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SUMMARY

The paper considers testing whether the mean trend of a nonstationary time series is of certain

parametric forms. A central limit theorem for the integrated squared error is derived, and with that

a hypothesis-testing procedure is proposed. The method is illustrated in a simulation study, and is

applied to assess the mean pattern of lifetime-maximum wind speeds of global tropical cyclones

from 1981 to 2006. We also revisit the trend pattern in the central England temperature series.

10

Some key words: Bias correction; Central limit theorem; Integrated squared error; Local linear estimation; Locally

stationary process; Nonparametric hypothesis testing.

1. INTRODUCTION

The problem of testing whether the mean trend of a time series follows certain para-

Q1

metric forms has attracted considerable attention; see Dette (1999), Bissantz et al. (2005),

Percival & Rothrock (2005), Wu & Zhao (2007) and Pawlak & Stadmüller (1996, 2007), among

others. Parametric models have the advantage of ease of interpretation and prediction, but 20

may suffer from misspecification, leading to erroneous conclusions. Hypothesis testing in non-

parametric regression under independence has been discussed by Härdle & Mammen (1993),

Hart (1997), Fan et al. (2001) and Van Keilegom et al. (2008). Other contributions can be

found in Azzalini et al. (1989), Eubank & LaRiccia (1992), Aerts et al. (1999), Eubank (1999),

Horowitz & Spokoiny (2001) and Fan & Jiang (2007). In this paper we adopt the following for- 25

mulation: suppose we observe

Yi = μ(i/n) + ei (i = 1, . . . , n), (1)

where μ(t), t ∈ [0, 1], is an unknown signal or trend function and (ei )
n
i=1 is a zero-mean noise

sequence which can be nonstationary. We are interested in testing the hypothesis

H0 : μ(t) = f (θ, t), (2)

where the function f (·, ·) has a known form and θ ∈ R
d is a parameter vector of f being iden-

tically zero, constant, and special cases f ≡ 0, f ≡ a constant and f (θ, t) = θ0 + θ1t for some 30

θ = (θ0, θ1) ∈ R
2 correspond to testing whether a signal exists, is time-varying and nonlinear,

respectively. A natural approach would be to compare a nonparametric estimator of μ(·) and

the fitted parametric trend f (θ̂n, t), where θ̂n might, for example, be the least squares estimator,

which minimizes

ℓn(θ) =

n
∑

i=1

{Yi − f (θ, i/n)}2. (3)
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Nonparametric estimation of μ can be performed in a number of ways including the35

Priestley–Chao (1972), the Nadaraya–Watson, local polynomial, spline and wavelet meth-

ods. Here we shall use the local linear estimator, which has a good boundary performance

(Fan & Gijbels, 1996),

μ̂n(t) =

n
∑

i=1

Yiwi (t), (4)

where wi (t) = K {(i/n − t)/bn}{S2(t) − (t − i/n)S1(t)}/{S2(t)S0(t) − S2
1(t)} are the local lin-

ear weights, bn is the bandwidth, K (·) is a kernel function and S j (t) =
∑n

i=1(t − i/n) j
40

K {(i/n − t)/bn}. To test H0, we shall develop central limit theory for the integrated squared error

(ISE)

ISE =

∫ 1

0

{μ̂n(t) − μ(t)}2dt.

Under H0, ISE can be estimated by �2
2, where �2 is the L2 distance

�2 =

[
∫ 1

0

{μ̂n(t) − f (θ̂n, t)}2dt

]1/2

.

We reject H0 if �2 is too large. The asymptotic normality of ISE has been studied under dif-

ferent settings. See for example Bickel & Rosenblatt (1973), Hall (1984), Ioannides (1992)45

and Alcalá et al. (1999), among others. However, in those papers the errors are independent.

González-Manteiga & Vilar Fernández (1995) and Biedermann & Dette (2000) considered the

same problem for linear processes with independent and identically distributed innovations. The

ISE is a quadratic form in the errors ei . As commented in Pawlak & Stadtmüller (2007), existing

results on quadratic forms for dependent processes are mostly confined to linear processes. It50

is unclear whether similar results hold for general nonlinear processes. Here we shall substan-

tially generalize earlier results by allowing nonlinear and nonstationary error processes. Hence

our central limit theory should be widely applicable.

2. PRELIMINARIES

In (1) we allow nonstationary noise processes, on which there is a huge literature. Priestley55

(1965, 1988) considered processes with time-varying spectral representations. Dahlhaus (1997)

defined a class of locally stationary processes for which a rigorous asymptotic theory can be

obtained. Mallat et al. (1998) modelled locally stationary processes with pseudo-differential

operators that are time-varying convolutions. Cheng & Tong (1998) applied wavelet represen-

tations. Nason et al. (2000) proposed to use a set of discrete non-decimated wavelets rather than60

the Fourier complex exponentials as in Dahlhaus (1997). Giurcanu & Spokoiny (2004) treated

nonstationarity by assuming that correlation functions could be well approximated by those of

stationary processes. Ombao et al. (2005) generalized the framework of Dahlhaus (1997) by

utilizing the smooth localized complex exponentials. Here we shall follow the framework in

Draghicescu et al. (2009) and Zhou & Wu (2009) and assume that the error sequence {ei }
n
i=1 is65

generated from the model

ei = G(i/n; Fi ), (5)

where Fi = (. . . , ǫi−1, ǫi ) is a shift process of independent and identically distributed shocks

ǫk , k ∈ Z, and G : [0, 1] × R
∞ → R is a measurable function such that ei is well defined. The
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framework (5) covers a wide range of nonstationary processes and naturally extends many exist-

ing stationary time series models to their nonstationary counterparts. Following Wu (2005), we 70

interpret Fi and ei as the input and output, and G as the transform that represents the underly-

ing physical mechanism. Let ζi (t) = G(t; Fi ). Then G(t; ·) is the data-generating mechanism

at t , possibly time-varying. If G(t; ·) does not depend on t , then (5) provides a very general

framework for stationary processes; see Priestley (1988) and Tong (1990). Under a stochastic

continuity condition, cf. Condition 2, equation (5) defines a locally stationary process. 75

We now introduce dependence measures that will be needed for our asymptotic theory.

Let ǫ′
i , ǫ j (i, j ∈ Z) be independent and identically distributed and define the coupled pro-

cess Fk,{0} = (. . . , ǫ−1, ǫ
′
0, ǫ1, . . . , ǫk) and ζk,{0}(t) = G(t, Fk,{0}). For p > 0, assume that cp =

supt∈[0,1] ‖ζ0(t)‖p < ∞, where ‖X‖p = E(|X |p)1/p, and define

δk,p = sup
t∈[0,1]

‖ζk(t) − ζk,{0}(t)‖p.

If G(t, Fk) does not depend functionally on ǫ0, then ζk(t) − ζk,{0}(t) = 0. So δk,p measures the 80

dependence of G(t; Fk) on the single input ǫ0 over t ∈ [0, 1]. Let p′ = min(p, 2) and define

�m,p =

∞
∑

j=m

δ j,p, 	m,p =
(

∞
∑

j=m

δ
p′

j,p

)1/p′

.

We can interpret �m,p as the cumulative dependence of ǫ0 on {ζ j (t)}
∞
j=m . Throughout the paper

we assume that the short-range dependence condition holds for some p � 2:

�0,p =

∞
∑

j=0

δ j,p < ∞. (6)

If (6) holds with p = 2, then the long-run variance function of the stationary process {ζk(t)}k

is bounded: 85

g(t) =
∑

k∈Z

cov{ζ0(t), ζk(t)} < ∞. (7)

Write δk = δk,2 and ‖ · ‖ = ‖ · ‖2. We shall impose the following regularity conditions:

Condition 1. Let μ ∈ C3[0, 1];

Condition 2. There exists C > 0 such that ‖ζi (t1) − ζi (t2)‖ � C |t1 − t2| holds for all t1, t2 ∈

[0, 1];

Condition 3. Let g ∈ C2[0, 1]. 90

The key, Condition (2) indicates that the underlying data-generating mechanism ζi (t) = G(t; Fi )

changes smoothly in time, thus suggesting local stationarity. More specifically, a length k sub-

sequence (e j )
i+k−1
j=i can be approximated by the stationary process e◦

j = G(i/n, F j ), j = i, i +

1, . . . , i + k − 1, in that ‖e j − G(i/n, F j )‖ � Ck/n = o(1) if k = o(n).

3. MAIN RESULTS 95

3·1. Asymptotic normality

Throughout the paper we assume that in (4) the kernel function K (·) ∈K, the collection of

symmetric, bounded functions in C1[−1, 1] with
∫ 1
−1 K (v)dv = 1. For example, K can be the
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Epanechnikov kernel K (v) = 3 max(0, 1 − v2)/4, the Bartlett kernel K (v) = max(0, 1 − |v|),

or the rectangle kernel K (v) = I(|v| � 1)/2, where I(·) is the indicator function. Define100

K ∗(x) =

∫ 1−2|x |

−1

K (v)K (v + 2|x |)dv.

Since K ∈ C1[−1, 1], we have K ∗ ∈K, which is continuous on R. We present below central limit

theorems for

In = ISE − E(ISE) =

∫ 1

0

({μ̂n(t) − μ(t)}2 − E[{μ̂n(t) − μ(t)}2])dt

when μ ≡ 0 and μ �≡ 0, respectively. It turns out that the asymptotic distributions are different

for these two cases.

THEOREM 1. Let μ ≡ 0. Assume Condition 2, Condition 3, �0,4 < ∞, K ∈K, bn → 0 and105

nbn → ∞ as n → ∞.

(i) Let g1 =
∫ 1

0 g(t)dt, Ŵk =
∑∞

i=0 δiδi+|k| and ln = ⌊2nbn⌋. Then

nbn

∫ 1

0

E{μ̂n(t)
2}dt − g1K ∗(0) =

∞
∑

k=0

O{min(Ŵk, bn) + min(1, k/ ln)Ŵk}. (8)

(ii) Let K ∗
2 =

∫ 1
−1{K ∗(v)}2dv and g2 =

∫ 1
0 g2(t)dt. If nb

3/2
n → ∞, then as n → ∞,

nb1/2
n In → N (0, 4g2K ∗

2 ) (9)

in distribution.

Theorem 1(i) deals with the mean integrated squared error E(ISE) =
∫ 1

0 E{μ̂n(t)}
2dt . Since110

∑∞
k=0 Ŵk � (

∑∞
i=0 δi )

2 < ∞, bn → 0 and ln → ∞, by the Lebesgue dominated convergence

theorem, the right-hand side of (8) goes to zero as n → ∞. The quantity g1 is the integrated

long-run variance. For stationary processes we have g(t) ≡ g(0) for all t , and g1 = g(0), g2 = g2
1 .

Based on Theorem 1, we present in § 3·2 a simulation-based testing procedure.

THEOREM 2. Assume Conditions 1–3 and �0,4 < ∞. Also assume K ∈K, bn → 0 and115

nb
3/2
n → ∞ as n → ∞.

(i) If nb5
n → 0, then (9) holds.

(ii) Let κ2 =
∫

K (v)v2dv. If nb5
n → ∞, then

n1/2

b2
n

In → κ2 N

{

0,

∫ 1

0

g(t)μ′′(t)2dt

}

in distribution.

For both big and small bandwidths, In is asymptotically normal. However, for those two cases,120

both the normalization sequences and the asymptotic variances are different.
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3·2. Implementation

We now present a testing procedure based on results in §3·1. Assume at the outset that the

long-run variance function g(·) is known and we want to test the hypothesis of nonexistence of

a signal 125

H ′
0 : μ ≡ 0. (10)

Section 3·4 concerns testing of the hypothesis (2) with general nonzero parametric forms, and

§3·6 presents an estimator for the long-run variance function g(·). To test (10), by Theorem 1, it

is natural to use ISE =
∫ 1

0 μ̂n(t)
2dt and we reject H ′

0 at level α, 0 < α < 1, if

ISE > g1K ∗(0)(nbn)
−1 + z1−αn−1b−1/2

n (4g2K ∗
2 )1/2,

where z1−α is the (1 − α)th quantile of a standard normal distribution. However, our simulation

study in § 4·1 shows that convergence in Theorem 1 can be quite slow. To overcome this, we 130

propose a simulation-based procedure. Let Zi (i ∈ Z) be independent standard normal random

variables, Y ⋄
i = e⋄

i = g(i/n)1/2 Zi , and let μ̂⋄
n(·) be the corresponding local linear estimator (4)

with Yi therein replaced by Y ⋄
i . By Theorem 1, we have

nbn

∫ 1

0

E{μ̂⋄
n(t)2}dt − g1K ∗(0) = O(bn)

and, for ISE
⋄ =

∫ 1
0 μ̂⋄

n(t)2dt , the central limit theorem holds: as n → ∞,

nb1/2
n {ISE

⋄ − E(ISE
⋄)} → N (0, 4g2K ∗

2 ) (11)

in distribution. Hence ISE =
∫ 1

0 μ̂n(t)
2dt and ISE

⋄ have the same asymptotic normal distribution, 135

with mean g1K ∗(0)n−1b−1
n and variance 4g2K ∗

2 n−2b−1
n if the bound in the right-hand side of

(8) is of order o(b
1/2
n ). The latter observation suggests that, instead of using the central limit

theorem, the cutoff value of ISE can be obtained by simulating ISE
⋄.

3·3. Asymptotic power

We consider the power of our test for the local alternative model of the form 140

Yi = anh(i/n) + ei ,

where h is a known nonzero C2 function on [0, 1] and (an)n�1 is a positive sequence with an → 0.

Here an indicates the magnitude of departure from the null hypothesis. By Proposition 1, the

power goes to 1 if nb
1/2
n a2

n → ∞.

PROPOSITION 1. Assume Conditions 2 and 3 and �0,4 < ∞. Also assume that K ∈K, bn → 0,

nb
3/2
n → ∞ and nb

1/2
n a2

n → c > 0 as n → ∞. Let 
 be the standard normal distribution function. 145

Then the power of our testing procedure converges to 
{zα + (4g2K ∗
2 )−1/2c

∫ 1
0 h(t)2dt}.

Proof. Let μ̂0
n(t) =

∑n
i=1 wi (t)ei and hn(t) =

∑n
i=1 wi (t)h(i/n). Then

∫ 1

0

{μ̂n(t)}
2 − {μ̂0

n(t)}
2dt = 2an

∫ 1

0

μ̂0
n(t)hn(t)dt + a2

n

∫ 1

0

hn(t)
2dt. (12)
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Since h ∈ C2[0, 1], |
∫ 1

0 wi (t)hn(t)dt | � C/n for some C > 0. By Lemma 1,

nb1/2
n an

∥

∥

∥

∥

∫ 1

0

μ̂0
n(t)hn(t)dt

∥

∥

∥

∥

= nb1/2
n an O(n−1/2) → 0.

So, Proposition 1 follows from Theorem 1 and (12) since
∫ 1

0 hn(t)
2dt →

∫ 1
0 h(t)2dt . �

3·4. Hypothesis testing with general parametric forms150

Under the null hypothesis (2), let θ0 be the true value and θ̂n be the minimizer of (3). Then

a natural test statistic would be
∫ 1

0 {μ̂n(t) − f (θ̂n, t)}2dt . However, it is not convenient to use

this directly since by Theorem 2,
∫ 1

0 {μ̂n(t) − f (θ0, t)}2dt can have different asymptotic normal

distributions for different bandwidths. It is nontrivial to determine which central limit theorem

to use. To solve this problem, we use the modified version155

ISEM =

∫ 1

0

{μ̂n(t) − μM(t)}2dt,

where μM(t) =
∑n

i=1 f (θ0, i/n)wi (t) is the local linear smoothed version of f (θ0, t). Since

μ̂n(t) − μM(t) =
∑n

i=1 wi (t)ei , ISEM reduces to ISE with μ ≡ 0. The bias then disap-

pears on replacing μ(t) by μM(t). Such a bias correction scheme was previously used in

Härdle & Mammen (1993). Note that ISEM is not directly usable since it depends on the unknown

function μ, which under H0 depends on the parameter θ0. It can be estimated by160

ISE
M̂

=

∫ 1

0

{μ̂n(t) − μ
M̂

(t)}2dt =

∫ 1

0

{μ̂(e)
n (t)}2dt, (13)

where μ
M̂

(t) =
∑n

i=1 f (θ̂n, i/n)wi (t) and μ̂
(e)
n (t) = μ̂n(t) − μ

M̂
(t) is the local linear smoother

of the estimated residuals êi = Yi − f (θ̂n, i/n).

PROPOSITION 2. Assume that ḟ (θ, t) = ∂ f (θ, t)/∂θ exists at a neighbourhood of θ0, that

sup
t∈[0,1]

sup
|θ−θ0|�c

| ḟ (θ, t)| < ∞ (14)

holds for some c > 0, and that f (θ, t) admits the uniform Taylor expansion: as θ → θ0,

sup
t∈[0,1]

| f (θ, t) − f (θ0, t) − (θ − θ0)
T ḟ (θ0, t)| =O(|θ − θ0|

2). (15)

Then under conditions of Theorem 1, if θ̂n − θ0 = Op(n
−1/2), we have165

n(ISE
M̂

− ISEM) = Op(1). (16)

Proposition 2 implies that the statistic ISE
M̂

can approximate ISEM well, and it is also asymp-

totically normally distributed with same asymptotic mean and variance, given in Theorem 1.

3·5. Bandwidth selection

Choosing a bandwidth such that the test procedure based on ISE
M̂

has a good performance,

is nontrivial, and in our case it is further complicated by the presence of dependence and170

nonstationarity. In the regression setting with independent errors, the problem was considered
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by Härdle & Marron (1985), Härdle et al. (1988), Park & Marron (1990), Ruppert et al. (1995),

Wand & Jones (1995) and Xia (1998), among others. Herrmann et al. (1992) and Wu & Zhao

(2007) dealt with models with stationary errors. Hall & Hart (1990), Kulasekera & Wang (1997)

and Gao & Gijbels (2008) considered bandwidth selection in the context of nonparametric 175

hypothesis testing.

We propose using the asymptotic mean squared error optimal bandwidth bn = cn−1/5, where

c > 0 is a constant. Due to dependence and nonstationarity, it is difficult to estimate c. On the pos-

itive side, our simulation studies carried out in §4 suggests that the performance of our simulation-

based test is relatively robust to the choice of c. Hence in our simulation and data analysis, we 180

simply choose bn = n−1/5 in computing ISE
M̂

, and interestingly, this simple choice performs

quite well.

3·6. Estimation of variance functions

In the implementation of our testing procedure, a key issue is to estimate the pointwise long-

run variance function, g(t), t ∈ [0, 1]. If the errors ei were independent and identically distributed, 185

then g(t) ≡ σ 2
e = ‖ei‖

2, the variance of ei . In this case we can apply difference-based variance

estimators and there is a huge literature on the estimation of σ 2
e ; see Rice (1984), Hall et al.

(1990) and Dette et al. (1998), among others. In our setting, however, due to the dependence,

the difference-based approach is generally invalid. For example, assuming that μ ∈ C2[0, 1] and

ei are stationary, as n → ∞, Rice’s (1984) estimator (2n − 2)−1
∑n

i=2(Yi − Yi−1)
2 → γ0 − γ1, 190

by the ergodic theorem. Here γk = cov(e0, ek) is the auto-covariance function of (ei ). Note that

σ 2 =
∑

k∈Z
γk , which is generally different from γ0 − γ1.

To account for dependence and nonstationarity, we estimate g(t) by

ĝ(t) =

∑n
i=1 Qi I(|i/n − t | � bn)

∑n
i=1 I(|i/n − t | � bn)

, (17)

where Qi = ei

∑

| j−i |�mn
e j . By Theorem 3, the above estimator is consistent.

THEOREM 3. Assume Conditions 2 and 3, �0,4 < ∞, bn → 0 and m−1
n + mn(nbn)

−1 → 0. 195

Then as n → ∞,

(nbn/mn)
1/2[ĝ(t) − E{ĝ(t)}] → N {0, 2g2(t)} (18)

in distribution for any t ∈ (0, 1). Also, uniformly over t ∈ [bn, 1 − bn], the bias

E{ĝ(t)} − g(t) = O(b2
n) +

mn
∑

k=0

O{min(Ŵk, mn/n)} +
∑

k>mn

O(Ŵk). (19)

If there exists ρ ∈ (0, 1) such that Ŵk = O(ρk), letting mn = ⌊log n/ log ρ−1⌋, we have by (19)

that E{ĝ(t)} − g(t) = O(b2
n) + O(m2

n/n). Hence, by (18), the mean squared error of ĝ(t) is of

order O(b4
n + m4

n/n2) + O{mn(nbn)
−1} = O{(n−1 log n)4/5} if bn ≍ (n−1 log n)1/5. 200

To use (17), we suggest using the automatic bandwidth selector in Ruppert et al. (1995) to

obtain a local linear fit μ̃n(·) of the mean function and then the estimated residuals ẽi = Yi −

μ̃n(i/n). Then we replace ei in (17) by ẽi .

3·7. A simulation-based testing procedure

We summarize the testing procedure as follows. Its validity is justified by noting that ISE and 205

ISE
◦ have the same asymptotic distribution, as argued in (11). Section 4 presents a simulation
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study of its finite-sample performance.

(i) Select a bandwidth b∗
n by the procedure in Ruppert et al. (1995); perform a local linear fit

for μ(·) and obtain the estimated residuals ẽi = Yi − μ̃n(i/n); compute ĝ(t), t ∈ [0, 1],

via (17).

(ii) Obtain an estimator θ̂n for the parameter θ ; compute ẽi = Yi − f (θ̂n, i/n) and ISE
M̂

via210

(13) with the local linear estimator (4) where bn = n−1/5 is used.

(iii) Generate independent Z1, . . . , Zn ∼ N (0, 1) and let Y ⋄
i = ĝ(i/n)1/2 Zi . Then compute

the corresponding ISE
⋄

M̂
in the same manner as (ii).

(iv) Let α ∈ (0, 1) be the significance level. Repeat step (iii) and obtain the estimated quantile

q̂1−α of ISE
⋄

M̂
, the bootstrap cutoff value.215

(v) Reject the null hypothesis at level α if ISE
M̂

> q̂1−α .

4. A SIMULATION STUDY

4·1. Approximations of distributions of test statistics

Consider model (1) with ei = ζi (i/n), where for any t ∈ [0, 1], {ζi (t)}i∈Z follows the recursion

ζi (t) = ρ(t)ζi−1(t) + σǫi . (20)

Here ǫi , i ∈ Z, are independent random variables with pr(ǫi = −1) = pr(ǫi = 1) = 1/2. Thus,220

(ei )i∈Z is a first-order autoregressive process with time-varying coefficient. Calculations

show that E{ζi (t)} = 0, g0(t) = var{ζi (t)} = σ 2/{1 − ρ(t)2} and the long-run variance function

g(t) = σ 2/{1 − ρ(t)}2. We use the Epanechnikov kernel K (v) = 3 max(0, 1 − v2)/4. Then

K ∗(0) = 3/5 and K ∗
2 = 167/770. We consider the problem of testing H ′

0 : μ ≡ 0. Choose ρ(t) =

0·1 + 0·4t , σ = 1 and n = 500, so the bandwidth bn = n−1/5 = 0·289. We simulate 50 000 real-225

izations of ISE
M̂

. Three different approximations of ISE
M̂

are considered: the normal approx-

imation in Theorem 1; ISE
♯ =

∫ 1
0 μ̂

♯
n(t)

2dt , where μ̂
♯
n(t) =

∑n
i=1 Y

♯
i wi (t), Y

♯
i = g0(i/n)1/2 Zi

and Zi are independent standard normal variables; and ISE
⋄ =

∫ 1
0 μ̂⋄

n(t)2dt , introduced in §3.2,

which differs from the second in that the long-run variance function g is used instead of the

marginal variance function g0. In the second scheme, the dependence is ignored. We use Q–Q230

plot to compare the distributions. The results are presented in Fig. 1, which shows that the normal Q3

approximation does not have a satisfactory finite-sample performance. A similar phenomenon

was observed by Härdle & Mammen (1993). If we ignore the inherited dependence structure,

then one may obtain an erroneous conclusion; see Fig. 1(b) of Fig. 1. As shown in Fig. 1(c), the

dependence-adjusted procedure provides a very good approximation of ISE
M̂

. The same conclu-235

sion applies to other parametric forms.

For a theoretical justification of the superiority of the simulation-based method, we use

the Gaussian approximation principle in Wu & Zhou (2010). Consider the linear process X i =
∑∞

j=0 a j (i/n)ηi− j , where ηi are independent and identically distributed with mean 0 and ηi ∈

Lp (p > 2), and a j (·) are differentiable functions satisfying
∑∞

j=0 supt∈[0,1] |a′
j (t)| < ∞ and240

∑∞
j=m supt∈[0,1] |a j (t)| = O(m1/p−1/2). Then on a richer probability space one can construct

e⋆
1, . . . , e⋆

n and independent standard normal random variables Z⋆
1, . . . , Z⋆

n such that (e⋆
i )

n
i=1 and

(ei )
n
i=1 have the same distribution and, for S⋆

i =
∑i

j=1 e⋆
i and T ⋆

i =
∑i

j=1 g(i/n)1/2 Z⋆
i ,

max
i�n

|S⋆
i − T ⋆

i | = Op(n
1/p log n). (21)
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Fig. 1. Title Q–Q plots of the test statistic ISE
M̂

against normal approximation (a), approximation without

dependence, ISE
♯, (b) and approximation with dependence, ISE

⋄, (c). The dashed lines in (b) and (c) have
unit slope and zero intercept.

Let μ⋆
n(t) =

∑n
i=1 wi (t)e

⋆
i and ν⋆

n(t) =
∑n

i=1 wi (t)g(i/n)1/2 Z⋆
i . For the local linear weights

Q3

wi (t) in (4), if K is Lipschitz continuous, by (21), we obtain 245

sup
0�t�1

|μ⋆
n(t) − ν⋆

n(t)| = Op{n
1/p log n/(nbn)} (22)

by a summation by parts technique. By Theorem 1,
∫ 1

0 μ⋆
n(t)

2dt = Op{(nbn)
−1}. So, by (22),

∫ 1

0

|μ⋆
n(t)

2 − ν⋆
n(t)2|dt = Op{n

1/p log n(nbn)
−3/2}. (23)

When μ ≡ 0, since (e⋆
i )

n
i=1 and (ei )

n
i=1 have the same distribution,

∫ 1
0 μ⋆

n(t)
2dt is identically

distributed as
∫ 1

0 μ̂n(t)
2dt . Note that

∫ 1
0 ν⋆

n(t)2dt corresponds to ISE
⋄

M̂
in step (iii) in §3·7 if ĝ

therein is replaced by the true g. For the mean squared error optimal bandwidth bn ≍ n−1/5, the

error bound in (22) is Op(n
τ−6/5). Since τ can be arbitrarily small if p is large,

∫ 1
0 μ⋆

n(t)
2dt 250

and
∫ 1

0 ν⋆
n(t)2dt can be very close; recalling Proposition 2 that the difference between ISEM and

the realized version ISE
M̂

has a larger order Op(n
−1). So, we expect that the simulation-based

method can have an excellent performance.

4·2. Effect of bandwidths

We consider model (1) with error structure (20). With true mean function μ(t) = 4t2 − 4t + 3, 255

t ∈ [0, 1], we consider testing whether the mean function has a quadratic form. To study how

bandwidths affect the performance of our test, we choose ρ(t) = 0·3 − 0·5t , σ = 1 and 10 lev-

els of b: b = 0·05 j ( j = 1, . . . , 10). For each b, we calculate q̂0·95 by repeating step (iii) in §3·7

50 000 times. Then we generate 50 000 realizations of the time-varying AR(1) process and com-

pute the corresponding ISE
M̂

values for each realization. Simulated empirical rejection propor- 260

tions with n = 100, 200 and 500, presented in Table 1, are reasonably close to the nominal level. If

we choose bn = n−1/5, then b100 = 0·398, b200 = 0·347 and b500 = 0·289, and the corresponding

empirical rejection probabilities are about 5·01, 4·97 and 5·03%, respectively. In addition, they

become more robust to the change in bandwidths as n gets larger. So, in practice, we recommend

using bn = n−1/5. 265
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Table 1. Empirical rejection percentages with different bandwidths b and sample sizes n.

The significance level is 5%.

b

n 0·05 0·1 0·15 0·2 0·25 0·3 0·35 0·4 0·45 0·5

100 2·8 4·0 4·5 4·7 4·7 5·0 5·2 5·0 5·1 5·1

200 3·8 4·6 4·6 5·1 4·6 5·1 5·0 5·2 5·1 5·2

500 4·6 4·7 5·0 4·9 5·1 5·0 5·0 5·1 5·2 5·1
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Fig. 2. Satellite-derived lifetime-maximum wind speeds of tropical cyclones during 1981–2006.

5. APPLICATIONS

5·1. Tropical cyclone data

According to Emanuel (1991), Holland (1997) and Bengtsson (2007), global warming is lead-

ing to increasing ocean temperatures and consequently to more tropical cyclones. Elsner et al.

(2008) analysed patterns of tropical cyclone winds by fitting linear trends for quantiles of270

satellite-derived lifetime-maximum wind speeds of 2098 tropical cyclones over the globe during

1981–2006. The data set is available in the Supplementary material see Elsner et al. (2008) for a

detailed description. Figure 2 shows these data.

We shall model the wind speed data by (1) and test the null hypothesis H0 : μ(·) is linear. Zhou

(2010) argued that the error process (ei ) is nonstationary. Hence g(t) is not a constant function.275

Using the procedure in Ruppert et al. (1995), we select b∗
n = 0·081 and estimate the long-run

variance function g(t) by using (17) with mn = (nb∗
n)

1/3. For hypothesis testing, we choose bn =

n−1/5 = 0·217. The test statistic ISE
M̂

= 1·011 with p-value 0·12 after 50 000 repetitions of step

(iii) in §3.7. So, at the 5% significance level, we accept the linear trend hypothesis. The fitted

trend, with standard error, is μ(t) = 75·3(1·1) + 3·8(1·8)t , t ∈ [0, 1]. For testing the hypothesis280

H∗
0 : μ is constant, using the same method we obtain ISE

M̂
= 2·091 with p-value 0·04. Thus the

mean constancy hypothesis is rejected at the 5% level. Zhou (2010) applied anL∞-based method,

and failed to reject H∗
0 . Our L2-based testing procedure appears to be more powerful.

5·2. Central england temperature data

We consider the annual central England temperature series from year 1659 to 2009 by using285

model (1). The time series is plotted in Fig. 3 and the data are available in the Supplementary

material. It was first constructed by Manley (1974) and is now routinely updated by the Hadley

Center, U.K. See Jones & Hulme (1997) for a more detailed description. Jones & Hulme (1997)

and Jones & Bradley (1992a) fitted linear trends, while Benner (1999) and Harvey & Mills

(2003) fitted quadratic curves. Realizing that the quadratic trend assumption might not be appro-290

priate, Harvey & Mills (2003) also tried local polynomial regression. Here we shall test the
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Fig. 3. Annual central England temperature series from 1659 to 2009. The dashed curve is the global
cubic fit.

hypothesis H0 : μ(·) is quadratic. As in the analysis of the tropical cyclone data, we follow the pro-

cedure in §3.7 and obtain the test statistic ISE
M̂

= 0·0059 with p = 0·00002. Hence, the quadratic

trend assumption is rejected at the 5% level. Interestingly, the cubic trend hypothesis is accepted:

the test statistic ISE
M̂

= 0·000096 and the corresponding p-value is 0·47. The fitted equation 295

with standard error in parenthesis, is μ(t) = 8·63(0·13) + 3·7(1·1)t − 8·9(2·5)t2 + 6·8(1·7)t3,

where t ∈ [0, 1]. The cubic trend fit accords well with Benner’s observation that the whole series

has roughly three periods: the earliest part corresponds to the coldest weather which may rep-

resent the little ice age (Jones & Bradley, 1992b), the middle part fluctuates around the mean,

while the last part exhibits a warming trend. This cannot be described by a quadratic fit. 300

SUPPLEMENTARY MATERIAL

Supplementary Material is available at Biometrika online. Q4
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APPENDIX

Recall that ζk(t) = G(t,Fk). We assume that E{G(t,Fk)} = 0 for any t ∈ [0, 1]. Define

ζ̃k(t) = E{ζk(t) | Fk−m,k}, m ∈ N.

Then for all t ∈ [0, 1], {ζ̃k(t)}k is m-dependent with mean zero. Define the projection operator 310

Pk · = E(· | Fk) − E(· | Fk−1), k ∈ Z.

For a set T ⊆ Z, let ǫi,T = ǫ′
i if i ∈ T , and ǫi,T = ǫi otherwise. Let Fi, j,T = (ǫk,T , k = i, . . . , j). In the proof

C denotes constants whose value may vary from place to place.

To prove Theorem 1, we shall apply the technique in Liu & Wu (2010). Lemmas 1, 2 and 3 provide

bounds for m-dependent and martingale approximations for linear and quadratic forms. They can be proved

by using the arguments in Lemma 1, Propositions 1 and 2 in Liu & Wu (2010), respectively. That paper 315

deals with stationary processes, but there are no essential additional difficulties involved for generalization

to nonstationary processes. Detailed proofs can be found in the online Supplementary Material.
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LEMMA A1. Assume �0,p < ∞, p � 2. Let α1, α2, . . . ,∈ R, An = (
∑n

i=1 α2
i )

1/2, and C p =

18p3/2(p − 1)−1/2. Then (i) ‖
∑n

i=1 αi ei‖p � C p An�0,p; and (ii) ‖
∑n

i=1 αi (ei − ẽi )‖p � C p An�m+1,p.

LEMMA A2. Assume �0,4 < ∞. Let α j ∈ R,320

Ln =
∑

1�i< j�n

α j−i ei e j , L̃n =
∑

1�i< j�n

α j−i ẽi ẽ j . (A1)

Let dm,4 =
∑∞

k=0 min(δk,4, 	m+1,4) and An = (
∑n−1

i=1 α2
i )

1/2. Then

‖{Ln − E(Ln)} − {L̃n − E(L̃n)}‖ � C4�0,4dm,4n1/2 An.

LEMMA A3. Let α1, . . . , αn−1 ∈ R and Vm(α) = maxi<n α2
i + m

∑n−1
i=1 |αi − αi−1|

2; let

D̃k,n =

∞
∑

l=0

Pk ẽk+l , M̃n =
∑

1�i< j�n

α j−i D̃i,n D̃ j,n.

Assume �0,4 < ∞. Then ‖L̃n − E(L̃n) − M̃n‖
2 � Cm3nVm(α).

THEOREM A1. Assume Condition 2 and Condition 3, (A3), �0,4 < ∞, K ∈K, bn → 0 and nb3/2
n → ∞.

Recall (A1) for Ln and let α j = n−1b−1/2
n K ∗{ j/(2nbn)}. Then as n → ∞, Ln − E(Ln) → N (0, g2 K ∗

2 )325

in distribution.

Proof. Recall Lemma A2 for An and Lemma A3 for Vm(α). Since K ∗ ∈K, Vm(α) = O(mn3b2
n) and

An = O(n−1/2). By Lemmas A2 and A3,

lim
m→∞

lim sup
n→∞

‖Ln − E(Ln) − M̃n‖ = 0. (A2)

In (7) we replace ζi (t) by ζ̃i (t) and let g̃(t) be the long-run variance function for the latter m-dependent

process. Set g̃2 =
∫ 1

0
g̃2(t)dt , by (A2) it suffices to verify that M̃n → N (0, g̃2 K ∗

2 ) in distribution. This330

can be proved by using the argument of Theorem 6 in Liu & Wu (2010), where the case of stationary

processes is dealt with. Here we shall only detail the step, cf. (A3) below, that requires special attention

of nonstationarity since all other steps similarly follow. A complete proof is available as supplementary

material. We shall show that
n

∑

j=2m+1

E(J 2
1, j,n)E(D̃2

j,n) → g̃2 K ∗
2 , (A3)

where J1, j,n =
∑ j−2m

i=1 α j−i D̃i,n . Let D̃∗
k,n =

∑∞
l=0 Pk ζ̃k+l(k/n). By Condition (2),335

|‖D̃k,n‖
2 − ‖D̃∗

k,n‖
2| � (‖D̃k,n‖ + ‖D̃∗

k,n‖)‖D̃k,n − D̃∗
k,n‖ � Cm3n−1 = o(1).

Observe that ‖D̃∗
k,n‖

2 = g̃(k/n). Then (A3) follows from

n
∑

j=2m+1

j−2m
∑

i=1

α2
j−i‖D̃∗

i,n‖
2‖D̃∗

j,n‖
2 =

∑

1�i< j�n

α2
j−i g̃(i/n)g̃( j/n) + o(1)

=

n−1
∑

i=1

g̃(i/n)

n
∑

j=1+i

α2
j−i g̃( j/n) + o(1)

=

n−1
∑

i=1

g̃2(i/n)

n
∑

j=1+i

α2
j−i + o(1) = g̃2 K ∗

2 + o(1),

since
∑n

j=1+i α2
j−i = n−1 K ∗

2 {1 + o(1)} and
∑n

j=1+i α2
j−i {g̃( j/n) − g̃(i/n)} = o(n−1). �340
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Proof of Theorem 1. Let μ̆n(t) =
∑n

i=1 vi (t)Yi be the Priestley–Chao estimator, where vi (t) =

(nbn)
−1 K {(i/n − t)/bn}. Note that wi (t) = vi (t) + O{(nbn)

−2} uniformly over (bn, 1 − bn). Both
∫ bn

0
E{μ̂n(t)

2}dt and
∫ 1

1−bn
E{μ̂n(t)

2}dt are of order O(n−1). Then

∥

∥

∥

∥

∫ 1

0

μ̂n(t)
2dt −

∫ 1

0

μ̆n(t)
2dt

∥

∥

∥

∥

1

� C{n−1 + (nbn)
−2}.

Hence it suffices to prove the same results for the Priestley–Chao estimator μ̆n(t). For (i), write l = ln . If

|i − j | � l, by Condition (2) and the Cauchy–Schwarz inequality, |E[ei {e j − ζ j (i/n)}]| � ‖ei‖‖ζ j ( j/n) − 345

ζ j (i/n)‖ = O(l/n). Let γk(t) = E{ζ0(t)ζk(t)}. Then E(ei e j ) − γ j−i (i/n) = O(l/n). Since Ps , s ∈ Z, are

orthogonal,

|E(ei e j )| =

∣

∣

∣

∣

∣

E

(

∑

s∈Z

Psei

∑

s ′∈Z

Ps ′e j

)∣

∣

∣

∣

∣

�
∑

s∈Z

|E{(Psei )(Pse j )}|

�
∑

s∈Z

‖Psei‖‖Pse j‖ �
∑

s∈Z

δi−sδ j−s = Ŵi− j . (A4)

Similarly, |γ j−i (i/n)| � Ŵ j−i . Then 350

1

n

n
∑

i=1

l
∑

k=−l

∣

∣

∣

∣

K ∗

(

k

2nbn

)

{E(ei ei+k) − γk(i/n)}

∣

∣

∣

∣

=

l
∑

k=0

O{min(Ŵk, bn)}. (A5)

Let γ̄k =
∫ 1

0
γk(t)dt . Since γk(·) is Lipschitz continuous and K ∗ ∈ C[−1, 1],

1

n

n
∑

i=1

l
∑

k=−l

K ∗

(

k

2nbn

)

γk(i/n) − K ∗(0)

l
∑

k=−l

γ̄k

=

l
∑

k=−l

K ∗

(

k

2nbn

)

{γ̄k + O(n−1)} − K ∗(0)

l
∑

k=−l

γ̄k = O(l/n) +

l
∑

k=0

O(k/ l)Ŵk . (A6)

By Lemma A1(i), supt ‖μ̂n(t)‖
2 = O{(nbn)

−1}. Note that
∫ 1+b

−b
K (x − t/b)K (y − t/b)dt = bK ∗(y/2 −

x/2) if 0 � x � y � b−1. Hence 355

nbn

∫ 1

0

E{μ̂n(t)
2}dt = nbn

∫ 1+bn

−bn

E{μ̂n(t)
2}dt + O(bn)

=
1

n

∑

1�i, j�n

K ∗

(

i − j

2nbn

)

E(ei e j ) + O(bn). (A7)

Since g1 =
∑

k∈Z
γ̄k , by (A5), (A6) and (A7), (8) follows in view of

1

n

n
∑

i=1

⎧

⎨

⎩

l
∑

k=−l

−

min(n−i,l)
∑

max(1−i,l)

⎫

⎬

⎭

K ∗

(

k

2nbn

)

E(ei ei+k) =
1

n
O(l) = O(bn).

For (ii), by Theorem A1, we have

nb1/2
n

∫ 1+bn

−bn

[μ̂n(t)
2 − E{μ̂n(t)

2}]dt → N (0, 4g2 K ∗
2 )

in distribution. So, (ii) follows in view of nb1/2
n

∫ 0

−bn
E{μ̂n(t)

2}dt = nb1/2
n O{bn(nbn)

−1} → 0 and similarly, 360

for the right tail, nb1/2
n

∫ 1+bn

1
E{μ̂n(t)

2}dt → 0. �
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Proof of Theorem 2. Observe that In = I In + I I In , where

I In =

∫ 1

0

{[μ̂n(t) − E{μ̂n(t)}]
2 − E([μ̂n(t) − E{μ̂n(t)}]

2)}dt,

I I In =

∫ 1

0

2[μ̂n(t) − E{μ̂n(t)}][E{μ̂n(t)} − μ(t)]dt.

By Theorem 1(ii), nb1/2
n I In → N (0, 4g2 K ∗

2 ) in distribution. Then it suffices to show that365

n1/2

b2
n

I I In =

n
∑

i=1

qn,i ei → κ2 N (0, σ 2) (A8)

in distribution, where σ 2 =
∫ 1

0
g(t)μ′′(t)2dt and

qn,i =
2n1/2

b2
n

∫ 1

0

wi (t)[E{μ̂n(t)} − μ(t)]dt.

Under Condition 1, the bias E{μ̂n(t)} − μ(t) = b2
nκ2μ

′′(t)/2 + o(b2
n). Since K ∈K, by elementary cal-

culations, rn,i := qn,i − n−1/2κ2μ
′′(i/n) satisfies

∑n
i=1 |rn,i |

2 = o(1). By Lemma A1(i), ‖
∑n

i=1 rn,i ei‖ =

o(1), and (A8) follows if
n

∑

i=1

n−1/2μ′′(i/n)ei → N (0, σ 2) (A9)

in distribution. To prove (A9) we apply the m-dependence approximation method. By Lemma A1(ii),370

lim
m→∞

lim sup
n→∞

∥

∥

∥

∥

∥

n
∑

i=1

n−1/2μ′′(i/n)(ei − ẽi )

∥

∥

∥

∥

∥

= 0.

Note that ẽi = E(ei |Fi−m,i ) are m-dependent. Let σ̃ 2 =
∫ 1

0
g̃(t)μ′′(t)2dt . Hence (A9) follows from

Hoeffding & Robbins’ (1948) central limit theorem for
∑n

i=1 n−1/2μ′′(i/n)ẽi for m-dependent random

variables ẽi in view of

E

{

n
∑

i=1

n−1/2μ′′(i/n)ẽi

}2

=
1

n

∑

|i− j |�m

μ′′(i/n)μ′′( j/n)E(ẽi ẽ j ) → σ̃ 2.

To see the above relation, we note that E(ẽi ẽ j ) − γ̃i− j (i/n) = o(1) if |i − j | � m, and

n−1
∑n

i=1 μ′′(i/n)2γ̃i− j (i/n) →
∫ 1

0
μ′′(t)2γ̃i− j (t)dt , by the continuity of γ̃i− j (·) and μ′′(·). �375

Proof of Proposition 2. Write

ISEM̂ − ISEM = 2

∫ 1

0

{μ̂n(t) − μM(t)}{μM(t) − μM̂(t)}dt

+

∫ 1

0

{μM(t) − μM̂(t)}2dt = 2An + Bn.

So, (16) follows if both An and Bn are of order n−1. To this end, by (15),

μM(t) − μM̂(t) =

n
∑

i=1

wi (t){ f (θ0, t) − f (θ̂n, t)}380

= (θ0 − θ̂n)
⊤

n
∑

i=1

wi (t) ḟ (θ0, t) + Op(n
−1) (A10)
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holds uniformly over t ∈ [0, 1] since θ̂n is n1/2-consistent. Then by (14), we have Bn = Op(n
−1). For An ,

note that μ̂n(t) − μM(t) =
∑n

j=1 w j (t)e j . By (A10), since ‖μ̂n(t) − μM(t)‖n−1 = O(n−3/2b−1/2
n ) and, for

some constant C > 0, by (14),
∣

∣

∣

∣

∣

∫ 1

0

w j (t)

n
∑

i=1

wi (t) ḟ (θ0, t)dt

∣

∣

∣

∣

∣

� C

∫ 1

0

|w j (t)|dt �
C

n
,

then we also have An = Op(n
−1) in view of Lemma A1(i). � 385

Proof of Theorem 3. Let In(t) = {i : |i/n − t | � bn}. Observe that

n
∑

i=1

Qi I(|i/n − t | � bn) =
∑

i, j∈In(t)

ei e j I(|i − j | � mn) + Rn,

where by (A4),

Rn =
∑

i∈In(t), j �∈In(t)

ei e j I(|i − j | � mn) = Op(mn).

With elementary manipulations, (18) follows by applying the argument of Theorem 1 to (ei )i∈In(t) with

αi− j = I(|i − j | � mn). For (19), write

E(Qi ) − g(i/n) =

i+mn
∑

j=i−mn

E[ζi (i/n){ζ j ( j/n) − ζ j (i/n)}] +
∑

j :| j−i |>mn

E{ζi (i/n)ζ j (i/n)}.

By (A6) and (Condition 2), the first and second terms above are of order
∑

k�mn
O{min(Ŵk, mn/n)} and 390

∑

k>mn
O(Ŵk), respectively. Then (19) follows from Condition 3. �
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