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ABSTRACT

Pre-main-sequence (PMS) models provide invaluable tools for the study of star-forming re-

gions as they allow us to assign masses and ages to young stars. Thus, it is of primary

importance to test the models against observations of PMS stars with dynamically determined

masses. We developed a Bayesian method for testing the present generation of PMS models,

which allows for a quantitative comparison with observations, largely superseding the widely

used isochrones and tracks qualitative superposition.

Using the available PMS data, we tested the newest PISA PMS models, establishing good

agreement with the observations. The data cover a mass range from ∼0.3 to ∼3.1 M⊙,

temperatures from ∼3 × 103 to ∼1.2 × 104 K and luminosities from ∼3 × 10−2 to ∼60 L⊙.

Masses are correctly predicted within 20 per cent of the observed values in most of the cases,

and for some of them the difference is as small as 5 per cent. Nevertheless, some discrepancies

are also observed and critically discussed.

By means of simulations, using typical observational errors, we evaluated the spread of

log τ sim − log τ rec, i.e. simulated − recovered age distribution of the single objects. We also

found that stars in binary systems simulated as coeval might be recovered as non-coeval, due

to observational errors. The actual fraction of fake non-coevality is a complex function of the

simulated ages, masses and mass ratios. We demonstrated that it is possible to recover the

systems’ ages with better precision than for single stars using the composite age–probability

distribution, i.e. the product of the components’ age distributions. Using this valuable tool, we

estimated the ages of the presently observed PMS binary systems.

Key words: methods: statistical – binaries: eclipsing – binaries: general – stars: fundamental

parameters – stars: pre-main-sequence.

1 IN T RO D U C T I O N

The current understanding of star formation processes largely relies

on the ability of assigning ages and masses to young stars using

pre-main-sequence (PMS) models. The observed luminosity and

effective temperature of stars in their early evolutionary stages can

be translated into mass and age only by the comparison with PMS

stellar tracks. Unfortunately, the early evolutionary stages of the

stellar life are among those less tightly constrained by observations

and most uncertain from the theoretical point of view. This situa-

tion becomes progressively worse for stellar mass below ≈1.2 M⊙.

This is mainly a consequence of the poor treatment of superadi-

abatic convection. Moreover, there are still large uncertainties on

the main input physics describing the cold and dense matter typical
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of low-mass stars’ interiors adopted in modern evolutionary codes.

This theoretical uncertainty is testified by the large discrepancy still

present between different sets of low-mass PMS models (see e.g.

Siess, Dufour & Forestini 2000; Baraffe et al. 2002; Tognelli, Prada

Moroni & Degl’Innocenti 2011).

An ever growing amount of detailed information is becoming

available for star-forming regions in both the Milky Way (see

Reipurth 2008a,b) and the Magellanic Clouds (Cignoni et al. 2009,

2010; Gouliermis et al. 2010), prompted by the remarkable im-

provement in the observational techniques over the last decade. The

aforementioned theoretical uncertainties imply that many of the

properties inferred for these regions, such as the initial mass func-

tion and the star formation history, depend strongly on the adopted

PMS models, particularly for stars less massive than ≈1.2 M⊙.

The importance of these studies urges an empirical calibration

of PMS tracks and isochrones based on a statistically significant

sample of young stars with precisely determined parameters (mass,

temperature, radius, luminosity and chemical abundances). Most

useful in this respect are the detached, double-lined, eclipsing
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Testing PMS models, a Bayesian approach 987

systems which directly provide stellar masses, temperatures and

radii, yielding also a distance-independent luminosity through the

Stephan law. Unfortunately, the currently available sample of PMS

stars in eclipsing binaries (EBs) amounts only to 10 objects in 6

systems (see Section 5 and Table 4). Other important observational

constraints to PMS models are provided by astrometric measure-

ment of binary systems that can be resolved thanks to interferomet-

ric observations. For these systems, the radii cannot be determined

though. Three astrometric binary systems with both stars in the PMS

phase are currently known and studied (Table 4). A third technique

providing mass values for young stars is based on spectroscopic

observations of circumstellar discs. From the Keplerian velocities

masses are inferred, although these measurements require an inde-

pendent estimate of the distance to determine the linear value of the

radius at which velocities are measured. Also, the sample of known

objects in this category is quite small with only nine stars (see again

Table 4).

As already shown in the early attempts to test PMS stellar

tracks against observations of EBs (see e.g. Palla & Stahler 2001;

Hillenbrand & White 2004; Stassun et al. 2004; Alecian et al. 2007;

Boden et al. 2007; Mathieu et al. 2007), the mass values inferred

from theoretical models are in reasonable agreement with the dy-

namical ones for intermediate-mass stars, whereas for low-mass

stars theoretical values tend to underestimate the stellar mass (see

fig. 3 in Mathieu et al. 2007).

From these studies, it is also clear that the usefulness of such tests

in constraining the theoretical PMS models is severely limited by

the still scarce accuracy of the current empirical measurements of

the other stellar parameters, i.e. the luminosity, the chemical abun-

dances and above all the effective temperature (see e.g. Hillenbrand

& White 2004; Mathieu et al. 2007). In the near future, both the size

and the quality of the observed sample of test objects to calibrate

PMS stellar tracks and isochrones are bound to increase.

In the present paper, we apply an objective Bayesian method to

compare theoretical predictions with observations, obtaining robust

uncertainties for the output values and assessing the overall quality

of the comparison. Since the method, which is detailed in Section 2,

allows for the use of stellar tracks for a large and very fine grid of

metallicity, mass and age values, we tested only our own PISA PMS

models. These are calculated using the newest version of the FRANEC

evolutionary code (see e.g. Tognelli et al. 2011). The main charac-

teristics of the models are described in Section 3. In Section 4, we

assess the ability of the method to retrieve the stellar properties by

means of synthetic tests. In Section 5, we describe the observational

data set, which includes all the currently available low-mass PMS

data. The complete data set is analysed in Section 6, where theoreti-

cal masses derived from our standard set of models are compared to

the dynamical measurements. In Section 7, we compare the results

for multiple sets of models. Section 8 is dedicated to a detailed

study of each binary system, while the stars in the Taurus–Auriga

association are analysed in Section 9. A summary with concluding

remarks is presented in Section 10.

2 T H E BAY E S I A N M E T H O D

The general question we try to answer can be described as the

problem of determining certain parameters (the age and mass of

a star) by comparing models’ predictions with empirical evidence

(effective temperatures, luminosities, radii, and dynamical masses

of stars in binary systems). To do so, we used a Bayesian approach,

which allows us to fully exploit the data.

One of the main advantages of the Bayesian approach over the

frequentist one is the possibility of using the available informa-

tion about the model parameters – the prior probability. Thanks to

Bayes’ theorem this information is naturally included in the calcu-

lation of the new parameters’ probability after additional evidence

is collected – the posterior probability. In this way, it is possible to

further constrain the models’ parameter space in an iterative pro-

cess of refinement. On the other hand, the main disadvantage is that

often the whole space of possible models is not accessible. This

means that the normalizing factor appearing on the right-hand side

of Bayes’ theorem (equation (1) below) cannot always be evaluated.

In such cases, it is impossible to rigorously compute the normalized

probability for a model to be correct given the empirical evidence.

Nevertheless, it is still possible to compare and choose between two

different models, by taking the ratio of the posterior probabilities,

thus removing the normalization factor.

The notation we adopt here is the same as in Jørgensen &

Lindegren (2005, hereafter JL05). The method described in JL05

has been successfully used to provide stellar ages and masses for

the stars in the Geneva–Copenhagen survey (see Nordström et al.

2004; Holmberg, Nordström & Andersen 2007, 2009). It is a gen-

eral method that can be applied to many other astrophysical cases

such as ours. We retain most of the formalism of JL05, even though

we customized the method for use with PMS objects. One major

difference between the present work and JL05 is the use of the full

covariance matrix when dealing with correlated variables such as

luminosities and temperatures as determined for stars in EB systems

(see Section 2.2). Another important difference is the adoption of

prior distributions that are appropriate for our observed sample.

The flexibility of the Bayesian approach introduced by JL05 lies

also in the opportunity of choosing the prior distributions that are

best suited for the particular problem. For example, our objects have

well-determined masses; hence, we adopt these values as priors (see

Section 2.4).

Let q be a set of observational quantities (or any combination

of them), for example temperature and luminosity or gravity and

temperature. Let p be a set of model parameters and � a set of

meta-parameters identifying a class of models. We introduce this

distinction between p and � for practical reasons. The parameters

p are the triple (τ , μ, ζ ), i.e. age, mass and metallicity of the model.

The meta-parameters � are instead the mixing-length parameter,

α, the primordial helium abundance, YP, and the helium-to-metal

enrichment ratio �Y/�Z. These three meta-parameters are chosen

on the basis of some considerations and can be regarded as fixed

inputs for the evolutionary models library as a whole, which gives

them a different status compared to the p set. The α parameter is

usually calibrated on a solar model (see Basu & Antia 2008 and

references therein). The YP value is constrained by big-bang nu-

cleosynthesis and observation of metal-poor H II regions (Izotov,

Thuan & Stasińska 2007; Peimbert et al. 2007; Dunkley et al. 2009;

Steigman 2010). �Y/�Z is constrained by chemical evolution mod-

els of the Galaxy (Romano et al. 2005; Carigi & Peimbert 2008) or

by comparing the absolute magnitude of unevolved nearby dwarf

stars with stellar models (Jimenez et al. 2003; Casagrande et al.

2007; Gennaro, Prada Moroni & Degl’Innocenti 2010).

The � triple is usually fixed for any set of stellar tracks or

isochrones available in the literature. Nevertheless, there is no

strong reason to assume that the solar calibration of α has to be

suitable also for PMS stars of any mass (see e.g. the discussion in

Montalbán et al. 2004; Tognelli et al. 2011). Also, YP and �Y/�Z

are known with some uncertainty, which is quite large especially

for the latter. Hence, having the opportunity to calculate our own
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988 M. Gennaro, P. G. Prada Moroni and E. Tognelli

stellar models, we allowed for variations of the meta-parameters,

calculating stellar model libraries for a total of nine combinations

of them (see Section 3 for a detailed description). In principle, other

meta-parameters exist, such as the relative distribution of metals

(the mixture), the opacity tables and the equation of state (EOS).

Indeed any choice of physical inputs identifies a class of models,

but we will not explore the effects of changes in the microphysics.

In the following, we will drop the � term and, if not explicitly

stated, we will refer only to one particular class of models, i.e. one

fixed choice of �j = (αj , YPj , �Y/�Zj ). We will come back to

the comparison of different classes in Sections 2.6 and 7.

2.1 Definition

Bayes’ theorem states that the posterior probability of the parame-

ters p, given the observations q, is

f ( p | q) =
f (q | p)f ( p)

f (q)
. (1)

The probability f (q | p) of observing the quantities q given the

parameters p is proportional to L( p | q), the likelihood of the

parameters p given the evidence q. The quantity f ( p) is the

prior distribution of the parameters, which incorporates the in-

formation already available about them. The normalizing factor,

f (q) =
∫

f (q | p)f ( p) d p, is called marginal distribution; it repre-

sents the probability of observing new evidence q under a complete

set of mutually exclusive hypothesis, i.e. under all possible values

for p.

To calculate the integral, we should have access to all possible

models, for all possible sets of parameters (and meta-parameters), or

at least the subset of all plausible models, i.e. models for which f ( p)

is not negligible. Even though the integration is not possible here,

this is not a problem. As long as we are interested only in comparing

different classes of models or estimating the most probable set

of parameters within a single class, this can be accomplished by

taking probability ratios, hence removing the normalization. Having

considered that, we can then rewrite the posterior probability as

f ( p | q) ∝ L( p | q)f ( p). (2)

2.2 The likelihood function and the two-variable

covariance matrix

Equation (2) is identical to equation (3) in JL05, but in our work we

extend the definition of likelihood to the case of pairs of observables

with non-zero covariance. This is particularly important – and often

neglected – when the observables used to determine the stellar

parameters are luminosity and temperature of stars in EBs. Because

of the way the two quantities are derived, they are strongly correlated

(see Mathieu et al. 2007). Let the vector of observables be a two-

dimensional (2D) vector: q = (x, y); the definition of likelihood in

the general case is

L( p | q) =
1

2π σx σy

√

1 − ρ2
× exp

{

−
1

2(1 − ρ2)

×

[

[x( p) − x̂]2

σ 2
x

+
[y( p) − ŷ]2

σ 2
y

−
2ρ [x( p) − x̂] [y( p) − ŷ]

σxσy

]}

. (3)

Here, x̂ and σ x are the measured value for the observable x and

its uncertainty, respectively (the same for ŷ and σ y). The quantity

ρ = Cov(x, y)/σxσy is the correlation coefficient of x and y. The

quantities x( p) and y( p) are the values predicted by the model for

the parameter values p.

2.3 The value of the covariance between luminosity

and temperature

In the case of EBs, the quantities that can be determined from the

light curve are the effective temperature ratio between the primary

and secondary, Teff,1/Teff,2, and the radii, R1 and R2. The temper-

ature of the primary has to be inferred by other indicators such as

some temperature-sensitive lines in the spectrum and a subsequent

spectral-type temperature conversion. Luminosities are not directly

measured, but derived using Stephan’s law: L = 4πσSBR2T 4
eff .

On the other hand, since the most used tool of stellar evolution is

the Hertzsprung–Russell diagram (HR diagram), where log L and

log Teff are displayed, most of the analysis of binary systems is done

in the HR diagram. So it is useful to have a proper treatment of the

covariance matrix for luminosity and temperature. Given Stephan’s

law, the standard deviation of log L is calculated as

σlog L =

√

1

ln 10

(

2
σR

R
+ 4

σTeff

Teff

)

, (4)

where σ R and σTeff
are the uncertainties on radius and temperature,

respectively.1 The covariance between log L and log Teff is given by

Cov(log L, log Teff) = 2 Cov(log R, log Teff) + 4 Var(log Teff)

≈ 4 Var(log Teff), (5)

where Var(log Teff) ≡ σ 2
log Teff

.

In both equations (4) and (5) we assume that temperatures and

radii have vanishing covariance. This is not necessarily true for EBs,

for which they are derived from the same light curve using fitting

algorithms. However, we are forced to neglect the corresponding

term in the total luminosity–temperature covariance since we do

not have access to the covariance matrix for radii and temperatures.

Nevertheless, we expect this covariance to be small especially when

radii and temperatures are derived by multiple fitting of light curves

obtained independently in several photometric bands.

2.4 Prior distributions

We will make use of different types of prior distributions for the

parameters. Here is a brief description of each of them.

Mass. For most of the systems in our sample, the dynami-

cal mass is the observable that is known with the best preci-

sion. For this reason, we will often use a Gaussian mass prior

f ( p) ∝ exp{−(1/2)[(μ − mob)/σmob
]2}. Apart from better con-

straining the mass values, this particular kind of prior is very in-

formative and also helps in constraining the stellar ages (see e.g.

Section 4).

Metallicity. For most of the systems, measurements of [Fe/H] are

also available. These can also be included as priors after converting

[Fe/H]ob into the corresponding Zob value. The value of Zob depends

not only on [Fe/H]ob but also on �Y/�Z, YP and (Z/X)⊙ (for details

see equations 1 and 2 in Gennaro et al. 2010). As a consequence,

we use different Zob values for a given [Fe/H]ob when we compare

actual data to different classes of models �j .

1 Note that ln is the base-e logarithm and log the base-10.
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Testing PMS models, a Bayesian approach 989

Figure 1. Comparison between a Gaussian prior in Z and the prior that

is derived as in equation (6). The assumed starting [Fe/H] distribution is a

Gaussian with μ = 0.1 dex and σ = 0.1 dex.

If we assume that [Fe/H] errors are distributed as Gaussians, the

corresponding error distribution in Z is calculated as

fprior(Z) = G(φ(Z))
dφ(Z)

dZ
, (6)

where we introduced φ(Z) ≡ [Fe/H] and [Fe/H] is regarded as a

function of Z; G is a Gaussian function. In the general case, the

derived f prior(Z) can be asymmetric and, in particular, very different

from a Gaussian. Nevertheless, given the typical errors in our data

set (i.e. σ ([Fe/H]) ∼ 0.1 dex), the departure from Gaussianity is

very small and can be neglected as can be seen in Fig. 1, where the

Gaussian distribution in Z and that obtained as in equation (6) are

shown. In both cases, we start from an observed [Fe/H] distributed

as a Gaussian and with μ = 0.1 dex and σ = 0.1 dex. The mean

value and variance of the G(Z) are determined using equations (1)

and (2) of Gennaro et al. (2010) and simple error propagation rules.

Moreover, we cannot always be sure that the error distribution

on [Fe/H] is itself Gaussian. [Fe/H] errors certainly have a random,

Gaussian component that can, however, be smaller than the overall

uncertainty due to the poorly constrained systematics. With this in

mind, we opted for a Gaussian functional form for the prior in Z.

Age. In the case of two stars in the same system, coevality might

be considered as an additional prior, assuming that these two stars

formed at the same time. In this case, we simply impose that both

stars are coeval by multiplying their age marginal distributions (see

below), hence getting a system’s age distribution.

2.5 Marginal distributions, best values, uncertainties

and relative precision

As in JL05, the integration of equation (2) with respect to all param-

eters but one, pi, yields the marginal distribution for pi. From this

distribution, it is possible to determine the most probable value for

pi and its confidence interval. The two parameters we are interested

in determining are the stellar age τ and mass μ. We will use the

same symbol as in JL05 for the age marginal distribution, G(τ ),

and analogously define the mass marginal distribution, H(μ). By

writing explicitly the triple of parameters, we define

G(τ ) =

∫

L(τ, μ, ζ | q)f (τ, μ, ζ ) dμ dζ, (7a)

H (μ) =

∫

L(τ, μ, ζ | q)f (τ, μ, ζ ) dτ dζ. (7b)

JL05 demonstrated that the mode of the marginal distribution is

a more robust indicator than the mean for estimating stellar ages.

This is particularly true for strongly asymmetric distributions or

distributions showing multiple peaks. We also adopted the mode

as the best value estimator but changed the definition of the un-

certainty interval with respect to JL05. If A is the total area un-

der the distribution curve, F(x), we define the confidence interval

[xmin, xmax]:
∫ xmin

xl

F (x) dx =

∫ xu

xmax

F (x) dx = 0.16A, (8)

where we assume that the variable x is defined in the interval [xl, xu].

In this way, 16 per cent of the total probability is rejected on each

side of the confidence interval. This definition coincides with that

of a 1σ interval in the case of a Gaussian distribution. We followed

again JL05 in the definition of the relative precision, ǫ:

ǫ =
√

xmax/xmin − 1. (9)

Using this definition it is possible to compare the quality of different

age and mass determinations. The worst relative precision is attained

when the marginal distribution is flat. In this case, assuming again

x ∈ [xl, xu], we have

xmax

xmin

=
xu − 16

100
(xu − xl)

xl + 16
100

(xu − xl)
.

We calculated models in the age interval [0.5, 100] Myr and mass

interval [0.2, 3.6] M⊙; hence, the worst relative precisions attain-

able are ǫ(τ ) ≈ 1.26 and ǫ(μ) ≈ 1.03.

2.6 Comparison of different classes of models

Comparison of two classes of models is possible by calculating the

Bayes factor, i.e. the ratio of the evidence for both classes. The evi-

dence itself is defined as the integral of the likelihood marginalized

over the model parameters prior distributions. Hence, the Bayes

factor for the ith and jth classes of models is

BFij =
f (q | �i)

f (q | �j )
, (10)

where the evidence for each class is defined as

f (q | �) =

∫

f (q, p |�) d p

=

∫

f (q | p,�)f ( p | �) d p. (11)

The Bayes factor tells us nothing about the best values of the

parameters p, but it can be used to estimate which class of models

– which set of meta-parameters � – gives an overall best fit to the

data. Strong deviations of BFij from one indicate that one class of

models is a significantly better choice than the others.

3 T H E S E T O F M O D E L S

In the present analysis, we used the very recent PMS tracks from the

PISA data base2 which contains a very fine grid of models for 19

metallicity values between Z = 0.0002 and Z = 0.03, three different

initial helium abundances and three values of the mixing-length

parameter for each metallicity. The models have been computed

using an updated version of the FRANEC evolutionary code which

takes into account the state of the art of all the input physics (see

2 The data base is available at http://astro.df.unipi.it/stellar-models/
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990 M. Gennaro, P. G. Prada Moroni and E. Tognelli

Tognelli et al. 2011 for a detailed description). Here, we briefly

summarize the main characteristics of the code that are relevant for

the present work and deeply affect both the morphology and the

position of the PMS tracks in the HR diagram.

We adopted the EOS released in 2006 by the Opacity Project

at Livermore (OPAL) group (see e.g. Rogers & Nayfonov 2002),

the OPAL high-temperature radiative opacity released by the same

group in 2005 (see e.g. Iglesias & Rogers 1996) for log T (K) > 4.5,

and the Ferguson et al. (2005) low-temperature radiative opacities

for log T (K) ≤ 4.5. The radiative opacity tables, for both low and

high temperatures, are computed assuming the solar-scaled heavy-

element mixture by Asplund, Grevesse & Sauval (2005).

The outer boundary conditions, required to integrate the stellar

structure equations, have been taken from the detailed atmosphere

models computed by Brott & Hauschildt (2005) for Teff ≤ 10 000 K

and by Castelli & Kurucz (2003) for higher temperatures.

Convection is treated according to the mixing-length theory

(Böhm-Vitense 1958), following the formalism described in Cox

& Giuli (1968). We used the classical Schwarzschild criterion to

evaluate the borders of convectively unstable regions.

The hydrogen burning reaction rates are from the Nuclear As-

trophysics Compilation of Reaction Rates (NACRE) compilation

(Angulo et al. 1999), with the exception of the 14N(p,γ )15O from

the Laboratory for Underground Nuclear Astrophysics (LUNA) col-

laboration (Imbriani et al. 2005). The code explicitly follows the

chemical evolution of the light elements (D, 3He, Li, Be and B)

from the early phases at the beginning of the Hayashi track. The

models are evolved starting from a completely formed and fully

convective structure, neglecting accretion.

We extracted from the PISA PMS data base tracks for 12 metallic-

ities, namely Z = 0.007, 0.008, 0.009, 0.01, 0.0125, 0.015, 0.0175,

0.02, 0.0225, 0.025, 0.0275 and 0.03. The purpose was to cover

the full range of metallicities for the observed sample of stars. For

models in this range of metallicities, we adopted an initial deu-

terium abundance XD = 2 × 10−5, suitable for Population I stars

(see e.g. Vidal-Madjar, Ferlet & Lemoine 1998; Linsky et al. 2006;

Steigman, Romano & Tosi 2007).

For each value of Z, the initial helium abundance, Y , has been

obtained by the linear relation

Y = YP + Z
�Y

�Z
, (12)

where YP is the primordial helium abundance and �Y/�Z is the

helium-to-metal enrichment ratio. For YP we adopted both the re-

cent Wilkinson Microwave Anisotropy Probe (WMAP) estimation

YP = 0.2485 (see e.g. Cyburt, Fields & Olive 2004; Steigman

2006) and a lower value YP = 0.230 (Lequeux et al. 1979; Pagel &

Simonson 1989; Olive, Steigman & Walker 1991). In the first case,

we used both �Y/�Z = 2 as commonly adopted in the literature

(see e.g. Pagel & Portinari 1998; Jimenez et al. 2003; Flynn 2004;

Casagrande et al. 2007) and �Y/�Z = 5, that is the extreme value

suggested by a recent analysis (see e.g. Gennaro et al. 2010 and

references therein), while for YP = 0.230 we fixed �Y/�Z = 2.

Hence, for each value of Z, we computed models with three initial

helium abundances.

The efficiency of superadiabatic convection is parametrized by

the α parameter where the mixing length ℓ is given by ℓ = αHP and

HP is the pressure scale-height. Following the usual procedure of

calibrating the mixing-length efficiency using the solar observables,

we obtained α = 1.68 for our reference set of models. However,

there is no strong reason to adopt this value for stars in different

evolutionary phases compared to the Sun. Recent analysis of PMS

stars in binary systems (see e.g. Simon, Dutrey & Guilloteau 2000;

Steffen et al. 2001; Stassun et al. 2004) and studies of lithium deple-

tion in young clusters (Ventura et al. 1998; D’Antona & Montalbán

2003) suggest a subsolar efficiency of the superadiabatic convection

in low-mass PMS stars. Therefore, we decided to adopt tracks for

three α values, i.e. α = 1.2 (low efficiency), α = 1.68 (our solar

calibrated) and α = 1.9 (high efficiency).

Taking into account the three Y values and the three α values,

we computed models for each metallicity using a total of nine

combinations of the  triples of meta-parameters.

The tracks have been computed for a very fine grid of masses,

with a spacing of 0.05 M⊙ in the range M = 0.2–1.0 M⊙, of 0.1 M⊙
for the range M = 1.0–2.0 M⊙ and of 0.2 M⊙ for the range M =

2.0–3.0 M⊙. The tracks have been further interpolated on a finer

mass grid with a spacing of 0.01 M⊙ and in age with a spacing of

0.05 Myr in the full mass range. This was done in order to achieve

a very high precision in the determination of both the mass and age

for the observed stars.

4 SYNTHETI C DATA SETS: TESTI NG

T H E M E T H O D

In order to check the accuracy of our method, we first tested it against

simulated data. As already demonstrated by JL05, the precision of

inferred ages and masses is related to the detailed morphology of

isochrones and tracks in the HR diagram. Depending on the mass

and age of a star, its evolution might be faster in some parts of the

diagram than in others. The evolutionary speed of a star along its

track, together with the positional uncertainty in the HR diagram,

determines the absolute precision of the method. Although the PMS

is globally a very fast evolutionary phase compared to the MS, there

are some stages – i.e. the descent of the Hayashi tracks – slower than

others – i.e. the approach towards MS along Heyney tracks when

radiative cores are developed. Another general rule is that more

massive stars evolve faster, leading to progressively larger spacing

between isochrones, and consequently a better relative precision

in age determinations for a given evolutionary phase, as the mass

increases.

The evolutionary speed is inversely proportional to the age gra-

dient calculated along one evolutionary track. In the regions of the

HR diagram where the evolutionary speed is large, the age gradi-

ent is small and the precision in estimating stellar ages is good.

To explain this, let us define an effective temperature–luminosity

error box, as given by observational uncertainties. If we move it

across the HR diagram, in regions with small age gradient, we will

encircle models with similar ages, leading to a precise age deter-

mination, while in regions of high age gradient (low evolutionary

speed) within the same box, there will be models with very different

ages, leading to a less precise age estimate. In Fig. 2 (left panel)

we show the evolutionary speed. Moving from blue–purple towards

red–orange regions, the evolutionary speed increases, allowing for

progressively more precise age determinations.

Analogous to the age gradient along a track, we can calculate

the mass-gradient along an isochrone. In this case, regions of small

mass gradient are regions where the stellar masses can be estimated

with better precision. The mass gradient along isochrones is shown

in Fig. 2 (right panel). In this case, regions with lower mass gradient

(better precision) are in red.

To explore how the position in the HR diagram affects age and

mass determinations, we generated a sample of synthetic EBs for

different masses and ages (see Table 1).

C© 2012 The Authors, MNRAS 420, 986–1018
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Testing PMS models, a Bayesian approach 991

Figure 2. Left: evolutionary speed along stellar tracks in the HR diagram. The age gradient is inversely proportional to this quantity. The colour coding

is a scale from red–orange (fast evolution, small age gradient and good age determination) to blue–purple (slow evolution, large age gradient and bad age

determination). Right: mass gradient calculated along isochrones. Red–orange regions are regions of low mass gradient (high precision in mass determination),

blue–purple regions are regions of high mass gradient where masses are determined with worse precision. In both panels, symbols indicate the positions of the

simulated stars before the random errors are added. Superimposed in white are some reference tracks and isochrones.

Table 1. Mass and ages combination for the simulated

EBs. Systems C.x have the same masses as the binary

system RXJ 0529.4+0041 A.

System Primary mass Secondary mass Age

(M⊙) M (M⊙) (Myr)

A.2 2.0 0.5 2

A.5 2.0 0.5 5

A.8 2.0 0.5 8

B.2 1.0 0.3 2

B.5 1.0 0.3 5

B.8 1.0 0.3 8

C.5 1.27 0.93 5

C.10 1.27 0.93 10

C.15 1.27 0.93 15

The simulations of EBs have been done by selecting models from

the PISA stellar library with α = 1.68, YP = 0.2485 and �Y/�Z = 2.

We fixed the Z value to Z = 0.0125, similar to our solar model (Z⊙ =

0.0137). For each combination of masses and ages we generated 100

systems. We added random Gaussian uncertainties to the quantities

predicted by the models using standard deviation values equal to

the typical errors in our data set (σ M = 0.015–0.020 M⊙, σlog Teff
=

0.015 dex, σ R = 0.05 R⊙ and σlog L = 0.1 dex). To simulate the

observed error behaviours of EBs, we allowed for random errors in

the primary star temperature, Teff,1, keeping the ratio of primary-

to-secondary effective temperatures, Teff,1/Teff,2, fixed. We allowed

for independent errors in the radii, R1 and R2. Luminosities are

calculated from the temperatures and radii after the errors have

been added.

For each simulated system, we applied our Bayesian method to

recover the best ages and masses. Since we have chosen to fix Z =

0.0125, we fixed it also in the recovery method, which is equivalent

to using a prior f (ζ ) = δ(ζ − 0.0125) in equations (7a) and (7b). We

ran the method both with a flat prior defined over the whole mass

interval and applying a Gaussian prior on the simulated mass. The

Gaussian prior is centred on the simulated value of the mass and its σ

is of the order of the typical error for the dynamical masses available

in the literature (a few per cent). We obtained stellar ages for the

single stars and also for the systems. In this last case, coevality is

imposed by considering GC(τ ) = GP(τ ) × GS(τ ), i.e. the product

of primary and secondary marginal age distributions.

The results for the complete set of simulations are shown in

Table 2, where we report the percentage of cases in which the

simulated age and mass fall within the confidence interval. From

the table, it is clear that the method is very successful in recovering

the simulated values. When no systematic errors are present (in

both the model and data) and if the random error estimates are

reliable, we can expect the results of the method for real data to be

very robust. Unfortunately, this ideal situation is seldom realized in

reality, but it is worth noting that the method is intrinsically able to

give a good fit for almost all the regions of the HR diagram.

The fraction of good recoveries or success rate can be related to

the position of the stars in Fig. 2. For example, the secondary star of

the B.x systems – a 0.3 M⊙ star – is moving towards slower phases

of its Hayashi tracks and consequently the fraction of good age

recoveries is decreasing with increasing age. Several other things

are worth noting about the recovery fractions in Table 2.

(i) First, we note that the actual number of good recoveries is

a complex function of the stellar position in the HR diagram. It is

true that the mass- and age-gradient visualization of Fig. 2 can help

understand this function. On the other hand, we warn the reader that

what we indicated as mass- and age gradients are partial derivatives

calculated along isochrones and tracks, respectively. Therefore, they

do not fully represent the real gradient. As a consequence, there are

regions of the HR diagram where the recovery fraction is different

from what one might naively expect by looking at Fig. 2 alone. For

example, the mass recovery fraction of the primary star of the B.8

case is lower than the B.5 case, even though the B.8 case is in a

zone of lower mass gradient (better mass resolution).

(ii) Secondly, we want to mention the power of the coeval-

ity prior. Fig. 3 shows on the left the distribution of the differ-

ence between the logarithm of the best-fitting age and the log-

arithm of the simulated age for each star. The standard devia-

tion of this distribution is σ = 0.185 dex. The inset shows the

C© 2012 The Authors, MNRAS 420, 986–1018
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992 M. Gennaro, P. G. Prada Moroni and E. Tognelli

Table 2. Percentage of cases in which simulated ages and masses are re-

covered within the 68 per cent uncertainty interval. P indicates the primary

stars in the systems, S the secondary, C stands for coeval, indicating the

cases in which the product of the marginal age distributions of the primary

and secondary stars GP(τ ) × GS(τ ) is used to infer the age of the whole

system. Flat and Gaussian are the adopted mass priors.

System A.2 A.5 A.8

P S C P S C P S C

Flat

Ages 87 92 83 100 74 100 0 79 54

Masses 91 68 – 98 72 – 78 79 –

Gaussian

Ages 83 98 100 97 94 97 0 82 77

Masses 100 100 – 100 100 – 100 100 –

System B.2 B.5 B.8

P S C P S C P S C

Flat

Ages 94 98 97 96 72 84 95 62 81

Masses 77 76 – 77 71 – 68 73 –

Gaussian

Ages 100 100 100 94 94 96 92 83 83

Masses 100 100 – 100 100 – 100 100 –

System C.5 C.10 C.15

P S C P S C P S C

Flat

Ages 95 98 89 83 93 78 87 86 94

Masses 82 74 – 100 68 – 86 84 –

Gaussian

Ages 89 94 93 72 88 58 71 77 78

Masses 100 100 – 100 98 – 100 100 –

Table 3. Fraction of non-coeval fake recoveries for the sim-

ulated systems.

System Simulations Non-coeval recoveries (per cent)

A.2 100 0

A.5 100 10

A.8 100 95

B.2 100 0

B.5 100 0

B.8 100 8

C.5 100 0

C.10 100 0

C.15 100 2

Total 900 13

recovered ages for those stars giving a bad fit, meaning that the

simulated age is outside the 68 per cent confidence interval. The

fraction of these bad-fitting cases is 19 per cent of the total simulated

stars.

In the central panel, the stars in each system are paired together

and the age of the system is evaluated from the composite age

distribution GC(τ ). The differences between the resulting best ages

and the simulated ages show a much narrower distribution, with

σ = 0.062, almost three times smaller than σ for the single stellar

ages. Hence, using the coevality prior strongly reduces the error in

the best age estimate.

The rightmost panel of Fig. 3 shows the difference between the

logarithms of the primary and secondary components’ ages for each

pair. This distribution has σ = 0.257. We note that in 13 per cent of

the cases the two components are found to be non-coeval, meaning

that the two uncertainty intervals do not overlap; these systems are

shown in the inset diagram. The fraction of non-coeval recoveries

varies strongly among the simulated systems and the results are

summarized in Table 3. The simulated binary that causes most

Figure 3. Left: distribution of the difference between the logarithm of the recovered age for the single stars and the logarithm of the simulated age. The inset

shows the distribution of age differences only for the stars for which the simulated age is outside of the 68 per cent confidence interval. Centre: same as left,

but the recovered age is obtained from the composite age distribution for each simulated binary system. Right: distribution of the differences between the

logarithm of the primary’s recovered age and that of the secondary’s recovered age for each system. The inset shows the distribution of age differences for

those systems whose primary and secondary components have disjoint 68 per cent age confidence interval and are considered as non-coeval.

C© 2012 The Authors, MNRAS 420, 986–1018
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Testing PMS models, a Bayesian approach 993

of the non-coeval fake detections is the system A.8. Out of 100

simulated cases, 95 give non-coeval results. This is due to the fact

that the primary star of the 100 simulated A.8 systems is very close

to the main sequence (MS). Therefore, G(τ ) for such a star is a

very flat function, with a broad uncertainty interval. Moreover, the

position of the peak of the distribution depends strongly on where

the simulated system is scattered once the observational errors are

added. On the other hand, the age of the secondary is well recovered,

with a narrow uncertainty interval. As a consequence, in the 95 per

cent of the cases, the two intervals become disjoint and the two stars

are considered as non-coeval.

The fraction of non-coeval recoveries is a complex function of the

position in the HR diagram of both stars. For an observed sample of

binaries, the fraction of total fake non-coeval systems to be expected

depends on the actual distribution of relative positions of primaries

and secondaries in the HR diagram.

Nevertheless, we point out that the tail of non-coeval systems

disappears in the central diagram of Fig. 3, i.e. no system age is

found to be in disagreement with the simulated age, even when

the two components were formally non-coeval. In our simulated

cases, the non-coevality is mostly due to one of the stars being in

a region of very large age gradient, e.g. close to the MS. On the

other hand, the companions are generally in a region of smaller

gradient. Therefore, while the age of one star is badly determined,

the other component still has a very informative G(τ ), which drives

the composite distribution towards the simulated value. This fact

can be used to determine the age of MS stars in systems where the

companion is still on the PMS, for example.

In addition, for the full sample of simulated cases, the use of the

composite age distribution allows us to find a system age that is in

better agreement with the simulated one. The σ of the distribution

of recovered minus simulated age is reduced when the coevality

prior is imposed.

These results are very important. It is sometimes noted in the

literature that evolutionary models are not able to fit binary data

for the same age and ad hoc solutions are invoked to reconcile the

models and the observation. Here, we demonstrated that not being

able to reproduce both components in a binary system with the same

isochrone does not necessarily imply that the stars are not coeval

or that they are coeval but the models are not able to reproduce this

coevality. In contrast, an age difference or even an age mismatch

can simply be a consequence of the observational errors in the HR

diagram. It is indeed possible that the random scatter of the positions

of coeval stars acts in opposite directions for the two components,

making one look older and the other younger, to the point that they

might be considered as non-coeval. The actual expected artificial

age difference depends on the region of the HR diagram where the

two stars are located, and on their errors.

As an example, we consider the work by Kraus & Hillenbrand

(2009) who analyse the binary population in the Taurus–Auriga as-

sociation. They found that, in general, stars in physical pairs are

more coeval than the association as a whole, with significantly

smaller intra-binary age spread than for randomly paired stars se-

lected among the association’s members. Nevertheless, the authors

also found that some of the binaries show an intrinsic age spread

larger than that observed for the bulk of the pairs and not consis-

tent – within the errors – with the hypothesis of coeval pairs. They

suggested that these outliers can be multiple system with unrecog-

nized companions or stars seen in scattered light or also stars with

disc contamination. While this can certainly be the case, we want

to point out that the observational errors themselves – even when

one might think that they are completely under control as in our

simulations – can be partially responsible for an artificially large

age spread (or non-coevality) within a binary system. The fraction

of objects for which this fake non-coevality might be expected is a

complex function of the actual distribution of observed stars in the

HR diagram, i.e. of their mass, mass ratios and ages.

(iii) Thirdly, we emphasize the power of the Gaussian mass prior,

i.e. its large informative value for the recovery of stellar masses. In

almost all cases where the Gaussian mass prior is imposed, the

recovery fraction rises to 100 per cent. This might look obvious

but recall that dynamical masses are usually the most reliable data

available for a binary system. The impact of the Gaussian prior is

less strong when the results for stellar ages are compared. Among

the 27 cases displayed in Table 2, 14 favour the flat prior, while in

12 cases the Gaussian prior gives better results. The primary star

of the A.8 system gives equal fractions of 0 per cent recoveries for

Gaussian and flat prior (the star is on the MS).

We investigated this behaviour and observed that the impact of

the Gaussian prior actually depends on the detailed morphology

of the 2D posterior probability in the μ–τ space. As an example,

consider the primary star for the C.10 case. The success ratio in the

age recovery decreases from 83 to 72 per cent for this star when the

Gaussian mass prior is applied.

We show in Fig. 4 one of these drop-out cases. The reason why the

age for this particular star is not recovered anymore when the prior

is included can be easily understood. The Gaussian prior causes

an increase in the relative precision for the marginal distribution,

GGauss(τ ). This can be seen in the right panel of the figure where

the GGauss(τ ) distribution has a clearly larger mode and is narrower

than GFlat(τ ). Note that the right border of the confidence interval for

GFlat(τ ) is already quite close to the simulated age value of 10 Myr,

which is barely within the 68 per cent confidence interval. Hence,

it is the shrinking of the confidence interval – when the Gaussian

prior is applied – that causes the simulated age value to drop out

of the 68 per cent confidence interval. Also, the actual number of

dropouts is related to the detailed structure of the 2D mass- and age

gradients.

5 TH E DATA SE T

The number of PMS stars with direct mass measurements amounts

nowadays to about 30 objects. The sample we used consists of 25

PMS and two MS stars, whose properties are summarized in Table 4.

Among the 27 objects 10 are PMS stars found in EB systems. We

included the MS 3.1 M⊙ star TY CrA A and 2.1 M⊙ star EK Cep

A in our sample as well, since their companions are PMS stars in

EB systems and we tried to fit both components of binary systems

when possible (see Section 8). For EBs, the masses, radii and ef-

fective temperature ratios of the two components can be accurately

inferred. However, the absolute values of the effective temperatures,

which rely on the determination of the primary’s spectral type and

some spectral type–Teff relationship, can be affected by systematic

errors and constitute a severe source of uncertainty. As an exam-

ple, Hillenbrand & White (2004) pointed out that the MS empirical

scales used for deriving temperatures from the spectral types might

cause systematic temperature offsets when applied to PMS stars,

due to the different values of surface gravity for a given spectral

type (see also Luhman, Liebert & Rieke 1997).

Of the 27 stars in the sample, six are found in astromet-

ric/spectroscopic systems (AS), i.e. systems in which the compo-

nents can be resolved as separate point sources using interferometry.

Combining astrometry and line-of-sight velocity measurements, the

masses of the components are determined in a distance-independent

C© 2012 The Authors, MNRAS 420, 986–1018
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994 M. Gennaro, P. G. Prada Moroni and E. Tognelli

Figure 4. A particular realization for the primary star of the C.10 system. In this particular case, the age is well recovered in the flat mass prior case and not

recovered when the Gaussian mass prior is imposed. Left: the HR diagram position for the star with some superimposed reference isochrones (9, 10 and 11 Myr)

and tracks (1.17, 1.27 and 1.37 M⊙). The cross indicates the position after errors are added, the filled circle represents the original position of a 1.27 M⊙,

10-Myr star. Centre: 2D posterior probability contours. The dotted line is for the case with a flat mass prior and the solid line for the case with a Gaussian

mass prior. Right: marginal age distributions. Vertical lines indicate the confidence interval. Dotted and solid lines are the same as for the central panel.

way. With this technique the radii of the components are not mea-

surable, though.

The last nine objects have masses measured using their circum-

stellar disc Keplerian velocities obtained by means of spectroscopy.

The mass for the central star can be determined only if the lin-

ear value of the orbital radius at which the velocity is measured is

known. Hence, stellar masses are in this case distance dependent.

The two stars in the UZ Tau E system form a binary, and their

masses are separated using combined spectroscopic measurements

for the circumstellar disc and the stellar velocities (DKS).

A very similar sample has already been studied by Mathieu et al.

(2007) and Stassun (2008) and we refer the reader to the former

paper for a detailed description of the different observational tech-

niques and the different kind of uncertainties affecting them. Com-

pared to Mathieu et al. (2007), there are some distinct objects in our

sample though. The 2M0535-5 brown dwarf EB (Stassun, Mathieu

& Valenti 2006) was excluded because the stellar dynamical masses

are smaller than those currently present in the PISA data base. The

recently discovered PMS EB ASAS J052821+0338.5 (Stempels

et al. 2008) has been added to the sample. We also included the

AS binary HD 113449 (Cusano et al. 2010) for which we have

slightly different parameters from an updated analysis (Cusano,

private communication).

The luminosities and effective temperatures for our complete data

set are displayed in Fig. 5. Overplotted are stellar tracks for α =

1.68, �Y/�Z = 2 and YP = 0.2485. We will refer to this set of

parameters � as our standard or reference set. In the case of Fig. 5,

the tracks are calculated for a value of Z = 0.0125, similar to the

metallicity of our standard solar model (i.e. Z⊙ = 0.0137).

For several systems, [Fe/H] values are available from direct spec-

troscopic measurements. We used the [Fe/H] determinations by

D’Orazi et al. (2009) and by D’Orazi, Biazzo & Randich (2011) for

the systems in Orion and Taurus–Auriga, respectively. Only four

stars are left without an [Fe/H] measurement. In order to convert

the observed [Fe/H] into the global metallicity Zob, we followed

equation (2) of Gennaro et al. (2010), adopting (Z/X)⊙ = 0.0181

by Asplund et al. (2009). Although the PISA PMS models have been

computed adopting the Asplund et al. (2005) heavy elements solar

mixture, the seeming inconsistency is inconsequential since mod-

els computed with Asplund et al. (2005, 2009) but with the same

total metallicity Z are essentially indistinguishable (see a detailed

discussion in Tognelli et al. 2011).

Note that of the objects listed in Table 4, a few appear peculiar.

Their location in the HR diagram is indeed incompatible with that

of stars of similar masses. From the available dynamical masses,

luminosities and temperatures, we identified four of these peculiar

objects, namely NTT 045251 A, UZ Tau Ea, BP Tau and MWC 480

(see Table 4).

(i) NTT 045251 A is close to RXJ 0529.4 Ab and V1174 Ori

A in the HR diagram, with approximately the same luminosity and

Teff . However, NTT 045251 A is more massive than the other two

stars by 0.4–0.5 M⊙. We checked that this discrepancy cannot be

reconciled even by assuming that the metallicity of NTT 045251 A

is 0.4 dex larger than that of RXJ 0529.4 Ab or V1174 Ori A.

(ii) UZ Tau Ea, M = 1.016 M⊙, has a Teff similar to V1174 Ori

B, DM Tau, CY Tau and NTT 045251 B, which have lower masses,

between 0.55 and 0.8 M⊙. Moreover, the star is colder than RXJ

0529.4 Ab and V1174 Ori A by about 850 K in spite of their similar

masses, luminosities and [Fe/H].

(iii) BP Tau, M = 1.320 M⊙, is significantly colder (�Teff �

1000 K) and fainter (�log L/ L⊙ ≈ 0.9) than RXJ 0529.4 Aa and

EK Cep B, although it is slightly more massive and the metal-

licities are similar. In addition, this star is fainter and colder than

the 0.96 M⊙ HD 113449, which has a similar metallicity. This is

not easy to explain because the minimum luminosity of a 1.3 M⊙
model is always larger than that achieved by a 0.9–1.0 M⊙ star

approaching the zero-age main sequence (ZAMS), as in the case of

HD 113449 A.

(iv) MWC 480 (M = 1.65 M⊙ and [Fe/H] = −0.01) is located

in the HR diagram between EK Cep A (M = 2.02 M⊙ and [Fe/H] =

0.07) and the RS Cha system (M = 1.87, 1.89 M⊙ and [Fe/H] =

0.17). We checked with our models that the difference in [Fe/H] can

justify neither the similar luminosities of MWC 480 and EK Cep

nor the higher luminosity of MCW 480 with respect to the RS Cha

stars.

C© 2012 The Authors, MNRAS 420, 986–1018
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Testing PMS models, a Bayesian approach 995

Table 4. List of stellar properties.

ID Name Type Mass Radius log Teff log L [Fe/H] Ref.

(M⊙) (R⊙) (K) ( L⊙)

01 RS Cha A EB 1.890 ± 0.010 2.150 ± 0.060 3.883 ± 0.010 1.149 ± 0.041 0.17 ± 0.01 And91, Rib00, Ale05

02 RS Cha B EB 1.870 ± 0.010 2.360 ± 0.060 3.859 ± 0.010 1.136 ± 0.039 0.17 ± 0.01 And91, Rib00, Ale05

03 RXJ 0529.4a Aa EB 1.270 ± 0.010 1.440 ± 0.050 3.716 ± 0.013 0.140 ± 0.080 −0.01 ± 0.04 Cov04, Dor09

04 RXJ 0529.4a Ab EB 0.930 ± 0.010 1.350 ± 0.050 3.625 ± 0.015 −0.280 ± 0.150 −0.01 ± 0.04 Cov04, Dor09

05 V1174 Ori A EB 1.009 ± 0.015 1.339 ± 0.015 3.650 ± 0.011 −0.193 ± 0.048 −0.01 ± 0.04 Sta04, Dor09

06 V1174 Ori B EB 0.731 ± 0.008 1.065 ± 0.011 3.558 ± 0.011 −0.761 ± 0.058 −0.01 ± 0.04 Sta04, Dor09

07 EK Cep A EB 2.020 ± 0.010 1.580 ± 0.015 3.954 ± 0.010 1.170 ± 0.040 0.07 ± 0.05 Pop87, Mar93

08 EK Cep B EB 1.124 ± 0.012 1.320 ± 0.015 3.755 ± 0.015 0.190 ± 0.070 0.07 ± 0.05 Pop87, Mar93

09 TY CrA A EB 3.160 ± 0.020 1.800 ± 0.100 4.079 ± 0.018 1.826 ± 0.078 – Cas98

10 TY CrA B EB 1.640 ± 0.010 2.080 ± 0.140 3.690 ± 0.035 0.380 ± 0.145 – Cas98

11 ASAS 052821b A EB 1.387 ± 0.017 1.840 ± 0.010 3.708 ± 0.009 0.314 ± 0.034 −0.15 ± 0.20 Ste08

12 ASAS 052821b B EB 1.331 ± 0.011 1.780 ± 0.010 3.663 ± 0.009 0.107 ± 0.034 −0.15 ± 0.20 Ste08

13 HD 113449 A AS 0.960 ± 0.087 – 3.715 ± 0.013 −0.402 ± 0.088 −0.03 ± 0.10 Pau06, Cus10

14 HD 113449 B AS 0.557 ± 0.050 – 3.580 ± 0.014 −1.509 ± 0.098 −0.03 ± 0.10 Pau06, Cus10

15 NTT 045251c A AS 1.450 ± 0.190 – 3.638 ± 0.016 −0.122 ± 0.160 – Ste01

16 NTT 045251c B AS 0.810 ± 0.090 – 3.550 ± 0.016 −0.514 ± 0.086 – Ste01

17 HD 98800 Ba AS 0.699 ± 0.064 – 3.623 ± 0.016 0.330 ± 0.075 −0.20 ± 0.10 Bod05, Las09

18 HD 98800 Bb AS 0.582 ± 0.051 – 3.602 ± 0.016 0.167 ± 0.038 −0.20 ± 0.10 Bod05, Las09

19 UZ Tau Ead DKS 1.016 ± 0.065 – 3.557 ± 0.015 −0.201 ± 0.124 −0.01 ± 0.05 Pra02, Dor11

20 UZ Tau Ebd DKS 0.294 ± 0.027 – 3.491 ± 0.015 −0.553 ± 0.124 −0.01 ± 0.05 Pra02, Dor11

21 DL Taud DK 0.720 ± 0.110 – 3.591 ± 0.015 0.005 ± 0.100 −0.01 ± 0.05 Sim00, HW04, Dor11

22 DM Taud DK 0.550 ± 0.030 – 3.557 ± 0.015 −0.532 ± 0.100 −0.01 ± 0.05 Sim00, HW04, Dor11

23 CY Taud DK 0.550 ± 0.330 – 3.535 ± 0.015 −0.491 ± 0.100 −0.01 ± 0.05 Sim00, HW04, Dor11

24 BP Taud DK 1.320 ± 0.200 – 3.608 ± 0.012 −0.780 ± 0.100 −0.01 ± 0.05 Joh99, Dut03, Dor11

25 GM Aurd DK 0.840 ± 0.050 – 3.602 ± 0.015 0.598 ± 0.100 −0.01 ± 0.05 Sim00, HW04, Dor11

26 MWC 480 DK 1.650 ± 0.070 – 3.948 ± 0.015 1.243 ± 0.100 −0.01 ± 0.05 Sim00, HW04, Dor11

27 LkCa 15d DK 0.970 ± 0.030 – 3.643 ± 0.015 −0.165 ± 0.100 −0.01 ± 0.05 Sim00, HW04, Dor11

References. And91 = Andersen (1991); Rib00 = Ribas, Jordi & Giménez (2000); Ale05 = Alecian et al. (2005); Cov04 = Covino et al. (2004); Dor09 =

D’Orazi et al. (2009); Sta04 = Stassun et al. (2004); Pop87 = Popper (1987); Mar93 = Martin & Rebolo (1993); Cas98 = Casey et al. (1998); Ste08 =

Stempels et al. (2008); Pau06 = Paulson & Yelda (2006); Cus10 = Cusano et al. (2010); Ste01 = Steffen et al. (2001); Bod05 = Boden et al. (2005); Las09 =

Laskar et al. (2009); Pra02 = Prato et al. (2002); Sim00 = Simon et al. (2000); HW04 = Hillenbrand & White (2004); Dor11 = D’Orazi et al. (2011); Joh99 =

Johns-Krull, Valenti & Koresko (1999); Dut03 = Dutrey, Guilloteau & Simon (2003).
aShort form for RXJ 0529.4+0041.
bShort form for ASAS J052821+0338.5.
cShort form for NTT 045251+3016.
dThe error on the mass does not include the uncertainty on the distance.

Figure 5. The HR diagram for our data set. The labels correspond to the

ID column in Table 4. Superimposed are stellar tracks calculated with α =

1.68, �Y/�Z = 2 and YP = 0.2485 and Z = 0.0125. The values of the mass

– in solar units – are displayed on the left of the corresponding track.

6 T H E O R E T I C A L V E R S U S DY NA M I C A L

M A S S E S – T H E STA N DA R D S E T O F M O D E L S

In this section, we show the comparison of the whole data set with

our evolutionary models. We limited the analysis only to the stan-

dard set of models, i.e. the � class with α = 1.68, �Y/�Z = 2 and

YP = 0.2485. Section 7 is dedicated to the comparison of models

with different meta-parameters, . Since radii are not available for

each star in the data set, the comparison was done in the HR diagram.

With the notation of Section 2, this means q = (log Teff, log L/L⊙).

In the case of stars with available [Fe/H] measurements, a Gaus-

sian prior on the metallicity was applied after converting the

[Fe/H] values and their errors into Z values with corresponding

errors σ Z :

f (ζ ) =
1

√

2πσ 2
Z

× exp

[

−
(ζ − Z)2

2σ 2
Z

]

.

In other cases, a flat prior for Z ∈ [0.007, 0.03] was used.

The outcomes of the full data set comparison are summarized

in Fig. 6. The stars have been divided into subgroups: EB, astro-

metric/spectroscopic (AS) binaries or disc kinematic (DK) stars.

The stars in the UZ Tau E system (DKS, i.e. disc kinematics plus

C© 2012 The Authors, MNRAS 420, 986–1018
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996 M. Gennaro, P. G. Prada Moroni and E. Tognelli

Figure 6. Inferred masses from our standard set of isochrones compared with the dynamical masses from the literature. Numbers correspond to the ID column

of Table 4. From left to right: stars are divided in the subset of EBs, AS binaries and stars with masses inferred from disc kinematics (DK). Upper panels:

best values are indicated by empty symbols. The asymmetric error bars represent the 68 per cent confidence interval, as defined in Section 2. In these cases, a

Gaussian metallicity prior was applied when [Fe/H] measurements were available. Lower panels: comparison of the best masses inferred when the metallicity

Gaussian prior is imposed (empty symbols, same as upper panels) and when we use a flat prior even for stars with [Fe/H] measurements (filled symbols).

spectroscopy to disentangle the components) are included in the

DK sample for simplicity. The three subgroups are displayed from

left to right. Each panel shows a comparison of the relative differ-

ence between model-inferred mass (Mmod) and measured dynamical

mass (Mdyn). In the upper panels, Mmod is derived by applying the

Gaussian metallicity prior, when available. The lower panels show

a comparison between the Gaussian Z prior case (empty symbols)

and the flat Z prior case (full symbols). The symbols indicate the

mode of the posterior probability; the asymmetric error bars indi-

cate the 68 per cent confidence interval as described in Section 2.

In the figure, the dynamical mass errors are not added to the error

budget. This is meant to purely show the precision of the masses

estimated from the models given the observational uncertainties.

However, this is not a bad approximation for the total mass error

budget, given that the quoted errors are of the order of 1 per cent

for most of the dynamical masses and up to 10 per cent only in a

very few cases (see Table 4).

It is clear from Fig. 6 that EB masses are recovered well in almost

every case but for V1174 Ori B. We will discuss this particular ob-

ject more in detail in Section 8.3. The general agreement becomes

progressively worse for AS binaries and DK stars. The AS bina-

ries have masses that are underestimated by ∼20–30 per cent on

average. The worst case is NTT 045251+3016 B, whose mass is

underestimated by ∼50 per cent (see Section 8.8). For DK stars,

the trend becomes more negative with underestimates as low as 70

per cent for UZ Tau Ea. Regarding the DK group, note that for the

latter class of objects, the uncertainty on the distance is not included

in the dynamical mass error estimate. This uncertainty propagates

linearly in the mass uncertainty and quadratically in the luminosity

uncertainty. The DK stars in our sample stars are part of the Taurus–

Auriga star-forming complex which is located at about 150 pc from

the Sun and has a radius of about 15 pc (see e.g. Torres et al. 2009).

Using an average distance to each star instead of its real distance

may then cause a systematic error on the mass estimate of about 10

per cent and on the luminosity of up to 20 per cent. Part of the dis-

agreement might also arise from the fact that the DK objects are T

Tauri stars, intrinsically variable. Their temperatures and luminosi-

ties we adopt are all derived by Hillenbrand & White (2004). They

try to minimize the effects of accretion luminosity using the IC band

to estimate the stellar luminosity. Nevertheless, the estimated stel-

lar luminosities might still be offset from their real values. Another

problem might affect the temperature determination. Temperatures

are determined from spectral types using relations calibrated on

dwarfs. As Hillenbrand & White (2004) point out, there might be

a systematic temperature underestimate due to the fact that PMS

stars of a given spectral type are generally warmer than dwarf

counterparts. If the real stellar temperatures were higher, part of

the discrepancy in our mass estimates would be removed, since

larger masses would be needed to reproduce the observed stellar

properties.

C© 2012 The Authors, MNRAS 420, 986–1018
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Testing PMS models, a Bayesian approach 997

The lower panels of Fig. 6 show a quite surprising result. In

the cases where we applied the Gaussian prior on the metallicity,

the final results for Mmod are usually in worse agreement with the

Mdyn values compared to the flat-prior case. It appears that applying

the metallicity Gaussian priors we obtain, in general, lower mass

values. This behaviour suggests that the Zob values used here might

be too low. If we force the metallicity to assume systematically

lower values than the real values by means of the Gaussian prior,

then we naturally obtain lower values for the best masses. This is

due to the fact that the lower the metallicity used in a stellar model,

the hotter and more luminous the model is for a given mass.

We speculate here that part of the problem with the metallicity

prior might reside in the low value of (Z/X)⊙ used in the present

work to convert the observed [Fe/H] into Z. In the recent years,

this value has undergone a drastic change, especially after the in-

troduction of non-local thermodynamic equilibrium (non-LTE) and

3D hydrodynamical atmospheric models for the analysis of solar

abundances (see Asplund et al. 2009 for a review of the topic).

The traditional value of Z⊙ ∼ 0.02 has been strongly revised to-

wards much lower values, down to Z⊙ = 0.013–0.014 (see e.g.

Serenelli et al. 2009 and references therein). The debate is still

ongoing regarding solar heavy elements’ relative abundances and

total metallicity, and the uncertainty on the absolute values is still

large. Nevertheless, the most recent results suggest increasing val-

ues of (Z/X)⊙, thus reducing the difference with the traditional

estimates. A change in (Z/X)⊙ will be reflected directly into Zob

since (Z/X)ob = (Z/X)⊙×10[Fe/H] and an increase in this quantity

would naturally lead to a systematically larger Mmod.

7 A NA LY SIS O F T H E DATA U SIN G

DIF F EREN T C LASSES O F MODELS

As described in Section 2.6, the ratio of the evidence for two classes

of models – the Bayes factor, BF – can be used to quantify which

class of model is better in reproducing the data. Significantly better

evidence of a model over another is claimed when BF < 0.1 or

BF > 10, i.e. when the two pieces of evidence differ by one order

of magnitude or more (Kass & Raftery 1995). Since the evidence

is calculated by marginalizing the posterior distribution over all the

parameters of the model, the prior distribution of the parameters has

to be considered as part of the model as well (see e.g. Bailer-Jones

2011 for an application of the Bayes factor to discriminate between

distinct models in a different astrophysical context).

We calculated the evidence for each star in the nine different

meta-parameters cases and for each set � we considered four dif-

ferent combinations of the prior distributions for the masses and

the metallicities. The four combinations are: (1) flat mass prior–flat

metallicity prior, (2) Gaussian mass prior–flat metallicity prior, (3)

flat mass prior–Gaussian metallicity prior and (4) Gaussian mass

prior–Gaussian metallicity prior. Hence, we actually have 9 × 4 =

36 classes of models. After evidence has been calculated in the 36

cases for each of the 27 stars of the sample, the BFs have all been

calculated by dividing each evidence value for a given star by the

evidence value for that same star obtained using our standard class

of models. The latter is identified by YP = 0.2485, �Y/�Z = 2 and

α = 1.68 for case (1).

The numerical values of the BFs are reported in Appendix A.

Tables A1–A4 display the BF values for the four prior cases, re-

spectively. From each table, it is possible to observe the change in

the evidence among the different �j sets, within one of the four

prior cases. Moving from one table to another, the corresponding

entries are calculated for the same � set but in the four different

prior cases; from these corresponding entries, it is possible to ob-

serve the role played by the prior choice and, actually, understand

whether this choice leads to an improvement of the overall fit or

not.

The best way to compare different classes using the whole data

set is to calculate the composite evidence for the full set of data.

The natural extension of equation (11) is that the evidence for the

whole data set – represented here by the set of observables {q} –

can be written as

f ({q} | �) =
∏

k

f (qk | �)

=
∏

k

∫

f (qk, pk | �) d pk

=
∏

k

∫

f (qk | p, �)fk( p | �) d p. (13)

The index k runs over the stars in the sample and f k indicates the

specific prior distribution applied for the kth star.

We multiplied the evidence of the 27 stars of the sample to un-

derstand which class of model gives the best general result. In

addition, we restricted the product to stars belonging only to one

type of system (EB, AS or DK). When using the whole data set,

we can compare only cases (1) and (2) because the Gaussian metal-

licity prior cannot be applied to the four stars for which [Fe/H]

measurements are not available. Also, to compare cases (3) and (4),

we additionally restricted the subsamples to only stars with [Fe/H]

estimates.

In almost all the cases, the class of models with �Y/�Z = 2, YP =

0.23 and α = 1.2 meta-parameters is the one with the strongest

evidence. The only exception is the case of the AS subset when

only stars with known [Fe/H] are considered. For this subset, the

strongest evidence is attained for the �Y/�Z = 2, YP = 0.23 and

α = 1.9 meta-parameter values. Note that in this particular case,

only four stars are part of the subset and the evidence is only 1.13

times larger than that in the �Y/�Z = 2, YP = 0.23 and α = 1.2

case.

These results are the counterpart of what we have already ob-

served in Section 6 regarding the mass underestimation by standard

models. It was clear – especially from the upper panels of Fig. 6 –

that the general trend for the standard set of models is to predict too

low masses compared to Mdyn. A similar trend can be observed in

fig. 3 of Mathieu et al. (2007); here all the considered sets of mod-

els show the same behaviour in predicting too low stellar masses,

with a mean difference that can be of the order of 20 per cent or

more. This suggests that the standard tracks are too hot and lumi-

nous when displayed in the HR diagram compared to the observed

temperatures and luminosities for the given dynamical masses. A

natural way to get a better agreement with observations is to use a

colder and fainter set of models by adopting both a lower helium

initial abundance and mixing-length parameter α value.

This explains why the best overall evidence is achieved by the set

with α = 1.2, Yp = 0.230 and �Y/�Z = 2. Similar low helium con-

tent for a given metallicity Z could also be obtained by adopting the

currently accepted primordial helium value, YP = 0.2485, together

with a very small helium-to-metal enrichment ratio (�Y/�Z � 1,

for Z ≈ 0.01–0.02). However, both choices are quite unlikely. In

the former case, the YP = 0.23 value is significantly lower than

the recent independent results from extragalactic H II regions and

big-bang nucleosynthesis theory (Izotov et al. 2007; Peimbert et al.

2007; Dunkley et al. 2009; Steigman 2010). Regarding the latter

case, a �Y/�Z � 1 is smaller than the value suggested by both

C© 2012 The Authors, MNRAS 420, 986–1018
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998 M. Gennaro, P. G. Prada Moroni and E. Tognelli

Galactic chemical evolution models (Romano et al. 2005; Carigi

& Peimbert 2008) and nearby dwarf stars analysis (Jimenez et al.

2003; Casagrande et al. 2007; Gennaro et al. 2010).

Note that when a single star is considered, the value of the ev-

idence for different classes of models is mostly of the same order

of magnitude (see the tables in Appendix A). Hence, these global

results are more sensitive to the few objects for which we observe

major changes in the evidence between different classes. Neverthe-

less, a general analysis is still important to understand the overall

behaviour of stellar models in comparison to available data.

We also report that, for the whole sample, as for any subset of

stars (EB, AS or DK), the largest value of the evidence is reached in

either case (2) or (4), i.e. when the Gaussian mass prior is imposed.

This is expected because the prior on the dynamical mass is a much

more informative prior than a flat one defined across the entire mass

range of simulated models (i.e. 0.2–3.6 M⊙). We already pointed

out in Section 4 that imposing the dynamical mass constraint indeed

improves the quality of the fit, especially for the stellar masses. Here,

we have another way to look at this, as the evidence is a quantita-

tive measure of the aforementioned fit improvement. The inclusion

of the metallicity prior has a similar effect of increasing the evi-

dence for the whole sample and for the subsample of EB stars (both

restricted to only stars with [Fe/H] measurements). Nevertheless,

it does not make a significant difference for the AS and DK sub-

groups for which the best evidence is still reached in case (2) even

when restricting only to stars for which [Fe/H] measurements are

available. Recall that for most of the DK stars, the [Fe/H] values

we used are the average values for the Taurus–Auriga star-forming

complex.

The above analysis suggests that there are still some problems

with the current generation of standard PMS models. However, the

significance of the disagreement between theory and observations

is different, depending on the subset of objects considered – for

example, recall that for the subset of EBs the average mismatch

between observed and predicted masses is lower than 10 per cent.

Moreover, as is clear from the tables of Appendix A, for many

of the objects of the sample the single-star evidence may be the

strongest for other values of the � meta-parameters. Nevertheless,

this global test and the analysis of Section 6 both hint at the fact that

a threefold effort is probably needed to (a) improve the quality of the

data especially assessing the systematic errors, (b) better constrain

the �Y/�Z and (Z/X)⊙ values and (c) improve the physics of stellar

models.

8 A P P LIC ATION TO BINARIES

In this section, we will analyse the binary systems in our data set.

For each system, we will check whether the models are able to re-

produce the coevality of the two stars. In all the cases where [Fe/H]

measurements are available, we will implicitly use the correspond-

ing Gaussian prior on Z in the marginalization of the probability

distributions. In the four remaining cases, a flat prior will be used in

the available range of metallicities for our models set: Z ∈ [0.007,

0.03].

We will mainly make use of the standard  set previously in-

troduced. In the case of severe disagreement between the stan-

dard models and the observations, we will explore the possibility

that non-standard  set might give a better agreement with the

data.

Figs 7 and 8 show the HR diagrams with the data for each of

the six EB and three AS systems with the best-fitting tracks and

isochrones for the standard set of models superimposed. The results

are also summarized in Table 5. Some entries are missing in the

table, corresponding to the cases in which the confidence intervals

are poorly defined. This happens when the posterior probability is

a very flat function and its mode falls outside the confidence in-

terval. The best-fitting masses and ages are obtained by applying

two different priors in mass, namely a flat and a Gaussian one in

Figs 7 and 8, respectively. In the case of EBs, for which stellar

radii are measured, we have used the surface gravity versus effec-

tive temperature diagram to compare the models with the data. This

diagram has the advantage of combining the three measured quan-

tities – mass, radius and temperature – hence representing the most

stringent test for the models. For the AS systems, we used the HR

diagram. We display all the best-fitting models in the HR diagram

for homogeneity.

The best values are obtained after marginalization in Z using

a Gaussian prior. For display purposes only, we used isochrones

and tracks with a specific Z value. The values for each system are

obtained after transforming the observed [Fe/H] into Zobs using

�Y/�Z = 2, YP = 0.2485 and (Z/X)⊙ = 0.0181. We then took the

closest Z available in our models data base. In the case in which

[Fe/H] is not available, we used Z = 0.0125, the closest to our

solar-calibrated Z value. The overplotted isochrones correspond to

the best system composite age, i.e. that obtained by maximizing

GC(τ ) = GP(τ ) × GS(τ ).

Given the large number and size, the figures relative to the each

system’s subsection are presented in Appendix B. The upper pan-

els show the marginalized mass distributions and the lower ones

the age distributions. The left and right panels show the results ob-

tained using a flat and a Gaussian prior on the mass distribution,

respectively.

8.1 RS Cha

This double-lined EB is located in the η Cha cluster (Mamajek,

Lawson & Feigelson 2000). The stellar masses and radii are from

Alecian et al. (2005), who refined the values from the pioneering

studies on binary stars by Andersen (1975, 1991). Alecian et al.

(2005) also provide a spectroscopic measurement of [Fe/H]. Tem-

peratures are taken from Ribas et al. (2000). Surface gravities are

simply calculated as |g| = GM/R2.

Previously thought to be a post-MS system (Jones 1969; Ander-

sen 1975, 1991), the X-ray emission reported by Mamajek, Lawson

& Feigelson (1999) clearly points to the PMS nature of this system.

The two RS Cha components have very similar masses of ∼1.9 M⊙
and are both close to approaching the ZAMS. Recent literature es-

timates for the system age range from 6+2
−1 Myr (Luhman & Steeghs

2004) to 9.13 ± 0.12 Myr (Alecian et al. 2007).

The outcomes of the comparison between our standard set of

models and the RS Cha components’ gravities and temperatures are

shown in Fig. B1.

As already noted in Section 6, the standard set of models slightly

underestimates the mass values with μP = 1.79+0.07
−0.07 M⊙ and μS =

1.74+0.06
−0.07 M⊙ for the primary and secondary mass, respectively.

The dynamical masses fall outside these 68 per cent confidence

intervals; nevertheless, the discrepancy is quite small – less than

5 per cent – which is a very remarkable agreement. The relative

precision of the mass estimates is strongly increased by the use

of the Gaussian prior, and also the modes of the mass marginal

distributions for both components are more similar to the observed

values with μP = 1.83+0.02
−0.02 M⊙ and μS = 1.82+0.01

−0.03 M⊙.

Even with the slight mass discrepancy, the results on the sys-

tem’s age are very robust. The age estimates of the two components

C© 2012 The Authors, MNRAS 420, 986–1018
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Testing PMS models, a Bayesian approach 999

Figure 7. HR diagrams with best-fitting tracks and isochrones for the EB and AS binaries of our sample. Masses and ages are obtained using a flat mass prior

and a Gaussian metallicity prior.

remarkably agree with each other. From the single star’s marginal

age distribution, we obtained the combined system age as

G(τ )RS Cha A × G(τ )RS Cha B. The estimated value for the system age

in the case of a flat mass prior is τC = 8.50+0.50
−0.45 Myr, which is

narrowed down to τC = 8.00+0.15
−0.25 Myr when the Gaussian mass

prior is imposed. It is worth noting that the relative precision of

the combined age improves with respect to the single stellar age

estimates.

C© 2012 The Authors, MNRAS 420, 986–1018
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1000 M. Gennaro, P. G. Prada Moroni and E. Tognelli

Figure 8. HR diagrams with best-fitting tracks and isochrones for the EB and AS binaries of our sample. Masses and ages are obtained using a Gaussian mass

prior and a Gaussian metallicity prior.

8.2 RXJ 0529.4+0041 A

The discovery of this double-lined EB located in the Orion

star-forming region was reported by Covino et al. (2000). The

same group refined the system parameters using new photomet-

ric observations in Covino et al. (2004). We adopt the data

from the latter paper and the Orion [Fe/H] from D’Orazi et al.

(2009).

Comparing the observed gravity and temperatures with our stan-

dard set of models yields stellar masses in agreement with the

dynamical measurements with μP = 1.25+0.09
−0.09 M⊙ and μS =

0.87+0.10
−0.12 M⊙ when a flat mass prior is used. If a Gaussian prior

C© 2012 The Authors, MNRAS 420, 986–1018
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Testing PMS models, a Bayesian approach 1001

Table 5. Results from the comparison with the standard set of models. For the missing entries the confidence interval is poorly defined.

Flat mass prior Gaussian mass prior

Name Mdyn Mmod Age (stars) Age (system) Mmod Age (stars) Age (system)

(M⊙) (M⊙) (Myr) (Myr) (M⊙) (Myr) (Myr)

RS Cha A 1.890 ± 0.010 1.79+0.07
−0.07 8.40+0.65

−0.60 1.85+0.02
−0.02 8.00+0.25

−0.30
8.50+0.50

−0.45 8.00+0.15
−0.25RS Cha B 1.870 ± 0.010 1.74+0.06

−0.07 8.70+0.75
−0.75 1.82+0.01

−0.03 7.95+0.30
−0.40

RXJ 0529.4 A 1.270 ± 0.010 1.25+0.09
−0.09 8.35+3.45

−1.35 1.27+0.01
−0.02 8.70+1.20

−1.25
6.25+1.20

−0.70 6.90+1.15
−0.85RXJ 0529.4 B 0.930 ± 0.010 0.87+0.10

−0.12 5.25+1.35
−0.70 0.93+0.01

−0.02 5.20+1.30
−0.70

V1174 Ori A 1.009 ± 0.015 1.04+0.06
−0.08 5.85+0.50

−0.40 1.01+0.01
−0.02 5.85+0.50

−0.40
7.90+0.45

−0.45 7.40+0.35
−0.35V1174 Ori B 0.731 ± 0.008 0.42+0.08

−0.07 9.85+0.45
−0.65 0.73+0.00

−0.02 8.45+0.55
−0.50

EK Cep A 2.020 ± 0.010 1.87+0.06
−0.06 30.75+47.60

−8.15 2.02+0.00
−0.02 26.85+43.90

−6.55
16.00+2.65

−2.55 18.95+1.05
−2.05EK Cep B 1.124 ± 0.012 1.17+0.04

−0.03 15.80+2.65
−2.60 1.13+0.01

−0.01 18.90+1.05
−2.00

TY CrA A 3.160 ± 0.020 2.61+0.29
−0.18 – 3.16+0.01

−0.05 –
4.25+2.75

−0.40 3.75+2.65
−0.20TY CrA B 1.640 ± 0.010 1.52+0.24

−0.35 3.10+2.55
−0.40 1.64+0.01

−0.02 18.90+1.05
−2.00

ASAS 052821 A 1.387 ± 0.017 1.54+0.08
−0.09 3.50+0.50

−0.25 1.39+0.01
−0.02 3.25+0.15

−0.20
3.50+0.15

−0.20 3.45+0.10
−0.15ASAS 052821 B 1.331 ± 0.011 1.13+0.10

−0.10 3.50+0.15
−0.20 1.33+0.01

−0.02 3.60+0.10
−0.20

HD 113449 A 0.960 ± 0.087 0.84+0.04
−0.05 47.60+41.45

−2.40 0.86+0.04
−0.04 48.95+40.90

−1.80
– –

HD 113449 B 0.557 ± 0.050 0.44+0.03
−0.06 – 0.48+0.02

−0.04 –

NTT 045251 A 1.450 ± 0.190 1.00+0.12
−0.14 3.60+4.45

−0.65 1.14+0.12
−0.11 4.15+3.25

−0.90
2.55+0.65

−0.35 3.55+0.85
−0.50NTT 045251 B 0.810 ± 0.090 0.41+0.10

−0.10 2.40+0.65
−0.35 0.65+0.07

−0.08 3.40+1.00
−0.50

HD 98800 Ba 0.699 ± 0.064 0.51+0.25
−0.02 0.85+0.00

−0.20 0.68+0.06
−0.07 0.85+0.05

−0.10
0.85+0.05

−0.15 0.90+0.00
−0.10HD 98800 Bb 0.582 ± 0.051 0.41+0.17

−0.00 0.95+0.00
−0.35 0.56+0.05

−0.06 1.00+0.00
−0.15

is applied, then the precision improves by a factor of 10 for the es-

timated masses with μP = 1.27+0.01
−0.02 M⊙ and μS = 0.93+0.01

−0.02 M⊙.

On the other hand, the derived single stellar ages are in slight dis-

agreement. Using a Gaussian mass prior, we obtain respectively

τP = 8.70+1.20
−1.25 Myr and τS = 5.20+1.30

−0.70 Myr. Nevertheless, the two

ages are both consistent with the composite age of the system, i.e.

τC = 6.90+1.15
−0.85 Myr. The results for the standard set of models are

summarized in Fig. B2.

By looking at the Bayes factors of Table A4, it appears that most

of the age discrepancy might be ascribed to the poorer fit of the

secondary star. For the primary star, the standard set of models

provides the second highest Bayes factor value, 18.34, the highest

being just 18.35 for the set with �Y/�Z = 2, α = 1.68 but YP =

0.23. For the secondary star, the standard set provides a Bayes factor

that is ∼1.5 times smaller than the one giving the strongest evidence,

i.e. �Y/�Z = 2, α = 1.20 but YP = 0.2485. This is not enough to

state that the latter set gives a significantly better agreement with

the data, but using the latter set of meta-parameters yields an age

of 6.30+1.65
−0.85 Myr, which is in agreement with the primary star’s age

within the uncertainty interval.

The fact that the secondary star is better fitted by cooler mod-

els (i.e. models with lower α) was already reported by D’Antona,

Ventura & Mazzitelli (2000) and confirmed by Covino et al. (2004).

8.3 V1174 Ori

This double-lined EB was discovered by Stassun et al. (2004). We

adopt stellar parameters from this paper and the average [Fe/H]

abundances for Orion (D’Orazi et al. 2009).

As in the case of RXJ 0529.4+0041 A, the primary star of V1174

Ori is moving away from the Hayashi track, while the secondary

is still fully convective. Also, in this case the models show some

difficulty in reproducing the secondary observables. The standard

set of models – with a flat mass prior – predicts a secondary mass of

∼0.42 M⊙, much smaller than the dynamical mass (∼0.7 M⊙). The

primary mass is instead well recovered with μP = 1.04+0.07
−0.08 M⊙.

The situation for the secondary does not improve much even when

using the coldest set of models available.

It has been noted (see e.g. Hillenbrand & White 2004) that one of

the problems in estimating the effective temperatures for PMS stars

from the observed spectral type is the adoption of temperature scales

that are calibrated on MS stars. For example, Stassun et al. (2004)

use the temperature scale for dwarf stars by Schmidt-Kaler in Aller

et al. (1982). The same authors show how stellar models are not

able to reproduce luminosities and temperatures for the secondary

star and attribute the discrepancy to the non-adequacy of the dwarf

spectral type to Teff conversion when applied to PMS stars.

At a given spectral type, PMS stars are in general hotter than

the corresponding MS stars. Their surface gravities indicate that a

temperature scale intermediate between dwarfs and giants should

be adopted. Hillenbrand & White (2004) suggest that temperature

corrections as high as 100 K could be necessary to compensate for

the temperature underestimates. We explored this possibility in the

case of V1174 Ori, by artificially increasing the temperature of

the primary by 100 K and keeping the effective temperature ratio

between primary and secondary constant. The reason why we cannot

simply increase the effective temperature of the secondary, which is

mainly responsible for the disagreement with the models, is that in

Stassun et al. (2004) this quantity is not directly and independently

C© 2012 The Authors, MNRAS 420, 986–1018
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1002 M. Gennaro, P. G. Prada Moroni and E. Tognelli

measured, but it follows from the determination of the primary

effective temperature from the spectral type and the temperature

ratio from the light curve. Hence, if any offset is present, it should

be reflected in both components.

The results of the comparison of the modified observables with

the standard set of models are shown in Fig. B4. The situation is only

slightly improved compared to Fig. B3. The gain in the secondary

mass estimate is that now the best mass is ∼0.49 M⊙, not yet

enough to be in agreement with the dynamical mass. However, the

primary mass is still recovered within the uncertainty interval. It is

clear that a change in Teff has a larger impact on the inferred stellar

mass when a star is still in the vertical Hayashi track than when it

is located on the almost horizontal Heyney track.

Even with the small improvement achievable by increasing the

estimated Teff , V1174 Ori remains a challenge for stellar evolution

theory. However, parallel observational efforts are required to assess

the issues related to the effective temperature determinations.

8.4 EK Cep

This system is known to be an EB for more than 50 years (Strohmeier

1959). Quite sometime after its discovery it was recognized to host

a ∼1.1 M⊙ PMS star, together with a ∼2.0 M⊙ primary already

on its main sequence (Popper 1987). We adopted stellar parameters

from this paper and the spectroscopic determination of [Fe/H] by

Martin & Rebolo (1993).

With our standard set of models, the stellar masses for EK Cep

are not recovered within the 68 per cent confidence interval (see

Fig. B5). If we use a flat mass prior, we obtain μP = 1.87+0.06
−0.06 M⊙

and μP = 1.17+0.04
−0.03 M⊙, while the measured dynamical values are

2.020 ± 0.010 and 1.124 ± 0.012 M⊙ for primary and secondary,

respectively. Hence, the primary mass is slightly underestimated and

the secondary mass slightly overestimated. Note that the absolute

difference between model-predicted and dynamical masses is of

the order of 7 and 4 per cent, hence quite small. Nevertheless,

the discrepancy is significant according to our definition of the

confidence interval.

Given the Bayes factors of Table A4, we have compared the data

with models from the class with α = 1.20, YP = 0.23 and �Y/�Z =

2, i.e. the one that gives the strongest composite evidence for the

system. The agreement is still not satisfactory. As shown in Fig. B6,

a further improvement of the fit is achieved by assuming a higher

metallicity (i.e. Z = 0.0193 rather than Z = 0.0157) as if the old

(Z/X)⊙ = 0.0231 by Grevesse & Sauval (1998) was used instead

of the recent one by Asplund et al. (2009). The masses inferred in

this case are μP = 1.97+0.07
−0.06 M⊙ and μP = 1.12+0.14

−0.02 M⊙. These

results are in very good agreement with those of Claret (2006), who

using similar values, namely Z = 0.0175 and α = 1.3, was able to

reproduce the system observables.

This test shows how the success of a set of models in reproducing

the observations might be severely affected by the current uncertain-

ties on the meta-parameters. Paradoxically, in the case of EK Cep

system, models calculated with out-of-date meta-parameters seem

to give a better agreement with the data than the state-of-the-art

ones.

One interesting thing that this system shows about our method

is the power of the combined system age marginal distribution,

G(τ )EK Cep A × G(τ )EK Cep B. Since the primary star is already on

the MS, its evolution is very slow, resulting in a very flat G(τ )

and consequently a very poor precision in the age determination.

Nevertheless, the age of the system is very well determined – given

the choice of the model class. As a consequence, the primary star

also has a very precise age determination, which is very valuable

for MS stars. In the case of the standard set of model and Gaussian

mass prior, the system age is τ = 18.95+1.05
−2.05 Myr, while for the

non-standard set used in this section, again with a Gaussian mass

prior, we obtain τ = 26.55+0.85
−1.80 Myr.

8.5 TY CrA

This double-lined EB is part of a hierarchical system with three or

possibly four stellar components (see Chauvin et al. 2003). The fun-

damental parameters we adopted are taken from Casey et al. (1998).

For this particular system, we could not find any spectroscopic de-

termination of [Fe/H]. Therefore, instead of applying a Gaussian

prior on the metallicity, the marginalization over Z was made using

a flat prior with Z ∈ [0.007, 0.03], i.e. the range of metallicities

available in our models’ grid.

As in the case of EK Cep, the primary star is already on the MS,

while the slower evolving secondary is still on its Hayashi track.

Similar to the EK Cep case, our standard set of models is able to

reproduce the secondary mass quite well, while the primary mass

is once again underestimated. The values we obtain when a flat

mass prior is used are μP = 2.61+0.29
−0.18 M⊙ and μS = 1.52+0.24

−0.35 M⊙,

while the dynamical masses are estimated to be 3.16 ± 0.02 and

1.64 ± 0.01 M⊙ for the primary and secondary, respectively. The

low relative precision of these model predictions – compared e.g.

to the case of EK Cep – are mainly due to the larger uncertainties

on the effective temperatures and radii for the TY CrA system (see

Table 4).

Also in this case, we tried to see whether the agreement between

data and models might be improved by using the coldest set of

models with α = 1.20, YP = 0.23 and �Y/�Z = 2. By comparing

Figs B7 and B8 it is possible to see a slight improvement in the

primary mass determination, without losing the good agreement for

the secondary mass. The results obtained with a flat mass prior are

μP = 2.69+0.30
−0.18 M⊙ and μS = 1.49+0.24

−0.21 M⊙. The primary mass is

still underestimated by about 15 per cent, not too bad a result – in

absolute terms – but further investigation is needed to explain this

partial disagreement.

TY CrA A is on the MS; therefore, its age is not well constrained.

Nevertheless, the mode of the age distribution for the primary is

very close to the mode of the secondary, which has a better con-

strained age determination. From the composite age distribution,

G(τ )TY CrA A × G(τ )TY CrA B in the case of the standard set, and ap-

plying a Gaussian mass prior we obtain τ = 3.75+2.65
−0.20 Myr. For

the coldest set of models and still applying a Gaussian mass prior,

we obtain a slightly older age of τ = 5.20+3.05
−0.70 Myr. These age

values are slightly older than the age found by Casey et al. (1998),

who roughly estimate a system age of ∼3 Myr. Also, they show

that the models have problems in consistently predicting the stellar

observable for both components. While being able to reproduce the

observed secondary properties, they also find that models overesti-

mate the effective temperature of the primary star. This is equivalent

to our finding of an underestimated stellar mass for the given Teff

and log g.

8.6 ASAS J052821+0338.5

This is the most recently discovered double-lined EB in our data set.

The stellar parameters are from Stempels et al. (2008). The two stars

have very similar masses, and the slightly more massive primary

(1.387 ± 0.017 M⊙) is just moving away from its Hayashi track

while the secondary (1.331 ± 0.011 M⊙) is located just before

C© 2012 The Authors, MNRAS 420, 986–1018
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Testing PMS models, a Bayesian approach 1003

the end of the fully convective phase. The [Fe/H] value we used

is −0.15 ± 0.2 dex, i.e. the average of the quoted values for the

primary (−0.2 ± 0.2 dex) and the secondary (−0.1 ± 0.2 dex) in

Stempels et al. (2008).

The predictions of our standard set of models slightly differ from

the measured masses. The values we obtain when a flat mass prior is

used are μP = 1.54+0.08
−0.11 M⊙ and μS = 1.13+0.10

−0.10 M⊙. Therefore,

the primary mass is overestimated by ∼11 per cent and the sec-

ondary is underestimated by ∼15 per cent (see Fig. B9). Stempels

et al. (2008) provide a double solution for the system parameters de-

pending on whether stellar spots are taken into account in the light-

curve analysis (as in the case reported in Table 4) or not. We applied

our method using also the measurements for the latter case and the

results are shown in Fig. B10. Both of the predicted masses are in

better agreement with the data in this case with μP = 1.53+0.08
−0.10 M⊙

and μS = 1.24+0.11
−0.09 M⊙. Hence, for the primary mass the situation

is slightly better with an overestimate of 10 per cent, while the sit-

uation is much improved for the secondary which is now predicted

to be 7 per cent less massive than the observed value.

It is clear that the detailed modelling of the light curve plays

an important role in determining stellar properties and, as a con-

sequence, in constraining the models’ predictions. Once again, the

models give an overall satisfactory agreement, 10 or even 15 per

cent being still a quite good error in stellar mass predictions. Nev-

ertheless, more work is needed to explain these differences.

The results for the age of the system are more robust with the

two components having ages in good agreement. In the case in

which the light-curve solution including star spots is used, we ob-

tain a system age – using a Gaussian mass prior – of 3.45+0.10
−0.15 Myr.

When using the light-curve solution without star spots, we instead

obtain 3.65+0.10
−0.20 Myr. In both cases, the age is much younger than

that found by Stempels et al. (2008) who, using solar metallic-

ity models by Baraffe et al. (1998), found an age of ∼10 Myr for

the system. We used the [Fe/H] ≃ −0.15 dex quoted in the same

paper to derive our Gaussian Z prior. This value is slightly sub-

solar, hence part of the difference between our age estimate and

that by Stempels et al. (2008) could be ascribed to that. Still, it is

quite hard, even using our solar metallicity models, to reproduce a

∼1.4 M⊙ star close to the base of its Hayashi track at such an old age

like 10 Myr.

8.7 HD 113449

This system is an AS binary whose orbital parameters have recently

been estimated by Cusano et al. (2010). Here, we use slightly dif-

ferent parameters (yet unpublished) kindly provided by the same

group after more accurate analysis of the data and [Fe/H] by Paulson

& Yelda (2006).

As already noted by Cusano et al. (2010), there is a slight dis-

agreement between dynamical and inferred masses by several sets of

stellar models. Also, the masses predicted by our standard set of stel-

lar tracks are slightly underestimated. The primary mass is found to

be μP = 0.84+0.04
−0.05 M⊙ while the secondary is μS = 0.44+0.03

−0.06 M⊙
(see also Fig. B11). From Table 5 we can see that the primary dy-

namical mass of 0.960 ± 0.087 M⊙ is still consistently recovered

while for the secondary the dynamical mass of 0.557 ± 0.050 M⊙
is outside the 68 per cent confidence interval.

To see whether the discrepancy could be reduced, we used the

coldest set of models and, in addition, we derived the Z value us-

ing the spectroscopic [Fe/H] and (Z/X)⊙ = 0.0231 by Grevesse

& Sauval (1998). The results, displayed in Fig. B12, show a bet-

ter agreement with the observations. The improvement is not sub-

stantial, though, and the predicted stellar masses are in this case

μP = 0.89+0.04
−0.05 M⊙ and μS = 0.45+0.03

−0.06 M⊙.

The stellar ages in this particular case are not very well deter-

mined. The two stars are indeed very close to their MS position,

which makes age determination very difficult. Nevertheless, the pri-

mary shows a small peak in its G(τ ) distribution at an age of τ ∼

50 Myr (for both the standard and non-standard set of models). The

secondary instead does not show any peak in the stellar age, with a

very flat G(τ ) slightly increasing towards the edge of our models’

age interval (100 Myr). The system age is poorly defined as well.

8.8 NTT 045251+3016

The discovery of this AS binary was first reported by Steffen et al.

(2001), from which we adopted the stellar parameters. In this case,

no spectroscopic [Fe/H] is available. This system is quite young

and both the primary and the secondary are found in their fully

convective phase along the Hayashi track. As pointed by Steffen

et al. (2001), all the stellar models adopted by them predict too low

masses for both components. The set of models that gives the best

agreement with observations is the one by Baraffe et al. (1998) when

a mixing-length parameter α = 1.0 is adopted. This is not surprising

given that models with a lower α, being intrinsically colder, predict

larger masses for given observed luminosities and temperatures.

With our standard set of models and using a flat mass prior,

the two masses are found to be μP = 1.00+0.12
−0.14 M⊙ and μS =

0.41+0.10
−0.10 M⊙, severely lower than the dynamical masses by ∼30

and ∼50 per cent, respectively (see Fig. B13). From Tables A1 and

A2, it is possible to see that for both of the components of NTT

045251+3016 the set of models that provides the largest Bayes fac-

tor is, once again, the coldest set available (YP = 0.23, �Y/�Z =

2 and α = 1.2). Using this particular set and a flat mass prior,

we obtain slightly larger masses of μP = 1.13+0.16
−0.13 M⊙ and

μS = 0.50+0.13
−0.12 M⊙ (see Fig. B14). The improvement is not enough

to obtain an agreement between predicted and observed masses for

the secondary, while the primary mass, though still underestimated,

is in agreement within the errors.

We report that using the BASE software (courtesy of Tim Schulze-

Hartung, private communication) for analysing the system’s astro-

metric measurements and radial velocities, slightly lower masses are

predicted. The primary mass is found to be μP = 1.383 ± 0.220 M⊙
(−4.60 per cent) while the secondary mass is μS = 0.766 ± 0.089

(−5.41 per cent).

Even with this latter improvement, there is still a larger dis-

agreement in the predicted versus dynamical mass for NTT

045251+3016 than what we found for the EB cases or even the

other two AS binaries. This suggests that part of the problem might

reside in observations as well, and we already noted in Section 5 the

peculiar location of this star in the HR diagram given its measured

mass. Apart from a theoretical effort, which is certainly needed,

this system also demands attention from the observational side to

exclude e.g. higher order multiplicity that to-date interferometric

observations are not capable of resolving.

Concerning the system’s composite age, the values we ob-

tain when using a Gaussian mass prior are τ = 3.55+0.85
−0.50 and

4.65+1.1
−0.65 Myr for the case of standard and coldest set of models,

respectively.

8.9 HD 98800 B

This AS binary is part of a quadruple system. Boden et al. (2005)

reported a preliminary visual and physical orbit for the binary

C© 2012 The Authors, MNRAS 420, 986–1018
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subsystem. They derived the components’ masses of 0.699 ± 0.064

and 0.582 ± 0.051 M⊙ for the primary and the secondary, respec-

tively. We adopted the [Fe/H] value from Laskar et al. (2009). Both

the components of the system are very young and located at the

beginning of their Hayashi track.

For this system the standard set of models provides a good

fit to both components (see Fig. B15). The predicted mass val-

ues in the case of a flat mass prior are μP = 0.51+0.25
−0.02 M⊙ and

μS = 0.41+0.17
−0.00 M⊙. The location of the two stars in the HR dia-

gram makes their marginal distribution extremely asymmetric. As

a consequence, the best values are located quite close to (or exactly

at) the boundary of the confidence intervals. This is the reason why

the quoted lower error for the secondary mass is zero. The best val-

ues for both the primary and secondary are slightly smaller than the

dynamical mass values, but in this case there is consistency within

the 68 per cent confidence intervals.

The inferred ages for the two components are very similar,

and when a Gaussian mass prior is adopted we obtain τP =

0.85+0.05
−0.10 Myr and τS = 1.00+0.00

−0.15 Myr. Also, in this case the

marginal distributions are quite asymmetric. The composite sys-

tem age is found to be τC = 0.90+0.00
−0.10 Myr, very young indeed.

9 T H E S TA R S I N TAU RU S – AU R I G A

In this section, we will present the results for the nine stars found

in the Taurus–Auriga star-forming region and whose masses are

derived using disc kinematics (see Section 5). For all of these stars,

the Gaussian metallicity prior is applied using the average value of

[Fe/H] = −0.01 ± 0.05 dex for the region (D’Orazi et al. 2011).

This sample exactly coincides with the DK+DKS sample of

Section 5. As it is possible to see in the rightmost panels of Fig. 6,

most of the DK+DKS stars have strongly underestimated values of

the mass. We discussed some possible reasons for this discrepancy

in Section 6.

We used the standard set of model to derive the ages of the Taurus–

Auriga stars. When a Gaussian mass prior is used, the predicted

values are reported in Table 6. In addition to single stellar ages, we

also computed the composite age for the DKS system UZ Tau E.

In general, these age determinations have a worst precision when

compared to the EB and AS sample. Moreover, for MWC 480 the

peak of the distribution is outside the 68 per cent confidence interval.

This is because G(τ ) is very flat and the corresponding peak is barely

visible. This peak is located in the area corresponding to the leftmost

Table 6. Derived ages for Taurus–Auriga DK

stars.

Name Age (Myr) Relative precision

UZ Tau Ea 2.65+1.50
−0.45 0.373

UZ Tau Eb 1.45+0.45
−0.70 0.592

UZ Tau Ea 1.85+0.45
−0.25 0.199

DL Tau 1.20+0.30
−0.15 0.195

DM Tau 3.05+1.10
−0.50 0.276

CY Tau 1.85+0.30
−0.65 0.338

BP Tau 17.25+8.85
−3.35 0.370

GM Aur 0.50+0.10
−0.00 0.095

MWC 480 10.30b 0.957

LkCa 15 4.45+2.50
−0.75 0.371

aValue for the composite system age.
bUncertainty interval poorly defined.

16 per cent probability that is excluded according to our definition.

This is not strange given our definition of the confidence interval;

it is just an indication that the age of this system is very poorly

defined.

As mentioned in Section 5 the stars UZ Tau Ea, BP Tau and MCW

480 have a peculiar location in the HR diagram. We excluded the

latter two stars, while we kept UZ Tau Ea in the sample to obtain an

average age of 2.1 ± 1.3 Myr where the quoted uncertainty is the

standard deviation of the ages of the remaining stars. For both the

stars in the UZ Tau E system, we considered the composite age as

the best age estimator. This average age is in very good agreement

with the estimated age for the Taurus–Auriga star-forming region

of 1–2 Myr (see e.g. Kraus & Hillenbrand 2009 and references

therein).

1 0 S U M M A RY A N D C O N C L U S I O N S

The importance of a stringent test of PMS models against stars with

accurately known parameters (i.e. mass, luminosity, radius, effective

temperature, [Fe/H]) can hardly be overestimated, as these models

represent the main tool to derive masses and ages of stars observed

in star-forming regions and young stellar clusters. Consequently,

the inferred star formation histories and mass functions of young

stellar groups depend strongly on the answers provided by stellar

evolutionary codes.

In order to constrain PMS models, we relied on a data set contain-

ing 25 PMS stars of measured mass (plus two MS companions in bi-

nary systems). This is the full up-to-date sample of known PMS stars

with dynamical mass measurements in the range of 0.2–3.0 M⊙.

Among them, 10 PMS objects belong to double-lined eclipsing bi-

nary systems and six to astrometric and spectroscopic binaries; the

remaining nine objects are stars whose masses are derived using the

measured orbital velocity of their circumstellar discs.

The main novelties of the paper are both the approach followed

for comparing theory with observations and the set of PMS models

used in the comparison. Regarding the former, we applied for the

first time to the whole sample of PMS stars a very general Bayesian

method. This approach allows a full exploitation of the available

information about the observed objects which is included in the

form of prior probability distributions. In addition, it provides robust

uncertainties for the inferred quantities.

The models are extracted from the very recent PISA PMS data

base (Tognelli et al. 2011). They include the state-of-the-art in-

put physics and are available for a large and very fine grid of

metallicities, masses and ages and for different primordial helium

abundances, YP, helium-to-metal enrichment ratios, �Y/�Z, and

mixing-length parameter, α, values.

We checked the robustness and accuracy of the method in re-

covering stellar ages and masses against simulated binary data sets.

One interesting result is that even synthetic binary stars – coeval by

construction – might mimic non-coevality as a consequence of the

random uncertainty in the effective temperature, radius and lumi-

nosity. The actual fraction of fake non-coeval recoveries depends

strongly on the sample characteristics, since we demonstrated that

the ability to recover the simulated masses and ages is a complex

function of the actual position of the star in the HR diagram. This

fraction can be as large as 95 per cent for systems with one compo-

nent close to its MS position.

This suggests that the inability to fit both components of a bi-

nary system with a single isochrone does not necessarily imply that

the two stars are not coeval or that the models present some de-

ficiency. We also showed that, even in the simulated systems that

C© 2012 The Authors, MNRAS 420, 986–1018
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Testing PMS models, a Bayesian approach 1005

are recovered as non-coeval, the inferred system age obtained using

the composite age distribution is in very good agreement with the

simulated age.

When the real data are used, the PISA PMS models show an

overall agreement with the observations. With the exception of

V1174 Ori B, the masses of EB stars are well recovered within

10 per cent. The agreement progressively worsens for AS binaries

and DK stars, but the observational uncertainties also become more

severe for the latter objects.

A slightly worse situation is observed for stellar ages compared

to stellar masses. Within our sample, six binary systems are present

for which ages can be derived for both components. The systems

EK Cep and TY CrA both have a primary on the MS; hence, their

primaries’ ages are not very accurate and we exclude them from the

following discussion. HD 113449 is excluded as well, since the age

of the secondary is also not well determined. Of the remaining six

systems, four are predicted to be coeval – within the uncertainties –

by our models. The systems RXJ 0529.4+0041 A and V1174 Ori

are instead not consistent with coevality.

We have shown by simulations that the probability of deriving

non-coeval ages for two stars in a binary system – because of

observational uncertainties – is a complex function of the position

of stars in the HR diagram. Nevertheless, we have also shown that,

for the subset of simulated systems for which both components are

still far from their MS position, this probability is very low, always

below 10 per cent and as small as 0 per cent for most simulated cases.

The observed non-coevality fraction of 30 per cent is higher than

that expected, given the typical quoted observational errors and the

location in the HR diagram of the stars of the six aforementioned

systems. With the present low number statistics, it is difficult to

draw robust conclusions; nevertheless, these results might suggest

that PMS models still have some problems in correctly predicting

stellar ages. On the other hand, the hypothesis that some systems

might really be non-coeval cannot be ruled out given the current

uncertainties on the models. Another possibility is that observational

errors, especially the systematic ones, are underestimated, leading

to a spurious non-coevality of the stars in RXJ 0529.4+0041 A and

V1174 Ori.

With our Bayesian approach, it is possible to evaluate the prob-

ability for different sets of models, i.e. the models’ evidence. We

analysed the entire data set using several classes of models com-

puted with different YP, �Y/�Z and α values. We calculated the

evidence for each star using nine different meta-parameter config-

urations. Furthermore, four combinations of the prior distributions

for mass and metallicity have been used for each meta-parameter

choice, for a total of 36 classes. We found that adopting a Gaussian

rather than a flat mass prior significantly improves the composite

evidence for the full data set; the same effect, but to a lesser degree,

is obtained imposing a Gaussian metallicity prior, mainly for EBs.

Although our standard set of models shows a reasonable general

agreement with the data, predicting mass values almost always

within 20 per cent of the dynamical ones – and in several cases even

within 5 per cent – the general trend suggests that standard models

tend to underestimate the stellar mass, confirming previous results

(see Mathieu et al. 2007 and references therein). As a consequence,

the strongest composite evidence is obtained with our coldest set

of models, i.e. with the mixing-length parameter α = 1.2 and the

lowest helium abundance at fixed metallicity.

Given that the discrepancy between theory and observations in-

creases going from the most precise data set of EBs to the others,

we point out that a twofold effort is needed to achieve a better agree-

ment. From the theoretical point of view, a better understanding of

the treatment of superadiabatic convection and a better characteri-

zation of the models’ meta-parameters are desirable. Moreover, one

of the open questions of PMS modelling concerns the role played

by accretion in affecting the observable properties of very young

stars, i.e. their effective temperatures and luminosities. Different au-

thors disagree on the impact accretion can have on the stellar ages

which are inferred using non-accreting models (Baraffe, Chabrier &

Gallardo 2009; Hosokawa, Offner & Krumholz 2011). Unfortu-

nately, a fully consistent treatment of accretion for stars spanning

a wide range of parameters is still lacking, therefore preventing a

proper and quantitative evaluation of the impact of accretion on the

inferred stellar properties.

From the observational side, the significance of such a compar-

ison could be improved in the future by a larger sample of well-

studied and characterized PMS stars and by a better control on the

systematic errors affecting AS and DK stars’ measurements.
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A P P E N D I X A : TA B L E S O F BAY E S FAC TO R S

Table A1. Bayes factor values for the case of a flat prior on the mass and a flat prior on the metallicity.

α = 1.20 α = 1.68 α = 1.90 α = 1.20 α = 1.68 α = 1.90

RS Cha A RS Cha B

�Y/�Z = 2, YP = 0.23 1.252 1.252 1.253 1.054 1.077 1.111

�Y/�Z = 2, YP = 0.2485 1.004 1.000 1.009 0.975 1.000 1.033

�Y/�Z = 5, YP = 0.2485 0.556 0.561 0.559 0.787 0.802 0.828

RXJ Aa RXJ Ab

�Y/�Z = 2, YP = 0.23 1.002 1.042 1.035 1.377 1.101 1.003

�Y/�Z = 2, YP = 0.2485 0.955 1.000 0.996 1.292 1.000 0.900

�Y/�Z = 5, YP = 0.2485 0.833 0.889 0.889 1.038 0.716 0.620

V1174 Ori A V1174 Ori B

�Y/�Z = 2, YP = 0.23 1.108 1.051 1.009 1.589 1.183 1.086

�Y/�Z = 2, YP = 0.2485 1.073 1.000 0.948 1.365 1.000 0.914

�Y/�Z = 5, YP = 0.2485 0.960 0.824 0.741 0.821 0.579 0.525

EK Cep A EK Cep B

�Y/�Z = 2, YP = 0.23 0.950 0.955 0.956 5.684 1.181 0.946

�Y/�Z = 2, YP = 0.2485 0.995 1.000 1.005 4.447 1.000 0.866

�Y/�Z = 5, YP = 0.2485 1.451 1.457 1.460 1.386 0.712 0.712

TY CrA A TY CrA B

�Y/�Z = 2, YP = 0.23 0.962 0.963 0.964 1.166 1.066 0.977

�Y/�Z = 2, YP = 0.2485 0.999 1.000 1.001 1.111 1.000 0.909

�Y/�Z = 5, YP = 0.2485 1.145 1.147 1.147 0.957 0.815 0.720

ASAS A ASAS B

�Y/�Z = 2, YP = 0.23 0.922 1.036 1.052 1.251 1.083 0.943

�Y/�Z = 2, YP = 0.2485 0.884 1.000 1.017 1.208 1.000 0.848

�Y/�Z = 5, YP = 0.2485 0.784 0.906 0.913 1.071 0.745 0.580

HD 113449 A HD 113449 B

�Y/�Z = 2, YP = 0.23 0.569 0.971 1.019 0.665 0.832 0.883

�Y/�Z = 2, YP = 0.2485 0.667 1.000 0.998 0.806 1.000 1.060

�Y/�Z = 5, YP = 0.2485 1.003 0.837 0.670 1.272 1.589 1.686

NTT A NTT B

�Y/�Z = 2, YP = 0.23 1.422 1.098 0.976 1.776 1.173 1.043

�Y/�Z = 2, YP = 0.2485 1.340 1.000 0.877 1.529 1.000 0.887

�Y/�Z = 5, YP = 0.2485 1.101 0.723 0.607 0.946 0.612 0.541

HD 98800 Ba HD 98800 Bb

�Y/�Z = 2, YP = 0.23 3.162 1.120 0.841 2.719 1.148 0.903

�Y/�Z = 2, YP = 0.2485 2.816 1.000 0.756 2.322 1.000 0.811

�Y/�Z = 5, YP = 0.2485 1.937 0.754 0.600 1.563 0.911 0.632

UZ Tau Ea UZ Tau Eb

�Y/�Z = 2, YP = 0.23 1.731 1.126 0.968 2.795 1.363 0.862

�Y/�Z = 2, YP = 0.2485 1.540 1.000 0.846 2.228 1.000 0.614

�Y/�Z = 5, YP = 0.2485 1.202 0.795 0.623 0.897 0.229 0.123

DL Tau DM Tau

�Y/�Z = 2, YP = 0.23 2.465 1.139 0.924 1.784 1.182 1.051

�Y/�Z = 2, YP = 0.2485 2.147 1.000 0.814 1.529 1.000 0.886

�Y/�Z = 5, YP = 0.2485 1.400 0.735 0.616 0.929 0.589 0.518

CY Tau BP Tau

�Y/�Z = 2, YP = 0.23 1.551 1.131 1.025 1.103 1.058 1.045

�Y/�Z = 2, YP = 0.2485 1.371 1.000 0.902 1.042 1.000 0.987

�Y/�Z = 5, YP = 0.2485 0.996 0.735 0.646 0.890 0.848 0.832

GM Aur MWC 480

�Y/�Z = 2, YP = 0.23 7.963 1.329 0.287 1.118 1.128 1.131

�Y/�Z = 2, YP = 0.2485 6.900 1.000 0.173 0.991 1.000 1.002

�Y/�Z = 5, YP = 0.2485 5.211 0.244 0.023 0.564 0.570 0.571

LkCa 15

�Y/�Z = 2, YP = 0.23 1.259 1.080 0.992

�Y/�Z = 2, YP = 0.2485 1.202 1.000 0.904

�Y/�Z = 5, YP = 0.2485 1.029 0.754 0.646
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1008 M. Gennaro, P. G. Prada Moroni and E. Tognelli

Table A2. Bayes factor values for the case with a Gaussian prior on the mass and a flat prior on the metallicity.

α = 1.20 α = 1.68 α = 1.90 α = 1.20 α = 1.68 α = 1.90

RS Cha A RS Cha B

�Y/�Z = 2, YP = 0.23 6.968 7.171 7.039 17.54 17.92 18.36

�Y/�Z = 2, YP = 0.2485 7.123 7.150 7.212 12.47 12.64 12.88

�Y/�Z = 5, YP = 0.2485 0.147 0.142 0.143 0.003 0.003 0.003

RXJ A RXJ B

�Y/�Z = 2, YP = 0.23 11.72 16.17 13.57 11.71 13.11 12.30

�Y/�Z = 2, YP = 0.2485 8.582 16.72 14.98 12.81 11.93 10.14

�Y/�Z = 5, YP = 0.2485 2.719 14.44 15.56 12.08 3.470 1.650

V1174 Ori A V1174 Ori B

�Y/�Z = 2, YP = 0.23 2.844 7.566 9.745 6.218 1.236 0.658

�Y/�Z = 2, YP = 0.2485 4.949 10.52 12.47 3.032 0.358 0.158

�Y/�Z = 5, YP = 0.2485 16.15 12.65 6.966 0.024 <10−3 <10−3

EK Cep A EK Cep B

�Y/�Z = 2, YP = 0.23 9.530 9.597 9.580 18.02 17.25 9.205

�Y/�Z = 2, YP = 0.2485 2.259 2.254 2.256 17.48 23.61 14.84

�Y/�Z = 5, YP = 0.2485 0.001 0.001 0.001 28.67 14.20 21.99

TY CrA A TY CrA B

�Y/�Z = 2, YP = 0.23 0.409 0.409 0.409 13.52 6.466 4.870

�Y/�Z = 2, YP = 0.2485 0.145 0.145 0.145 13.13 6.728 4.847

�Y/�Z = 5, YP = 0.2485 0.005 0.005 0.005 5.550 6.863 4.718

ASAS A ASAS B

�Y/�Z = 2, YP = 0.23 3.446 0.909 2.070 8.715 12.54 7.418

�Y/�Z = 2, YP = 0.2485 9.576 2.131 3.682 11.10 9.666 3.843

�Y/�Z = 5, YP = 0.2485 29.33 7.729 12.42 21.51 0.383 0.023

HD 113449 A HD 113449 B

�Y/�Z = 2, YP = 0.23 5.754 10.44 10.94 2.548 3.270 3.497

�Y/�Z = 2, YP = 0.2485 5.856 9.333 9.159 2.548 3.252 3.476

�Y/�Z = 5, YP = 0.2485 4.563 2.854 2.015 2.559 3.129 3.291

NTT A NTT B

�Y/�Z = 2, YP = 0.23 3.589 1.323 0.830 2.417 0.372 0.192

�Y/�Z = 2, YP = 0.2485 2.837 0.880 0.516 1.391 0.166 0.078

�Y/�Z = 5, YP = 0.2485 1.104 0.173 0.079 0.116 0.005 0.002

HD 98800 Ba HD 98800 Bb

�Y/�Z = 2, YP = 0.23 2.327 6.120 5.958 4.910 7.595 7.702

�Y/�Z = 2, YP = 0.2485 2.909 6.173 5.419 4.354 7.662 6.594

�Y/�Z = 5, YP = 0.2485 4.946 5.024 3.010 7.062 6.963 3.018

UZ Tau Ea UZ Tau Eb

�Y/�Z = 2, YP = 0.23 0.077 <10−3 <10−3 46.45 16.35 9.575

�Y/�Z = 2, YP = 0.2485 0.030 <10−3 <10−3 33.43 9.941 5.498

�Y/�Z = 5, YP = 0.2485 <10−3 <10−3 <10−3 7.188 0.826 0.355

DL Tau DM Tau

�Y/�Z = 2, YP = 0.23 15.75 6.815 4.181 19.31 12.15 9.790

�Y/�Z = 2, YP = 0.2485 14.59 4.953 2.782 16.83 8.719 6.555

�Y/�Z = 5, YP = 0.2485 9.141 1.225 0.515 6.555 1.297 0.675

CY Tau BP Tau

�Y/�Z = 2, YP = 0.23 5.420 3.667 3.256 0.180 0.155 0.147

�Y/�Z = 2, YP = 0.2485 4.675 3.145 2.776 0.138 0.115 0.107

�Y/�Z = 5, YP = 0.2485 3.058 2.071 1.788 0.054 0.038 0.034

GM Aur MWC 480

�Y/�Z = 2, YP = 0.23 59.83 9.330 1.688 0.161 0.162 0.163

�Y/�Z = 2, YP = 0.2485 53.20 6.241 0.865 0.306 0.309 0.309

�Y/�Z = 5, YP = 0.2485 40.15 0.817 0.037 2.305 2.325 2.332

LkCa 15

�Y/�Z = 2, YP = 0.23 3.908 7.764 8.856

�Y/�Z = 2, YP = 0.2485 5.393 9.119 9.496

�Y/�Z = 5, YP = 0.2485 10.91 8.083 5.268
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Testing PMS models, a Bayesian approach 1009

Table A3. Bayes factor values for the case of a flat prior on the mass and a Gaussian prior on the metallicity.

α = 1.20 α = 1.68 α = 1.90 α = 1.20 α = 1.68 α = 1.90

RS Cha A RS Cha B

�Y/�Z = 2, YP = 0.23 0.887 0.897 0.896 1.058 1.089 1.114

�Y/�Z = 2, YP = 0.2485 0.752 0.752 0.764 0.978 1.002 1.044

�Y/�Z = 5, YP = 0.2485 0.530 0.532 0.531 0.790 0.806 0.833

RXJ A RXJ B

�Y/�Z = 2, YP = 0.23 0.992 1.016 1.007 1.353 1.071 0.975

�Y/�Z = 2, YP = 0.2485 0.951 0.976 0.972 1.264 0.967 0.871

�Y/�Z = 5, YP = 0.2485 0.873 0.905 0.904 1.077 0.766 0.675

V1174 Ori A V1174 Ori B

�Y/�Z = 2, YP = 0.23 1.103 1.034 0.991 1.313 0.999 0.924

�Y/�Z = 2, YP = 0.2485 1.066 0.984 0.929 1.110 0.836 0.772

�Y/�Z = 5, YP = 0.2485 0.992 0.861 0.786 0.785 0.581 0.534

EK Cep A EK Cep B

�Y/�Z = 2, YP = 0.23 3.545 3.568 3.570 2.769 0.865 0.840

�Y/�Z = 2, YP = 0.2485 2.343 2.367 2.378 1.769 0.795 0.792

�Y/�Z = 5, YP = 0.2485 0.091 0.093 0.093 0.783 0.699 0.710

TY CrA A TY CrA B

�Y/�Z = 2, YP = 0.23 – – – – – –

�Y/�Z = 2, YP = 0.2485 – – – – – –

�Y/�Z = 5, YP = 0.2485 – – – – – –

ASAS A ASAS B

�Y/�Z = 2, YP = 0.23 0.632 0.701 0.706 0.840 0.680 0.581

�Y/�Z = 2, YP = 0.2485 0.597 0.666 0.667 0.788 0.604 0.502

�Y/�Z = 5, YP = 0.2485 0.544 0.610 0.604 0.706 0.481 0.380

HD 113449 A HD 113449 B

�Y/�Z = 2, YP = 0.23 0.874 1.052 0.975 1.028 1.296 1.375

�Y/�Z = 2, YP = 0.2485 0.986 0.948 0.827 1.325 1.636 1.731

�Y/�Z = 5, YP = 0.2485 1.043 0.631 0.490 1.987 2.383 2.498

NTT A NTT B

�Y/�Z = 2, YP = 0.23 – – – – – –

�Y/�Z = 2, YP = 0.2485 – – – – – –

�Y/�Z = 5, YP = 0.2485 – – – – – –

HD 98800 Ba HD 98800 Bb

�Y/�Z = 2, YP = 0.23 1.499 0.676 0.560 1.479 0.790 0.662

�Y/�Z = 2, YP = 0.2485 1.287 0.614 0.501 1.075 0.708 0.538

�Y/�Z = 5, YP = 0.2485 1.046 0.542 0.420 0.843 0.595 0.425

UZ Tau Ea UZ Tau Eb

�Y/�Z = 2, YP = 0.23 1.629 1.150 1.007 1.092 0.404 0.294

�Y/�Z = 2, YP = 0.2485 1.446 1.006 0.845 0.687 0.252 0.161

�Y/�Z = 5, YP = 0.2485 1.383 0.857 0.692 0.311 0.072 0.044

DL Tau DM Tau

�Y/�Z = 2, YP = 0.23 2.058 1.052 0.892 1.474 1.015 0.914

�Y/�Z = 2, YP = 0.2485 1.777 0.941 0.791 1.248 0.853 0.767

�Y/�Z = 5, YP = 0.2485 1.372 0.822 0.708 0.893 0.604 0.542

CY Tau BP Tau

�Y/�Z = 2, YP = 0.23 1.448 1.142 1.061 1.105 1.078 1.068

�Y/�Z = 2, YP = 0.2485 1.298 1.040 0.945 1.058 1.029 1.019

�Y/�Z = 5, YP = 0.2485 1.131 0.829 0.731 0.965 0.928 0.914

GM Aur MWC 480

�Y/�Z = 2, YP = 0.23 7.278 0.368 0.061 0.462 0.466 0.468

�Y/�Z = 2, YP = 0.2485 5.192 0.218 0.027 0.313 0.316 0.317

�Y/�Z = 5, YP = 0.2485 4.421 0.080 0.008 0.125 0.126 0.127

LkCa 15

�Y/�Z = 2, YP = 0.23 1.243 1.048 0.959

�Y/�Z = 2, YP = 0.2485 1.186 0.965 0.869

�Y/�Z = 5, YP = 0.2485 1.059 0.791 0.690
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1010 M. Gennaro, P. G. Prada Moroni and E. Tognelli

Table A4. Bayes factor values for the case with a Gaussian prior on both the mass and the metallicity.

α = 1.20 α = 1.68 α = 1.90 α = 1.20 α = 1.68 α = 1.90

RS Cha A RS Cha B

�Y/�Z = 2, YP = 0.23 17.40 17.78 17.51 26.67 27.27 27.57

�Y/�Z = 2, YP = 0.2485 10.23 10.24 10.23 10.36 10.60 10.85

�Y/�Z = 5, YP = 0.2485 0.003 0.003 0.003 0.003 0.003 0.003

RXJ A RXJ B

�Y/�Z = 2, YP = 0.23 10.87 18.35 17.02 15.62 14.00 11.73

�Y/�Z = 2, YP = 0.2485 7.781 18.34 18.31 15.98 10.44 7.579

�Y/�Z = 5, YP = 0.2485 3.366 14.13 15.14 12.00 3.298 1.666

V1174 Ori A V1174 Ori B

�Y/�Z = 2, YP = 0.23 2.484 12.76 16.35 0.794 0.091 0.043

�Y/�Z = 2, YP = 0.2485 6.836 18.37 18.09 0.217 0.016 0.006

�Y/�Z = 5, YP = 0.2485 22.02 13.08 7.076 0.007 <10−3 <10−3

EK Cep A EK Cep B

�Y/�Z = 2, YP = 0.23 37.95 38.17 38.06 24.89 21.46 9.717

�Y/�Z = 2, YP = 0.2485 8.021 8.004 8.010 16.38 28.07 17.43

�Y/�Z = 5, YP = 0.2485 0.001 0.001 0.001 4.962 16.00 22.97

TY CrA A TY CrA B

�Y/�Z = 2, YP = 0.23 – – – – – –

�Y/�Z = 2, YP = 0.2485 – – – – – –

�Y/�Z = 5, YP = 0.2485 – – – – – –

ASAS A ASAS B

�Y/�Z = 2, YP = 0.23 3.527 1.714 3.897 13.81 4.101 1.250

�Y/�Z = 2, YP = 0.2485 10.47 4.188 6.801 13.61 1.690 0.340

�Y/�Z = 5, YP = 0.2485 26.83 10.93 11.13 7.133 0.056 0.003

HD 113449 A HD 113449 B

�Y/�Z = 2, YP = 0.23 8.426 9.087 7.972 4.084 5.100 5.393

�Y/�Z = 2, YP = 0.2485 7.398 6.058 4.900 4.029 4.877 5.124

�Y/�Z = 5, YP = 0.2485 3.911 1.671 1.155 3.304 3.765 3.882

NTT A NTT B

�Y/�Z = 2, YP = 0.23 – – – – – –

�Y/�Z = 2, YP = 0.2485 – – – – – –

�Y/�Z = 5, YP = 0.2485 – – – – – –

HD 98800 Ba HD 98800 Bb

�Y/�Z = 2, YP = 0.23 4.598 4.732 3.154 9.824 5.134 4.441

�Y/�Z = 2, YP = 0.2485 5.117 3.838 2.254 5.794 4.017 2.152

�Y/�Z = 5, YP = 0.2485 5.514 2.523 1.264 3.389 2.762 0.925

UZ Tau Ea UZ Tau Eb

�Y/�Z = 2, YP = 0.23 0.007 <10−3 <10−3 14.31 3.507 2.202

�Y/�Z = 2, YP = 0.2485 0.002 <10−3 <10−3 7.555 1.637 0.915

�Y/�Z = 5, YP = 0.2485 <10−3 <10−3 <10−3 2.198 0.252 0.123

DL Tau DM Tau

�Y/�Z = 2, YP = 0.23 15.38 4.642 2.638 15.09 7.006 5.228

�Y/�Z = 2, YP = 0.2485 12.89 2.985 1.558 10.91 4.091 2.819

�Y/�Z = 5, YP = 0.2485 7.816 1.055 0.472 4.461 0.943 0.529

CY Tau BP Tau

�Y/�Z = 2, YP = 0.23 4.679 3.441 3.139 0.134 0.113 0.106

�Y/�Z = 2, YP = 0.2485 4.056 3.024 2.706 0.099 0.080 0.074

�Y/�Z = 5, YP = 0.2485 3.289 2.275 1.980 0.051 0.038 0.034

GM Aur MWC 480

�Y/�Z = 2, YP = 0.23 66.12 2.143 0.193 0.358 0.361 0.362

�Y/�Z = 2, YP = 0.2485 47.29 1.166 0.090 0.734 0.741 0.743

�Y/�Z = 5, YP = 0.2485 34.52 0.238 0.009 1.134 1.144 1.147

LkCa 15

�Y/�Z = 2, YP = 0.23 5.624 10.79 11.34

�Y/�Z = 2, YP = 0.2485 8.308 11.78 10.77

�Y/�Z = 5, YP = 0.2485 12.79 8.522 5.659
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Testing PMS models, a Bayesian approach 1011

A P P E N D I X B : M A S S A N D AG E M A R G I NA L D I S T R I BU T I O N S

Figure B1. RS Cha components’ mass and age distribution functions as obtained from the log g– log Teff diagram using the standard set of models. Upper

panels: marginalized mass distributions. Lower panels: marginalized age distributions. Left panels: marginalization using a flat mass prior. Right panels:

marginalization using a Gaussian mass prior. All panels: in dot–dashed blue is the primary component and in dashed-red the secondary. Full symbols indicate

the mode of the distributions, and the bars mark the 68 per cent confidence interval. The quoted numbers represent the relative precision of the mass or age

estimates. In the upper panels, the empty symbols and related error bars indicate the dynamical masses and their measurement errors. In the lower panels, the

solid-black line represents the system’s age distribution.

Figure B2. RXJ 0529.4+0041 components’ mass and age distribution functions from comparison with the standard set of models (see Fig. B1 for a description).

C© 2012 The Authors, MNRAS 420, 986–1018
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1012 M. Gennaro, P. G. Prada Moroni and E. Tognelli

Figure B3. V1174 Ori components’ mass and age distribution functions from comparison with the standard set of models (see Fig. B1 for a description).

Figure B4. V1174 Ori components’ mass and age distribution functions from comparison with the standard set of models (see Fig. B1 for a description). In

this case, the temperature of the primary has been artificially raised by 100 K and the temperature of the secondary has been raised accordingly in order to keep

the temperature ratio constant.
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Testing PMS models, a Bayesian approach 1013

Figure B5. EK Cep components’ mass and age distribution functions from comparison with the standard set of models (see Fig. B1 for a description).

Figure B6. EK Cep components’ mass and age distribution functions from comparison with the set of models with α = 1.20, YP = 0.23 and �Y/�Z = 2 (see

Fig. B1 for a description). The stellar Z values used for this comparison have been calculated using the observed [Fe/H] and (Z/X)⊙ by Grevesse & Sauval

(1998).
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1014 M. Gennaro, P. G. Prada Moroni and E. Tognelli

Figure B7. TY CrA components’ mass and age distribution functions from comparison with the standard set of models (see Fig. B1 for a description).

Figure B8. TY CrA components’ mass and age distribution functions from comparison with the set of models with α = 1.20, YP = 0.23 and �Y/�Z = 2 (see

Fig. B1 for a description).
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Testing PMS models, a Bayesian approach 1015

Figure B9. ASAS J052821+0338.5 components’ mass and age distribution functions from comparison with the standard set of models (see Fig. B1 for a

description).

Figure B10. ASAS J052821+0338.5 components’ mass and age distribution functions from comparison with the standard set of models. In this case, we used

the data from table 1 of Stempels et al. (2008) when no spots are included in the light-curve modelling (see Fig. B1 for a description).
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1016 M. Gennaro, P. G. Prada Moroni and E. Tognelli

Figure B11. HD 113449 components’ mass and age distribution functions from comparison with the standard set of models (see Fig. B1 for a description).

Figure B12. HD 113449 components’ mass and age distribution functions from comparison with the set of models with α = 1.20, YP = 0.23 and �Y/�Z =

2 (see Fig. B1 for a description). The stellar Z values used for this comparison have been calculated using the observed [Fe/H] and (Z/X)⊙ by Grevesse &

Sauval (1998).
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Testing PMS models, a Bayesian approach 1017

Figure B13. NTT 045251+3016 components’ mass and age distribution functions from comparison with the standard set of models (see Fig. B1 for a

description).

Figure B14. NTT 045251+3016 components’ mass and age distribution functions from comparison with the set of models with α = 1.20, YP = 0.23 and

�Y/�Z = 2 (see Fig. B1 for a description).
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1018 M. Gennaro, P. G. Prada Moroni and E. Tognelli

Figure B15. HD 98800 B components’ mass and age distribution functions from comparison with the standard set of models (see Fig. B1 for a description).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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