

Selection factor, σ 1 In FBS, σ = 1.7

Entropy threshold, ET 0 In the restart (R) modification, ET = 0.1

examined instances, we empirically found that the optimal population size (PS) is pro-
portional to approximately 2

√
n, where n is the problem size. So, we used this value in

all remaining experiments. The values of the other control parameters of the basic variant
of HGA and its modifications are collected in Table 1.

Further, the basic variant of HGA and nine modifications described above were ex-
amined. The results of these experiments are presented in Table 2.
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Table 2

Results of the comparison of different variants of HGA (part I)

θ̄
Instance BKV

Time‡

(s)BASIC CA ELS RI FBS GM COHX MO E R

tai20b 122455319 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.5

tai25b 344355646 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.3

tai30b 637117113 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.8

tai35b 283315445 0.066 0.019 0.056 0.057 0.094 0.075 0.083 0.037 0.102 0.000 15.0

tai40b 637250948 0.008 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 33

tai50b 458821517 0.114 0.000 0.066 0.099 0.075 0.243 0.301 0.072 0.071 0.000 85

tai60b 608215054 0.124 0.000 0.000 0.126 0.114 0.076 0.000 0.150 0.152 0.000 200

tai80b 818415043 0.439 0.166 0.197 0.511 0.537 0.517 0.446 0.455 0.564 0.011 320

tai100b 1185996137 0.224 0.098 0.146 0.206 0.196 0.146 0.189 0.108 0.214 0.042 650

tai150b 498896643 0.584 0.371 0.390 0.393 0.498 0.501 0.376 0.491 0.424 0.236 3000

Average: 0.156 0.065 0.086 0.139 0.151 0.156 0.140 0.131 0.153 0.029

‡ Average time per one run is given.

It can be viewed from Table 2 that CA, ELS, RI, MO and R modifications have a
crucial influence on the quality of solutions, whereas the effect of the remaining modifi-
cations (FBS, GM, COHX, E) is not so significant. (For example, the fitness-based selec-
tion and cohesive crossover are somewhat preferable to the blind selection and swap-path
crossover, respectively. The elitism strategy is only slightly better than random replace-
ment, while the performance of gender modification is essentially equivalent to that of
the basic variant).

The typical behaviour of three different variants of the genetic process is graphically
illustrated in Fig. 6. For example, we can observe that, in the compounded approach,
one starts from very high-quality initial population, however the process converges less
rapidly (see Fig. 6b). Meanwhile, in the restart approach, there are obvious fluctuations
in the average quality of solutions, however the restarts eventually result in better final
solutions (see Fig. 6c). In both cases, the positive effect of incorporating the modifications
into the standard algorithm is clearly visible.

Based on the modifications CA, ELS, RI, MO and R, we composed 20 new variants
(see Figs. 7a, 7b). In these new variants, we still use the fitness-based selection and gender
modification. The cohesive crossover is applied in the role of recombination of the par-
ents’ genes. Elitism is included as well. The results of the comparison of the new variants
of HGA are summarized in Tables 3, 4.

The results from Tables 3, 4 confirm the powerfulness and advantage of using the
compounded approach and restart technique. Incorporating the expensive local search
and maintaining many offspring have a substantial impact on the efficiency of HGA, as
well. In particular, the compounded approach coupled with the expensive local search
and restarts (i.e., the CA-ELS-R variant) yielded the best quality solutions. The similar
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Fig. 6. Illustration of the dynamics of deviation of the objective function during the genetic process: (a) basic
variant, (b) compounded approach (CA), (c) restart modification (R). Notes. 1. Both the average deviation for
the solutions of the current population and the deviation for the best solution of the population are shown. 2. The
instance tai30b was used in the experiments.

Fig. 7. Graphs of the relationships between the different variants of HGA.

variant CA-MO-R – where the expensive local search is substituted with many offspring
– also demonstrates very promising performance.

The efficiency of the CA-ELS-R modification (as well as the other modifications) may
be improved even more by a careful tuning of the control parameters (like the population
size, number of improving iterations, selection factor, entropy threshold, etc.). The results
of the tuned CA-ELS-R algorithm (denoted as CA-ELS-Rt) are presented in Table 5.
Here, we also give the results of the following six algorithms: (1) robust tabu search
(RTS; Taillard, 1991); (2) fast ant system (FANT; Taillard, 1998); (3) genetic-tabu search
(GTS; Fleurent and Ferland, 1994); (4) genetic-local search (GLS; Lim et al., 2000); (5)
greedy genetic algorithm (GGA; Ahuja et al., 2000); (6) fast hybrid genetic algorithm
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Table 3

Results of the comparison of different variants of HGA (part II)

θ̄
Instance BKV

Time
(s)CA-ELS CA-RI CA-MO CA-R ELS-RI ELS-MO ELS-R RI-MO RI-R MO-R

tai20b 122455319 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.5

tai25b 344355646 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 3.3

tai30b 637117113 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.8

tai35b 283315445 0.000 0.000 0.037 0.000 0.000 0.019 0.000 0.000 0.000 0.019 15.0

tai40b 637250948 0.000 0.000 0.000 0.000 0.000 0.202 0.000 0.000 0.000 0.000 33

tai50b 458821517 0.000 0.000 0.000 0.000 0.000 0.066 0.000 0.099 0.000 0.000 85

tai60b 608215054 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 200

tai80b 818415043 0.062 0.185 0.140 0.007 0.133 0.272 0.000 0.353 0.057 0.000 320

tai100b 1185996137 0.032 0.077 0.112 0.010 0.030 0.044 0.040 0.040 0.067 0.064 650

tai150b 498896643 0.180 0.201 0.281 0.087 0.161 0.176 0.129 0.150 0.250 0.201 3000

Average: 0.027 0.046 0.057 0.010 0.032 0.078 0.017 0.064 0.038 0.028

Table 4

Results of the comparison of different variants of HGA (part III)

θ̄
Instance BKV

Time
(s)CA

-ELS
-RI

CA
-ELS
-MO

CA
-ELS

-R

CA
-RI

-MO

CA
-RI
-R

CA
-MO
-R

ELS
-RI

-MO

ELS
-RI
-R

ELS
-MO
-R

RI
-MO
-R

tai20b 122455319 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.5

tai25b 344355646 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.3

tai30b 637117113 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 6.8

tai35b 283315445 0.007 0.007 0.000 0.010 0.017 0.000 0.028 0.000 0.000 0.006 15.0

tai40b 637250948 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 33

tai50b 458821517 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.033 0.000 0.000 85

tai60b 608215054 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 200

tai80b 818415043 0.088 0.059 0.003 0.140 0.006 0.005 0.175 0.057 0.003 0.110 320

tai100b 1185996137 0.032 0.031 0.000 0.057 0.018 0.007 0.063 0.020 0.012 0.016 650

tai150b 498896643 0.179 0.199 0.078 0.096 0.081 0.082 0.105 0.101 0.099 0.109 3000

Average: 0.031 0.030 0.008 0.030 0.012 0.009 0.037 0.021 0.012 0.024

(FHGA; Misevicius, 2006). (The intermediate results of tuning the CA-ELS-R algorithm
are omitted.) From Table 5, it can be seen that the CA-ELS-R modification outperforms
all other algorithms tested in terms of quality of the solutions.

Finally, we have conducted some additional experiments in an attempt to find out how
quickly the tuned CA-ELS-R algorithm converges to the best known (pseudo-optimal)
solutions. We have performed several hundreds of runs of CA-ELS-Rt. The experimen-
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Table 5

Results of the comparison of the algorithms

θ̄/c†
bksInstance BKV

Time‡

(s)RTS FANT GTS GLS GGA FHGA CA-ELS-Rt

tai20b 122455319 0 0.094 /8 0.045 /9 0.107 /7 0 0 0 0.1

tai25b 344355646 0.056 /8 0.013 /9 0 0.014 /8 0.007 /9 0 0 0.6

tai30b 637117113 0.397 /3 0.042 /7 0.014 /9 0.498 /1 0.127 /5 0 0 1.2

tai35b 283315445 0.254 /5 0.201 /1 0.134 /4 0.279 /0 0.103 /5 0 0 2.5

tai40b 637250948 0.198 /6 0.012 /9 0 0.601 /0 0.008 /5 0 0 4.8

tai50b 458821517 0.251 /0 0.215 /0 0.041 /7 0.948 /0 0.071 /4 0.008 /9 0 17

tai60b 608215054 0.306 /0 0.185 /2 0.029 /6 0.802 /0 0.105 /2 0.009 /9 0 25

tai80b 818415043 0.297 /0 0.367 /0 0.404 /2 0.947 /0 0.225 /2 0.019 /8 0 125

tai100b 1185996137 0.201 /0 0.121 /0 0.119 /3 0.696 /0 0.212 /0 0.010 /9 0 380

tai150b 498896643 0.394 /0 0.538 /0 0.409 /0 0.550 /0 0.343 /0 0.050 /3 0.048 /3 2000

Average: 0.235 0.179 0.120 0.544 0.120 0.010 0.005

† cbks denotes the number of times (out of 10) that the best known (pseudo-optimal) solution was found;
‡ Average time per one run is given.

tation was designed in such a way that the runs are interrupted as soon as BKS is found;
the next run is then started, and so on. The process stops when the predefined number of
runs have been performed. This is repeated for each instance. The results of these exper-
iments are shown in Table 6. These results are apparently better than those reported in
Misevicius (2005) and confirm once again the excellent performance of the CA-ELS-R
modification of HGA.

Table 6

Run time performance of CA-ELS-Rt

Instance BKV # of runs
# of

successful
runs

Time‡

(s)
Instance BKV # of runs

# of
successful

runs

Time‡

(s)

tai20b 122455319 100 100 0.05 tai50b 458821517 30 30 8.5

tai25b 344355646 100 100 0.1 tai60b 608215054 20 20 12

tai30b 637117113 50 50 0.5 tai80b 818415043 10 10 85

tai35b 283315445 50 50 1.1 tai100b 1185996137 10 10 240

tai40b 637250948 50 50 1.2 tai150b 498896643 5 5 9000

‡ The average CPU time needed to find the best known solution under condition that all consecutive
runs of CA-ELS-Rt succeeded in finding the best known solution (900 MHz computer was used in the
experiments).
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4. Concluding Remarks

Hybrid genetic algorithms (HGAs) are among the most efficient intelligent optimization
techniques. In contrast to the standard GAs that are based on principles of natural evolu-
tion in a quite straightforward manner, the hybrid GAs imitate a more complex, cultural
environment, where the lifecycle transformations and adaptations are at least as much
important as the transmission of the parents’ genetic information.

In this paper, several variants of HGA for solving structured quadratic assignment
problems were investigated. In particular, we examined the following nine variants:
compounded approach (CA), incorporating the expensive local search (ELS), reinforced
improvement (RI), fitness-based selection (FBS), gender modification (GM), cohesive
crossover (COHX), maintaining many offspring (MO), elitism (E) strategy, and using
restarts (R).

The results of the computational experiments with the structured QAP instances taken
from the electronic library QAPLIB demonstrate the significant benefit of the proposed
modifications. This is especially true for the compounded approach and the entropy-based
restart technique. The experiments with these variants indicate that it is of great impor-
tance to have high-quality populations and make use of the proper restart mechanism for
avoiding the loss of diversity and the premature convergence of the genetic algorithm.
The other observation is that very compact populations are enabled which allow saving
both the computational time and memory resources. These small-sized populations are
fully compensated by including the computationally expensive, but effective local search
algorithm and producing a suitable large number of the offspring.

It should be noted that the efficiency of our algorithms may be improved even more
by the careful juxtaposing of the proposed modifications. This could be one of the future
research directions. It may also be worthy to apply these modifications to other combina-
torial optimization problems.
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Appendix

function EnhancedTabuSearch(p, τ);
// input: p – the current solution, τ – the tabu search depth;

parameters: h – the tabu tenure, α, β, γ – the coefficients
// output: p• – the best solution found
begin

h := �0.2 · n�; α := �0.1 · n�; β := �1.5 · n�; γ := 0.05;
p• := p; T := 0; i := 1; j := 1; r′ := 1; delay_interval:= �α · n�; intensification_interval:= �β · h�;
calculate differences in the objective function values dkl = Δz(p, k, l),
where k = 1, . . . , n − 1, l = k + 1, . . . , n;

for r := 1 to τ do begin // main cycle of ETS
Δmin := ∞;
for w := 1 to |Θ2(p)| do begin // exploration of the neighbourhood Θ2(p) (target analysis)

i := IIF(j < n, i, IIF(i < n − 1, i + 1, 1)); j := IIF(j < n, j + 1, i + 1);
tabu:= IIF(tij � r and RANDOM(0, 1) � γ, TRUE, FALSE);
aspired:= IIF(z(p) + dij < z(p•) and tabu, TRUE, FALSE);
if (dij < Δmin and NOT(tabu)) or aspired then begin Δmin := dij ; u := i; v := j end

end; // for w
if Δmin < ∞ then begin //replacement of the current solution by the new one

p := p ⊕ muv ; update differences dkl = Δz(p, k, l), k = 1, . . . , n − 1, l = k +1, . . . , n;
if r >delay_interval then tuv := r + h // the move muv becomes tabu

end; // if
if (Δmin < 0) and (r − r′ � intensification_interval) then begin

p∇ := p; p := FastSteepestDescent(p∇); r′ := r

end;
if z(p) < z(p•) then p• := p // saving the best so far solution

end; // for r
return p•

end.

Fig. A1. Pseudo-code of the enhanced tabu search algorithm. Notes. 1. The function IIF (“Immediate IF”)
returns one value if the given condition is met, and another value if the condition is not met. 2. The function
RANDOM(0,1) generates a pseudo-random real number from the interval [0,1].

function ChainedMutation(p, η);
// input: p – the current solution, η – the mutation level; output: p – the mutated solution
begin

// generation of a random permutation ξ = (ξ(1), ξ(2), . . . , ξ(n))

for i := 1 to n do ξ[i] := i;
for i := 1 to n − 1 do begin
generate j, randomly, uniformly, i � j � n;
ξ := ξ ⊕ mij

end; // for i
// mutation of p based on chained random pairwise interchanges
for i := 1 to η − 1 do p := p ⊕ mξ[i],ξ[i+1];
return p

end.

Fig. A2. Pseudo-code of the chained mutation procedure.
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function FastSteepestDescent(p);
// input: p – the current solution; output: p – the (possibly) improved solution
begin

repeat
i := 1; j := 1; Δmin := 0;
for w := 1 to |Θ2(p)| do begin // local search in the neighbourhood Θ2(p)

i := IIF(j < n, i, IIF(i < n − 1, i + 1, 1)); j := IIF(j < n, j + 1, i + 1);
if dij < Δmin then begin Δmin := dij ; u := i; v := j end

end; // for w

if Δmin < 0 then begin
p := p ⊕ muv ; update differences dkl = Δz(p, k, l), k = 1, . . . , n − 1, l = k +1, . . . , n;
tuv := r + h // the move muv is included in the tabu list

end // if
until Δmin = 0;
return p

end.

Fig. A3. Pseudo-code of the fast steepest descent procedure.
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1996, Kaunas University Technology. He was conferred 3rd award in Young Scientists’
Competition, Kaunas University Technology, in 1997. A. Misevičius is currently assoc.
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Eksperimentai su hibridiniais genetiniais algoritmais
struktūrizuotiems kvadratinio paskirstymo uždaviniams

Alfonsas MISEVIČIUS, Dalius RUBLIAUSKAS

Hibridiniai genetiniai algoritmai (HGA) yra plačiai taikomi sprendžiant ↪ivairius optimizavimo
uždavinius. Šiame straipsnyje nagrinėjami hibridiniai genetiniai algoritmai gerai žinomam kombi-
natorinio optimizavimo uždaviniui – kvadratinio paskirstymo uždaviniui (KPU). Aprašoma patobu-
linto hibridinio genetinio algoritmo realizacija ir jos variantai (modifikacijos) svarbiai KPU klasei –
vadinamiesiems struktūrizuotiems kvadratinio paskirstymo uždaviniams. Eksperimentini ↪u tyrim ↪u
rezultatai, gauti, išbandžius HGA variantus šio tipo kvadratinio paskirstymo uždaviniams, liudija,
jog hibridiniai genetiniai algoritmai ↪igalina per ypatingai maž ↪a skaičiavim ↪u laik ↪a pasiekti (pseudo-
)optimalius arba jiems labai artimus sprendinius. Gauti rezultatai taip pat patvirtina, kad HGA yra
vieni iš pači ↪u efektyviausi ↪u euristini ↪u optimizavimo metod ↪u būtent struktūrizuotiems KPU.


