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Quite often a response to some input with a specific frequency �* can be described through a

sequence of discrete events. Here, we study the synchrony vector, whose length stands for the

vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are

supposed to be given by experiment. Instead of singling out the stimulus frequency �* we study the

synchrony vector as a function of the real frequency variable �. Its length turns out to be a

resonating vector strength in that it shows clear maxima in the neighborhood of �* and multiples

thereof, hence, allowing an easy way of determining response frequencies. We study this

“resonating” vector strength for two concrete but rather different cases, viz., a specific midbrain

neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense

of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector

strength always performs a clear resonance correlated with the phase locking that it quantifies. We

analyze the influence of noise and demonstrate how well the resonance associated with maximal

vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can

obtain a specific phase associated with, for instance, a delay in auditory analysis.VC 2011 American

Institute of Physics. [doi:10.1063/1.3670512]

Neurons that are driven by a periodic stimulus typically
respond with a certain preference to the phase of that
stimulus. It is of interest to understand the processes that
govern this phase locking, and particularly the effect of
noise, so as to deepen our comprehension of neuronal
coding in sensory systems. A commonly used measure for
the degree of phase locking is the vector strength (VS). It
takes on a value near its maximum of 1 when the neuro-
nal spike events always occur near the very same phase
of the stimulus and vanishes for e.g., equidistributed
spike times. The vector strength is computed by evaluat-
ing a formula1,2 at the driving frequency. Here, we test a
computational extension of the vector-strength concept3,4

to the case that considers VS as a function of frequency,
including the known driving frequency. By varying the
frequency for a given and fixed set of spike times or,
more generally, events stemming from experiment, here
from the cochlear nucleus of cats and electroreceptors of
brown ghost electric fish, we see a resonance behavior as
the frequency variable moves through the input fre-
quency. Hence, we need not even know the latter and call
the notion we focus on “resonating vector strength”
(RVS). We show explicitly that RVS reveals a resonating
structure, dominated by a main peak with multiple side
peaks. The shape of the resonating vector strength agrees
with a theoretical description. In particular, supporting
theory makes RVS useful for assessing the statistics of the
noise process that can jitter the firing phases, and even
randomly remove spikes from certain driving cycles
when the period of the drive is short enough to interfere
with the recovery of the neuron following a spike. Our
analysis also shows that both types of data exhibit a maxi-
mal VS at a frequency that can differ from that at which

the cell is stimulated. It highlights the importance of look-
ing at the RVS from individual runs, where the assump-
tion of independence of the noise perturbations at
different spike times appears to break down.

I. INTRODUCTION

The vector strength1–3 quantifies the amount of periodic-

ity in a neuronal, or any other, response to a given periodic

signal. We denote a neuronal response by a sequence of

spike times, in a more general context also called events,

{t1,t2,…,tn} where in what follows 1� j� n labels the spikes

and in general n � 1. Actually, the vector strength is the

length of the synchrony vector3 or the absolute value of the

complex number ði ¼
ffiffiffiffiffiffiffi

�1
p

Þ

qðxÞ ¼ 1

n

X

n

j¼1

eixtj : (1)

Here, x¼ 2p/T denotes an angular frequency for some period

T. What (1) does is to put the spike times tj or more precisely

the dimensionless times tj/T onto a circle with radius 1, the

appropriate temporal domain for phenomena of period T.

Since after 2p we are back at where we started on the unit

circle, we multiply tj/T by 2p so as to get 2ptj/T¼xtj, put xtj
onto a unit circle by means of exp(ixtj), and arrive at Eq. (1).

Let us take all times tj to be integer multiples of some pe-

riod T*; say, tj¼ jT*þ d where we have also added some com-

mon constant d, which may, for example, stand for a delay.

Then x*T*¼ 2p and we see that whatever j we get for all
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times tj, which we henceforth call “spike times” or “spike

events,” exp(ixtj)¼ exp(ixd) and thus q(x*)¼ exp(ix*d),

which has absolute value 1. The quantity r¼ jq(x*)j is the tra-
ditional vector strength,1,2 which only considers x¼x* in

Eq. (1).

Conversely, one can show that for r¼ jq(x)j ¼ 1 we are

bound to find tj¼ jTþ d for the period T corresponding to x.

To see why, we note that the fundamental vector-strength

lemma [Ref. 3, Lemma] says that for r(x)¼ jq(x)j we have

1

n

X

n

‘¼1

jqðxÞ � expðixt‘Þj2 ¼ 1� r2ðxÞ: (2)

If for some x we obtain r¼ 1, then all the exp(ixt‘) are

bound to equal the very same q(x), which is therefore on the

unit circle. The d in tj¼ jTþ d corresponds to the phase inde-

terminacy when the absolute value r¼ jq(x)j ¼ 1 has been

fixed. Skipping a multiple of T is of course also allowed, as

jexp[ix(tjþ ‘T)]j ¼ jexp(ixtj)j ¼ 1 will not change if ‘ is an

integer. Moreover, exploiting the afore-mentioned lemma

(2) we see that for r(x)¼ jq(x)j! 1 the cloud of exp(ixtj)

with 1� j� n and in general n � 1 contracts in the mean to

a single point on the unit circle; cf. Fig. 1(a). That is, nearly

all exp(ixtj) must do so.

A neat aspect of the unit circle is its simple, toroidal ge-

ometry: After one walk around we are automatically back at

where we started, just like after one oscillation period. It was

von Mises1 who realized as early as 1918 that an appealing

way of looking at the problem of measuring periodicity of

points tj on the real axis is putting them on the unit circle

through tj 7! expðix�tjÞ and taking the position of their cen-

ter of mass or barycenter qðx�Þ ¼
Pn

j¼1 expðix�tjÞ
h i

=n as a

criterion for the goodness of fit. As we see in Eq. (2), the

nearer r(x*)¼ jq(x*)j is to 1, the better the periodicity of the

response {t1,t2,…,tn}. The rest is convex geometry.3

The procedure we follow is straightforward in that for

given spike events tj belonging to a run 1� j� n we vary the

frequency x in Eq. (1) and study q(x)’s response (on the

computer). This we call the resonating vector strength. We

will soon see that “resonating” is not an epithet and also

understand why; see Fig. 1(b) for an illustration.

The number n of spikes involved in a run is nearly

always large, corresponding to experimental times Tex much

longer than the neuronal ones, which in practically all neuro-

nal systems are of the order of a millisecond or shorter. So

Tex � 1 ms and accordingly n � 1. When applying an

“external” angular frequency x* one usually1,2 substitutes

x¼x* into Eq. (1) and evaluates this expression for several

runs, each giving a resulting position, a complex number or

2-dimensional vector in a vector-strength plot like Fig. 1(a).

Taking the arithmetic mean of all positions we obtain an av-

erage, the synchrony vector,3 whose absolute value is tradi-

tionally called the vector strength. It results from the total,

composite, experiment consisting of all runs or, in other

words, of all the repetitions of the very same experiment.

The present work consists of three parts. First, we evalu-

ate the resonating vector strength (1) as a function of x or

�¼x/(2p) for a periodically responding neuron with

tj¼ jT*þ d and then test its behavior by comparing it with a

full set of data due to Joris et al.,6 for a given set of spike

events stemming from an auditory neuron in the cat’s ante-

rior ventral cochlear nucleus (AVCN) in response to input

frequencies �*¼m� 100Hz with 1�m� 24. The AVCN is

one of the cochlear nuclei situated directly after the cochlea,

while the trapezoid body (TB) is the next station after the

cochlear nuclei. By taking advantage of the resonating vector

strength (RVS) we can see at a glance (Figs. 2 and 3) that

this AVCN neuron, presumably—the authors6 do not know

this for sure but we will stick to it without any further

FIG. 1. (Color online) (a) Synchrony vector resulting from several runs

recorded in the trapezoid body (TB), the station following the ventral coch-

lear nucleus, here in cat. The frequency of the auditory stimulus in the

experiment as described by Joris et al.6 was �*¼ 460Hz, which has been

substituted into Eq. (1). On the left in (a) we see both the separate synchrony

vectors (indicated by dots in the complex plane so that the phase comes for

free) and the resulting vector strength (for short VS for the length of the vec-

tor) as the arithmetic mean of 50 TB responses giving VS¼ 0.98. As is evi-

dent from the plot, the scatter of the different dots is indeed low but its

origin is not really known. The duration Tex of each run [Ref. 6, Fig. 1] was

about 25ms so that n¼ 12 in Eq. (1). (b) By varying x or equivalently � in

Eq. (1) we see on the right how r¼ jq(�)j becomes maximal or “resonant”

for a specific frequency ~� ¼ 454:0Hz with r¼ jqj ¼ 0.98 but with ~� near to

but yet different from the input frequency �*¼ 460Hz. For �¼ 460Hz the

argument or phase d of q(�) is the same in both plots. Both in (a) and in (b)

the spike data are due to Joris et al.6 and the plots stem from Ref. 4.

FIG. 2. (Color online) Resonating vector strength (RVS, solid line) jq(�)j as
a function of the frequency � for spike data obtained from a globular bushy

cell in the cochlear nucleus for auditory-nerve input frequency �*¼ 300Hz.

The long-dash line coincident with the solid curve is the theoretical predic-

tion (4). RVS scale on the left and phase scale on the right, with dotted lines

for the theoretical prediction of the phase also due to Eq. (4) and dot-dashed

line for experiment; the jumps 6p are due to sign changes of S];

RVS(�*)¼ 0.99. The long-dash line is the ideal response (4) with jSj for
perfect locking with a periodic stimulus of frequency �*. As compared with

Fig. 1, the resonance as a function of � is quite sharp while the underlying

�* is again exactly at the (absolute) maximum of the center peak. Hence, it

is fair to say that jq(�)j is truly resonating at �*¼ 300Hz. The spike data is

due to Joris and Smith7 and the plot to Ref. 4.
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comment—a globular bushy cell (GBC), phase-locks per-

fectly to any input frequency as long as it can lock, so to

speak. If the input frequency �* becomes too high, then

phase locking stops in the auditory system of mammals.

Second, noise is omnipresent in neuronal systems. Here

“noise” stems from sources we mostly do not know or cannot

characterize precisely and therefore model through noise.

One can implement noise straightforwardly by adding a ran-

dom time d0j to the event times tj; say, the d
0
j are independent,

identically distributed random variables with mean¼ 0,

standard deviation r, and some distribution that we need not

specify yet. Noise deteriorates neuronal response but how

does it modify the RVS behavior? This is a question we will

try to analyze and answer through a comparison with full

data sets of Joris et al.,6 and Joris and Smith.7

Third, we turn to the weakly electric fish Apteronotus

leptorhynchus, also known as the brown ghost knife fish.

This wave-type electric fish generates a quasi-sinusoidal

electric field oscillation with a fixed and highly periodic fre-

quency in the range 600–1000Hz using the electric organ in

its tail; see Chacron et al.,8 for background information.

Wave-type weakly electric fish, in which the active sensing

uses a quasi-sinusoidal waveform, is distinguished from

pulse-type fish, which emit pulses of electric current in an

almost periodic manner to actively sense their environment.

The wave-type fish behaves essentially as an oscillating elec-

tric dipole. The electric sense of the brown ghost induces

dipolar oscillations in the environment. These “object” oscil-

lations then alter the local electric organ discharge (EOD)

amplitude at the skin. Thus, the objects produce an electric

image, which is perceived by electroreceptors dispersed over

the skin, and especially in the head region. These electrore-

ceptors are continually driven by the EOD, whose amplitude

is modulated by the field it induces in objects.

When an object has a conductivity that differs from that

of the surrounding water, the electric field lines are distorted,

and the amplitude of the EOD carrier wave is decreased or

increased depending on whether the conductivity has gone

down or up. We focus below on the tuberous p-unit type of

electroreceptor associated with this EOD-generated active

electric sensing, in contrast to ampullary electroreceptors that

are associated with passive electrosensation and exhibit noisy

phase-locked behavior to internally generated receptor oscilla-

tions.11 These p-units—or “probability coders” since their fir-

ing probability increases with local carrier-amplitude

modulations—signal the deviation of the electric field from its

baseline pattern on the skin. The electric organ discharge

(EOD)-induced image as observed by the fish’s electrorecep-

tors dispersed over the body surface is comparable with that

perceived by the lateral line observing12 a hydrodynamic

image generated by objects, e.g., predator or prey, in its direct

surroundings in that it is diffuse, distributed all over the body.

Each electroreceptor increases its firing rate in propor-

tion to the instantaneous local EOD amplitude. On a finer

time scale, firings actually show a phase locking to the EOD.

More precisely, the EOD induces a stochastic phase-locked

firing pattern with randomly skipped cycles9 that is very sim-

ilar to the one seen in auditory afferents of cat.10 Increases in

EOD produce a higher rate of these noisily phase-locked

spikes. Plots of vector strength (VS) as a function of fre-

quency have been used occasionally in the neurophysiology

literature, in particular, in the context of electroreception.

What we are doing here is different: We assume the cell

is stimulated by the EOD at a frequency �* without ampli-

tude modulation. The RVS (1), however, is evaluated at the

frequency �* plus neighboring “test” frequencies � but with-

out changing the driving frequency (which is under the fish’s

control, as opposed to the auditory experiments where it is

under the experimenter’s control) nor the spike times tj
responding to �*. One can then produce a polar plot of q(x)

as given by Eq. (1) or equivalently q(�), parameterized by

the test frequency or simply the real variable �*, or plot the
magnitude or phase of q(�) as a function of the test fre-

quency over a whole range of �; cf. Figs. 2, 3, 5, and 6. As

we will see in Sec. IV, this produces a finer probing of the

phase locking properties at each frequency.

II. VECTOR STRENGTH RESONATING IN A
PERFECTLY PERIODIC RESPONSE

Using Eq. (1), we now evaluate q(x) as a function

of the real variable x in the case where the spikes respond

perfectly to an input of angular frequency x*¼ 2p�*¼ 2p/T*
so that tj¼ jT*þ d with some fixed phase d. Then x*tj
¼x*(jT*þ d) and thus q(x*)¼ exp(idx*) as we are on the

unit circle. Realizing q’s dependence upon the variable x

and writing x¼ (x*þ x) we obtain4 after some straightfor-

ward algebra associated with handling geometric series,

qðxÞ ¼ eixd

n

X

n

j¼1

eijxT� ¼ eiðnþ1ÞxT�=2 sinðxnT�=2Þ
sinðxT�=2Þ

" #

: (3)

In the case of perfect resonance producing n spikes with a pe-

riod T*, the experiment lasts Tex¼ nT*. Later on we will ana-

lyze the situation where Tex¼NT* but n<N. Without loss of

generality we can, and will, put d¼ 0 most of the time.

Because in Eq. (3) there is a 1/n waiting for what fol-

lows on the right of it we rewrite the perfectly locking (3) in

the form

qðxÞ ¼ ei½xdþxðTexþT�Þ=2Þ� sinðxTex=2Þ
n sinðxTex=2nÞ

¼SðxÞ
� �

: (4)

As for zeros and decrease in absolute value of q(x) as we

move away from �* or x¼ 0 in Eq. (4), it suffices to focus on

SðxÞ. We see a fast decrease of q(x)’s absolute value. As a

prelude to what follows we show in Fig. 2 a plot of the vector

strength r¼ jqj as a function of x or effectively (�� �*) for an
input frequency of �*¼ 300Hz. We cannot even discern the

solid from the long-dash line, i.e., the resonating VS based on

given spike events tj or events and averaged over 50 runs of

1 s each, from the ideal response jSj for perfectly periodic

events. That is, the resonating vector strength does what its

name says: It neatly resonates, so to speak, at �* or x¼ 0.

As is evident from Eq. (3), jq(0)j ¼ 1 and jq(x)j
decreases fast as a function of x. To see why, we note that

the first zeros of SðxÞ already appear when xnT*/2¼6p or

equivalently xT*/2¼6p/n. Accordingly, due to the
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definition x¼ 2p(�� �*) and the fact that Tex¼ 1 s for the

experimental situation of Fig. 2, we find (�� �*)Tex¼61

and hence �� �*¼61Hz for reaching the first zeros sur-

rounding x¼ 0, where jq(0)j ¼ 1 is the absolute maximum.

For perfect locking with a periodic signal, the relative

maxima of jSðxÞj and hence jq(x)j occur at xTex/2¼6kp/2

with k� 3 odd. Since n is large we obtain to decent precision

(or better) n sin(xTex/2 n)¼ xTex/2 in the neighborhood of

x¼ 0 and with xTex/2¼6kp/2 the relative maxima of jq(x)j
turn out to be 2/(kp), in exact agreement with Fig. 2.

Equation (4) also allows us to determine d= 0 quite

straightforwardly since the phase factor in front ofSðxÞ reads
exp{i[xdþ x(TexþT*)/2)]} with x¼x�x*¼ 2p(�� �*).
Since S is smooth, jSj has a jump in the derivative when

SðxÞ becomes negative as xTex/2 passes 6kp for k� 1, the

phase shows a discontinuity of p at the zeros of S, and thus

we see p jumps occurring in the phase plot of Fig. 2.

If we have a decent phase locking we expect3 a rela-

tively small cloud of exp(ix*tj) around some exp(ix*d), and

this is what Fig. 1(a) shows. When x moves away from x*

the vectors exp(ixtj) start diffusing on the unit circle and,

depending on n � 1, their arithmetic average quickly

becomes quite small, as Eq. (4) and Fig. 2 indicate explicitly.

As soon as the phase locking stops functioning with increas-

ing input frequency �* and as soon as the time shift dj in

tj¼ (jT*þ dj) depends on j with the dj being practically inde-

pendent random variables, we expect a decrease of jq(x)j
both at x¼ 0 for increasing �* and as x moves away from 0

for fixed �*. Equation (5) below presents an illustration of

what then happens. We are going to analyze whether and

how noise can describe the change in neuronal behavior,

here of the auditory system, when the input frequency

increases even beyond the boundary where phase locking

makes sense physically.

III. RESONATING VECTOR STRENGTH IN THE
PRESENCE OF “NOISE”

Life is not perfect and we imagine “noise” to characterize

what we cannot specify precisely but can model mathemati-

cally. For the moment, we assume the events tj are generated

by some deterministic process, such as tj¼ jT*, but note the tj
need not be periodic at all. The events themselves are related

to the previously discussed auditory process. We will focus on

the brown ghost electric fish in Sec. IV. On top of these deter-

ministic events there is additive noise d0j modifying each tj so

as to give as outcome tj þ dþ d0j that is to be substituted into

Eq. (1). For the time being we put d¼ 0. As for the d0j, we
assume they are identically distributed random variables with

zero mean, either independent13–15 or practically independent

in the sense that they have short-range correlations as j varies.

The latter assumption is quite natural to phenomena in biolog-

ical physics and means that we can still apply both the strong

law of large numbers and the central limit theorem or, for

short, the laws of large numbers; for fairly optimal conditions

we refer to elsewhere (Ref. 5, Appendix A).

Let l be the probability distribution of the d0j so that its

characteristic function is given by FðxÞ ¼
Ð

dlðd0Þ exp ðixd0Þ;
by its very definition jF(x)j � 1. Upon substituting tj þ d0j into

Eq. (1) we find, up to a Gaussian error of order 1=
ffiffiffi

n
p

due to the

central limit theorem15 and indicated below by¼: ,

qðxÞ ¼: 1

n

X

n

j¼1

eixtj

 !

FðxÞ ¼: qw=o nðxÞFðxÞ: (5)

Here, qw/o n is the synchrony vector q(x) without noise as

we see it in Eq. (3). The above multiplicative expression (5)

is a consequence of the identical distribution of the d0j and
the self-averaging of Eq. (1) is due to their short-range corre-

lations. In passing we note that the neuron still is to respond

to each period of the oscillating stimulus.

We now turn to Fig. 3. It is a 3-dimensional plot of ana-

logs of Fig. 2 one behind the other starting with stimulus fre-

quency �*¼ 100Hz and �* increasing in steps of 100 up to

1500Hz. Experimentally, this corresponds to choosing a

stimulus frequency �*, and obtaining a spike train. For this

spike train, which is now given and fixed, one calculates the

RVS in which the driving frequency �* is set at that value,

and the probing frequency x (under the control of the person

analyzing the data) is swept over a smaller or larger range

around �*. Then, the whole procedure is repeated choosing a

different value of the driving frequency �*. This purely com-

putational procedure is readily done in, e.g., auditory

FIG. 3. (Color online) 3-Dimensional plot of the resonating vector strength

(RVS, vertical axis) as a function of the “probing” frequency D� around

the stimulus frequency �* for spike data obtained from a globular bushy

cell in the cochlear nucleus for auditory-nerve stimulus frequencies

�*¼ 100,…,1500Hz, from back to front; of course �¼ �*þD� with

x¼ 2p� as it occurs in Eq. (1). The experimental sound level was 80 dB

SPL. The spike events tj are the response to the (varying) stimulus fre-

quency �*, hence given by experiment and fixed for all the runs. For each

�* there are 15 runs and the plotted RVS is their arithmetic mean; see Fig.

5 for how the RVS of the individual runs may look. Focusing on the vertical

plane through D�¼ 0 and parallel to the stimulus frequency �* axis, we see

that r¼ jq(�*)j increases rather steeply from 0.88 at �*¼ 100Hz to 0.98 at

�*¼ 200Hz and stays at its maximum (practically) 1 between 300 and

500Hz. The RVS as evaluated at �*, where it always assumes its absolute

maximum, then decreases from 1 via 0.40 at �*¼ 1500Hz and shown in

Fig. 5(d) to effectively 0 at 2400Hz (not shown here but appearing as

Fig. 3(b) in Joris et al.7); the present figure stops at the front with

�*¼ 1500Hz as border line. The line coincident with the factual response

at �*¼ 300Hz, which is the plot of Fig. 2, is the expression jSj in Eq. (4)

for perfect locking. The spike data are due to Joris and Smith.7
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experiments, where the driving or “carrier” frequency is

under the experimental control and varies in a natural

setting.

In the case of the electric fish studied here, the driving

frequency �* is under the fish’s control, i.e., it is set by its in-

ternal pacemaker producing the EOD at frequency �*. For a
given time interval, say, the duration of the experiment [0,

Tex), one can do only a single computation of RVS as a func-

tion of the probing frequency x. Alternatively, as we will

see in Fig. 6, we can always split up [0, Tex) into finitely

many subsequent subintervals and compute the RVS for

each subinterval in addition to the total one for the whole

interval. In other wave-type species (such as Eigenmannia),

the EOD is disabled by the anesthetic and has to be synthe-

sized using mouth and tail electrodes—in this case �* would
also be under the experimenter’s control and a full plot like

in Fig. 3 could be produced.

Three aspects of Fig. 3 deserve our attention. First,

r¼ jq(�*)j increases rather steeply from 0.88 at �*¼ 100Hz

to 0.98 at �*¼ 200Hz, stays at its maximum (practically) 1

between 300 and 500Hz, and then slowly decreases to 0.4 at

1500Hz (see also Fig. 6(d)); though not shown, it continues

decreasing until it vanishes beyond �*¼ 2400Hz. In fact, the

line of maxima for 100� �*� 1500Hz is identical with Fig.

3(b) of Joris and Smith,7 who show the whole range, up to

and even beyond �*¼ 2400Hz. In passing we note that Fig.

3(a) of Joris and Smith7 presents a color code of loudness

(SPL) for the different stimuli.

Second, the increase of r¼ jq(�*)j ¼ 0.88 at �*¼ 100Hz

to 0.98 at �*¼ 200Hz looks and in fact is a bit surprising.

The neurobiological explanation is a kind of “spike

doubling” in that for 100Hz we see every now and then two

spikes per period, a second one on the average 1.8ms after

the first, instead of a single one every 10ms, whereas for

200� �*� 500Hz we find one and only one perfectly locked

spike per period, as Fig. 2 and the single runs of, e.g.,

Fig. 5(a) show. Not only do the high values (� 0.4) of

r¼ jq(�*)j for 100� �*� 1500Hz indicate that globular

bushy cells are very broadly tuned. With respect to the audi-

tory nerve they in fact strongly increase the coherence with

the external stimulus, here a pure tone of frequency �*, and
in so doing greatly improve the “quality” of entrainment

[Ref. 7, Fig. 1] in the whole low-frequency range where

cochlear neurons (of mammals such as cat) can perform

phase locking.

Third, whereas in Fig. 2, the agreement between the theo-

retical (long-dash) curve and the experimental (solid) line is

perfect for �*¼ 300Hz, there are already clear deviations

from Eq. (5) for, say, �*¼ 1000Hz. Here, the relative maxima

of jq(x)j are to be located at xTex/2¼6kp/2 with k� 3 odd.

Since by definition x¼ 2p(�� �*) we expect the relative max-

ima at (�� �*)¼6 k/(2Tex), which is about right. The min-

ima, however, ought to be zero (¼ 0) at xTex/2¼6 ‘p with

‘� 1 a natural number (like k) since q in Eq. (5) is the product

of qw/on and F. Quite often reality is different in that the min-

ima of jq(�)j are located at (�� �*)¼6 ‘/Tex to decent

approximation but> 0. Why is that?

A. Skipping: When phase locking drops out

After having produced an action potential, a neuron expe-

riences a refractory period (Ref. 17, Sec. 6.3.2] during which

it cannot fire; this is known as the absolute refractory period.

Following this period, the strength of the stimulus that can

induce an action potential decreases monotonically to some

asymptotic level. This is the relative refractory period. In the

neurons of interest here, the sum of these two periods, i.e., the

total refractory period, lasts typically 0.5–2ms. So an auditory

neuron cannot phase lock perfectly in the sense that it cannot

fire after each period once the input frequency �* gets too

high. Then it has to leave, so to speak, a “hole” in the

sequence jT* and skip one or more periods. That is why we

call this phenomenon skipping. A famous example is the barn

owl, which in this sense18 performs phase locking up to

FIG. 4. (Color online) (a)–(d) Distribution of spike events tj reduced to the interval [�T*/2,T*/2), or a suitable part of the horizontal axis (in ms), by subtract-

ing (or adding) as many multiples of the period T*¼ 1/�* as are needed to land in the interval. Equivalently and far more efficiently,1 we can consider every-

thing on the unit circle or torus through exp(ix*tj) where x*¼ 2p/T* as usual. For �*¼ 300Hz we see a narrow—in the sense that its standard deviation r

satisfies r 	 T – (absolutely) continuous, normal distribution but, as �* increases, the normal distribution becomes broader as we increase �* to 700, 1000,

and 1500Hz (left to right, and top to bottom), and settles on the torus. Hence, we need to take a von Mises distribution1,22 or a wrapped Gaussian.22 In all

cases, the solid line is the Gaussian fit. The spike data underlying the above spike-time histograms are those of Figs. 2 and 3.
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8–9 kHz. For mammals such as cat, the experimental animal

of Figs. 1–3, the phase-locking upper bound is much lower,

viz., 1.0–1.5 kHz.

Skipping phenomena have received a lot of attention in

modeling studies; see e.g., Longtin and Chialvo19 and refer-

ences therein. When an oscillator is driven by an external

force that is sufficiently fast, there is a competition between

the time scale of the forcing and those of the internal oscilla-

tion (the latter depending on the total refractory period).

There is a well-known universal organization of the n:m syn-

chronization patterns that results, in which there are m

responses (or cycles) of the oscillator to the n cycles of the

input drive. When the patterns are displayed as a function of

the ratio of drive to internal frequency and the drive ampli-

tude, the familiar Arnold tongue structure appears. For

example, periodic 1:1 firing is most prevalent in this parame-

ter space, and when the forcing is too fast, every second

spike response drops out, leading to a periodic 2:1 pattern.

This picture applies to a neuron that fires spontaneously

as an oscillator under the influence of periodic forcing. The

picture also applies, but with some minor qualitative differ-

ences, when the neuron is excitable, i.e., when it is spontane-

ously at rest. But noise will blur the boundaries of the region

corresponding to a given n:m pattern. In fact, because an ex-

citable neuron becomes a stochastic oscillator in the presence

of noise, this noise is also extends the deterministic Arnold

tongues into the subthreshold regime. When the noise is sig-

nificant, as it appears to be in the systems studied in this pa-

per, there is no clear signature of one mode locked pattern,

but rather a random mix of such patterns that produce, e.g.,

multi-peaked interspike interval histograms with a smooth

unimodal envelope.19 A further investigation of the predomi-

nance of certain mode locked patterns would likely benefit

from the measure of stochastic phase synchronization indices

as in Bahar et al.20; see also Eqs. (8) and (9) below. Here, we

focus on understanding our RVS results in terms of simple

stochastic descriptions of the firing behaviour. As we will

see, interestingly some assumptions break down at higher

frequencies.

Stochastic modeling—How do we model the skipping of

events in a regular series tj¼ jT*, j� 1? It is plain that this

skipping has its influence on the outcome of the sum

qðxÞ ¼ Pn
j¼1 expðixtjÞ

h i

=n. To quantify this influence ana-

lytically we make the simplest possible assumption and

assume that each spike occurs with probability p and does

not occur with probability 1� p. Surprisingly, it works

smoothly. A similar argument was made to explain the as-

ymptotic exponential decay of the peaks of the interspike

interval histogram (ISIH) for certain kinds of skipping

data.10 We then multiply exp(ixtj) by an independent ran-

dom variable fj that is 1 or 0 with probability p or (1� p). In

this way, we get a sequence of independent, identically dis-

tributed (iid) random variables fj and simply find, as n

becomes large, the product pqw/o n by the strong law of large

numbers;15 cf. Eq. (6) below. We now spell out how and

why.

Before proceeding we note that it may be more realistic

to describe skipping not by a simple uniform probability p

but instead by conditioning with respect to the event that we

just had a spike. If so, a Markov Ansatz would be quite natu-

ral. Be that as it may, a simpler, self-consistent, and surpris-

ingly well functioning argument à la Occam’s razor is

assuming independence or short-range correlations of the

spiking events. In so doing we will see that skipping is far

more pronounced than we might naively expect but that we

nevertheless end up with Eq. (5).

We first bring in the total time Tex¼NT* of the experi-

ment. Since the neuron skips certain firing times, the result-

ing number of spikes is not N but by its very definition n<N

as the probability p< 1 of getting a spike is less than 1 and

N � 1. We start by evaluating

qðxÞ ¼ 1

n

X

N

j¼1

fj exp½ixðjT� þ d0jÞ�: (6)

Here n is, as always, the actual number of spike events,

which are counted by the 0-1 random variable fj. So n is a

random variable itself. In Eq. (6) we have at least two

FIG. 5. (Color online) Plots of q(�) as a
function of the frequency � in the neigh-

borhood of the auditory stimulus fre-

quency �*¼ 300, 700, 1000, 1500Hz for

15 separate runs, left to right and top to

bottom. In contrast to Figs. 1–3, where in

2 and 3 we have used data from the same

neuron and in all taken an arithmetic

mean of the different runs, we now see

each of them separately. Whereas there is

perfect locking and a practical coinci-

dence of the separate runs for �*¼ 300,

we note a gradually augmenting discrep-

ancy between the different runs as �*
increases, indicating the irregular

(“stochastic”) skipping of spikes. The

mean number hni of spikes has been

obtained from the same spike data as

those of Figs. 2 and 3, which are due to

Joris and Smith,7 who have also plotted

hni as a firing rate (for 1 s) against the

stimulus frequency �* in their Fig. 3(c).
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processes, which to a large extent are independent. First,

neuronal skipping, which we model by the 0-1 variable fj
assuming only the two values 1 and 0 with probability p and

(1� p). A second process, among others that we need not

model here, is the stochastic cochlear response21 described

by the random phase d0j, which by its very nature gives rise

to an imperfect phase locking; cf. Fig. 4. As N ! 1 we

apply the strong law of large numbers to the fj, and even

though the product exp½ixðjT� þ d0jÞ�fj is not identically

distributed because of the exponential prefactor, we find

[Ref. 15, Sec. 8, Theorem 3] that the above sum (6) con-

verges to the nonrandom limit

qðxÞ ¼ 1

n

X

N

j¼1

exp½ixðjT� þ d0jÞ� ¼
:
qw=o nðxÞFðxÞ: (7)

since hfji¼ p. In the transition from Eqs. (6) to (7) we have

written 1/n¼ (N/n)� 1/N and focused on N�1
PN

j¼1 …
h i

. By

the very same strong law of large numbers the number of

spikes that occur equals n¼ pN, p drops out, and we are left

with the product qw/o n(x)F(x) up to fluctuations. Since we

have n terms in the remaining sum, its fluctuations are of

order 1=
ffiffiffi

n
p

.

Naively, we expect that the above n in Eq. (6) is hardly

less than N. In the AVCN neuron of Fig. 3 this is not always

the case. We find for the 15 runs,7 each lasting 1 s, for

�*¼ 300Hz an arithmetic mean hni of 300 spikes whereas

for �*¼ 1000Hz it is just 67 and for �*¼ 1500Hz we are

left with as little as 31; these numbers just illustrate the sur-

prising behavior shown in Fig. 3(c) of Joris and Smith.7

Adopting a traditional stochastic formalism we may expect a
ffiffiffi

n
p

fluctuation for a single run. Averaging 15 positive quan-

tities gives a fluctuation of the same magnitude since the

location of the minima is fixed. And that is what we observe

in Fig. 3.

If for a given stimulus frequency �*¼ 1500Hz the arith-

metic mean hni¼ 31 of the spike events occurring during

Tex¼ 1 s is that low, a neuron must “skip” quite a few of the

1500 periods that occur. How, then, can we understand this

skipping? That is, how to interpret the above formalism? An

even more urgent question is how to understand a neuron’s

“slippery” behavior as the stimulus frequency �* becomes

large. We turn to the latter question first and then treat the

former in Subsection III C.

B. Imperfect phase locking

On the mere basis of cochlear mechanics and its neuronal

pickup we already expect the higher the input frequency �*,
the less perfect the phase locking. In principle this could be

taken care of by Eq. (5) where FðxÞ ¼
Ð

dlðd0Þ expðixd0Þ. If
d0 ¼6d0 with probability 1/2, then F(x)¼ cos(xd0) would

never converge to 0 as x becomes large. In the case of Figs.

1–3, however, the probability distribution of d0 is not discrete
but (absolutely) continuous, even Gaussian to quite a decent

extent; see Fig. 4. By the Riemann-Lebesgue lemma16 F(x)

goes to zero as x becomes large and accordingly jq(x)j is
bound to go to zero as x ! 1.

C. Imperfect phase locking and neuronal skipping

Let us try to summarize what we have found. When a

pure tone, say, one of the 24 in Fig. 3, is presented to the

cochlea, the cochlear response is highly sensitive but not per-

fect in the sense that it does not catch the maximum of the

pressure wave exactly. To fair approximation a decently

locked neuronal response can be described by a Gaussian

with small standard deviation with respect to the period but,

since a pure tone is “purely” periodic, we need to put the

probability distribution on a torus. We then get a wrapped

Gaussian22 or, analytically more succinct, the von Mises dis-

tribution.1,21 For a decently long run the sum in Eq. (1) is

then self-averaging.3 Figure 4 shows that, for instance, von

Mises is just the right approach. It is an absolutely continu-

ous distribution that we can use for d0j in Eq. (6) and that

gives rise to the multiplicative F(x) in Eq. (5).

As the input frequency �* increases neuronal refractory
behavior sets in and spikes are skipped. That is, the fj in Eq.

(6) becomes effective. One can even condition the d0j with
respect to the event fj¼ 1 occurring the first time, etc. Since

skipping can become quite important9,23 we show in Fig. 5

the 15 single-run plots of the RVS as a function of � together

with the mean number of spikes for four cases of input fre-

quency, viz., �*¼ 300, 700, 1000, and 1500Hz. In so doing,

however, we could skip the 300Hz case ourselves since the

two curves exactly agree while not only the arithmetical

mean hni but also the actual number of spikes equals 300, as

expected for perfect locking since �*¼ 300 for Tex¼ 1 s; cf.

Fig. 2.

Analyzing Fig. 5 as �* increases gives us a lot of insight

into how phase locking behaves and how the number of

actually active neurons decreases. Defining the firing fraction

c¼hni/N we see that c decreases from 1.0 for �*¼ 300Hz

through c¼ 0.07 for �*¼ 1000Hz to c¼ 0.02 for

�*¼ 1500Hz. Whereas the RVS of single runs are all identical

and handbook-like for �*¼ 300, they are not and differ greatly

for �*¼ 1500Hz, signaling that phase locking has already

become a “hard” job, even though RVS(�*¼ 1500)¼ 0.40 still

seems to indicate a decent locking into �*¼ 1500Hz.

IV. NOISE IN BROWN GHOST ELECTRORECEPTION

In the case of the electroreceptors, we will see that the

RVS shows the main features that we expect and noticed in

the case of the auditory data. In fact, the raw data of the

brown ghost exhibit fundamentally a skipping pattern, as in

auditory TB data for high frequencies seen above, particu-

larly Figs. 3 and 5, or auditory afferents.10 There is a central

peak with multiple side lobes. The RVS in Fig. 6 is shown

for each of five sections of the raw data. The RVS computed

from the whole data at once is shown in black. For each

curve, one sees a central peak in all cases, with multiple side

lobes located approximately symmetrically about this central

peak. The positions of the maxima correspond, as expected

from our theory and in analogy to the auditory data analyzed

above, to multiples of the inverse of the duration of each sec-

tion. This is the case also for the brown ghost minima. How-

ever, these minima do not go to zero, which is again

consistent with the fact that there is strong skipping at this
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EOD frequency. Moreover, it is clear that the central peak

for each data section occurs at a slightly different location.

This suggests that the data are not stationary, in the sense

that the EOD frequency fluctuates slightly over time. Such

fluctuations can occur behaviorally, but also due to external

factors such as the water temperature.

Interestingly, the curve for the whole data set does not

show a regular pattern of maxima and minima. The likely

reason is that the frequency of the EOD is drifting during the

experiment as we just noted in Fig. 6. This can be seen by

comparing the positions of the lobes for each section of data:

they do not align. A simple independent, identically distrib-

uted (iid) noise jitter would again produce a prefactor in the

RVS that would not change the positions of the minima. The

fact that several of the anticipated minima do not occur

where they should, in that they are too much> 0, also sug-

gests that there may be special long-range correlations in

successive noise jitter values or that they are not always

drawn from the same distribution, so that our simple model

breaks down. Strong negative correlations between succes-

sive interspike intervals are known to exist in this type of

data23 and may play a role. Yet it is known that there are lit-

tle linear or nonlinear correlations between successive phase

jitters.23

Furthermore, the basic statistics of p-unit data, such as

interspike interval histogram and negative serial correlations

can be well reproduced by models with Gaussian white noise

added to integrate-and-fire dynamics with a dynamical

threshold or adaptation current.9 Frequency drifts or finer

noise correlations may need to be incorporated in models to

account for certain data such as those shown here. Figure 7

shows another use for the RVS. Two quantities are plotted as

a function of spike index: on the left is the frequency at

which the RVS has its maximum, and on the right the value

of this maximum. These quantities are estimated using a run-

ning average over short windows of the spike train. From

this plot, we see that there are fine fluctuations on a rapid

time scale in the frequency that maximizes the VS. In addi-

tion, the associated strength of the RVS fluctuates as well.

There is no clear correlation between these two kinds of fluc-

tuations, although a more detailed analysis of this question

could be pursued in future work.

V. DISCUSSION AND OUTLOOK

Chance is a deep notion. Its interpretation started in

France of the 18th century and the discussion has been going

on ever since. One may well argue24 that probabilities of

events represent our ignorance of the system they belong to

because if we knew the system better we could also model it

in far more detail or—also possible, as in coin tossing—it is

far too difficult to treat it either analytically or numerically.

Nevertheless, stochastics allows a highly successful descrip-

tion of reality. Frank Moss was one of those who realized

and brilliantly exploited this insight. Stochastic resonance25

is a most prominent example due in particular to him. It is

just our privilege to be truly grateful for his insight.

In the present paper, we have seen how biological sys-

tems perform under the influence of a periodic stimulus. To

quantify the amount of response periodicity we have used

and analyzed the VS, a notion dating back to at least von

Mises.1,3 As the stimulus frequency �* increases, the perio-

dicity in the response, if present, in general decreases but the

decrease can be taken care of efficiently by a stochastic

description. Neuronal skipping and temporally imperfect

phase locking have provided a clear illustration, be it in the

auditory system of cat or in brown-ghost electroreception.

Of course VS as a quantifier of periodicity is not unique,

though it is remarkably simple to formulate; cf. Eq. (1). It is

quite appropriate here to mention the “phase synchronization

FIG. 6. (Color online) Plot of the RVS |q| (vertical axis) as a function of fre-

quency � (horizontal axis) for a spike train recorded from a p-unit type elec-

troreceptor of the brown ghost (data courtesy of Gary Marsat and Len

Maler, Ottawa). The data were recorded for 28.62 s from an afferent nerve at

the base of the hindbrain before it enters the skull. The data set consists of

5621 spikes, has been split into 4 equal sections of 1124 and the last of 1125

spikes, and the RVS has been computed as a function of frequency for each

section (and plotted while using a different color). The RVS has also been

calculated by using the whole data set. See the rather “messy” lower (black)

curve with more lobes; it is the absolute value of a convex combination of

the above five section sums (1) with weight 1/5. The EOD frequency, which

is about 683.0Hz and drives the receptor, is under the control of the animal

and can be determined by such data analysis as the one presented here.

FIG. 7. (Color online) The RVS has been plotted for the electroreceptor

data of Fig. 6 using a sliding window of 31 spikes over the spike train. At

each spike time, a data set consisting of the preceding 15 and following 15

spikes is used to compute the RVS as a function of frequency. The frequency

value at which this RVS is maximal is plotted using the black line (left ordi-

nate axis) and the value of this maximum is plotted using the red line (right

ordinate axis). A frequency spacing of 0.002Hz was used. In passing we

note that the RVS maxima in Fig. 6 can be segregated into two different

groups of 3 (left) and 2 (right) that effectively correspond to the two differ-

ent tracks here.
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index” advocated by Moss and coworkers.20 As usual, the tk
with 1� k�N denote spike events. If a neuron fires m times

during n cycles of the stimulus, then for tk< t< tkþ 1 an n:m

synchronization is characterized by the phase difference

UnmðtÞ ¼ 2pn
t� tk

tkþ1 � tk
þ k

� �

� mð2p��Þt: (8)

Denoting the time average over the interval [0,nT*) by …b c
we put

c2nm ¼ cos½Unmð
Þ�b c2þ sin½Unmð
Þ�b c2 (9)

One then defines20 0� cnm� 1 to be a “synchronization

index” indicative of the relative strength of n:m mode lock-

ing with, say, cnm> 0.1 as locking criterion. The nonlinear

appearance of the spike times tk as (t� tk)/(tkþ1� tk) in the

exponent already indicates that Eq. (9) is different from

Eq. (1) with its exp(ix*tk) and its being based on another,

torus-mapping philosophy.

The RVS technique points to the interesting possibility

that a periodically driven neuron exhibits its greatest syn-

chronization—as defined by the classic vector strength—at a

frequency slightly different from that of the driving stimulus.

This raises the question about the precise combination of

deterministic synchronization and stochastic inputs that

underlie this effect. It is known from the literature on sto-

chastic phase synchronization11,20,27 that the noise causes the

neuron to become a stochastic oscillator with an internal

time scale equal to the mean period of this oscillation. The

difference between the firing phase and the driving phase is

known to exhibit “plateaus” over certain ranges of input fre-

quency where stochastic phase synchronization is said to

occur. Such plateaus reflect the fact that, such as determinis-

tic oscillators, stochastic ones can be entrained to the drive,

and thus that the nonlinearities giving rise to phase locking

are at play at such higher drive frequencies (at low drive fre-

quencies, the drive is seen more as a modulation, with the

result that the firing rate is modulated by the input drive).

Finer details about the mixture of mode-locked patterns

contributing to a given firing pattern can be probed with syn-

chronization indices such as Eqs. (8) and (9). In fact, the

results in the literature,11,20,27 particularly Bahar et al.,20 use

a varying driving frequency �* and compute phase synchro-

nization indices as a function of �*, as we do here. It may be

possible then to modify those measures so that they assess

the synchronization to a variable “probing” frequency, as we

have done here for the RVS; say, through replacing �* in Eq.

(8) by �. It would certainly be of interest to contrast results

obtained by their measures11,20,27 with those from an RVS

analysis, which we leave for future work. It may be that the

shift between �* and the frequency that maximizes RVS is

negligible for other systems. Alternately, this shift may be

the result of specific mixtures of n:m firing patterns sampled

by the noise. Or it may reveal deeper insights into the nature

and characteristics of the noise itself, which may in fact

partly arise from underlying chaotic behavior.

We can also use entropy28 for a synchronization criterion.

To this end we let Pr(0< t‘< T*) denote a normalized period-

histogram fraction of spike times relative to cyclic stimulation

x*. Furthermore, we weigh the normalized fractions by en-

tropy factors� log2Pr(0< t‘<T*) so as to obtain the en-

tropy26 E ¼ �P‘ Prð0 < t‘ < T�Þ log2 Prð0 < t‘ < T�Þ. For

a uniform distribution, we find Emax¼ log2N while plainly

VS¼ 0. We, therefore, define D¼ 1�E/Emax to be the

period-synchrony criterion with 0�D� 1. For perfect syn-

chrony the vector strength and D agree (¼ 1) and so they do

for a uniform distribution of events (¼ 0). By its very defini-

tion D can identify29 the presence of, e.g., two different peri-

ods T* and T*/2 and so can RVS in Eq. (1), whereas

traditional vector strength cannot as it vanishes identically.

Since there is no free parameter such as �* in Eq. (8), a direct

RVS analog does not exist.

Finally, by mapping discrete spike events tj that live on

the real axis through tj 7! expðixtjÞ onto the torus and taking

their convex combination n�1
P

j expðixtjÞ in the unit disk

we explicitly show that the vector strength and RVS are geo-

metric methods disjoint from Hilbert transform techniques.

Given the spike events of the neuronal response we have

studied the “resonating vector strength” (RVS) q(�) as a

function of the frequency � as a real variable and shown that

in general it exhibits a resonating behavior in the neighbor-

hood of the stimulus frequency �*. Exploiting its freedom of

using frequency as an extra variable for analyzing a given set

of events such as spikes, the RVS technique probes deeper

and raises new questions about certain fundamental assump-

tions regarding the role of noise and its coupling to the firing

dynamics—and consequently its origin and role in neuronal

coding.

In view of, for instance, Fig. 5 we also see that (physics

Nobel-prize winner) Phil Anderson was quite right with his

famous but apocryphal statement “Thou shalt not average.”

If quantities are self-averaging, you need not and if they are

not, you should not. To see why we can also phrase it in

Anderson’s own words:30 “No real atom is an average atom,

nor is an experiment ever done on an ensemble of samples.”

How true.
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