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Abstract: The interference pattern in electron double-slit diffraction is a hallmark of quantum

mechanics. A long-standing question for stochastic electrodynamics (SED) is whether or not it

is capable of reproducing such effects, as interference is a manifestation of quantum coherence. In this

study, we used excited harmonic oscillators to directly test this quantum feature in SED. We used

two counter-propagating dichromatic laser pulses to promote a ground-state harmonic oscillator

to a squeezed Schrödinger cat state. Upon recombination of the two well-separated wavepackets,

an interference pattern emerges in the quantum probability distribution but is absent in the SED

probability distribution. We thus give a counterexample that rejects SED as a valid alternative to

quantum mechanics.

Keywords: interference pattern; stochastic electrodynamics; quantum coherence; squeezed

Schrödinger cat state; Kapitza-Dirac effect; parametric excitation

1. Introduction

Over the past decades, there has been sustained interest in developing classical alternatives

to quantum mechanics (QM) with the goal of solving the quantum-classical boundary problem.

Despite the proposed classical alternatives [1–3], there is a lack of quantitative tests of such theories

against QM, mostly because analytic solutions to concrete physical systems such as two-level atoms

have not been found. Arguably one of the most developed classical alternatives is stochastic

electrodynamics (SED) [4,5]. Studies of SED harmonic systems have found many examples that

are in exact agreement with QM. These include the retarded van der Waals force [6], ground state

distribution of harmonic oscillators [7,8], Landau diamagnetism [9,10], Planck spectrum of blackbody

radiation [11,12], and Debye specific-heat law for solids [13]. Numerical studies of hydrogen have

given some qualitative features [14,15] but have not led to a clear success [16,17]. Recently, it was

further shown that parametric interaction can give rise to discrete SED excitation spectra that are in

excellent agreement with QM predictions [18]. However, a major drawback to the generality of the SED

approach is that none of the investigated effects involves quantum coherence. In light of this, some

have proposed studying electron double-slit diffraction within the framework of SED as interference

is a manifestation of quantum coherence [5,8,19]. Within the SED community, the proposed view

of electron diffraction is that the double-slit poses boundary conditions that modify the classical

zero-point electromagnetic field, and in turn, it acts as a guiding wave for free electrons [3,5,20,21].

The appeal of this idea is that the guiding field can be affected by both slits, while the particle passes

through only one slit, similar to the idea that has pushed oil droplet analogues [22–27]. As appealing
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as the idea may sound, so far, there has been no concrete calculation or simulation demonstrating

such an effect because of two major theoretical obstacles: (1) The effective spectrum of the zero-point

field is unbounded for free electrons; and (2) the radiation damping of free electrons gives rise to

runaway solutions.

Rather than focusing on the specific theoretical difficulties that are relevant to free electrons,

we developed a paradigm that can be used as a direct test for quantum coherence in stochastic

electrodynamics. Building on our previous results [8,18], we devised a laser excitation scheme to

promote a ground-state quantum harmonic oscillator to a squeezed Schrödinger cat state [28–30].

The Schrödinger cat state of a harmonic oscillator is an analogy of the electron double-slit

state, |L〉 + |R〉, where |L〉 and |R〉 indicate the left and right electron slit states in the position

space [19,31]. Comparing the QM probability distribution with that of SED harmonic oscillators, we

observed some interesting similarities. Nevertheless, the interference pattern is missing in the SED

probability distribution.

2. Kapitza–Dirac Force on Harmonic Oscillators

Let us consider the setup in Figure 1. Two counter-propagating laser fields propagate along the

x-axis, and the electric fields are linearly polarized along the z-axis:

E1 =A1ω1 cos (k1x − ω1t)ǫ̂z,

E2 =− A2ω2 cos (k2x + ω2t)ǫ̂z,
(1)

where ǫ̂z is the unit vector along the z-axis, k1,2 = ω1,2/c are the wave numbers, and A1,2 are amplitudes

of the corresponding vector potentials A1 = A1 sin (k1x − ω1t)ǫ̂z and A2 = A2 sin (k2x + ω2t)ǫ̂z.

The electric and magnetic components of the combined laser field are:

Ez = A1ω1 cos (k1x − ω1t)− A2ω2 cos (k2x + ω2t),

By = −A1k1 cos (k1x − ω1t)− A2k2 cos (k2x + ω2t).
(2)

Figure 1. Two counter-propagating laser fields with frequencies ω1 and ω2 collaboratively drive the

harmonic oscillator with a spatially modulated Kapitza–Dirac force in the direction of wave propagation.

The force has a modulation periodicity of 2πc/(ω1 + ω2), and it oscillates at the difference frequency

ω1 − ω2. A particle subject to the perturbation of the classical zero-point electromagnetic field can get

pushed to either directions.
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Assuming that the particle is free in the direction of the electric field (i.e., the z-axis in Figure 1),

the cross terms between the electric and magnetic components can give rise to a spatially modulated

force in the direction of wave propagation (i.e., the x-axis in Figure 1). Herein, we term this force the

Kapitza–Dirac (KD) force. The KD force can be derived using the following equations of motion:















m
dvz

dt
= qEz

F
(KD)
x = qvzBy

, (3)

where m and q are mass and charge of the particle. Now, there are two scenarios: (1) If frequencies of the

two laser fields are identical (ω1 = ω2), the KD force will be constant in time, which is also known as the

pondermotive force [32], whereas (2) if the laser frequencies are different (ω1 6= ω2), the KD force will

oscillate in time with the sum and difference frequencies, ω1 + ω2 and ω1 − ω2. If the charge particle

is confined by a harmonic potential U(x) = mω
2
0x2/2 with a resonant frequency ω0 = (ω1 − ω2)/2,

the KD force that can resonantly drive the harmonic oscillator will be (see derivation in Appendix A):

FKD =
q2 A1 A2

m

(

k1 + k2

2

)

sin ((k1 + k2)x) cos ((ω1 − ω2)t). (4)

Accordingly, the corresponding time-varying KD potential is:

UKD =
q2 A1 A2

2m
cos ((k1 + k2)x) cos ((ω1 − ω2)t). (5)

We note that at any given time t = t0, a trapping site in the KD potential UKD(x, t0) (i.e., a

minimum in the potential) will turn into an unstable point after a quarter of the natural period

T0/4 = π/|ω1 − ω2|, where T0 = 2π/ω0, since the potential polarity is reversed:

UKD(x, t0 + T0/4) = −UKD(x, t0). (6)

This feature will later be used to coherently split the ground-state wavepacket of a quantum oscillator.

3. Generation of Squeezed Schrödinger Cat States

The KD effect for quantum harmonic oscillators can be modeled by adding the KD potential in

Equation (5) to the unperturbed oscillator Hamiltonian. We replace the continuous-wave laser fields in

Equation (1) with pulsed fields:

E1(x, t) = A1ω1 cos (k1x − ω1t)e−(t/τ)2
ǫ̂z,

E2(x, t) = −A2ω2 cos (k2x + ω2t)e−(t/τ)2
ǫ̂z,

(7)

where τ is the pulse duration, in order to avoid indefinite sequential excitation of the oscillator’s ladder

levels. Given the appropriate pulse amplitudes and durations, the final population distribution can

have a peaked structure. The quantum Hamiltonian is thus:

Ĥ =
mω0

2
x̂2 +

p̂2

2m
+ UKD(x̂, t)e−2(t/τ)2

. (8)

The difference frequency of the laser fields is twice the oscillator’s resonant frequency

ω1 − ω2 = 2ω0, so the ground-state oscillator will be parametrically excited to the even-symmetry

states |n = 2k〉, which is a prerequisite for cat state generation because a cat state has an even

symmetry. We obtained the QM result by numerically solving the Schödinger equation as in

Reference [18]. The oscillator’s parameters are m = 9.11 × 10−35 (kg), q = 1.60 × 10−19 (C), and
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ω0 = 1016 (rad/s). The laser parameters are chosen to be ω1 = 2.3 ω0, ω2 = 0.3 ω0, τ = 5 × 10−15 (s),

and A1 = A2 = 4.5 × 10−8 (V·s/m). The mass is chosen at this unusual value in order to make

the computational time for SED simulation more manageable [8]. In Figure 2b, the probability

trajectory of the excited state is shown. Upon excitation, the ground-state wavepacket is coherently

split into two wavepackets, so the oscillator is in a superposition of two macroscopically distinct

states. The two wavepackets oscillate back and forth in the harmonic potential. As they recombine,

interference fringes emerge in the probability distribution due to the quantum coherence between the

two wavepackets. The quantum coherence is readily illustrated by the fringe structure in the oscillator’s

Wigner function, as shown in Figure 2a. We note that one of the two quadrature uncertainties of each

wavepacket, σx ≡
√

〈x2〉 − 〈x〉2 (or σp ≡
√

〈p2〉 − 〈p〉2), is smaller than the ground state uncertainty

∆x =
√

h̄/2mω0 (or ∆p =
√

h̄mω0/2), while their product remains the same, σxσp = h̄/2, at all times

(see Figure 2a). This implies that the state generated by the laser excitation is a squeezed Schrödinger

cat state (that is, a superposition of two displaced squeezed states with opposite phases) [29,30].

Figure 2. Time evolution of quantum mechanics (QM) and stochastic electrodynamics (SED) probability

distributions after laser excitation. (a) The Wigner function of the QM oscillator is plotted after the laser

excitation. Positive values are color-coded in red, and negative values are in blue. Quantum coherence

between the two well-separated squeezed states is manifested by the fringe structure in the center.

The Wigner function rotates counter-clockwise at the oscillator’s resonant frequency ω0 = 1016 (rad/s).

At the moment when the distribution is depicted, the position quadrature uncertainty σx of the

squeezed state is smaller than that of the ground state ∆x =
√

h̄/2mω0. Meanwhile, the quadrature

uncertainty product satisfies the Heisenberg relation σxσp = h̄/2 at all times. (b) The two wavepackets

oscillate back and forth in the harmonic potential, giving rise to a double sinusoidal trajectory of

the QM probability distribution. An interference pattern appears when the two wavepackets merge.

(c) The phase space distribution of the SED oscillator shows two well-separated sub-ensembles. Each

sub-ensemble has a squeezed structure that mimics the QM squeezed state shown in (a). (d) As the

SED phase space distribution rotates counter-clockwise, the probability distribution bundles into two

“macroscopic” trajectories. In each trial of the SED simulation, there is no knowledge which macroscopic

trajectory a particle will follow unless the initial phase of the background zero-point field is known.

No interference-like patterns are found in the SED probability distribution when the two macroscopic

trajectories of distributions cross.
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For SED oscillators, we first prepared the classical ensemble in a ground state with the x and p

probability distributions identical to those of a quantum oscillator (see details in Reference [8]). Under

excitation of the same laser pulses, the equation of motion for the SED harmonic oscillator is:

m
d2x

dt2
= −mω

2
0x − mΓω

2
0

dx

dt
+ qE

(x)
vac(x, t) + FKD(x, t)e−2(t/τ)2

, (9)

where Γ ≡ 2q2

3mc3

1

4πǫ0
is the radiation damping coefficient. The zero-point field E

(x)
vac(x, t) is configured

according to Reference [8]. Apart from the damping term mΓω
2
0dx/dt and the coupling to the

zero-point field E
(x)
vac(x, t), Equation (9) is formally equivalent to a quantum Heisenberg equation

derived from the Hamiltonian in Equation (8). This suggests that the excitation dynamics in SED

should be identical to QM, assuming (1) the pulse duration τ is much shorter than the damping time

τd = 2/Γω
2
0, and (2) the KD force is much stronger than the fluctuating force from the zero-point

field [8]:

q2 A1 A2

m

(

k1 + k2

2

)

≫ q

2π

√

h̄Γω5
0

ǫ0c3
. (10)

In our simulation, these two conditions are satisfied, and the excitation dynamics in SED and QM

are the same as shown in Figure 3a, where the time evolutions of the expectation value of the QM

energy and the ensemble average of the SED energy are compared. The two energy trajectories stay

overlapped through most of the pulse and only deviate at the end of the excitation. Furthermore, the

SED and QM energy distributions have similar shapes (see Figure 3b), despite the fact that the QM

distribution is discrete and the SED distribution is continuous.

Figure 3. The QM and SED energy distributions after laser excitation. (a) The ensemble average

of the SED oscillator energy (red line) is compared with the expectation value of the QM oscillator

energy (blue line) during the course of laser excitation. The shaded area (red) represents the excitation

laser pulse e−(t/τ)2
. The pulse duration is τ = 5 × 10−15(s), which is much smaller than the SED

oscillator damping time τd ≈ 3.2 × 10−13 (s). Therefore, damping has no significant effect on the

oscillator’s dynamics during the excitation process. (b) Energy distributions of QM and SED oscillators

are compared at t = tm when the SED energy reaches its maximum and the radiation damping starts

to dominate. The QM energy distribution (blue bar) is discrete and occupies only even energy levels

E2k = E0(2k + 1/2), where E0 = h̄ω0. The SED energy distribution (red bar) is continuous but has a

similar width and average value as the QM distribution. This indicates that the excitation process is

identical for QM and SED oscillators.

The probability trajectory of the SED oscillator ensemble along with its phase space distribution

are shown in Figure 2c,d. The ensemble particle number is Np = 3 × 104. The parametric interaction

between the SED oscillator and the laser fields were simulated using the same method as in

Reference [18]. Like the QM oscillator, upon excitation, the ground-state SED probability distribution

also splits into two sub-ensembles that follow two distinct sinusoidal trajectories. The initial phase
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spectrum of the zero-point field, which is random and considered as the “hidden variable”, determines

which trajectory a particle will follow in each trial. A detailed comparison between SED and QM

probability distributions is given in Figure 4 for two time points: (1) When the two QM wavepackets

are separated and (2) when they recombine. Although there are some overall similarities between the

SED and QM distributions, there are no interference fringes in the SED probability distribution.

Figure 4. Comparison between the QM and SED probability distributions at t = 0 and t = T0/4 in

Figure 2. (a) The agreement between QM and SED probability distributions is good when the two

macroscopically distinct QM wavepackets are well-separated by a peak-to-peak distance a beyond the

ground state width ∆x, a ≫ ∆x. (b) After a quarter of the natural period T0/4, the two QM wavepackets

recombine in the harmonic potential. Interference fringes appear in the QM distribution (blue line)

but not in the SED distribution (red dots). The fringe periodicity λ is determined by the wavepacket

separation a in (a) through the relation λ = 2πh̄/mω0a, which resembles the well-known double-slit

diffraction formula. The SED probability distribution captures the outline of the QM distribution as if

the quantum coherence between the two QM wavepackets is lost.

4. Discussion and Conclusions

While the zero-point electromagnetic field only introduces small radiative corrections to

nonrelativistic QM, such as Lamb shifts, it drastically changes the particle dynamics in classical

mechanics and leads to the reproduction of QM effects in some classical systems [6–9,11–13,18].

Our work aimed to investigate to what extent such a classical theory can reproduce QM features by

comparing results obtained from SED, Equation (9), with those obtained from the QM Hamiltonian,

Equation (8). The qualitative difference between the probability distributions of QM and SED in

Figures 2 and 4b establishes that SED in its traditional form does not support physical effects that

involve quantum coherence [4,5]. The squeezed Schrödinger cat state used in this work is an analogy of

the electron double-slit experiment [19]. The peak-to-peak separation a between the two wavepackets

in Figure 4a determines the fringe periodicity λ in Figure 4b through the relation λ = 2πh̄/mω0a,

which mimics the double-slit diffraction formula. Our analysis provides evidence that coherence-like

behavior is absent in SED, and thus, we predict that SED electron double-slit diffraction, if ever

calculated, will not show fringes.

On the other hand, our result helps to establish the validity range of SED. We note that the partial

agreement between the SED and QM results stems from the formal resemblance between the SED

equation of motion and the QM Heisenberg equation, assuming that the laser excitation pulses satisfy

certain criteria. While x and p are independent dynamic variables in SED, the canonical commutation

relation [x̂, p̂] = ih̄ makes them a Fourier pair in QM. This difference makes the distinction between

QM and SED in terms of quantum coherence. Therefore, SED may be seen as the decoherence limit

of QM [33]. Although the zero-point field bestows a special phase relation between x and p of a

SED harmonic oscillator, which leads to the quantum ground-state distributions [7,8], the phase

relation serves only as initial conditions and does not affect the dynamical evolution of x and p
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during laser excitation. Therefore, we speculate that any mechanism or theoretical operation that

restores (or deteriorates) the Fourier relation between x and p for SED (or QM) will make the proper

decoherence theory that bridges the gap between SED and QM.
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Appendix A. Derivation of the Resonant Kapitza-Dirac Force

In this appendix we derive the KD force in Equation (4) from Equation (3) using the electric and

magnetic components of the combined laser field given in Equation (2). First, we solve the velocity vz

by integrating the equation of motion mdvz/dt = qEz,

vz(t) = − q

m
(A1 sin (k1x − ω1t) + A2 sin (k2x + ω2t)) . (A1)

Substituting vz(t) to Fx = qvzBy, we obtain the Lorentz force

Fx = q2

m (A1 sin (k1x − ω1t) + A2 sin (k2x + ω2t)) (A1k1 cos (k1x − ω1t) + A2k2 cos (k2x + ω2t)) . (A2)

We can see four frequency components in the Lorentz force by expanding Equation (A2),

Fx =
q2

2m

[

A2
1k1 sin (2k1x − 2ω1t)

+ A1 A2k1 (sin ((k1 + k2)x − (ω1 − ω2)t)− sin ((k1 − k2)x − (ω1 + ω2)t))

+ A1 A2k2 (sin ((k1 + k2)x − (ω1 − ω2)t) + sin ((k1 − k2)x − (ω1 + ω2)t))

+ A2
1k2 sin (2k2x + 2ω2t)

]

.

(A3)

Because the frequency components 2ω1, 2ω2, and ω1 + ω2 are not integer multipliers of ω0,

we can drop these terms and keep only the parametrically resonant term ω1 − ω2 = 2ω0,

Fx ≈ q2

2m
A1 A2(k1 + k2) sin ((k1 + k2)x − (ω1 − ω2)t). (A4)

The force has a traveling wave profile which can be decomposed into two standing-wave

components with even and odd symmetries,

sin ((k1 + k2)x − (ω1 − ω2)t) = sin ((k1 + k2)x) cos ((ω1 − ω2)t)− cos ((k1 + k2)x) sin ((ω1 − ω2)t). (A5)

The force needs to have a potential profile with even symmetry in order to resonantly drive

the oscillator from the ground state with an even frequency (ω1 − ω2 = 2ω0). This implies that the

resonant KD force should have an odd symmetry, thus it takes the form

FKD =
q2

2m
A1 A2(k1 + k2) sin ((k1 + k2)x) cos ((ω1 − ω2)t). (A6)
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