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Structure of the talk

An entity who was all-knowing and all-wise could reach firmer
conclusions from observational data than we can.

With a little statistical theory, we can be somewhat-knowing and
somewhat-wise.

Add a little data, properly analyzed, and we can be almost as effective
as that all-knowing, all-wise entity.

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 2 / 43



Basis for this talk

Rosenbaum, P. R. (2012), “Testing one hypothesis twice in
observational studies,” Biometrika, 99, 763-774.

Rosenbaum, P. R. (2012), “An exact, adaptive test with superior
design sensitivity in an observational study of treatments for ovarian
cancer,” AOAS, 6, 83-105.

Rosenbaum, P. R. (2011), “A new U-statistic with superior design
sensitivity in matched observational studies,” Biometrics, 67,
1017-1027.

Rosenbaum, P. R. (2010), “Design sensitivity and efficiency in
observational studies,” JASA, 105, 692-702.

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 3 / 43



Terminology: Some familiar terms

Power: The usual notion: the probability of rejecting the null
hypothesis of no effect when there really is an effect.

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 4 / 43



Terminology: Some familiar terms

Power: The usual notion: the probability of rejecting the null
hypothesis of no effect when there really is an effect.

Power is: an aspect of the stochastic process that generated the data
and particular methods of analysis.

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 4 / 43



Terminology: Some familiar terms

Power: The usual notion: the probability of rejecting the null
hypothesis of no effect when there really is an effect.

Power is: an aspect of the stochastic process that generated the data
and particular methods of analysis.

Observational study: Study of treatment effects when subjects are
not randomized to treatment or control.

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 4 / 43



Terminology: Some familiar terms

Power: The usual notion: the probability of rejecting the null
hypothesis of no effect when there really is an effect.

Power is: an aspect of the stochastic process that generated the data
and particular methods of analysis.

Observational study: Study of treatment effects when subjects are
not randomized to treatment or control.

Issue: Without randomization, treated and control groups may not
be comparable. Adjust for observed covariates, perhaps by matching.

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 4 / 43



Terminology: Some familiar terms

Power: The usual notion: the probability of rejecting the null
hypothesis of no effect when there really is an effect.

Power is: an aspect of the stochastic process that generated the data
and particular methods of analysis.

Observational study: Study of treatment effects when subjects are
not randomized to treatment or control.

Issue: Without randomization, treated and control groups may not
be comparable. Adjust for observed covariates, perhaps by matching.

Problem: Adjusting for observed covariates does not typically
control unobserved covariates.

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 4 / 43



Terminology: Some familiar terms

Power: The usual notion: the probability of rejecting the null
hypothesis of no effect when there really is an effect.

Power is: an aspect of the stochastic process that generated the data
and particular methods of analysis.

Observational study: Study of treatment effects when subjects are
not randomized to treatment or control.

Issue: Without randomization, treated and control groups may not
be comparable. Adjust for observed covariates, perhaps by matching.

Problem: Adjusting for observed covariates does not typically
control unobserved covariates.

Sensitivity analysis: Asks what an unobserved covariate would have
to be like to alter the conclusions of a naïve analysis that presumes
adjustments for observed covariates suffice. Cornfield et al. (1959).
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Terminology: What is Design Sensitivity?

Design sensitivity: Speaking informally, the design sensitivity is the
limiting sensitivity to unobserved bias as the sample size increases.

Design sensitivity is: (like power and unlike sensitivity analysis) an
aspect of the stochastic process that generated the data and particular
methods of analysis, evaluated when the sample size is large.

Design sensitivity is: a number, Γ̃, such that, as the sample size
increases, the study will eventually be insensitive to biases smaller
than Γ̃ and sensitive to biases larger than Γ̃.

In particular: in large samples, the limiting power of a sensitivity
analysis is determined by the design sensitivity.
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Main idea of this talk

Lacking theoretical guidance, we tend to select statistical methods for
use in observational studies based on their power/efficiency in
randomized experiments.

This turns out to be a mistake.

A highly efficient method for detecting small treatment effects in
randomized experiments need not, and often does not, have the
highest power in a sensitivity analysis or the largest design sensitivity.

That is, the best procedure assuming that an observational study is
effectively a randomized experiment need not be the best procedure
under more realistic assumptions

Will present a family of U-statistics for matched pairs that includes
Wilcoxon’s signed rank statistic, but other members of this family
have much higher power in a sensitivity analysis and higher design
sensitivity Γ̃.

To make full use of this fact, one may have to use multiple tests of
one hypothesis, correcting for multiple testing.
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Example: Lead and Smoking in NHANES 2008

i = 1, . . . , I = 679 matched pairs, j = 1, 2, one treated, one control.

Treatment: Daily smoking of ≥ 10 cigarettes (median = 20
cigarettes) every day for the last 30 days (Zij = 1) versus no smoking
in the last 30 days and fewer than 100 lifetime cigarettes (Zij = 0).

Response: Blood lead levels in µg/dL, perhaps transformed, Rij .
(Until late in the talk, Rij is the log of the lead level.)

Matched for: Gender, age, race, education level,household income
level, xij , xi1 = xi2.

Sensitivity to: an unobserved covariate uij , possibly with ui1 6= ui2.
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Notation

There are I pairs, i = 1, . . . , I , of two subjects, j = 1, 2, one treated,
Zij = 1, the other control, Zij = 0, with Zi1 + Zi2 = 1. Z is the
event Zi1 + Zi2 = 1, i = 1, . . . , I .
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Notation

There are I pairs, i = 1, . . . , I , of two subjects, j = 1, 2, one treated,
Zij = 1, the other control, Zij = 0, with Zi1 + Zi2 = 1. Z is the
event Zi1 + Zi2 = 1, i = 1, . . . , I .

Matched for observed covariates, so xi1 = xi2. Possibly differing in
term of an unmeasured covariate, ui1 6= ui2.
Randomized paired experiment, Zi1, i = 1, . . . , I , determined by I
independent flips of a coin.

Naïve analysis of an observational study assumes adjustments for x
suffice to remove bias.

Sensitivity analysis asks: What u would have to be like to alter the
conclusions of the naïve analysis?
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Causal effects

Neyman (1923) and Rubin (1974): Each subject ij has two potential
responses, rTij if treated, Zij = 1, or rCij if control, Zij = 0;
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Fisher’s sharp null hypothesis of no treatment effect asserts
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Causal effects

Neyman (1923) and Rubin (1974): Each subject ij has two potential
responses, rTij if treated, Zij = 1, or rCij if control, Zij = 0;

Observed response from ij is Rij = Zij rTij + (1− Zij ) rCij .
Effect of the treatment, rTij − rCij , on ij is not observed for any
subject.

Fisher’s sharp null hypothesis of no treatment effect asserts
H0 : rTij = rCij , for i = 1, . . . , I , j = 1, 2.

Write F = {(rTij , rCij , xij , uij ) , i = 1, . . . , I , j = 1, 2}.
H0 is false if the treatment has an additive effect, rTij − rCij = τ for
all ij , τ 6= 0. (Easily replaced by treatment typically has an additive
effect, rTij − rCij = τ + ξ ij where the ξ ij are mutually independent,
independent of everything else, symmetric about 0.)
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Treated-minus-control pair differences

In pair i , the observed, treated-minus-control difference in responses
is Yi = (Zi1 − Zi2) (Ri1 − Ri2).
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Treated-minus-control pair differences

In pair i , the observed, treated-minus-control difference in responses
is Yi = (Zi1 − Zi2) (Ri1 − Ri2).
If the treatment has an additive effect, rTij − rCij = τ for all ij , then
Yi is

Yi = (Zi1 − Zi2) (rCi1 + Zi1τ − rCi2 − Zi2τ)
= τ + ǫi where ǫi = (Zi1 − Zi2) (rCi1 − rCi2)
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Treated-minus-control pair differences

In pair i , the observed, treated-minus-control difference in responses
is Yi = (Zi1 − Zi2) (Ri1 − Ri2).
If the treatment has an additive effect, rTij − rCij = τ for all ij , then
Yi is

Yi = (Zi1 − Zi2) (rCi1 + Zi1τ − rCi2 − Zi2τ)
= τ + ǫi where ǫi = (Zi1 − Zi2) (rCi1 − rCi2)

Looking ahead: A sensitivity analysis is an analysis of Y1, . . . ,YI .
Efficiency, the power of a sensitivity analysis, the design sensitivity
refer to a stochastic model that generated the Yi , such as
Yi ∼iid N (τ, 1).
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General signed rank statistics

Let qi ≥ 0 be some function of the absolute |Yi |’s with the property
that qi = 0 if |Yi | = 0.
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Let qi ≥ 0 be some function of the absolute |Yi |’s with the property
that qi = 0 if |Yi | = 0.
Let sgn (y) = 1 or 0 for, respectively y > 0 or y ≤ 0.
A general signed rank statistic is of the form T = ∑

I
i=1 sgn (Yi ) qi

The sign test has qi = 1 whenever |Yi | > 0. Wilcoxon’s signed rank
test has qi = rank (|Yi |) if |Yi | > 0.
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General signed rank statistics

Let qi ≥ 0 be some function of the absolute |Yi |’s with the property
that qi = 0 if |Yi | = 0.
Let sgn (y) = 1 or 0 for, respectively y > 0 or y ≤ 0.
A general signed rank statistic is of the form T = ∑

I
i=1 sgn (Yi ) qi

The sign test has qi = 1 whenever |Yi | > 0. Wilcoxon’s signed rank
test has qi = rank (|Yi |) if |Yi | > 0.
Randomization creates the null distribution Pr (T | F , Z) of T under
Fisher’s H0 as the distribution of the sum of I independent random
variables taking the values qi or 0 each with probability

1
2 if qi > 0 or

the value 0 with probability 1 if qi = 0. E.g., the binomial
distribution for the sign test or the usual reference distribution for
Wilcoxon’s test.
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Sensitivity model

A sensitivity analysis asks about the magnitude of departure from
Pr (Zij = 1 | F , Z) = 1

2 that would need to be present to alter the
qualitative conclusions of a randomization inference.
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Sensitivity model

A sensitivity analysis asks about the magnitude of departure from
Pr (Zij = 1 | F , Z) = 1

2 that would need to be present to alter the
qualitative conclusions of a randomization inference.

A simple model: In the population prior to matching, subjects have
independent treatment assignments with unknown probabilities,
πij = Pr (Zij = 1 | F ), such that two subjects, say ij and ij ′, with the
same observed covariates, xij = xij ′ , may differ in their odds of
treatment by at most a factor of Γ ≥ 1,

1

Γ
≤ πij (1− πij ′)

πij ′ (1− πij )
≤ Γ whenever xij = xij ′ ;

then condition on Zi1 + Zi2 = 1.
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Sensitivity model

A sensitivity analysis asks about the magnitude of departure from
Pr (Zij = 1 | F , Z) = 1

2 that would need to be present to alter the
qualitative conclusions of a randomization inference.

A simple model: In the population prior to matching, subjects have
independent treatment assignments with unknown probabilities,
πij = Pr (Zij = 1 | F ), such that two subjects, say ij and ij ′, with the
same observed covariates, xij = xij ′ , may differ in their odds of
treatment by at most a factor of Γ ≥ 1,

1

Γ
≤ πij (1− πij ′)

πij ′ (1− πij )
≤ Γ whenever xij = xij ′ ;

then condition on Zi1 + Zi2 = 1.

For each Γ ≥ 1, obtain a range of possible inference quantities, point
estimates, p-values, etc.
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Sensitivity analysis for a general signed rank statistic

Let T be the sum of I independent random variables taking the value
qi with probability Γ/ (1+ Γ) or 0 with probability 1/ (1+ Γ).
Define T similarly with Γ/ (1+ Γ) and 1/ (1+ Γ) interchanged.
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Let T be the sum of I independent random variables taking the value
qi with probability Γ/ (1+ Γ) or 0 with probability 1/ (1+ Γ).
Define T similarly with Γ/ (1+ Γ) and 1/ (1+ Γ) interchanged.

Bounds: Under Fisher’s H0 and the sensitivity model with a fixed
Γ ≥ 1:

Pr
(
T ≥ k

∣∣F ,Z
)
≤ Pr (T ≥ k | F ,Z) ≤ Pr

(
T ≥ k

∣∣∣F ,Z
)
for all k,

with equality for Γ = 1. Bounds attained for particular πij .
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Sensitivity analysis for a general signed rank statistic

Let T be the sum of I independent random variables taking the value
qi with probability Γ/ (1+ Γ) or 0 with probability 1/ (1+ Γ).
Define T similarly with Γ/ (1+ Γ) and 1/ (1+ Γ) interchanged.

Bounds: Under Fisher’s H0 and the sensitivity model with a fixed
Γ ≥ 1:

Pr
(
T ≥ k

∣∣F ,Z
)
≤ Pr (T ≥ k | F ,Z) ≤ Pr

(
T ≥ k

∣∣∣F ,Z
)
for all k,

with equality for Γ = 1. Bounds attained for particular πij .

Approximate bounds: As I → ∞,

Pr
(
T ≥ k

∣∣∣F ,Z
)
≈ 1−Φ



k − {Γ/ (1+ Γ)}∑

I
i=1 qi√{

Γ/ (1+ Γ)2
}

∑
I
i=1 q

2
i


 (1)

if
(

∑
I
i=1 q

2
i

)
/
(
max1≤i≤I q2i

)
→ ∞. (Φ (·) is Normal cdf)

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 13 / 43



The new U-statistic, described informally

Name: Fix three integers, m, m, m with 1 ≤ m ≤ m ≤ m < I .
Then (m,m,m) is the name of one U-statistic.

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 14 / 43



The new U-statistic, described informally

Name: Fix three integers, m, m, m with 1 ≤ m ≤ m ≤ m < I .
Then (m,m,m) is the name of one U-statistic.

Instances: (1, 1, 1) is the sign test statistic, (2, 2, 2) is (essentially)
Wilcoxon’s signed rank statistic, and (m,m,m) is a statistic proposed
by Stephenson (1981).

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 14 / 43



The new U-statistic, described informally

Name: Fix three integers, m, m, m with 1 ≤ m ≤ m ≤ m < I .
Then (m,m,m) is the name of one U-statistic.

Instances: (1, 1, 1) is the sign test statistic, (2, 2, 2) is (essentially)
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General 1: Look at every subset of m pairs. Sort the m pair
differences Yi into increasing order by their absolute values, |Yi |.
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The new U-statistic, described informally

Name: Fix three integers, m, m, m with 1 ≤ m ≤ m ≤ m < I .
Then (m,m,m) is the name of one U-statistic.

Instances: (1, 1, 1) is the sign test statistic, (2, 2, 2) is (essentially)
Wilcoxon’s signed rank statistic, and (m,m,m) is a statistic proposed
by Stephenson (1981).

General 1: Look at every subset of m pairs. Sort the m pair
differences Yi into increasing order by their absolute values, |Yi |.
General 2: In this order, count the number of positive Yi among
those numbered m,m+ 1, . . . ,m. Average over all ( Im) subsets.
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The new U-statistic, described informally

Name: Fix three integers, m, m, m with 1 ≤ m ≤ m ≤ m < I .
Then (m,m,m) is the name of one U-statistic.

Instances: (1, 1, 1) is the sign test statistic, (2, 2, 2) is (essentially)
Wilcoxon’s signed rank statistic, and (m,m,m) is a statistic proposed
by Stephenson (1981).

General 1: Look at every subset of m pairs. Sort the m pair
differences Yi into increasing order by their absolute values, |Yi |.
General 2: In this order, count the number of positive Yi among
those numbered m,m+ 1, . . . ,m. Average over all ( Im) subsets.

One good choice: (8, 7, 8). Look at 8 pairs. Find the two largest
|Yi |’s, and score 0, 1, or 2 depending upon whether neither, one or
both Yi ’s are positive.
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Sensitivity analysis for the NHANES data about blood lead

levels

Compare sign test (1, 1, 1), Wilcoxon test (2, 2, 2), and the new
U-statistic with (m,m,m) = (8, 7, 8) for I = 679 smoker-nonsmoker
pair differences Yi in blood lead levels.
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Compare sign test (1, 1, 1), Wilcoxon test (2, 2, 2), and the new
U-statistic with (m,m,m) = (8, 7, 8) for I = 679 smoker-nonsmoker
pair differences Yi in blood lead levels.

Value reported is the upper bound on the one-sided P-value testing
the null hypothesis of no effect H0 when the bias is at most Γ ≥ 1.
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Sensitivity analysis for the NHANES data about blood lead

levels

Compare sign test (1, 1, 1), Wilcoxon test (2, 2, 2), and the new
U-statistic with (m,m,m) = (8, 7, 8) for I = 679 smoker-nonsmoker
pair differences Yi in blood lead levels.

Value reported is the upper bound on the one-sided P-value testing
the null hypothesis of no effect H0 when the bias is at most Γ ≥ 1.

Γ 1 2 2.5 3 3.5 3.8

Sign test 0.0000 0.0083 0.5961 0.9918 1.0000 1.0000
Wilcoxon 0.0000 0.0000 0.0004 0.0510 0.4224 0.7160
(8,7,8) 0.0000 0.0000 0.0000 0.0009 0.0142 0.0444
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Additional sensitivity analyses for the NHANES data about

blood lead levels

Table adds (m,m,m) = (5, 4, 5), (20, 14, 20) and (20, 16, 19).

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 16 / 43



Additional sensitivity analyses for the NHANES data about

blood lead levels

Table adds (m,m,m) = (5, 4, 5), (20, 14, 20) and (20, 16, 19).

Value reported is the upper bound on the one-sided P-value testing
the null hypothesis of no effect H0 when the bias is at most Γ ≥ 1.
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Additional sensitivity analyses for the NHANES data about

blood lead levels

Table adds (m,m,m) = (5, 4, 5), (20, 14, 20) and (20, 16, 19).

Value reported is the upper bound on the one-sided P-value testing
the null hypothesis of no effect H0 when the bias is at most Γ ≥ 1.

Γ 1 2 2.5 3 3.5 3.8

Wilcoxon 0.0000 0.0000 0.0004 0.0510 0.4224 0.7160
(8,7,8) 0.0000 0.0000 0.0000 0.0009 0.0142 0.0444
(5,4,5) 0.0000 0.0000 0.0000 0.0023 0.0494 0.1530

(20,14,20) 0.0000 0.0000 0.0000 0.0008 0.0147 0.0493
(20,16,19) 0.0000 0.0000 0.0000 0.0009 0.0116 0.0344
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The U-statistic is a signed rank statistic

Absolute ranks: Let ai be the rank of |Yi |, i = 1, . . . , I .
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The U-statistic is a signed rank statistic

Absolute ranks: Let ai be the rank of |Yi |, i = 1, . . . , I .

Equivalence: The Yi with absolute rank ai has the `th largest |Yi |
in (ai−1

`−1 )(
I−ai
m−`) sets of size m so the statistic (m,m,m) is:

T =
I

∑
i=1

sgn (Yi ) qi (2)

where

qi =

(
I

m

)−1 m

∑
`=m

(
ai − 1
`− 1

)(
I − ai
m− `

)
. (3)
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The U-statistic is a signed rank statistic

Absolute ranks: Let ai be the rank of |Yi |, i = 1, . . . , I .

Equivalence: The Yi with absolute rank ai has the `th largest |Yi |
in (ai−1

`−1 )(
I−ai
m−`) sets of size m so the statistic (m,m,m) is:

T =
I

∑
i=1

sgn (Yi ) qi (2)

where

qi =

(
I

m

)−1 m

∑
`=m

(
ai − 1
`− 1

)(
I − ai
m− `

)
. (3)

Will plot qi/max qj against ai/I .
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Power of sensitivity analysis

If the treatment had an effect and if there was no bias in treatment
assignment, Pr (Zij | F , Z) = 1

2 , then we could not see this in the
observed data. The best we can hope to say is that rejection of H0
at level α is insensitive to small and moderate bias as measured by Γ.
The power is the probability that we will be able to say this.
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If the treatment had an effect and if there was no bias in treatment
assignment, Pr (Zij | F , Z) = 1

2 , then we could not see this in the
observed data. The best we can hope to say is that rejection of H0
at level α is insensitive to small and moderate bias as measured by Γ.
The power is the probability that we will be able to say this.

An α-level sensitivity analysis rejects the null hypothesis H0 of no
effect allowing for a bias of Γ ≥ 1 if the upper bound on the P-value
is ≤ α at this Γ. Conventionally, α = 0.05.
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Power of sensitivity analysis

If the treatment had an effect and if there was no bias in treatment
assignment, Pr (Zij | F , Z) = 1

2 , then we could not see this in the
observed data. The best we can hope to say is that rejection of H0
at level α is insensitive to small and moderate bias as measured by Γ.
The power is the probability that we will be able to say this.

An α-level sensitivity analysis rejects the null hypothesis H0 of no
effect allowing for a bias of Γ ≥ 1 if the upper bound on the P-value
is ≤ α at this Γ. Conventionally, α = 0.05.

Power is: the probability that the upper bound on the P-value
testing H0 will be less than or equal to α at this Γ when the Yi are
sampled from some probability model in which there is an effect an no
bias, Pr (T | F , Z) = 1

2 , e.g., Yi ∼iid N (τ, 1).
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Simulated Power

Sampling situation: Yi = τ + ǫi where ǫi is standard Normal,
standard logistic or t-distributed with 4 degrees of freedom, and no
unmeasured bias, Pr (Zij = 1 | F , Z) = 1

2 .
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Simulated Power

Sampling situation: Yi = τ + ǫi where ǫi is standard Normal,
standard logistic or t-distributed with 4 degrees of freedom, and no
unmeasured bias, Pr (Zij = 1 | F , Z) = 1

2 .
Simulation: Each situation is sampled 10,000 times, so the standard
error of the estimated power is at most

√
0.5× 0.5/10, 000 = 0.005.
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Simulated Power

Sampling situation: Yi = τ + ǫi where ǫi is standard Normal,
standard logistic or t-distributed with 4 degrees of freedom, and no
unmeasured bias, Pr (Zij = 1 | F , Z) = 1

2 .
Simulation: Each situation is sampled 10,000 times, so the standard
error of the estimated power is at most

√
0.5× 0.5/10, 000 = 0.005.

Table: Power of a one-sided 0.05 level sensitivity analysis with additive effect
τ conducted with Γ = 3 and I = 250 pairs. Errors are standard Normal,
standard logistic or t-distributed with 4 degrees of freedom. The highest
powers in a column are in bold.

Errors Normal Logistic t with 4 df
Statistic τ = 1/2 τ = 1 τ = 1
Wilcoxon 0.08 0.40 0.43
(5,4,5) 0.34 0.67 0.65
(8,7,8) 0.63 0.74 0.57
(20,14,20) 0.53 0.74 0.65
(20,16,19) 0.52 0.69 0.61
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Design sensitivity

Definition: For a given sampling situation with a treatment effect
and no unmeasured bias, and for a given test statistic, there is a
number Γ̃ such that, as I → ∞, the power of an α-level sensitivity
analysis tends to 1 if performed with Γ < Γ̃ and to 0 if Γ > Γ̃.
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Design sensitivity

Definition: For a given sampling situation with a treatment effect
and no unmeasured bias, and for a given test statistic, there is a
number Γ̃ such that, as I → ∞, the power of an α-level sensitivity
analysis tends to 1 if performed with Γ < Γ̃ and to 0 if Γ > Γ̃.

In other words: In that sampling situation with a treatment effect,
eventually (for large enough I ) that statistic will be insensitive to all
biases smaller than Γ̃ and sensitive to some biases larger than Γ̃.
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Design sensitivity

Definition: For a given sampling situation with a treatment effect
and no unmeasured bias, and for a given test statistic, there is a
number Γ̃ such that, as I → ∞, the power of an α-level sensitivity
analysis tends to 1 if performed with Γ < Γ̃ and to 0 if Γ > Γ̃.

In other words: In that sampling situation with a treatment effect,
eventually (for large enough I ) that statistic will be insensitive to all
biases smaller than Γ̃ and sensitive to some biases larger than Γ̃.

Illustration: For an additive effect of τ = 1 with errors from the
t-distribution with 3 degrees of freedom, the Wilcoxon statistic has
design sensitivity Γ̃ = 6.0 while (m,m,m) = (5, 4, 5) has design
sensitivity Γ̃ = 6.8.
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Design sensitivity

Definition: For a given sampling situation with a treatment effect
and no unmeasured bias, and for a given test statistic, there is a
number Γ̃ such that, as I → ∞, the power of an α-level sensitivity
analysis tends to 1 if performed with Γ < Γ̃ and to 0 if Γ > Γ̃.

In other words: In that sampling situation with a treatment effect,
eventually (for large enough I ) that statistic will be insensitive to all
biases smaller than Γ̃ and sensitive to some biases larger than Γ̃.

Illustration: For an additive effect of τ = 1 with errors from the
t-distribution with 3 degrees of freedom, the Wilcoxon statistic has
design sensitivity Γ̃ = 6.0 while (m,m,m) = (5, 4, 5) has design
sensitivity Γ̃ = 6.8.

Example: If I = 100, 000 differences Yi = τ + ǫi are sampled from
this distribution, the upper bound on the P-value from Wilcoxon’s
statistic is 0.016 at Γ = 5.8 and 0.997 at Γ = 6.1, consistent with
Γ̃ = 6.0. If (m,m,m) = (5, 4, 5) is used instead, the P-value bound
is 0.0028 for Γ = 6.5 and 0.98 for Γ = 6.9, consistent with Γ̃ = 6.8.

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 20 / 43



Formula for the design sensitivity of the U-statistic

Will assume: Yi are iid from some distribution F (·) and there is no
unobserved bias, Pr (Zij | F , Z) = 1

2 .
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Formula for the design sensitivity of the U-statistic

Will assume: Yi are iid from some distribution F (·) and there is no
unobserved bias, Pr (Zij | F , Z) = 1

2 .

Recall: (m,m,m) looks at m pair differences Yi , sorts them into
order by |Yi |, and counts the number of positive differences Yi > 0
among those numbered m,m+ 1, . . . ,m, yielding an integer in
{0, 1, 2, . . . ,m−m+ 1}. Let θ be the expectation of this number.
It is also the expectation of T .
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Formula for the design sensitivity of the U-statistic

Will assume: Yi are iid from some distribution F (·) and there is no
unobserved bias, Pr (Zij | F , Z) = 1

2 .

Recall: (m,m,m) looks at m pair differences Yi , sorts them into
order by |Yi |, and counts the number of positive differences Yi > 0
among those numbered m,m+ 1, . . . ,m, yielding an integer in
{0, 1, 2, . . . ,m−m+ 1}. Let θ be the expectation of this number.
It is also the expectation of T .

Proposition: Under these assumptions, the design sensitivity of the
U-statistic (m,m,m) is:

Γ̃ =
θ

m−m+ 1− θ
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Formula for the design sensitivity of the U-statistic

Will assume: Yi are iid from some distribution F (·) and there is no
unobserved bias, Pr (Zij | F , Z) = 1

2 .

Recall: (m,m,m) looks at m pair differences Yi , sorts them into
order by |Yi |, and counts the number of positive differences Yi > 0
among those numbered m,m+ 1, . . . ,m, yielding an integer in
{0, 1, 2, . . . ,m−m+ 1}. Let θ be the expectation of this number.
It is also the expectation of T .

Proposition: Under these assumptions, the design sensitivity of the
U-statistic (m,m,m) is:

Γ̃ =
θ

m−m+ 1− θ

Cases: If θ = m−m+ 1 then Γ̃ = ∞. If Γ̃ < 1, then the power
tends to zero as I → ∞ for all Γ ≥ 1)
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Table of Design Sensitivities

Table: Design sensitivities Γ̃ with additive effect τ. Errors are standard
Normal, standard logistic or t-distributed with 3 or 4 degrees of freedom.
The largest Γ̃s in a column are in bold.

Errors Normal Logistic t with 4 df t with 3 df
Statistic τ = 1/2 τ = 1 τ = 1 τ = 1
Wilcoxon 3.2 3.9 6.8 6.0
(5,4,5) 3.9 4.7 8.4 6.8
(8,7,8) 5.1 5.5 9.1 6.8
(8,6,7) 3.5 4.5 9.0 7.7
(20,14,20) 4.6 5.3 9.4 7.3
(20,16,19) 4.9 5.6 10.1 7.8
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Heuristic Graph I: Where is the evidence that distinguishes

effects from unmeasured biases?

Suppose that the Yi ’s are not biased, so each Yi is telling us about
the effects of the treatment. (Of course, we would not know this
from the data.)
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Heuristic Graph I: Where is the evidence that distinguishes

effects from unmeasured biases?

Suppose that the Yi ’s are not biased, so each Yi is telling us about
the effects of the treatment. (Of course, we would not know this
from the data.)

In this case, we would like to say that the results are insensitive to
small and moderate biases.
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Heuristic Graph I: Where is the evidence that distinguishes

effects from unmeasured biases?

Suppose that the Yi ’s are not biased, so each Yi is telling us about
the effects of the treatment. (Of course, we would not know this
from the data.)

In this case, we would like to say that the results are insensitive to
small and moderate biases.

Suppose you could observe an infinite amount of data at any one
value of |Yi |, that is, you get to observe sgn (Yi ).
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Heuristic Graph I: Where is the evidence that distinguishes

effects from unmeasured biases?

Suppose that the Yi ’s are not biased, so each Yi is telling us about
the effects of the treatment. (Of course, we would not know this
from the data.)

In this case, we would like to say that the results are insensitive to
small and moderate biases.

Suppose you could observe an infinite amount of data at any one
value of |Yi |, that is, you get to observe sgn (Yi ).

What |Yi | would you pick?
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Heuristic Graph II: The abz-function

Suppose that the Yi ’s are not biased, so each Yi is telling us about
the effects of the treatment. (Of course, we would not know this
from the data.)
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Heuristic Graph II: The abz-function

Suppose that the Yi ’s are not biased, so each Yi is telling us about
the effects of the treatment. (Of course, we would not know this
from the data.)

Suppose that Yi are iid from a continuous distribution G (·) with
density g (·).
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Heuristic Graph II: The abz-function

Suppose that the Yi ’s are not biased, so each Yi is telling us about
the effects of the treatment. (Of course, we would not know this
from the data.)

Suppose that Yi are iid from a continuous distribution G (·) with
density g (·).
Albers, Bickel and van Zwet (1976) introduced a function abz (y)
defined for y > 0, namely

abz (y) =
g (y)

g (y) + g (−y) = Pr


Yi > 0

∣∣∣∣∣∣
|Yi | = y




Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 24 / 43



Heuristic Graph II: The abz-function

Suppose that the Yi ’s are not biased, so each Yi is telling us about
the effects of the treatment. (Of course, we would not know this
from the data.)

Suppose that Yi are iid from a continuous distribution G (·) with
density g (·).
Albers, Bickel and van Zwet (1976) introduced a function abz (y)
defined for y > 0, namely

abz (y) =
g (y)

g (y) + g (−y) = Pr


Yi > 0

∣∣∣∣∣∣
|Yi | = y




If abz (y) > Γ/ (1+ Γ), then at |Yi | = y , positive Yi occur with a
frequency abz (y) that is too high to be attributed to a bias of
magnitude Γ.
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Figure 2:  Conditionally given various values of |Yi|, the figure shows the probability of a 
positive treatment-minus-control difference, Yi >0, for an additive treatment effect t = ¾ 
in the standard forms of four distributions. 



Heuristic Graph III

What do we learn from the heuristic graph?
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Heuristic Graph III

What do we learn from the heuristic graph?

We actually observe limited data at varied |Yi |.
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Heuristic Graph III

What do we learn from the heuristic graph?

We actually observe limited data at varied |Yi |.
Nonetheless, the heuristic graph suggest little weight should be given
to small |Yi |.
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Heuristic Graph III

What do we learn from the heuristic graph?

We actually observe limited data at varied |Yi |.
Nonetheless, the heuristic graph suggest little weight should be given
to small |Yi |.
What you should do with large |Yi | depends on the distribution G
which you typically do not know.
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Stephenson’s test: useful when only some people respond

to treatment

A Lehmann alternative: Control responses rCij ∼ F (·), treated
responses as rTij ∼ (1− λ) F (·) + λ {F (·)}m , so only a fraction
λ ∈ (0, 1) respond to treatment.
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A Lehmann alternative: Control responses rCij ∼ F (·), treated
responses as rTij ∼ (1− λ) F (·) + λ {F (·)}m , so only a fraction
λ ∈ (0, 1) respond to treatment.
Conover and Salsburg (1988): Found the locally most powerful
rank test for this problem as λ → 0.
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Stephenson’s test: useful when only some people respond

to treatment

A Lehmann alternative: Control responses rCij ∼ F (·), treated
responses as rTij ∼ (1− λ) F (·) + λ {F (·)}m , so only a fraction
λ ∈ (0, 1) respond to treatment.
Conover and Salsburg (1988): Found the locally most powerful
rank test for this problem as λ → 0.

Stephenson (1981): Based on other considerations, Stephenson
had proposed use of ranks that are essentially the same for large I ,
and have the advantage of permitting a confidence interval for the
magnitude of effect; see Rosenbaum (2007).
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Stephenson’s test: useful when only some people respond

to treatment

A Lehmann alternative: Control responses rCij ∼ F (·), treated
responses as rTij ∼ (1− λ) F (·) + λ {F (·)}m , so only a fraction
λ ∈ (0, 1) respond to treatment.
Conover and Salsburg (1988): Found the locally most powerful
rank test for this problem as λ → 0.

Stephenson (1981): Based on other considerations, Stephenson
had proposed use of ranks that are essentially the same for large I ,
and have the advantage of permitting a confidence interval for the
magnitude of effect; see Rosenbaum (2007).

The U-statistic: is Stephenson’s statistic for

(m,m,m) = (m,m,m). That is, look at the sign of Yi for the one
pair of m with the largest |Yi |.
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Testing one hypothesis twice

How should one select (m,m,m)? Have seen that the sign test

(1, 1, 1) and Wilcoxon’s test (2, 2, 2) are poor choices for Γ > 1.
Some good choices are (m,m,m) = (8, 7, 8) and (20, 14, 20) for
general use, and (20, 16, 19) for thicker tails with larger samples I .
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Testing one hypothesis twice

How should one select (m,m,m)? Have seen that the sign test

(1, 1, 1) and Wilcoxon’s test (2, 2, 2) are poor choices for Γ > 1.
Some good choices are (m,m,m) = (8, 7, 8) and (20, 14, 20) for
general use, and (20, 16, 19) for thicker tails with larger samples I .

Testing one hypothesis twice: Use more than one test statistic and
correct for multiple testing.
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Testing one hypothesis twice

How should one select (m,m,m)? Have seen that the sign test

(1, 1, 1) and Wilcoxon’s test (2, 2, 2) are poor choices for Γ > 1.
Some good choices are (m,m,m) = (8, 7, 8) and (20, 14, 20) for
general use, and (20, 16, 19) for thicker tails with larger samples I .

Testing one hypothesis twice: Use more than one test statistic and
correct for multiple testing.

Bonferroni: Obviously, one could perform two tests (i.e., two
sensitivity analyses at Γ) of the same null hypothesis of no treatment
effect H0, rejecting H0 if the smaller of the two (upper bounds on)
P-values is at most α = 0.025. This would control the chance of
falsely rejecting H0 at α = 0.05 in the presence of a bias of at most Γ.
This is ok, but we can do much better.
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Two ways to work with the joint sensitivity distribution

Better approach: Use the joint null sensitivity distribution of two
test statistics, allowing for the high positive correlation between two
tests of one H0 based on the same data.
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Two ways to work with the joint sensitivity distribution

Better approach: Use the joint null sensitivity distribution of two
test statistics, allowing for the high positive correlation between two
tests of one H0 based on the same data.

Exact joint null sensitivity distribution: For simple statistics, the
exact joint sensitivity distribution is available for each Γ ≥ 1. See
Rosenbaum (2012 AOAS) for discussion and Small (2012) for an
implementation in R.
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Two ways to work with the joint sensitivity distribution

Better approach: Use the joint null sensitivity distribution of two
test statistics, allowing for the high positive correlation between two
tests of one H0 based on the same data.

Exact joint null sensitivity distribution: For simple statistics, the
exact joint sensitivity distribution is available for each Γ ≥ 1. See
Rosenbaum (2012 AOAS) for discussion and Small (2012) for an
implementation in R.

Large sample approximation null sensitivity distribution: For
many statistics, a large sample multivariate Normal approximation to
the joint sensitivity distribution is available for each Γ ≥ 1.
(Rosenbaum 2012 Biometrika).

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 28 / 43



Choice of test statistic affects reported sensitivity to bias

Table: Five tests of no effect, using Wilcoxon’s test on lead levels, (8,7,8)
and (8,6,7) on lead levels and on logs of lead levels. Tabled are upper bound
on the one-sided P-value testing no treatment effect for the given value of Γ.

Wilcoxon U-statistic U-statistic on logs

Γ (8,7,8) (8,6,7) (8,7,8) (8,6,7)

1 0.000 0.000 0.000 0.000 0.000
2.5 0.016 0.026 0.000 0.000 0.000
2.8 0.147 0.119 0.015 0.000 0.001
3 — — 0.050 0.001 0.004
3.4 — — — 0.009 0.041
3.6 — — — 0.022 0.095
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Testing one hypothesis four times, correcting for multiple

testing

Table: Testing one hypothesis four times, correcting for multiple testing.
The combined test uses both U-statistics on both lead levels and logs of lead
levels. Tabled are upper bound on the one-sided P-value testing no
treatment effect for the given value of Γ.

Testing 4-times U-statistic U-statistic on logs

Γ (8,7,8) (8,6,7) (8,7,8) (8,6,7)

1 0.000 0.000 0.000 0.000 0.000
2.5 0.000 0.026 0.000 0.000 0.000
2.8 0.000 0.119 0.015 0.000 0.001
3 0.003 — 0.050 0.001 0.004
3.4 0.022 — — 0.009 0.041
3.6 0.049 — — 0.022 0.095
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Two test statistics and their respective bounds

Suppose there are two tests of H0 using the same Yi but different
scores, T = ∑

I
i=1 sgn (Yi ) qi and T ′ = ∑

I
i=1 sgn (Yi ) q

′
i , where

qi ≥ 0 and q
′
i ≥ 0.
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Two test statistics and their respective bounds

Suppose there are two tests of H0 using the same Yi but different
scores, T = ∑

I
i=1 sgn (Yi ) qi and T ′ = ∑

I
i=1 sgn (Yi ) q

′
i , where

qi ≥ 0 and q
′
i ≥ 0.

It is important here that T and T ′ both receive a nonnegative
contribution whenever sgn (Yi ) = 1 or Yi ≥ 0.
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Two test statistics and their respective bounds

Suppose there are two tests of H0 using the same Yi but different
scores, T = ∑

I
i=1 sgn (Yi ) qi and T ′ = ∑

I
i=1 sgn (Yi ) q

′
i , where

qi ≥ 0 and q
′
i ≥ 0.

It is important here that T and T ′ both receive a nonnegative
contribution whenever sgn (Yi ) = 1 or Yi ≥ 0.
In the sensitivity analysis, there are now two upper bound random

variables, T and T
′
, which are each the sum of I independent

random variables, both taking the value 0 with probability 1/ (1+ Γ)
or else the values qi and q

′
i with probability Γ/ (1+ Γ).
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Two test statistics and their respective bounds

Suppose there are two tests of H0 using the same Yi but different
scores, T = ∑

I
i=1 sgn (Yi ) qi and T ′ = ∑

I
i=1 sgn (Yi ) q

′
i , where

qi ≥ 0 and q
′
i ≥ 0.

It is important here that T and T ′ both receive a nonnegative
contribution whenever sgn (Yi ) = 1 or Yi ≥ 0.
In the sensitivity analysis, there are now two upper bound random

variables, T and T
′
, which are each the sum of I independent

random variables, both taking the value 0 with probability 1/ (1+ Γ)
or else the values qi and q

′
i with probability Γ/ (1+ Γ).

Under mild conditions on the scores, qi and q
′
i , as I → ∞, the joint

distribution of T and T
′
tends to a bivariate Normal distribution.
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The maximum of two standardized deviates

To repeat, there are two tests of H0 using the same Yi but different
scores, T = ∑

I
i=1 sgn (Yi ) qi and T ′ = ∑

I
i=1 sgn (Yi ) q

′
i , where

qi ≥ 0 and q
′
i ≥ 0.
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The maximum of two standardized deviates

To repeat, there are two tests of H0 using the same Yi but different
scores, T = ∑

I
i=1 sgn (Yi ) qi and T ′ = ∑

I
i=1 sgn (Yi ) q

′
i , where

qi ≥ 0 and q
′
i ≥ 0.

Let µΓ and µ
′
Γ be the expectations and ωΓ and ω

′
Γ be the standard

deviations of T and T
′
.

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 32 / 43



The maximum of two standardized deviates

To repeat, there are two tests of H0 using the same Yi but different
scores, T = ∑

I
i=1 sgn (Yi ) qi and T ′ = ∑

I
i=1 sgn (Yi ) q

′
i , where

qi ≥ 0 and q
′
i ≥ 0.

Let µΓ and µ
′
Γ be the expectations and ωΓ and ω

′
Γ be the standard

deviations of T and T
′
.

The test statistic will be

max

(
T − µΓ

ωΓ

,
T ′ − µ/

Γ

ω
′
Γ

)
.
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The maximum of two standardized deviates

To repeat, there are two tests of H0 using the same Yi but different
scores, T = ∑

I
i=1 sgn (Yi ) qi and T ′ = ∑

I
i=1 sgn (Yi ) q

′
i , where

qi ≥ 0 and q
′
i ≥ 0.

Let µΓ and µ
′
Γ be the expectations and ωΓ and ω

′
Γ be the standard

deviations of T and T
′
.

The test statistic will be

max

(
T − µΓ

ωΓ

,
T ′ − µ/

Γ

ω
′
Γ

)
.

So we need a bound on the distribution of this quantity.
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The respective bounds provide the joint bound

The bounding statistics
(
T , T

′)
are jointly stochastically larger than

(T , T ′), so

Pr



max


T − µΓ

ωΓ

,
T
′
− µ/

Γ

ω
′
Γ


 ≥ k

∣∣∣∣∣∣
F ,Z



 (4)

≥ Pr
{
max

(
T − µΓ

ωΓ

,
T ′ − µ/

Γ

ω
′
Γ

)
≥ k

∣∣∣∣∣F ,Z
}

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 33 / 43



The respective bounds provide the joint bound

The bounding statistics
(
T , T

′)
are jointly stochastically larger than

(T , T ′), so

Pr



max


T − µΓ

ωΓ

,
T
′
− µ/

Γ

ω
′
Γ


 ≥ k

∣∣∣∣∣∣
F ,Z



 (4)

≥ Pr
{
max

(
T − µΓ

ωΓ

,
T ′ − µ/

Γ

ω
′
Γ

)
≥ k

∣∣∣∣∣F ,Z
}

For all Γ ≥ 1, the correlation between T and T
′
is the same, not

dependent on Γ, namely ρ = ∑
I
i=1 qi q

′
i/
√

∑
I
i=1 q

2
i ∑

I
i=1 q

′2
i .
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The respective bounds provide the joint bound

The bounding statistics
(
T , T

′)
are jointly stochastically larger than

(T , T ′), so

Pr



max
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′
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Γ

ω
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 (4)

≥ Pr
{
max

(
T − µΓ

ωΓ

,
T ′ − µ/

Γ

ω
′
Γ

)
≥ k

∣∣∣∣∣F ,Z
}

For all Γ ≥ 1, the correlation between T and T
′
is the same, not

dependent on Γ, namely ρ = ∑
I
i=1 qi q

′
i/
√

∑
I
i=1 q

2
i ∑

I
i=1 q

′2
i .

Consider a bivariate Normal distribution with expectations 0,
variances 1, and correlation ρ. Let 1− Υρ (k) be the probability that
both coordinates of this distribution are less than k. (In R, calculate
Υρ (k) using the mvtnorm package.) Then as I → ∞ for given Γ, the
left side of (4) tends to Υρ (k).
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Design sensitivity of the joint procedure

Lemma

If T has design sensitivity Γ̃ and T ′ has design sensitivity Γ̃′, then

max

(
T − µΓ

ωΓ

,
T ′ − µ/

Γ

ω
′
Γ

)

has design sensitivity max
(

Γ̃, Γ̃′
)
.

This is consistent with what we saw in the example. The corrected
multiple test was almost as insensitive to unmeasured bias as the best
of four individual procedures.
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Proof of the lemma

Lemma

If T has design sensitivity Γ̃ and T ′ has design sensitivity Γ̃′, then testing

twice has design sensitivity max
(

Γ̃, Γ̃′
)
.

Proof.

If Γ̃ ≥ Γ̃′, then the power of the test based on T is tending to 1 for any
nonzero level in a sensitivity analysis with Γ < Γ̃, so for sufficiently large I ,
with arbitrarily high probability, the deviate (T − µΓ) /ωΓ will be greater
than k such that Υρ (k) = α, so the multiple test procedure will reject H0.

Analogously, for Γ > Γ̃, the power based on T and T ′ is tending to 0. So

the design sensitivity is Γ̃ = max
(

Γ̃, Γ̃′
)
. The proof for Γ̃ ≤ Γ̃′ is

parallel.
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Remarks

The same logic works for more than 2 test statistics. The table
above worked with 4 test statistics.
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Remarks

The same logic works for more than 2 test statistics. The table
above worked with 4 test statistics.

The paper considered 12 test statistics (different tests, different
scores, using lead levels or logs of lead levels, weighting or not by the
amount smoked). Correction for all 12 tests is almost as insensitive
as using the best test.
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Remarks

The same logic works for more than 2 test statistics. The table
above worked with 4 test statistics.

The paper considered 12 test statistics (different tests, different
scores, using lead levels or logs of lead levels, weighting or not by the
amount smoked). Correction for all 12 tests is almost as insensitive
as using the best test.

The median of the pairwise correlations among the 12 upper bounds
was 0.82. With such high correlations, the correction using the joint
distribution is much less severe than is the Bonferroni inequality.
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The Bonferroni inequality is very conservative

Bonferroni is quite conservative when the correlation ρ is high. A
property of the multivariate Normal distribution.
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The Bonferroni inequality is very conservative

Bonferroni is quite conservative when the correlation ρ is high. A
property of the multivariate Normal distribution.

The (multivariate) quantity Υρ (k) determines the true size of a
procedure that rejects when the maximum standardized deviate is at
least k. When the true size is 0.05, what does Bonferroni report as
the nominal level?
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The Bonferroni inequality is very conservative

Bonferroni is quite conservative when the correlation ρ is high. A
property of the multivariate Normal distribution.

The (multivariate) quantity Υρ (k) determines the true size of a
procedure that rejects when the maximum standardized deviate is at
least k. When the true size is 0.05, what does Bonferroni report as
the nominal level?

Table: Nominal or reported level using the Bonferroni inequality to correct
for multiple testing when the true size is 0.05 with an L-dimensional Normal
random variable with equal correlations ρ.

L Bonferroni’s Nominal Level

ρ = 0 ρ = 0.8 ρ = 0.9
2 0.051 0.065 0.072
4 0.051 0.086 0.108
6 0.051 0.103 0.137
10 0.051 0.131 0.189
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Sample splitting: an alternative to testing twice

Sample splitting: Split the sample into 10% and 90%. Make
decisions using the 10%, then discard it. Do one analysis of the 90%.
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Sample splitting: an alternative to testing twice

Sample splitting: Split the sample into 10% and 90%. Make
decisions using the 10%, then discard it. Do one analysis of the 90%.

Example: Form 679 matched pairs. Sample 68 pairs. Plan the
study using 68 pairs. Do a planned analysis of 679− 68 = 611 pairs.
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Sample splitting: an alternative to testing twice

Sample splitting: Split the sample into 10% and 90%. Make
decisions using the 10%, then discard it. Do one analysis of the 90%.

Example: Form 679 matched pairs. Sample 68 pairs. Plan the
study using 68 pairs. Do a planned analysis of 679− 68 = 611 pairs.
Meta-Proposition: For finitely many well-defined choices that can
be decided with data, sample splitting attains the best design
sensitivity. (As I → ∞, I/10 pairs make choices correctly, and the
replacement of I pairs by 9I/10 pairs is inconsequential for design
sensitivity.)
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Sample splitting: an alternative to testing twice

Sample splitting: Split the sample into 10% and 90%. Make
decisions using the 10%, then discard it. Do one analysis of the 90%.

Example: Form 679 matched pairs. Sample 68 pairs. Plan the
study using 68 pairs. Do a planned analysis of 679− 68 = 611 pairs.
Meta-Proposition: For finitely many well-defined choices that can
be decided with data, sample splitting attains the best design
sensitivity. (As I → ∞, I/10 pairs make choices correctly, and the
replacement of I pairs by 9I/10 pairs is inconsequential for design
sensitivity.)

Reflection in light of evidence: Splitting permits thoughtful
planning of ill-defined choices in the presence of data.
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Sample splitting: an alternative to testing twice

Sample splitting: Split the sample into 10% and 90%. Make
decisions using the 10%, then discard it. Do one analysis of the 90%.

Example: Form 679 matched pairs. Sample 68 pairs. Plan the
study using 68 pairs. Do a planned analysis of 679− 68 = 611 pairs.
Meta-Proposition: For finitely many well-defined choices that can
be decided with data, sample splitting attains the best design
sensitivity. (As I → ∞, I/10 pairs make choices correctly, and the
replacement of I pairs by 9I/10 pairs is inconsequential for design
sensitivity.)

Reflection in light of evidence: Splitting permits thoughtful
planning of ill-defined choices in the presence of data.

Reference: Heller, Small and Rosenbaum (JASA, 2009).
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Sample splitting, continued

Selecting one of several outcomes: In a sensitivity analysis,
Γ > 1, with K = 2, 4, 8, or 16 possible outcomes, a 10/90 split of
I = 1000 pairs outperforms use of the Bonferroni inequality (although
both attain the best design sensitivity). (That is, the sensitivity
analysis has higher power).
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Sample splitting, continued

Selecting one of several outcomes: In a sensitivity analysis,
Γ > 1, with K = 2, 4, 8, or 16 possible outcomes, a 10/90 split of
I = 1000 pairs outperforms use of the Bonferroni inequality (although
both attain the best design sensitivity). (That is, the sensitivity
analysis has higher power).

Weighted combination of several outcomes: In a sensitivity
analysis, Γ > 1, with K = 8 outcomes, a 10/90 split of 1000 pairs to
determine a weighted combination of outcomes outperformed (i) use
of the Bonferroni inequality (except when only one outcome was
affected, and then the difference was small), (ii) a fixed weighting
(expect when the fixed weighting of K = 8 outcomes coincided with
the optimal weighting).
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Sample splitting, continued

Selecting one of several outcomes: In a sensitivity analysis,
Γ > 1, with K = 2, 4, 8, or 16 possible outcomes, a 10/90 split of
I = 1000 pairs outperforms use of the Bonferroni inequality (although
both attain the best design sensitivity). (That is, the sensitivity
analysis has higher power).

Weighted combination of several outcomes: In a sensitivity
analysis, Γ > 1, with K = 8 outcomes, a 10/90 split of 1000 pairs to
determine a weighted combination of outcomes outperformed (i) use
of the Bonferroni inequality (except when only one outcome was
affected, and then the difference was small), (ii) a fixed weighting
(expect when the fixed weighting of K = 8 outcomes coincided with
the optimal weighting).

Reference: Heller, Small and Rosenbaum (JASA, 2009).
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Summary

Design sensitivity Γ̃: The power of a sensitivity analysis performed
at Γ will tend to 1 if Γ < Γ̃ and to 0 if Γ > Γ̃.
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Summary

Design sensitivity Γ̃: The power of a sensitivity analysis performed
at Γ will tend to 1 if Γ < Γ̃ and to 0 if Γ > Γ̃.

Choice of test statistic: In a given sampling situation, the design
sensitivity Γ̃ will be different for different test statistics.
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Summary

Design sensitivity Γ̃: The power of a sensitivity analysis performed
at Γ will tend to 1 if Γ < Γ̃ and to 0 if Γ > Γ̃.

Choice of test statistic: In a given sampling situation, the design
sensitivity Γ̃ will be different for different test statistics.

Wilcoxon’s signed rank statistic: has poor design sensitivity if
Yi = τ + ǫi with ǫi Normal, logistic, or t on 3 or 4 degrees of
freedom.
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at Γ will tend to 1 if Γ < Γ̃ and to 0 if Γ > Γ̃.

Choice of test statistic: In a given sampling situation, the design
sensitivity Γ̃ will be different for different test statistics.

Wilcoxon’s signed rank statistic: has poor design sensitivity if
Yi = τ + ǫi with ǫi Normal, logistic, or t on 3 or 4 degrees of
freedom.

In terms of Γ̃: several choices of (m,m,m) increase Γ̃ relative to
Wilcoxon’s statistic for all of these sampling situations.
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Summary

Design sensitivity Γ̃: The power of a sensitivity analysis performed
at Γ will tend to 1 if Γ < Γ̃ and to 0 if Γ > Γ̃.

Choice of test statistic: In a given sampling situation, the design
sensitivity Γ̃ will be different for different test statistics.

Wilcoxon’s signed rank statistic: has poor design sensitivity if
Yi = τ + ǫi with ǫi Normal, logistic, or t on 3 or 4 degrees of
freedom.

In terms of Γ̃: several choices of (m,m,m) increase Γ̃ relative to
Wilcoxon’s statistic for all of these sampling situations.

Testing twice: In exchange for a small correction for multiple
testing, one obtains the design sensitivity of the best of several tests.
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Typically additive effects are similar to additive effects

Treatment typically has an additive effect, rTij − rCij = τ + ξ ij where
the ξ ij are mutually independent, independent of everything else,
symmetric about 0.
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Typically additive effects are similar to additive effects

Treatment typically has an additive effect, rTij − rCij = τ + ξ ij where
the ξ ij are mutually independent, independent of everything else,
symmetric about 0.
If the treatment typically has an additive effect, rTij − rCij = τ + ξ ij ,
then

Yi = (Zi1 − Zi2) (rCi1 + Zi1τ + Zi1ξ i1 − rCi2 − Zi2τ
= τ + ǫ

′
i where ǫ

′
i = ǫi + ξ

′
i

where, as before, ǫi = (Zi1 − Zi2) (rCi1 − rCi2) ,
and now ξ

′
i = (Zi1ξ i1 − Zi2ξ i2) .
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the ξ ij are mutually independent, independent of everything else,
symmetric about 0.
If the treatment typically has an additive effect, rTij − rCij = τ + ξ ij ,
then

Yi = (Zi1 − Zi2) (rCi1 + Zi1τ + Zi1ξ i1 − rCi2 − Zi2τ
= τ + ǫ

′
i where ǫ

′
i = ǫi + ξ

′
i

where, as before, ǫi = (Zi1 − Zi2) (rCi1 − rCi2) ,
and now ξ

′
i = (Zi1ξ i1 − Zi2ξ i2) .

Because ξ ij is independent of everything else and symmetric about 0,

ξ
′
i = (Zi1ξ i1 − Zi2ξ i2) has the same distribution as ξ ij , is symmetric
about 0, and is independent of the Zij .
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Treatment typically has an additive effect, rTij − rCij = τ + ξ ij where
the ξ ij are mutually independent, independent of everything else,
symmetric about 0.
If the treatment typically has an additive effect, rTij − rCij = τ + ξ ij ,
then

Yi = (Zi1 − Zi2) (rCi1 + Zi1τ + Zi1ξ i1 − rCi2 − Zi2τ
= τ + ǫ

′
i where ǫ

′
i = ǫi + ξ

′
i

where, as before, ǫi = (Zi1 − Zi2) (rCi1 − rCi2) ,
and now ξ

′
i = (Zi1ξ i1 − Zi2ξ i2) .

Because ξ ij is independent of everything else and symmetric about 0,

ξ
′
i = (Zi1ξ i1 − Zi2ξ i2) has the same distribution as ξ ij , is symmetric
about 0, and is independent of the Zij .
If Hτ0 : τ = τ0 were true in a randomized experiment, then
Yi − τ0 = ǫ

′
i would be independent of Zij and symmetric about 0,

and this is the basis for inference about the (typical) effect τ.
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Treatment typically has an additive effect, rTij − rCij = τ + ξ ij where
the ξ ij are mutually independent, independent of everything else,
symmetric about 0.
If the treatment typically has an additive effect, rTij − rCij = τ + ξ ij ,
then

Yi = (Zi1 − Zi2) (rCi1 + Zi1τ + Zi1ξ i1 − rCi2 − Zi2τ
= τ + ǫ

′
i where ǫ

′
i = ǫi + ξ

′
i

where, as before, ǫi = (Zi1 − Zi2) (rCi1 − rCi2) ,
and now ξ

′
i = (Zi1ξ i1 − Zi2ξ i2) .

Because ξ ij is independent of everything else and symmetric about 0,

ξ
′
i = (Zi1ξ i1 − Zi2ξ i2) has the same distribution as ξ ij , is symmetric
about 0, and is independent of the Zij .
If Hτ0 : τ = τ0 were true in a randomized experiment, then
Yi − τ0 = ǫ

′
i would be independent of Zij and symmetric about 0,

and this is the basis for inference about the (typical) effect τ.
In an observational study, ǫi = (Zi1 − Zi2) (rCi1 − rCi2) may bePaul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 41 / 43



The new U-statistic

Fix three integers, m, m, m with 1 ≤ m ≤ m ≤ m < I . Let K be the
set containing the ( Im) sequences I = 〈i1, . . . , im〉 of m distinct
integers 1 ≤ i1 < · · · < im ≤ I , and write YI = 〈Yi1 , . . . ,Yim 〉.
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The new U-statistic

Fix three integers, m, m, m with 1 ≤ m ≤ m ≤ m < I . Let K be the
set containing the ( Im) sequences I = 〈i1, . . . , im〉 of m distinct
integers 1 ≤ i1 < · · · < im ≤ I , and write YI = 〈Yi1 , . . . ,Yim 〉.
A U-statistic (Hoeffding 1948) has the form

T =

(
I

m

)−1
∑
I∈K

h (YI )

where h (·) is a symmetric function.
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The new U-statistic

Fix three integers, m, m, m with 1 ≤ m ≤ m ≤ m < I . Let K be the
set containing the ( Im) sequences I = 〈i1, . . . , im〉 of m distinct
integers 1 ≤ i1 < · · · < im ≤ I , and write YI = 〈Yi1 , . . . ,Yim 〉.
A U-statistic (Hoeffding 1948) has the form

T =

(
I

m

)−1
∑
I∈K

h (YI )

where h (·) is a symmetric function.
For I = 〈i1, . . . , im〉 ∈ K, sort Yi1 , . . . ,Yim to Y[I,1], . . . ,Y[I,m] to be

increasing in absolute value, 0 <
∣∣∣Y[I,1]

∣∣∣ < · · · <
∣∣∣Y[I,m]

∣∣∣.
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The new U-statistic

Fix three integers, m, m, m with 1 ≤ m ≤ m ≤ m < I . Let K be the
set containing the ( Im) sequences I = 〈i1, . . . , im〉 of m distinct
integers 1 ≤ i1 < · · · < im ≤ I , and write YI = 〈Yi1 , . . . ,Yim 〉.
A U-statistic (Hoeffding 1948) has the form

T =

(
I

m

)−1
∑
I∈K

h (YI )

where h (·) is a symmetric function.
For I = 〈i1, . . . , im〉 ∈ K, sort Yi1 , . . . ,Yim to Y[I,1], . . . ,Y[I,m] to be

increasing in absolute value, 0 <
∣∣∣Y[I,1]

∣∣∣ < · · · <
∣∣∣Y[I,m]

∣∣∣.
In the new u-statistic, h (YI ) is the number of positive differences
among Y[I,m], . . . ,Y[I,m], so h (YI ) is an integer in
{0, 1, . . . ,m−m+ 1}.
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Familiar instances of the new U-statistic

To repeat: 0 <
∣∣∣Y[I,1]

∣∣∣ < · · · <
∣∣∣Y[I,m]

∣∣∣, h (YI ) is the number of
positive differences among Y[I,m], . . . ,Y[I,m],

T = ( Im)
−1

∑I∈K h (YI )
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Familiar instances of the new U-statistic

To repeat: 0 <
∣∣∣Y[I,1]

∣∣∣ < · · · <
∣∣∣Y[I,m]

∣∣∣, h (YI ) is the number of
positive differences among Y[I,m], . . . ,Y[I,m],

T = ( Im)
−1

∑I∈K h (YI )

Sign test: if m = m = m = 1, then

h (YI ) = sgn (Yi1) = sgn
(
Y[I,1]

)
and T is the sign statistic.
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Familiar instances of the new U-statistic

To repeat: 0 <
∣∣∣Y[I,1]

∣∣∣ < · · · <
∣∣∣Y[I,m]

∣∣∣, h (YI ) is the number of
positive differences among Y[I,m], . . . ,Y[I,m],

T = ( Im)
−1

∑I∈K h (YI )

Sign test: if m = m = m = 1, then

h (YI ) = sgn (Yi1) = sgn
(
Y[I,1]

)
and T is the sign statistic.

Wilcoxon’s signed rank: If m = m = m = 2, then

h (YI ) = sgn
(
Y[I,2]

)
, and T is the u-statistic that closely

approximates Wilcoxon’s signed rank statistic (Lehmann 1975, p.
337).

Paul R. Rosenbaum (Wharton School) Testing Twice 04/03/13 43 / 43



Familiar instances of the new U-statistic

To repeat: 0 <
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∣∣∣ < · · · <
∣∣∣Y[I,m]

∣∣∣, h (YI ) is the number of
positive differences among Y[I,m], . . . ,Y[I,m],

T = ( Im)
−1

∑I∈K h (YI )

Sign test: if m = m = m = 1, then

h (YI ) = sgn (Yi1) = sgn
(
Y[I,1]

)
and T is the sign statistic.

Wilcoxon’s signed rank: If m = m = m = 2, then

h (YI ) = sgn
(
Y[I,2]

)
, and T is the u-statistic that closely

approximates Wilcoxon’s signed rank statistic (Lehmann 1975, p.
337).

Stephenson’s statistic: If m = m = m ≥ 1, then
h (YI ) = sgn

(
Y[I,m]

)
and T is Stephenson’s (1981) statistic.

Excellent power when only a subset of treated subjects respond to
treatment; see Conover and Salsburg (1988) and Rosenbaum (2007;
2010a, §16).
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