
Testing Scientific Software: A Systematic Literature Review

Upulee Kanewala* and James M. Bieman
Computer Science Department, Colorado State University, USA

Abstract

Context—Scientific software plays an important role in critical decision making, for example

making weather predictions based on climate models, and computation of evidence for research

publications. Recently, scientists have had to retract publications due to errors caused by software

faults. Systematic testing can identify such faults in code.

Objective—This study aims to identify specific challenges, proposed solutions, and unsolved

problems faced when testing scientific software.

Method—We conducted a systematic literature survey to identify and analyze relevant literature.

We identified 62 studies that provided relevant information about testing scientific software.

Results—We found that challenges faced when testing scientific software fall into two main

categories: (1) testing challenges that occur due to characteristics of scientific software such as

oracle problems and (2) testing challenges that occur due to cultural differences between scientists

and the software engineering community such as viewing the code and the model that it

implements as inseparable entities. In addition, we identified methods to potentially overcome

these challenges and their limitations. Finally we describe unsolved challenges and how software

engineering researchers and practitioners can help to overcome them.

Conclusions—Scientific software presents special challenges for testing. Specifically, cultural

differences between scientist developers and software engineers, along with the characteristics of

the scientific software make testing more difficult. Existing techniques such as code clone

detection can help to improve the testing process. Software engineers should consider special

challenges posed by scientific software such as oracle problems when developing testing

techniques.

Keywords

Scientific software; Software testing; Systematic literature review; Software quality

© 2014 Elsevier B.V. All rights reserved.
*Corresponding author upuleegk@cs.colostate.edu (Upulee Kanewala), bieman@cs.colostate.edu (James M. Bieman).

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

Published in final edited form as:
Inf Softw Technol. 2014 October 1; 56(10): 1219–1232. doi:10.1016/j.infsof.2014.05.006.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1. Introduction

Scientific software is widely used in science and engineering fields. Such software plays an

important role in critical decision making in fields such as the nuclear industry, medicine

and the military [65, 66]. For example, in nuclear weapons simulations, code is used to

determine the impact of modifications, since these weapons cannot be field tested [62].

Climate models make climate predictions and assess climate change [17]. In addition, results

from scientific software are used as evidence in research publications [66]. Due to the

complexity of scientific software and the required specialized domain knowledge, scientists

often develop these programs themselves or are closely involved with the development [60,

47, 69, 7]. But scientist developers may not be familiar with accepted software engineering

practices [69, 65]. This lack of familiarity can impact the quality of scientific software [20].

Software testing is one activity that is impacted. Due to the lack of systematic testing of

scientific software, subtle faults can remain undetected. These subtle faults can cause

program output to change without causing the program to crash. Software faults such as one-

off errors have caused the loss of precision in seismic data processing programs [27].

Software faults have compromised coordinate measuring machine (CMM) performance [1].

In addition, scientists have been forced to retract published work due to software faults [51].

Hatton et al. found that several software systems written for geoscientists produced

reasonable yet essentially different results [28]. There are reports of scientists who believed

that they needed to modify the physics model or develop new algorithms, but later

discovered that the real problems were small faults in the code [18].

We define scientific software broadly as software used for scientific purposes. Scientific

software is mainly developed to better understand or make predictions about real world

processes. The size of this software ranges from 1,000 to 100,000 lines of code [66].

Developers of scientific software range from scientists who do not possess any software

engineering knowledge to experienced professional software developers with considerable

software engineering knowledge.

To develop scientific software, scientists first develop discretized models. These discretized

models are then translated into algorithms that are then coded using a programming

language. Faults can be introduced during all of these phases [15]. Developers of scientific

software usually perform validation to ensure that the scientific model is correctly modeling

the physical phenomena of interest [37, 57]. They perform verification to ensure that the

computational model is working correctly [37], using primarily mathematical analyses [62].

But scientific software developers rarely perform systematic testing to identify faults in the

code [38, 57, 32, 65]. Farrell et al. show the importance of performing code verification to

identify differences between the code and the discretized model [24]. Kane et al. found that

automated testing is fairly uncommon in biomedical software development [33]. In addition,

Reupke et al. discovered that many of the problems found in operational medical systems

are due to inadequate testing [64]. Sometimes this lack of systematic testing is caused by

special testing challenges posed by this software [20].

Kanewala and Bieman Page 2

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



This work reports on a Systematic Literature Review (SLR) that identifies the special

challenges posed by scientific software and proposes solutions to overcome these

challenges. In addition, we identify unsolved problems related to testing scientific software.

An SLR is a “means of evaluating and interpreting all available research relevant to a

particular research question or topic area or phenomenon of interest” [41]. The goal of

performing an SLR is to methodically review and gather research results for a specific

research question and aid in developing evidence-based guidelines for the practitioners [42].

Due to the systematic approach followed when performing an SLR, the researcher can be

confident that she has located the required information as much as possible.

Software engineering researchers have conducted SLRs in a variety of software engineering

areas. Walia et al. [77] conducted an SLR to identify and classify software requirement

errors. Engstrom et al. [23] conducted an SLR on empirical evaluations of regression test

selection techniques with the goal of “finding a basis for further research in a joint industry-

academia research project”. Afzal et \ al. [3] carried out an SLR on applying search-based

testing for performing non-functional testing. Their goal is to “examine existing work into

non-functional search-based software testing”. While these SLRs are not restricted to

software in a specific domain, we focus on scientific software, an area that has received less

attention than application software. Further when compared to Engstrom et al. or Afzal et

al., we do not restrict our SLR to a specific testing technique.

The overall goal [42] of our SLR is to identify specific challenges faced when testing

scientific software, how the challenges have been met, and any unsolved challenges. We

developed a set of research questions based on this overall goal to guide the SLR process.

Then we performed an extensive search to identify publications that can help to answer

these research questions. Finally, we synthesized the gathered information from the selected

studies to provide answers to our research questions.

This SLR identifies two categories of challenges in scientific software testing. The first

category are challenges that are due to the characteristics of the software itself such as the

lack of an oracle. The second category are challenges that occur because scientific software

is developed by scientists and/or scientists play leading roles in scientific software

development projects, unlike application software development where software engineers

play leading roles. We identify techniques used to test scientific software including

techniques that can help to overcome oracle problems and test case creation/selection

challenges. In addition, we describe the limitations of these techniques and open problems.

This paper is organized as follows: Section 2 describes the SLR process and how we apply it

to find answer to our research questions. We report the findings of the SLR in Section 3.

Section 4 contains the discussion on the findings. Finally we provide conclusions and

describe future work in Section 5.

2. Research Method

We conducted our SLR following the published guidelines by Kitchenham [41]. The

activities performed during an SLR can be divided into three main phases: (1) planning the

Kanewala and Bieman Page 3

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



SLR, (2) conducting the review and (3) reporting the review. We describe the tasks

performed in each phase below.

2.1. Planning the SLR

2.1.1. Research Questions—The main goal of this SLR is to identify specific

challenges faced when testing scientific software, how the challenges have been met, and

any unsolved challenges. We developed the following research questions to achieve our high

level goal:

RQ1: How is scientific software defined in the literature?

RQ2: Are there special characteristics or faults in scientific software or its

development that make testing difficult?

RQ3: Can we use existing testing methods (or adapt them) to test scientific

software effectively?

RQ4: Are there challenges that could not be met by existing techniques?

2.1.2. Formulation and validation of the review protocol—The review protocol

specifies the methods used to carry out the SLR. Defining the review protocol prior to

conducting the SLR can reduce researcher bias [43]. In addition, our review protocol

specifies source selection procedures, search process, quality assessment criteria and data

extraction strategies.

Source selection and search process: We used the Google Scholar, IEEE Xplore, and

ACM Digital Library databases since they include journals and conferences focusing on

software testing as well as computational science and engineering. Further, these databases

provide mechanisms to perform key word searches. We did not specify a fixed time frame

when conducting the search. We conducted the search in January 2013. Therefore this SLR

includes studies that were published before January 2013. We did not search for specific

journals/conferences since an initial search found relevant studies published in journals such

as Geoscientific Model Development1 that we were not previously familiar with. In

addition, we examined relevant studies that were referenced by the selected primary studies.

We searched the three databases identified above using a search string that included the

important key words in our four research questions. Further, we augmented the key words

with their synonyms, producing the following search string:

(((challenges OR problems OR issues OR characteristics) OR (technique OR
methods OR approaches)) AND (test OR examine)) OR (error OR fault OR defect

OR mistake OR problem OR imperfection OR flaw OR failure) AND (“(scientific

OR numeric OR mathematical OR floating point) AND (Software OR application

OR program OR project OR product)”)

1http://www.geoscientic-model-development.net/

Kanewala and Bieman Page 4

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.geoscientic-model-development.net/


Study selection procedure: We systematically selected the primary studies by applying the

following three steps.

1. We examined the paper titles to remove studies that were clearly unrelated to our

search focus.

2. We reviewed the abstracts and key words in the remaining studies to select relevant

studies. In some situations an abstract and keywords did not provide enough

information to determine whether a study is relevant. In such situations, we

reviewed the conclusions.

3. We filtered the remaining studies by applying the inclusion/exclusion criteria given

in Table 1. Studies selected from this final step are the initial primary studies for

the SLR.

We examined the reference lists of the initial primary studies to identify additional studies

that are relevant to our search focus.

Quality assessment checklist: We evaluated the quality of the selected primary studies

using selected items from the quality checklists provided by Kitchenham and Charters [43].

Table 2 and Table 3 show the quality checklists that we used for quantitative and qualitative

studies respectively. When creating the quality checklist for quantitative studies, we selected

quality questions that would evaluate the four main stages of a quantitative study: design,

conduct, analysis and conclusions [43].

Data extraction strategy: Relevant information for answering the research questions

needed to be extracted from the selected primary studies. We used data extraction forms to

make sure that this task was carried out in a accurate and consistent manner. Table 4 shows

the data extraction from that we used.

2.2. Conducting the review

2.2.1. Identifying relevant studies and primary studies—The key word based

search produced more than 6000 hits. We first examined paper titles to remove any studies

that are not clearly related to the research focus. Then we used the abstract, key words and

the conclusion to eliminate additional unrelated studies. After applying these two steps, 94

studies remained. We examined these 94 studies and applied the inclusion/exclusion criteria

in Table 1 to select 49 papers as primary studies for this SLR.

Further, we applied the same selection steps to the reference lists of the selected 49 primary

studies to find additional primary studies that are related to the research focus. We found 13

studies that are related to our research focus that were not already included in the initial set

of primary studies. Thus, we used a total of 62 papers as primary studies for the SLR. The

selected primary studies are listed in Tables 5 and 6. Table 7 lists the publication venues of

the selected primary papers. The International Workshop on Software Engineering for

Computational Science and Engineering and the Journal of Computing in Science &

Engineering published the greatest number of primary studies.

Kanewala and Bieman Page 5

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2.2.2. Data extraction and quality assessment—We used the data extraction form in

Table 4 to extract data from the primary studies. Many primary studies did not answer all of

the questions in the data extraction form. We extracted the important information provided

by the primary studies using the data extraction form. Then, depending on the type of the

study, we applied the quality assessment questions in Table 2 or Table 3 to each primary

study.

We provided ‘yes’ and ‘no’ answers to our quality assessment questions. We used a binary

scale since we were not interested in providing a quality score for the studies [19]. Table 8

shows the results of the quality assessment for quantitative primary studies. All the

quantitative primary studies answered ‘yes’ to the quality assessment question G1 (Are the

study aims clearly stated?). Most of the quantitative primary studies answered ‘yes’ to the

quality assessment questions G2 (Are the data collection methods adequately described) and

G5 (Can the study be replicated?). Table 9 shows the results of the quality assessment for

qualitative primary studies. All of the qualitative primary studies answered ‘yes’ to the

quality assessment question A (Are the study aims clearly stated?) and B (Does the

evaluation address its stated aims and purpose?). Most of the qualitative primary studies

answered ‘yes’ to the quality assessment question D (Is enough evidence provided to

support the claims?).

2.3. Reporting the review

Data extracted from the 62 primary papers were used to formulate answers to the four

research questions given in Section 2.1.1. We closely followed guidelines provided by

Kitchenham [41] when preparing the SLR report.

3. Results

We use the selected primary papers to provide answers to the research questions.

3.1. RQ1: How is scientific software defined in the literature?

Scientific software is defined in various ways. Sanders et al. [65] use the definition provided

by Kreyman et al. [44]: “Scientific software is software with a large computational

component and provides data for decision support.” Kelly et al. identified two types of

scientific software [39]:

1. End user application software that is written to achieve scientific objectives (e.g.,

Climate models).

2. Tools that support writing code that express a scientific model and the execution of

scientific code (e.g., Automated software testing tool for MATLAB [22]).

An orthogonal classification is given by Carver et al. [8]:

1. Research software written with the goal of publishing papers.

2. Production software written for real users (e.g. Climate models).

Kanewala and Bieman Page 6

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Scientific software is developed by scientists themselves or by multi-disciplinary teams,

where a team consists of scientists and professional software developers. A scientist will

generally be the person in charge of a scientific software development project [53].

We encountered software that helps to solve a variety of scientific problems. We present the

details of software functionality, size and the programing languages in Table 10. None of the

primary studies reported the complexity of the software in terms of measurable unit such as

coupling, cohesion, or cyclomatic complexity.

3.2. RQ2: Are there special characteristics or faults in scientific software or its
development that make testing difficult?

We found characteristics that fall into two main categories 1) Testing challenges that occur

due to characteristics of scientific software, and 2) Testing challenges that occur due to

cultural differences between scientists and the software engineering community. Below we

describe these challenges:

1. Testing challenges that occur due to characteristics of scientific software: These

challenges can be further categorized according to the specific testing activities

where they pose problems.

a. Challenges concerning test case development:

i. Identifying critical input domain boundaries a priori is

difficult due to the complexity of the software, round-off

error effects, and complex computational behavior. This

makes it difficult to apply techniques such as equivalence

partitioning to reduce the number of test cases [66, 36, 7].

ii. Manually selecting a sufficient set of test cases is

challenging due to the large number of input parameters and

values accepted by some scientific software [76].

iii. When testing scientific frameworks at the system level, it is

difficult to choose a suitable set of test cases from the large

number of available possibilities [63].

iv. Some scientific software lacks real world data that can be

used for testing [55].

v. Execution of some paths in scientific software are dependent

on results of floating point calculations. Finding test data to

execute such program paths is challenging [5].

vi. Some program units (functions, subroutines, methods) in

scientific software contain so many decisions that testing is

impractical [52].

vii. Difficulties in replicating the physical context where the

scientific code is suppose to work can make comprehensive

testing impossible [67].

Kanewala and Bieman Page 7

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



b. Challenges towards producing expected test case output values (Oracle

problems): Software testing requires an oracle, a mechanism for checking

whether the program under test produces the expected output when

executed using a set of test cases. Obtaining reliable oracles for scientific

programs is challenging [65]. Due to the lack of suitable oracles it is

difficult to detect subtle faults in scientific code [37]. The following

characteristics of scientific software make it challenging to create a test

oracle:

i. Some scientific software is written to find answers that are

previously unknown. Therefore only approximate solutions

might be available [20, 57, 78, 7, 39].

ii. It is difficult to determine the correct output for software

written to test scientific theory that involves complex

calculations or simulations. Further, some programs produce

complex outputs making it difficult to determine the

expected output [73, 65, 54, 11, 38, 61, 26, 78, 70].

iii. Due to the inherent uncertainties in models, some scientific

programs do not give a single correct answer for a given set

of inputs. This makes determining the expected behavior of

the software a difficult task, which may depend on a domain

expert’s opinion [1].

iv. Requirements are unclear or uncertain up-front due to the

exploratory nature of the software. Therefore developing

oracles based on requirements is not commonly done [73, 59,

26, 30].

v. Choosing suitable tolerances for an oracle when testing

numerical programs is difficult due to the involvement of

complex floating point computations [61, 36, 40, 12].

c. Challenges towards test execution:

i. Due to long execution times of some scientific software,

running a large number of test cases to satisfy specific

coverage criteria is not feasible [36].

d. Challenges towards test result interpretation:

i. Faults can be masked by round-off errors, truncation errors

and model simplifications [36, 28, 26, 9, 12].

ii. A limited portion of the software is regularly used.

Therefore, less frequently used portions of the code may

contain unacknowledged errors [60, 47].

iii. Scientific programs contain a high percentage of duplicated

code [52].

Kanewala and Bieman Page 8

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2. Testing challenges that occur due to cultural differences between scientists and the

software engineering community: Scientists generally play leading roles in

developing scientific software.

a. Challenges due to limited understanding of testing concepts:

i. Scientists view the code and the model that it implements as

inseparable entities. Therefore they test the code to assess the

model and not necessarily to check for faults in the code [38,

47, 66, 65].

ii. Scientist developers focus on the scientific results rather than

the quality of the software [21, 7].

iii. The value of the software is underestimated [70].

iv. Definitions of verification and validation are not consistent

across the computational science and engineering

communities [32].

v. Developers (scientists) have little or no training in software

engineering [20, 21, 26, 7, 8].

vi. Requirements and software evaluation activities are not

clearly defined for scientific software [69, 71].

vii. Testing is done only with respect to the initial specific

scientific problem addressed by the code. Therefore the

reliability of results when applied to a different problem

cannot be guaranteed [53].

viii. Developers are unfamiliar with testing methods [22, 26].

b. Challenges due to limited understanding of testing process

i. Management and budgetary support for testing may not be

provided [59, 30, 71].

ii. Since the requirements are not known up front, scientists

may adopt an agile philosophy for development. However,

they do not use standard agile process models [21]. As a

result, unit testing and acceptance testing are not carried out

properly.

iii. Software development is treated as a secondary activity

resulting in a lack of recognition for the skills and

knowledge required for software development [68].

iv. Scientific software does not usually have a set of written or

agreed set of quality goals [52].

v. Often only ad-hoc or unsystematic testing methods are used

[65, 68].

Kanewala and Bieman Page 9

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



vi. Developers view testing as a task that should be done late

during software development [29].

c. Challenges due to not applying known testing methods

i. The wide use of FORTRAN in the scientific community

makes it difficult to utilize many testing tools from the

software engineering community [47, 66, 21].

ii. Unit testing is not commonly conducted when developing

scientific software [79, 18]. For example, Clune et al. find

that unit testing is almost non-existent in the climate

modeling community [12]. Reasons for the lack of unit

testing include the following:

• There are misconceptions about the

difficulty and benefits of implementing

unit tests among scientific software

developers [12].

• The legacy nature of scientific code makes

implementing unit tests challenging [12].

• The internal code structure is hidden [75].

• The importance of unit testing is not

appreciated by scientist developers [72].

iii. Scientific software developers are unaware of the need for

and the method of applying verification testing [65].

iv. There is a lack of automated regression and acceptance

testing in some scientific programs [8].

The following specific faults are reported in the selected primary studies:

• Incorrect use of a variable name [9].

• Incorrectly reporting hardware failures as faults due to ignored exceptions [52].

• One-off errors [27].

3.3. RQ3: Can we use existing testing methods (or adapt them) to test scientific software
effectively?

Use of testing at different abstraction levels and for different testing purposes
—Several primary studies reported conducting testing at different abstraction levels: unit

testing, integration testing and system testing. In addition some studies reported the use of

acceptance testing and regression testing. Out of the 62 primary studies, 12 studies applied

at least one of these testing methods. Figure 1 shows the percentage of studies that applied

each testing method out of the 12 studies. Unit testing was the most common testing method

reported among the 12 studies.

Kanewala and Bieman Page 10

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2 displays the percentage of the number of testing methods applied by the 12 studies.

None of the studies applied four or more testing methods. Out of the 12 studies, 8 (67%)

mention applying only one testing method. Below we describe how these testing methods

were applied when testing scientific software:

1. Unit testing: Several studies report that unit testing was used to test scientific

programs [33, , 17, 2, 40, 45]. Clune et al. describe the use of refactoring to extract

testable units when conducting unit testing on legacy code [12]. They identified

two faults using unit testing that could not be discovered by system testing. Only

two studies used a unit testing framework to apply automated unit testing [33, 2]

and both of these studies used JUnit2. In addition, Eddins [22] developed a unit

testing framework for MATLAB. We did not find evidence of the use of any other

unit testing frameworks.

2. Integration testing: We found only one study that applied integration testing to

ensure that all components work together as expected [17].

3. System testing: Several studies report the use of system testing [33, 24, 64]. In

particular, the climate modeling community makes heavy use of system testing

[12].

4. Acceptance testing: We found only one study that reports on acceptance testing

conducted by the users to ensure that programmers have correctly implemented the

required functionality [33]. One reason acceptance testing is rarely used is that the

scientists who are developing the software are often also the users.

5. Regression testing: Several studies describe the use of regression testing to

compare the current output to previous outputs to identify faults introduced when

the code is modified [24, 17, 31, 75]. Further, Smith developed a tool for assisting

regression testing [74]. This tool allows testers to specify the variable values to be

compared and tolerances for comparisons.

Techniques used to overcome oracle problems—Previously we described several

techniques used to test programs that do not have oracles [35]. In addition, several studies

propose techniques to alleviate the oracle problem:

1. A pseudo oracle is an independently developed program that fulfills the same

specification as the program under test [1, 59, 24, 21, 62, 65, 78, 16, 27]. For

example, Murphy et al. used pseudo oracles for testing a machine learning

algorithm [54].

Limitations: A pseudo oracle may not include some special features/treatments

available in the program under test and it is difficult to decide whether the oracle or

the program is faulty when the answers do not agree [9]. Pseudo oracles make the

assumption that independently developed reference models will not result in the

same failures. But Brilliant et al. found that even independently developed

programs might produce the same failures [6].

2http://junit.org/

Kanewala and Bieman Page 11

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://junit.org/


2. Solutions obtained analytically can serve as oracles. Using analytical solutions is

sometimes preferred over pseudo oracles since they can identify common

algorithmic errors among the implementations. For example, a theoretically

calculated rate of convergence can be compared with the rate produced by the code

to check for faults in the program [1, 38, 24].

Limitations: Analytical solutions may not be available for every application [9]

and may not be accurate due to human errors [65].

3. Experimentally obtained results can be used as oracles [1, 38, 59, 62, 65, 45].

Limitations: It is difficult to determine whether an error is due to a fault in the

code or due to an error made during the model creation [9]. In some situations

experiments cannot be conducted due to high cost, legal or safety issues [7].

4. Measurements values obtained from natural events can be used as oracles.

Limitations: Measurements may not be accurate and are usually limited due to the

high cost or danger involved in obtaining them [38, 66].

5. Using the professional judgment of scientists [66, 40, 32, 65]

Limitations: Scientists can miss faults due to misinterpretations and lack of data.

In addition, some faults can produce small changes in the output that might be

difficult to identify [32]. Further, the scientist may not provide objective judgments

[65].

6. Using simplified data that so the correctness can be determined easily [78].

Limitations: It is not sufficient to test using only simple data; simple test cases

may not uncover faults such as round-off problems, truncation errors, overflow

conditions, etc [31]. Further such tests do not represent how the code is actually

used [65].

7. Statistical oracle: verifies statistical characteristics of test results [49].

Limitations: Decisions by a statistical oracle may not always be correct. Further a

statistical oracle cannot decide whether a single test case has passed or failed [49].

8. Reference data sets: Cox et al. created reference data sets based on the functional

specification of the program that can be used for black-box testing of scientific

programs [13].

Limitations: When using reference data sets, it is difficult to determine whether

the error is due to using unsuitable equations or due to a fault in the code.

9. Metamorphic testing (MT) was introduced by Chen et al. [10] as a way to test

programs that do not have oracles. MT operates by checking whether a program

under test behaves according to an expected set of properties known as

metamorphic relations. A metamorphic relation specifies how a particular change

to the input of the program should change the output. MT was used for testing

scientific applications in different areas such as machine learning applications [80,

56], bioinformatics programs [11], programs solving partial differential equations

Kanewala and Bieman Page 12

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



[9] and image processing applications [48]. When testing programs solving partial

differential equations, MT uncovered faults that cannot be uncovered by special

value testing [9]. MT can be applied to perform both unit testing and system

testing. Murphy et al. developed a supporting framework for conducting

metamorphic testing at the function level [58]. They used the Java Modeling

Language (JML) for specifying the metamorphic relations and automatically

generating test code using the provided specifications. Statistical Metamorphic

testing (SMT) is a technique for testing non-deterministic programs that lack

oracles [25]. Guderlei et al. applied SMT for testing an implementation of the

inverse cumulative distribution function of the normal distribution [25]. Further,

SMT was applied for testing non-deterministic health care simulation software [57]

and a stochastic optimization program [81].

Limitations: Enumerating a etof metamorphic relations that should be satisfied by

a program is a critical initial task in applying metamorphic testing. A tester or

developer has to manually identify metamorphic relations using her knowledge of

the program under test; this manual process can miss some important metamorphic

relations that could reveal faults. Recently we proposed a novel technique based on

machine learning for automatically detecting metamorphic relations [34].

As noted in Section 3.2, selecting suitable tolerances for oracles is another challenge. Kelly

et al. experimentally found that reducing the tolerance in an oracle increases the ability to

detect faults in the code [36]. Clune et al. found that breaking the algorithm into small steps

and testing the steps independently reduced the compounding effects of truncation and

round-off errors [12].

Test case creation and selection—Several methods can help to overcome the

challenges in test case creation and selection:

1. Hook et al. found that many faults can be identified by a small number of test cases

that push the boundaries of the computation represented by the code [32].

Following this, Kelly et al. found that random tests combined with specially

designed test cases to cover the parts of code uncovered by the random tests are

effective in identifying faults [36]. Both of these studies used MATLAB functions

in their experiments.

2. Randomly generated test cases were used with metamorphic testing to automate the

testing of image processing applications [48].

3. Vilkomir et al. developed a method for automatically generating test cases when a

scientific program has many input parameters with dependencies [76]. Vilkomir et

al. represent the input space as a directed graph. Input parameters are represented

by the nodes in the graph. Specific values of the parameters and the probability of a

parameter taking that value are represented by arcs. Dependencies among input

parameter values are handled by splitting/merging nodes. This method creates a

model which satisfies the probability law of Markov chains. Valid test cases can be

automatically generated by taking a path in this directed graph. This model also

Kanewala and Bieman Page 13

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



provides the ability to generate random and weighted test cases according to the

likelihood of taking the parameter values.

4. Bagnara et al. used symbolic execution to generate test data for floating point

programs [5]. This method generates test data to traverse program paths that

involve floating point computations.

5. Meinke et al. developed a technique for Automatic test case generation for

numerical software based on learning based testing (LBT) [50]. The authors first

createda polynomial model as an abstraction of the program under test. Then the

test cases are generated by applying a satisfiability algorithm to the learned model.

6. Parameterized random data generation is a technique described by Murphy et al.

[55] for creating test data for machine learning applications. This method randomly

generates data sets using properties of equivalence classes.

7. Remmel et al. developed a regression testing framework for a complex scientific

framework [63]. They took a software product line engineering (SPLE) approach to

handle the large variability of the scientific framework. They developed a

variability model to represent this variability and used the model to derive test

cases while making sure necessary variant combinations are covered. This

approach requires that scientists help to identify infeasible combinations.

Test coverage information—Only two primary studies mention the use of some type of

test coverage information [33, 2]. Kane et al. found that while some developers were

interested in measuring statement coverage, most of the developers were interested in

covering the significant functionality of the program [33]. Ackroyd et al. [2] used the Emma

tool to measure test coverage.

Assertion checking—Assertion checking can be used to ensure the correctness of plug-

and-play scientific components. But assertion checking introduces a performance overhead.

Dahlgren et al. developed an assertion selection system to reduce performance overhead for

scientific software [15, 14].

Software development process—Several studies reported that using agile practices for

developing scientific software improved testing activities [73, 61, 79]. Some projects have

used test-driven development (TDD), where test are written to check the functionality before

the code is written. But adopting this approach could be a cultural challenge since primary

studies report that TDD can delay the initial development of functional code [29, 2].

3.4. RQ4: Are there any challenges that could not be answered by existing techniques?

Only one primary paper directly provided answers to RQ4. Kelly et al. [39] describes oracle

problems as key problems to solve and the need for research on performing effective testing

without oracles. We did not find other answers to this research question.

Kanewala and Bieman Page 14

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4. Discussion

4.1. Principal findings

The goal of this systematic literature review is to identify specific challenges faced when

testing scientific software, how the challenges have been met, and any unsolved challenges.

The principal findings of this review are the following:

1. The main challenges in testing scientific software can be grouped into two main

categories.

• Testing challenges that occur due to characteristics of scientific software.

- Challenges concerning test case development such as a

lack of real world data and difficulties in replicating the

physical context where the scientific code is suppose to

work.

- Oracle problems mainly arise because scientific programs

are either written to find answers that are previously

unknown or they perform complex calculations so that it

is difficult to determine the correct output. 30% of the

primary studies reported the oracle problems as

challenges for conducting testing.

- Challenges towards test execution such as difficulties in

running test cases to satisfy a coverage criteria due to long

execution times.

- Challenges towards test result interpretation such as

round-off errors, truncation errors and model

simplifications masking faults in the code.

• Testing challenges that occur due to cultural differences between scientists

and the software engineering community.

- Challenges due to limited understanding of testing

concepts such as viewing the code and the model that it

implements as inseparable entities.

- Challenges due to limited understanding of testing

processes resulting in the use of ad-hoc or unsystematic

testing methods.

- Challenges due to not applying known testing methods

such as unit testing.

2. We discovered how certain techniques can be used to overcome some of the testing

challenges posed by scientific software development.

• Pseudo oracles, analytical solutions, experimental results, measurement

values, simplified data and professional judgment are widely used as

solutions to oracle problems in scientific software. But we found no

Kanewala and Bieman Page 15

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



empirical studies evaluating the effectiveness of these techniques in

detecting subtle faults. New techniques such as metamorphic testing have

been applied and evaluated for testing scientific software in research

studies. But we found no evidence that such techniques are actually used

in practice.

• Traditional techniques such as random test case generation were applied to

test scientific software after applying modifications to consider

equivalence classes. In addition, studies report the use of specific

techniques to perform automatic test case generation for floating point

programs. These techniques were only applied to a narrow set of

programs. The applicability of these techniques in practice needs to be

investigated.

• When considering unit, system, integration, acceptance and regression

testing, very few studies applied more than one type of testing to their

programs. We found no studies that applied more than three of these

testing techniques.

• Only two primary studies evaluated some type of test coverage

information during the testing process.

3. Research from the software engineering community can help to improve the testing

process, by investigating how to perform effective testing for programs with oracle

problems.

4.2. Techniques potentially useful in scientific software testing

Oracle problems are key problems to solve. Research on performing effective testing

without oracles is needed [39]. Techniques such as property based testing and data

redundancy can be used when an oracle is not available [4]. Assertions can be used to

perform property based testing within the source code [35]. Another potential approach is to

use a golden run [46]. With a golden run, an execution trace is generated during a failure

free execution of an input. Then this execution trace is compared with execution traces

obtained when executing the program with the same input when a failure is observed. By

comparing the golden run and the faulty execution traces the robustness of the program is

determined. One may also apply model based testing, but model based testing requires well-

defined and stable requirements to develop the model. But with most scientific software,

requirements are constantly changing, which can make it difficult to apply model based

testing. We did not find applications of property based testing, data redundancy, golden run,

and model based testing to test scientific software in the primary studies. In addition,

research on test case selection and test data adequacy has not considered the effect of the

oracle used. Often perfect oracles are not available for scientific programs. Therefore

developing test selection/creation techniques that consider the characteristics of the oracle

used for testing will be useful.

Metamorphic testing is a promising testing technique to address the oracle problem.

Metamorphic testing can be used to perform both unit and system testing. But identifying

Kanewala and Bieman Page 16

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



metamorphic relations that should be satisfied by a program is challenging. Therefore

techniques that can identify metamorphic relations for a program are needed [34].

Only a few studies applied new techniques developed by the software engineering

community to overcome some of the common testing challenges. For example none of the

primary studies employ test selection techniques to select test cases, even though running a

large number of test cases is difficult due to the long execution times of scientific software.

But many test selection techniques assume a perfect oracle, and thus will not work well for

most scientific programs.

Several studies report that scientific software developers used regression testing during the

development process. But we could not determine if regression testing was automated or

whether any test case prioritizing techniques were used. In addition we only found two

studies that used unit testing frameworks to conduct unit testing. Both of these studies report

the use of the JUnit framework for Java programs. None of the primary studies report

information regarding how unit testing was conducted for programs written in other

languages.

One of the challenges of testing scientific programs is duplicated code. Even though a fault

is fixed in a single location, the same fault may exist in other locations and those faults can

go undetected when duplicated code is present. Automatic clone detection techniques would

be useful to find duplicated code especially when dealing with legacy code.

4.3. Strengths and weaknesses of the SLR

Primary studies that provided the relevant information for this literature review were

identified thorough a key word based search on three databases. The search found relevant

studies published in journals, conference proceedings, and technical reports. We used a

systematic approach, including the detailed inclusion/exclusion criteria given in Table 1 to

select the relevant primary studies. Initially both authors applied the study selection process

to a subset of the results returned by the key word based search. After verifying that both

authors selected the same set of studies, the first author applied the study selection process

to the rest of the results returned by the key word based search.

In addition we examined the reference lists of the selected primary studies to identify any

additional studies that relate to our search focus. We found 13 additional studies related to

our search focus. These studies were found by the key word based search, but did not pass

the title based filtering. This indicates that selecting studies based on the title alone may not

be reliable and to improve the reliability we might have to review the abstract, key words

and conclusions before excluding them. This process would be time consuming due to the

large number of results returned by the key word based search. After selecting the primary

studies, we used data extraction forms to extract the relevant information consistently while

reducing bias. Extracted information was validated by both authors.

We used the quality assessment questions given in Table 2 and Table 3 for assessing the

quality of the selected primary studies. All selected primary studies are of high quality. The

primary studies are a mixture of observational and experimental studies.

Kanewala and Bieman Page 17

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



One weakness is the reliance on the key word based search facilities provided by the three

databases for selecting the initial set of papers. We cannot ensure that the search facilities

return all relevant studies. But, the search process independently returned all the studies that

we previously knew as relevant to our research questions.

Many primary studies were published in venues that are not related to software engineering.

Therefore, there may be solutions provided by the software engineering community for

some of the challenges presented in Section 3.2 such as oracle problems. But we did not find

evidence of wide use of such solutions by the scientific software developers.

4.4. Contribution to research and practice community

To our knowledge, this is the first systematic literature review conducted to identify

software testing challenges, proposed solutions, and unsolved problems in scientific

software testing. We identified challenges in testing scientific software using a large number

of studies. We outlined the solutions used by the practitioners to overcome those challenges

as well as unique solutions that were proposed to overcome specific problems. In addition

we identified several unsolved problems.

Our work may contribute to focusing research efforts aiming at the improvement of testing

of scientific software. This SLR will help the scientists who are developing software to

identify specific testing challenges and potential solutions to overcome those challenges. In

addition scientist developers can become aware of their cultural differences with the

software engineering community that can impact software testing. Information provided

here will help scientific software developers to carry out systematic testing and thereby

improve the quality of scientific software. Further, there are many opportunities for software

engineering research to find solutions to solve the challenges identified by this systematic

literature review.

5. Conclusion and future work

Conducting testing to identify faults in the code is an important task in scientific software

development that has received little attention. In this paper we present the results of a

systematic literature review that identifies specific challenges faced when testing scientific

software, how the challenges have been met and any unsolved challenges.. Below we

summarize the answers to our four research questions

RQ1: How is scientific software defined in literature? Scientific software is

defined as software with a large computational component. Further, scientific

software is usually developed by multidisciplinary teams made up of scientists and

software developers.

RQ2: Are there special characteristics or faults in scientific software or its
devel- opment that make testing difficult? We identified two categories of

challenges in scientific software testing: (1) testing challenges that occur due to

characteristics of scientific software such as oracle problems and (2) testing

challenges that occur due to cultural differences between scientists and the software

engineering community such as viewing the code and model as inseparable entities.

Kanewala and Bieman Page 18

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



RQ3: Can we use existing testing methods (or adapt them) to test scientific
software effectively? A number of studies report on testing at different levels of

abstraction such as unit testing, system testing and integration testing in scientific

software development. Few studies report the use of unit testing frameworks. Many

studies report the use of a pseudo oracle or experimental results to alleviate the lack

of an oracle. In addition, several case studies report using metamorphic testing to

test programs that do not have oracles. Several studies developed techniques to

overcome challenges in test case creation. These techniques include the

combination of randomly generated test cases with specially designed test cases,

generating test cases by considering dependencies among input parameters, and

using symbolic execution to generate test data for floating point programs. Only

two studies use test coverage information.

RQ4: Are there challenges that could not be met by existing techniques?
Oracle problems are prevalent and need further attention.

Scientific software poses special challenges for testing. Some of these challenges

can be overcome by applying testing techniques commonly used by software

engineers. Scientist developers need to incorporate these testing techniques into

their software development process. Some of the challenges are unique due to

characteristics of scientific software, such as oracle problems. Software engineers

need to consider these special challenges when developing testing techniques for

scientific software.

Acknowledgments

This project is supported by Award Number 1R01GM096192 from the National Institute of General Medical
Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views
of the National Institute of General Medical Sciences or the National Institutes of Health. We thank the reviewers
for their insightful comments on earlier versions of this paper.

References

1. Abackerli AJ, Pereira PH, Calonego N Jr. A case study on testing CMM uncertainty simulation
software (VCMM). Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2010
Mar.32:8–14.

2. Ackroyd K, Kinder S, Mant G, Miller M, Ramsdale C, Stephenson P. Scientific software
development at a research facility. Software, IEEE. 2008 Jul-Aug;25(4):44–51.

3. Afzal W, Torkar R, Feldt R. A systematic review of search-based testing for nonfunctional system
properties. Information and Software Technology. 2009; 51(6):957–976.

4. Ammann, P.; Offutt, J. Introduction to Software Testing, 1st Edition. New York, NY, USA:
Cambridge University Press; 2008.

5. Bagnara, R.; Carlier, M.; Gori, R.; Gotlieb, A. Symbolic path-oriented test data generation for
floating-point programs; Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on; 2013. p. 1-10.

6. Brilliant S, Knight J, Leveson N. Analysis of faults in an n-version software experiment. Software
Engineering, IEEE Transactions on. 1990; 16(2):238–247.

7. Carver, J.; Kendall, RP.; Squires, SE.; Post, DE. Software development environments for scientific
and engineering software: A series of case studies. Proceedings of the 29th International Conference
on Software Engineering. ICSE ‘07. IEEE Computer Society; Washington, DC, USA. 2007. p.
550-559.

Kanewala and Bieman Page 19

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



8. Carver, Jeffrey, RBDH.; Hochstein, L. Tech. Rep. SAND2011-2196. Sandia National Laboratories;
2011. What scientists and engineers think they know about software engineering: A survey.

9. Chen, T.; Feng, J.; Tse, TH. Metamorphic testing of programs on partial differential equations: a
case study; Computer Software and Applications Conference, 2002. COMP-SAC 2002.
Proceedings. 26th Annual International; 2002. p. 327-333.

10. Chen, TY.; Cheung, SC.; Yiu, SM. Tech. Rep. HKUST-CS98-01. Hong Kong: Department of
Computer Science, Hong Kong University of Science and Technology; 1998. Metamorphic
testing: a new approach for generating next test cases.

11. Chen TY, Ho JWK, Liu H, Xie X. An innovative approach for testing bioin-formatics programs
using metamorphic testing. BMC Bioinformatics. 2009; 10

12. Clune T, Rood R. Software testing and verification in climate model development. Software, IEEE.
2011 Nov-Dec;28(6):49–55.

13. Cox M, Harris P. Design and use of reference data sets for testing scientific software. Analytica
Chimica Acta. 1999; 380(23):339–351.

14. Dahlgren, T. Performance-driven interface contract enforcement for scientific components.
Schmidt, H.; Crnkovic, I.; Heineman, G.; Stafford, J., editors. Springer Berlin Heidelberg:
Component-Based Software Engineering. Vol. 4608 of Lecture Notes in Computer Science; 2007.
p. 157-172.

15. Dahlgren, TL.; Devanbu, PT. Improving scientific software component quality through assertions;
Proceedings of the Second International Workshop on Software Engineering for High
Performance Computing System Applications. SE-HPCS ‘05. ACM; New York, NY, USA. 2005.
p. 73-77.

16. Davis, MD.; Weyuker, EJ. Pseudo-oracles for non-testable programs; Proceedings of the ACM ‘81
conference. ACM ‘81. ACM; New York, NY, USA. 1981. p. 254-257.

17. Drake JB, Jones PW, Carr GR Jr. Overview of the software design of the community climate
system model. International Journal of High Performance Computing Applications. 2005 Aug;
19(3):177–186.

18. Dubois P. Testing scientific programs. Computing in Science & Engineering. 2012 Jul-Aug;14(4):
69–73.

19. Dyba T, Dingsoyr T, Hanssen G. Applying systematic reviews to diverse study types: An
experience report. Empirical Software Engineering and Measurement, 2007. 2007 Sep.:225–234.
ESEM 2007. First International Symposium on.

20. Easterbrook, SM. Climate change: a grand software challenge; Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research. FoSER ‘10. ACM; New York, NY, USA.
2010. p. 99-104.

21. Easterbrook SM, Johns TC. Engineering the software for understanding climate change.
Computing in Science & Engineering. 2009 Nov-Dec;11(6):65–74.

22. Eddins SL. Automated software testing for matlab. Computing in Science & Engineering. 2009;
11(6):48–55.

23. Engstrom E, Runeson P, Skoglund M. A systematic review on regression test selection techniques.
Information and Software Technology. 2010; 52(1):14–30.

24. Farrell PE, Piggott MD, Gorman GJ, Ham DA, Wilson CR, Bond TM. Automated continuous
verification for numerical simulation. Geoscientific Model Development. 2011; 4(2):435–449.

25. Guderlei, R.; Mayer, J. Statistical metamorphic testing testing programs with random output by
means of statistical hypothesis tests and metamorphic testing; Quality Software, 2007. QSIC ‘07.
Seventh International Conference on; 2007 Oct. p. 404-409.

26. Hannay, JE.; MacLeod, C.; Singer, J.; Langtangen, HP.; Pfahl, D.; Wilson, G. How do scientists
develop and use scientific software?; Proceedings of the 2009 ICSE Workshop on Software
Engineering for Computational Science and Engineering. SECSE ‘09. IEEE Computer Society;
Washington, DC, USA. 2009. p. 1-8.

27. Hatton L. The T experiments: errors in scientific software. Computational Science & Engineering,
IEEE. 1997 Apr-Jun;4(2):27–38.

28. Hatton L, Roberts A. How accurate is scientific software? Software Engineering, IEEE
Transactions on. 1994 Oct; 20(10):785–797.

Kanewala and Bieman Page 20

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



29. Heroux, M.; Willenbring, J. Barely sufficient software engineering: 10 practices to improve your
CSE software; Software Engineering for Computational Science and Engineering, 2009. SECSE
‘09. ICSE Workshop on; 2009. p. 15-21.

30. Heroux, MA.; Willenbring, JM.; Phenow, MN. Improving the development process for CSE
software; Parallel, Distributed and Network-Based Processing, 2007. PDP ‘07. 15th
EUROMICRO International Conference on; 2007 Feb. p. 11-17.

31. Hochstein L, Basili V. The asc-alliance projects: A case study of large-scale parallel scientific code
development. Computer. Mar; 41(3):50–58.

32. Hook, D.; Kelly, D. Testing for trustworthiness in scientific software; Software Engineering for
Computational Science and Engineering, 2009. SECSE ‘09. ICSE Workshop on; 2009 May. p.
59-64.

33. Kane DW, Hohman MM, Cerami EG, McCormick MW, Kuhlmman KF, Byrd JA. Agile methods
in biomedical software development: a multi-site experience report. BMC Bioinformatics. 2006;
7:273. [PubMed: 16734914]

34. Kanewala, U.; Bieman, J. Using machine learning techniques to detect metamorphic relations for
programs without test oracles; Software Reliability Engineering (ISSRE), 2013 IEEE 24th
International Symposium on; 2013 Nov. p. 1-10.

35. Kanewala, U.; Bieman, JM. Techniques for testing scientific programs without an oracle; Proc. 5th
International Workshop on Software Engineering for Computational Science and Engineering.
IEEE; 2013. p. 48-57.

36. Kelly D, Gray R, Shao Y. Examining random and designed tests to detect code mistakes in
scientific software. Journal of Computational Science. 2011; 2(1):47–56.

37. Kelly D, Hook D, Sanders R. Five recommended practices for computational scientists who write
software. Computing in Science & Engineering. 2009 Sep-Oct;11(5):48–53.

38. Kelly, D.; Sanders, R. Assessing the quality of scientific software; First International Workshop on
Software Engineering for Computational Science and Engineering; 2008.

39. Kelly D, Smith S, Meng N. Software engineering for scientists. Computing in Science &
Engineering. 2011 Sep-Oct;13(5):7–11.

40. Kelly D, Thorsteinson S, Hook D. Scientific software testing: Analysis with four dimensions.
Software, IEEE. 2011 May-Jun;28(3):84–90.

41. Kitchenham B. Procedures for performing systematic reviews. Technical report, Keele University
and NICTA. 2004

42. Kitchenham B, Brereton OP, Budgen D, Turner M, Bailey J, Linkman S. Systematic literature
reviews in software engineering a systematic literature review. Information and Software
Technology. 2009; 51(1):7–15.

43. Kitchenham, B.; Charters, S. Technical report. Keele University and University of Durham; 2007.
Guidelines for performing systematic literature reviews Vin software engineering (version 2.3).

44. Kreyman, K.; Parnas, DL.; Qiao, S. CRL Report no. 368. McMaster University; 1999. Inspection
procedures for critical programs that model physical phenomena.

45. Lane PC, Gobet F. A theory-driven testing methodology for developing scientific software. Journal
of Experimental & Theoretical Artificial Intelligence. 2012; 24(4):421–456.

46. Lemos, G.; Martins, E. Specification-guided golden run for analysis of robustness testing results;
Software Security and Reliability (SERE), 2012 IEEE Sixth International Conference on; 2012
Jun. p. 157-166.

47. L.S. Chin DW, Greenough C. A survey of software testing tools for computational science. Tech.
Rep. RAL-TR-2007-010, Rutherford Appleton Laboratory. 2007

48. Mayer, J.; Guderlei, R. On random testing of image processing applications; Quality Software,
2006. QSIC 2006. Sixth International Conference on; 2006 Oct. p. 85-92.

49. Mayer, J.; Informationsverarbeitung, AA.; Ulm, U. On testing image processing applications with
statistical methods; In Software Engineering (SE 2005), Lecture Notes in Informatics; 2005. p.
69-78.

50. Meinke, K.; Niu, F. A learning-based approach to unit testing of numerical software. In: Petrenko,
A.; Simo, A.; Maldonado, J., editors. Testing Software and Systems. Vol. 6435 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg; 2010. p. 221-235.

Kanewala and Bieman Page 21

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



51. Miller G. A scientist’s nightmare: Software problem leads to five retractions. Science. 2006;
314(5807):1856–1857. [PubMed: 17185570]

52. Morris, C. Some lessons learned reviewing scientific code. Proc; First International Workshop on
Software Engineering for Computational Science and Engineering; 2008.

53. Morris, C.; Segal, J. Some challenges facing scientific software developers: The case of molecular
biology; e-Science, 2009. e-Science ‘09. Fifth IEEE International Conference on; 2009 Dec. p.
216-222.

54. Murphy, C.; Kaiser, G.; Arias, M. An approach to software testing of machine learning
applications; 19th International Conference on Software Engineering and Knowledge Engineering
(SEKE); 2007. p. 167-172.

55. Murphy, C.; Kaiser, G.; Arias, M. Parameterizing random test data according to equivalence
classes; Proceedings of the 2nd international workshop on Random testing: co-located with the
22nd IEEE/ACM International Conference on Automated Software Engineering (ASE 2007). RT
‘07. ACM; New York, NY, USA. 2007. p. 38-41.

56. Murphy, C.; Kaiser, G.; Hu, L.; Wu, L. Properties of machine learning applications for use in
metamorphic testing; Proc. of the 20th International Conference on Software Engineering and
Knowledge Engineering (SEKE); 2008 Jul. p. 867-872.

57. Murphy, C.; Raunak, MS.; King, A.; Chen, S.; Imbriano, C.; Kaiser, G.; Lee, I.; Sokolsky, O.;
Clarke, L.; Osterweil, L. On effective testing of health care simulation software; Proceedings of
the 3rd Workshop on Software Engineering in Health Care. SEHC ‘ 11. ACM; New York, NY,
USA. 2011. p. 40-47.

58. Murphy, C.; Shen, K.; Kaiser, G. Using JML runtime assertion checking to automate metamorphic
testing in applications without test oracles; Proceedings of the 2009 International Conference on
Software Testing Verification and Validation. ICST ‘09. IEEE Computer Society; Washington,
DC, USA. 2009. p. 436-445.

59. Nguyen-Hoan, L.; Flint, S.; Sankaranarayana, R. A survey of scientific software development;
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement. ESEM ‘10. ACM; New York, NY, USA. 2010. p. 12:1-12:10.

60. Pipitone J, Easterbrook S. Assessing climate model software quality: a defect density analysis of
three models. Geoscientific Model Development. 2012; 5(4):1009–1022.

61. Pitt-Francis J, Bernabeu MO, Cooper J, Garny A, Momtahan L, Osborne J, Path-manathan P,
Rodriguez B, Whiteley JP, Gavaghan DJ. Chaste: using agile programming techniques to develop
computational biology software. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences. 2008; 366(1878):3111–3136.

62. Post DE, Kendall RP. Software project management and quality engineering practices for complex,
coupled multiphysics, massively parallel computational simulations: Lessons learned from ASCI.
International Journal of High Performance Computing Applications. 2004 Winter;18(4):399–416.

63. Remmel H, Paech B, Bastian P, Engwer C. System testing a scientific framework using a
regression-test environment. Computing in Science & Engineering. 2012 Mar-Apr;14(2):38–45.

64. Reupke, W.; Srinivasan, E.; Rigterink, P.; Card, D. The need for a rigorous development and
testing methodology for medical software; Engineering of Computer-Based Medical Systems,
1988., Proceedings of the Symposium on the; 1988 Jun. p. 15-20.

65. Sanders, R.; Kelly, D. The challenge of testing scientific software; Proceedings Conference for the
Association for Software Testing (CAST); 2008 Jul. p. 30-36.

66. Sanders R, Kelly D. Dealing with risk in scientific software development. Software, IEEE. 2008
Jul-Aug;25(4):21–28.

67. Segal J. When software engineers met research scientists: A case study. Empirical Software
Engineering. 2005; 10:517–536.

68. Segal J. Some problems of professional end user developers. Visual Languages and Human-
Centric Computing. 2007:111–118. 2007. VL/HCC 2007. IEEE Symposium on.

69. Segal, J. Models of scientific software development; 2008 Workshop Software Eng. in
Computational Science and Eng. (SECSE 08); 2008.

70. Segal, J. In: Buckley, J.; VRooksby, J.; Bednarik, R., editors. Scientists and software engineers: A
tale of two cultures; PPIG 2008: Proceedings of the 20th Annual Meeting of the Pschology of

Kanewala and Bieman Page 22

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Programming Interest Group. Lancaster University, Lancaster, UK, proceedings: 20th annual
meeting of the Psychology of Programming Interest Group; Lancaster; United Kingdom. 2008
Sep. p. 10-12.2008

71. Segal J. Software development cultures and cooperation problems: a field study of the early stages
of development of software for a scientific community. Computer Supported Cooperative Work.
2009 Dec; Winter;18(5–6):581–606.

72. Segal, J. Some challenges facing software engineers developing software for scientists; Software
Engineering for Computational Science and Engineering, 2009. SECSE ‘09. ICSE Workshop on;
2009 May. p. 9-14.

73. Sletholt M, Hannay J, Pfahl D, Langtangen H. What do we know about scientific software
development’s agile practices? Computing in Science & Engineering. 2012 Mar; 14(2):24–37.

74. Smith, B. In: Gaffney, P.; Pool, J., editors. A test harness th for numerical applications and
libraries; Grid-Based Problem Solving Environments. Vol. 239 of IFIP The International
Federation for Information Processing; 2007. p. 227-241.

75. Smith, MC.; Kelsey, RL.; Riese, JM.; Young, GA. In: Trevisani, DA.; Sisti, AF., editors. Creating
a flexible environment for testing scientific software; Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series. Vol. 5423 of Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series; 2004 Aug. p. 288-296.

76. Vilkomir, SA.; Swain, WT.; Poore, JH.; Clarno, KT. Modeling input space for testing scientific
computational software: A case study; Proceedings of the 8th international conference on
Computational Science, Part III. ICCS ‘08; 2008. p. 291-300.

77. Walia GS, Carver JC. A systematic literature review to identify and classify software requirement
errors. Information and Software Technology. 2009; 51(7):1087–1109.

78. Weyuker EJ. On testing non-testable programs. The Computer Journal. 1982; 25(4):465–470.

79. Wood W, Kleb W. Exploring xp for scientific research. Software, IEEE. 2003; 20(3):30–36.

80. Xie X, Ho JW, Murphy C, Kaiser G, Xu B, Chen TY. Testing and validating machine learning
classifiers by metamorphic testing. Journal of Systems and Software. 2011; 84(4):544–558.
[PubMed: 21532969]

81. Yoo, S. Metamorphic testing of stochastic optimisation; Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International Conference on; 2010. p. 192-201.

Kanewala and Bieman Page 23

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Percentage of studies that applied different testing methods

Kanewala and Bieman Page 24

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Number of testing methods applied by the studies

Kanewala and Bieman Page 25

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 26

Table 1

Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

1 Papers that describe characteristics of scientific software that impact
testing.

2 Case studies or surveys of scientific soft-ware testing experiences.

3 Papers that analyze characteristics of scientific software testing
including case studies and experience reports.

4 Papers describing commonly occurring faults in scientific software.

5 Papers that describe testing methods used for scientific software and
provide a sufficient evaluation of the method used.

6 Experience reports or case studies describing testing methods used for
scientific software.

1 Papers that present opinions without
sufficient evidence supporting the opinion.

2 Studies not related to the research
questions.

3 Studies in languages other than English.

4 Papers presenting results without providing
supporting evidence.

5 Preliminary conference papers of included
journal papers.

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 27

Table 2

Quality assessment for quantitative studies

Survey Case study Experiment

G1: Are the study aims clearly stated?

S1: Was the method for collecting the sample
data specified (e.g. postal, interview, web-
based)?

N/A N/A

S2: Is there a control group? N/A E1: Is there a control group?

N/A N/A E2: Were the treatments randomly allocated?

G2: Are the data collection methods adequately described?

G3: Was there any statistical assessment of results?

S3: Do the observations support the claims? C1: Is there enough evidence provided
to support the claims?

E3: Is there enough evidence provided to
support the claims?

G4: Are threats to validity and/or limitations reported?

G5: Can the study be replicated?

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 28

Table 3

Quality assessment for qualitative studies

Quality assessment questions

1 A: Are the study aims clearly stated?

2 B: Does the evaluation address its stated aims and purpose?

3 C: Is sample design/target selection of cases/documents defined?

4 D: Is enough evidence provided to support the claims?

5 E: Can the study be replicated?

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 29

Table 4

Data extraction form

Search focus Data Item Description

General Identifier Reference number given to the article

Bibliography Author, year, Title, source

Type of article journal/conference/tech. report

Study aims Aims or goals of the study

Study design controlled experiment/survey/etc.

RQ1 Definition Definition for scientific software

Examples A Examples of scientific software

RQ2 Challenge/problem Challenges/problems faced when testing scientific soft-ware

Fault description Description of the fault found

Causes What caused the fault?

RQ3/RQ4 Testing method Description of the method used

Existing/new/extension Whether the testing method is new, existing or modification
to an existing method

Challenge/problem The problem/challenge that it provides the answer to

Faults/failures found Description of the faults/ failures found by the method

Evidence Evidence for the effectiveness of the method of finding
faults

Limitations Limitations of the method

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 30

T
ab

le
 5

Se
le

ct
ed

 P
ri

m
ar

y 
St

ud
ie

s 
(P

ar
t 1

)

St
ud

y 
N

o.
R

ef
. N

o.
St

ud
y 

fo
cu

s
R

Q
1

R
Q

2
R

Q
3

R
Q

4

PS
1

[1
]

A
 c

as
e 

st
ud

y 
on

 te
st

in
g 

so
ft

w
ar

e 
pa

ck
ag

es
 u

se
d 

in
 m

et
ro

lo
gy

✓
✓

PS
2

[2
]

So
ft

w
ar

e 
en

gi
ne

er
in

g 
ta

sk
s 

ca
rr

ie
d 

ou
t d

ur
in

g 
sc

ie
nt

if
ic

 s
of

tw
ar

e 
de

ve
lo

pm
en

t
✓

PS
3

[5
]

T
es

t c
as

e 
ge

ne
ra

tio
n 

fo
r 

fl
oa

tin
g 

po
in

t p
ro

gr
am

s 
us

in
g 

sy
m

bo
lic

 e
xe

cu
tio

n
✓

PS
4

[7
]

C
as

e 
st

ud
ie

s 
of

 s
ci

en
tif

ic
 s

of
tw

ar
e 

de
ve

lo
pm

en
t p

ro
je

ct
s

✓

PS
5

[8
]

Su
rv

ey
 o

n 
co

m
pu

ta
tio

na
l s

ci
en

tis
ts

 a
nd

 e
ng

in
ee

rs
✓

✓

PS
6

[9
]

A
pp

ly
in

g 
m

et
am

or
ph

ic
 te

st
in

g 
to

 p
ro

gr
am

s 
on

 p
ar

tia
l d

if
fe

re
nt

ia
l e

qu
at

io
ns

✓
✓

PS
7

[1
1]

C
as

e 
st

ud
ie

s 
on

 a
pp

ly
in

g 
m

et
am

or
ph

ic
 te

st
in

g 
fo

r 
bi

oi
nf

or
m

at
ic

s 
pr

og
ra

m
s

✓
✓

PS
8

[1
2]

C
as

e 
st

ud
ie

s 
on

 a
pp

ly
in

g 
te

st
 d

ri
ve

n 
de

ve
lo

pm
en

t f
or

 c
lim

at
e 

m
od

el
s

✓
✓

PS
9

[1
3]

U
si

ng
 r

ef
er

en
ce

 d
at

a 
se

ts
 f

or
 te

st
in

g 
sc

ie
nt

if
ic

 s
of

tw
ar

e
✓

PS
10

[1
4]

E
ff

ec
tiv

en
es

s 
of

 d
if

fe
re

nt
 in

te
rf

ac
e 

co
nt

ra
ct

 e
nf

or
ce

m
en

t p
ol

ic
ie

s 
fo

r 
sc

ie
nt

if
ic

 c
om

po
ne

nt
s

✓

PS
11

[1
5]

Pa
rt

ia
l e

nf
or

ce
m

en
t o

f 
as

se
rt

io
ns

 f
or

 s
ci

en
tif

ic
 s

of
tw

ar
e 

co
m

po
ne

nt
s

✓

PS
12

[1
6]

U
si

ng
 p

se
ud

o-
or

ac
le

s 
fo

r 
te

st
in

g 
pr

og
ra

m
s 

w
ith

ou
t o

ra
cl

es
✓

PS
13

[1
7]

A
 c

as
e 

st
ud

y 
on

 d
ev

el
op

in
g 

a 
cl

im
at

e 
sy

st
em

 m
od

el
✓

PS
14

[1
8]

A
 to

ol
 f

or
 a

ut
om

at
in

g 
th

e 
te

st
in

g 
of

 s
ci

en
tif

ic
 s

im
ul

at
io

ns
✓

PS
15

[2
0]

D
is

cu
ss

io
n 

on
 s

of
tw

ar
e 

ch
al

le
ng

es
 f

ac
ed

 in
 c

lim
at

e 
m

od
el

in
g 

pr
og

ra
m

 d
ev

el
op

m
en

t
✓

PS
16

[2
1]

E
th

no
gr

ap
hi

c 
st

ud
y 

of
 c

lim
at

e 
sc

ie
nt

is
ts

 w
ho

 d
ev

el
op

 s
of

tw
ar

e
✓

✓

PS
17

[2
2]

A
 u

ni
t t

es
tin

g 
fr

am
ew

or
k 

fo
r 

M
A

T
L

A
B

 p
ro

gr
am

s
✓

✓

PS
18

[2
4]

A
 f

ra
m

ew
or

k 
fo

r 
au

to
m

at
ed

 c
on

tin
uo

us
 v

er
if

ic
at

io
n 

of
 n

um
er

ic
al

 s
im

ul
at

io
ns

✓

PS
19

[2
6]

R
es

ul
ts

 o
f 

a 
su

rv
ey

 c
on

du
ct

ed
 to

 id
en

tif
y 

ho
w

 s
ci

en
tis

ts
 d

ev
el

op
 a

nd
 u

se
 s

of
tw

ar
e 

in
 th

ei
r 

re
se

ar
ch

✓

PS
20

[2
7]

E
xp

er
im

en
ts

 to
 a

na
ly

ze
 th

e 
ac

cu
ra

cy
 o

f 
sc

ie
nt

if
ic

 s
of

tw
ar

e 
th

ro
ug

h 
st

at
ic

 a
na

ly
si

s 
an

d 
co

m
pa

ri
so

ns
 w

ith
 in

de
pe

nd
en

t i
m

pl
em

en
ta

tio
ns

 o
f 

th
e

sa
m

e 
al

go
ri

th
m

✓
✓

PS
21

[2
8]

N
-v

er
si

on
 p

ro
gr

am
m

in
g 

ex
pe

ri
m

en
t c

on
du

ct
ed

 o
n 

sc
ie

nt
if

ic
 s

of
tw

ar
e

✓

PS
22

[3
0]

A
pp

ly
in

g 
so

ft
w

ar
e 

qu
al

ity
 a

ss
ur

an
ce

 p
ra

ct
ic

es
 in

 a
 s

ci
en

tif
ic

 s
of

tw
ar

e 
pr

oj
ec

t
✓

PS
23

[2
9]

So
ft

w
ar

e 
en

gi
ne

er
in

g 
pr

ac
tic

es
 s

ui
ta

bl
e 

fo
r 

sc
ie

nt
if

ic
 s

of
tw

ar
e 

de
ve

lo
pm

en
t t

ea
m

s 
id

en
tif

ie
d 

th
ro

ug
h 

a 
ca

se
 s

tu
dy

✓
✓

PS
24

[3
1]

So
ft

w
ar

e 
de

ve
lo

pm
en

t p
ro

ce
ss

 o
f 

fi
ve

 la
rg

e 
sc

al
e 

co
m

pu
ta

tio
na

l s
ci

en
ce

 s
of

tw
ar

e
✓

PS
25

[3
2]

E
va

lu
at

in
g 

th
e 

ef
fe

ct
iv

en
es

s 
of

 u
si

ng
 a

 s
m

al
l n

um
be

r 
of

 c
ar

ef
ul

ly
 s

el
ec

te
d 

te
st

 c
as

es
 f

or
 te

st
in

g 
sc

ie
nt

if
ic

 s
of

tw
ar

e
✓

✓

PS
26

[3
3]

Q
ua

lit
at

iv
e 

st
ud

y 
of

 a
gi

le
 d

ev
el

op
m

en
t a

pp
ro

ac
he

s 
fo

r 
cr

ea
tin

g 
an

d 
m

ai
nt

ai
ni

ng
 b

io
-m

ed
ic

al
 s

of
tw

ar
e

✓

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 31

St
ud

y 
N

o.
R

ef
. N

o.
St

ud
y 

fo
cu

s
R

Q
1

R
Q

2
R

Q
3

R
Q

4

PS
27

[3
6]

C
om

pa
ri

ng
 th

e 
ef

fe
ct

iv
en

es
s 

of
 r

an
do

m
 te

st
 c

as
es

 a
nd

 d
es

ig
ne

d 
te

st
 c

as
es

 f
or

 d
et

ec
tin

g 
fa

ul
ts

 in
 s

ci
en

tif
ic

 s
of

tw
ar

e
✓

✓

PS
28

[3
7]

U
se

fu
l s

of
tw

ar
e 

en
gi

ne
er

in
g 

te
ch

ni
qu

es
 f

or
 c

om
pu

ta
tio

na
l s

ci
en

tis
ts

 o
bt

ai
ne

d 
th

ro
ug

h 
ex

pe
ri

en
ce

 o
f 

sc
ie

nt
is

ts
 w

ho
 h

ad
 s

uc
ce

ss
✓

PS
29

[3
8]

Q
ua

lit
y 

as
se

ss
m

en
t p

ra
ct

ic
es

 o
f 

sc
ie

nt
is

ts
 th

at
 d

ev
el

op
 c

om
pu

ta
tio

na
l s

of
tw

ar
e

✓
✓

PS
30

[3
9]

H
ow

 s
of

tw
ar

e 
en

gi
ne

er
in

g 
re

se
ar

ch
 c

an
 p

ro
vi

de
 s

ol
ut

io
ns

 to
 c

ha
lle

ng
es

 f
ou

nd
 b

y 
sc

ie
nt

is
ts

 d
ev

el
op

in
g 

so
ft

w
ar

e
✓

✓
✓

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 32

T
ab

le
 6

Se
le

ct
ed

 P
ri

m
ar

y 
St

ud
ie

s 
(P

ar
t 2

)

St
ud

y 
N

o.
R

ef
. N

o.
St

ud
y 

fo
cu

s
R

Q
1

R
Q

2
R

Q
3

R
Q

4

PS
31

[4
0]

A
 c

as
e 

st
ud

y 
of

 a
pp

ly
in

g 
te

st
in

g 
ac

tiv
iti

es
 to

 s
ci

en
tif

ic
 s

of
tw

ar
e

✓
✓

PS
32

[4
7]

A
 s

ur
ve

y 
on

 te
st

in
g 

to
ol

s 
fo

r 
sc

ie
nt

if
ic

 p
ro

gr
am

s 
w

ri
tte

n 
in

 F
O

R
- 

T
R

A
N

✓

PS
33

[4
5]

A
 c

as
e 

st
ud

y 
on

 u
si

ng
 a

 th
re

e 
le

ve
l t

es
tin

g 
ar

ch
ite

ct
ur

e 
fo

r 
te

st
in

g 
sc

ie
nt

if
ic

 p
ro

gr
am

s
✓

PS
34

[4
8]

A
pp

ly
in

g 
m

et
am

or
ph

ic
 te

st
in

g 
fo

r 
im

ag
e 

pr
oc

es
si

ng
 p

ro
gr

am
s

✓

PS
35

[4
9]

U
si

ng
 s

ta
tis

tic
al

 o
ra

cl
es

 to
 te

st
 im

ag
e 

pr
oc

es
si

ng
 a

pp
lic

at
io

ns
✓

PS
36

[5
0]

A
 le

ar
ni

ng
-b

as
ed

 m
et

ho
d 

fo
r 

au
to

m
at

ic
 g

en
er

at
io

n 
of

 te
st

 c
as

es
 f

or
 n

um
er

ic
al

 p
ro

gr
am

s
✓

PS
37

[5
2]

L
es

so
ns

 le
ar

ne
d 

th
ro

ug
h 

co
de

 r
ev

ie
w

s 
of

 s
ci

en
tif

ic
 p

ro
gr

am
s

PS
38

[5
3]

C
ha

lle
ng

es
 f

ac
ed

 b
y 

so
ft

w
ar

e 
en

gi
ne

er
s 

de
ve

lo
pi

ng
 s

of
tw

ar
e 

fo
r 

sc
ie

nt
is

ts
 in

 th
e 

fi
el

d 
of

 m
ol

ec
ul

ar
 b

io
lo

gy
✓

PS
39

[5
5]

A
 f

ra
m

ew
or

k 
fo

r 
ra

nd
om

ly
 g

en
er

at
in

g 
la

rg
e 

da
ta

 s
et

s 
fo

r 
te

st
in

g 
m

ac
hi

ne
 le

ar
ni

ng
 a

pp
lic

at
io

ns
✓

PS
40

[5
4]

M
et

ho
ds

 f
or

 te
st

in
g 

m
ac

hi
ne

 le
ar

ni
ng

 a
lg

or
ith

m
s

✓
✓

PS
41

[5
6]

A
pp

ly
in

g 
m

et
am

or
ph

ic
 te

st
in

g 
fo

r 
te

st
in

g 
m

ac
hi

ne
 le

ar
ni

ng
 a

pp
lic

at
io

ns
✓

PS
42

[5
7]

T
es

tin
g 

he
al

th
 c

ar
e 

si
m

ul
at

io
n 

so
ft

w
ar

e 
us

in
g 

m
et

am
or

ph
ic

 te
st

in
g

✓
✓

PS
43

[5
9]

Su
rv

ey
 o

f 
sc

ie
nt

if
ic

 s
of

tw
ar

e 
de

ve
lo

pe
rs

✓
✓

PS
44

[6
0]

A
na

ly
si

s 
of

 q
ua

lit
y 

of
 c

lim
at

e 
m

od
el

s 
in

 te
rm

s 
of

 d
ef

ec
t d

en
si

ty
✓

PS
45

[6
1]

A
pp

ly
in

g 
ag

ile
 d

ev
el

op
m

en
t p

ro
ce

ss
 f

or
 d

ev
el

op
in

g 
co

m
pu

ta
tio

na
l b

io
lo

gy
 s

of
tw

ar
e

✓
✓

PS
46

[6
2]

L
es

so
ns

 le
ar

ne
d 

fr
om

 s
ci

en
tif

ic
 s

of
tw

ar
e 

de
ve

lo
pm

en
t p

ro
je

ct
s

✓

PS
47

[6
3]

A
pp

ly
in

g 
va

ri
ab

ili
ty

 m
od

el
in

g 
fo

r 
se

le
ct

in
g 

te
st

 c
as

es
 w

he
n 

te
st

in
g 

sc
ie

nt
if

ic
 f

ra
m

ew
or

ks
 w

ith
 la

rg
e 

va
ri

ab
ili

ty
✓

✓

PS
48

[6
4]

M
ed

ic
al

 s
of

tw
ar

e 
de

ve
lo

pm
en

t a
nd

 te
st

in
g

✓

PS
49

[6
6]

A
 s

ur
ve

y 
to

 id
en

tif
y 

th
e 

ch
ar

ac
te

ri
st

ic
s 

of
 s

ci
en

tif
ic

 s
of

tw
ar

e 
de

ve
lo

pm
en

t
✓

✓

PS
50

[6
5]

C
ha

lle
ng

es
 f

ac
ed

 w
he

n 
te

st
in

g 
sc

ie
nt

if
ic

 s
of

tw
ar

e 
id

en
tif

ie
d 

th
ro

ug
h 

in
te

rv
ie

w
s 

ca
rr

ie
d 

ou
t w

ith
 s

ci
en

tis
ts

 w
ho

 d
ev

el
op

/u
se

 s
ci

en
tif

ic
so

ft
w

ar
e

✓
✓

✓

PS
51

[7
0]

St
ud

y 
of

 p
ro

bl
em

s 
ar

is
in

g 
w

he
n 

sc
ie

nt
is

ts
 a

nd
 s

of
tw

ar
e 

en
gi

ne
er

s 
w

or
k 

to
ge

th
er

 to
 d

ev
el

op
 s

ci
en

tif
ic

 s
of

tw
ar

e
✓

PS
52

[6
8]

Pr
ob

le
m

si
n 

sc
ie

nt
if

ic
 s

of
tw

ar
e 

de
ve

lo
pm

en
t i

de
nt

if
ie

d 
th

ro
ug

h 
ca

se
 s

tu
di

es
 in

 d
if

fe
re

nt
 f

ie
ld

s
✓

PS
53

[7
2]

C
ha

lle
ng

es
 f

ac
ed

 b
y 

so
ft

w
ar

e 
en

gi
ne

er
s 

w
ho

 d
ev

el
op

 s
of

tw
ar

e 
fo

r 
sc

ie
nt

is
ts

✓

PS
54

[7
1]

C
as

e 
st

ud
ie

s 
on

 p
ro

fe
ss

io
na

l e
nd

-u
se

r 
de

ve
lo

pm
en

t c
ul

tu
re

✓

PS
55

[6
9]

A
 m

od
el

 o
f 

sc
ie

nt
if

ic
 s

of
tw

ar
e 

de
ve

lo
pm

en
t i

de
nt

if
ie

d 
th

ro
ug

h 
m

ul
tip

le
 f

ie
ld

 s
tu

di
es

 o
f 

sc
ie

nt
if

ic
 s

of
tw

ar
e 

de
ve

lo
pm

en
t

✓

PS
56

 ,
[6

7]
A

 c
as

e 
st

ud
y 

on
 a

pp
ly

in
g 

tr
ad

iti
on

al
 d

oc
um

en
t-

le
d 

de
ve

lo
pm

en
t m

et
ho

do
lo

gy
 f

or
 d

ev
el

op
in

g 
sc

ie
nt

if
ic

 s
of

tw
ar

e
✓

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 33

St
ud

y 
N

o.
R

ef
. N

o.
St

ud
y 

fo
cu

s
R

Q
1

R
Q

2
R

Q
3

R
Q

4

PS
57

[7
3]

L
ite

ra
tu

re
 r

ev
ie

w
 a

nd
 c

as
e 

st
ud

ie
s 

on
 h

ow
 s

ci
en

tif
ic

 s
of

tw
ar

e 
de

ve
lo

pm
en

t m
at

ch
es

 a
gi

le
 p

ra
ct

ic
es

 a
nd

 th
e 

ef
fe

ct
s 

of
 u

si
ng

 a
gi

le
 p

ra
ct

ic
es

 in
sc

ie
nt

if
ic

 s
of

tw
ar

e 
de

ve
lo

pm
en

t
✓

✓

PS
58

[7
4]

A
 te

st
 h

ar
ne

ss
 f

or
 n

um
er

ic
al

 p
ro

gr
am

s
✓

PS
59

[7
5]

A
 te

st
in

g 
fr

am
ew

or
k 

fo
r 

co
nd

uc
tin

g 
re

gr
es

si
on

 te
st

in
g 

of
 s

ci
en

tif
ic

 s
of

tw
ar

e
✓

✓

PS
60

[7
6]

A
 m

et
ho

d 
fo

r 
te

st
 c

as
e 

ge
ne

ra
tio

n 
of

 s
ci

en
tif

ic
 s

of
tw

ar
e 

w
he

n 
th

er
e 

ar
e 

de
pe

nd
en

ci
es

 b
et

w
ee

n 
in

pu
t p

ar
am

et
er

s
✓

✓

PS
61

[7
8]

T
es

tin
g 

no
n-

te
st

ab
le

 p
ro

gr
am

s
✓

✓

PS
62

[7
9]

C
ul

tu
re

 c
la

sh
 w

he
n 

ap
pl

yi
ng

 e
xt

re
m

e 
pr

og
ra

m
m

in
g 

to
 d

ev
el

op
 s

ci
en

tif
ic

 s
of

tw
ar

e
✓

✓

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 34

Table 7

Publication venues of primary studies

Publication venue Type Count %

International Workshop on Software Engineering for Computational Science and Engineering Workshop 7 11.3

Computing in Science & Engineering Journal 7 11.3

IEEE Software Journal 5 8.1

BMC Bioinformatics Journal 2 3.2

Geoscientific Model Development Journal 2 3.2

International Conference on Software Engineering and Knowledge Engineering Conference 2 3.2

International Journal of High Performance Computing Applications Journal 2 3.2

Lecture Notes in Computer Science Book chapter 2 3.2

Journal of the Brazilian Society of Mechanical Sciences and Engineering Journal 1 1.6

International Conference on Software Testing, Verification and Validation Conference 1 1.6

International Conference on Software Engineering Conference 1 1.6

Sandia National Laboratories-Technical report Tech. report 1 1.6

Computer Software and Applications Conference Conference 1 1.6

Analytica Chimica Acta Journal 1 1.6

International Workshop on Software Engineering for High Performance Computing System Applications Workshop 1 1.6

ACM ‘81 Conference Conference 1 1.6

FSE/SDP Workshop on Future of Software Engineering Research Workshop 1 1.6

IEEE Computational Science & Engineering Journal 1 1.6

IEEE Transactions on Software Engineering Journal 1 1.6

EUROMICRO International Conference on Parallel, Distributed and Network- Based Processing Conference 1 1.6

IEEE Computer Journal 1 1.6

Journal of Computational Science Journal 1 1.6

Rutherford Appleton Laboratory-Technical report Tech. report 1 1.6

Journal of Experimental & Theoretical Artificial Intelligence Journal 1 1.6

International Conference on Quality Software Conference 1 1.6

Lecture Notes in Informatics Book chapter 1 1.6

International Conference on e-Science Conference 1 1.6

International Workshop on Random testing Conference 1 1.6

Workshop on Software Engineering in Health Care Workshop 1 1.6

International Symposium on Empirical Software Engineering and Measurement Conference 1 1.6

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Journal 1 1.6

Symposium on the Engineering of Computer-Based Medical Systems Conference 1 1.6

Conference for the Association for Software Testing Conference 1 1.6

Annual Meeting of the Psychology of Programming Interest Group Conference 1 1.6

Symposium on Visual Languages and Human-Centric Computing Conference 1 1.6

Computer Supported Cooperative Work Journal 1 1.6

Empirical Software Engineering Journal 1 1.6

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 35

Publication venue Type Count %

Grid-Based Problem Solving Environments Journal 1 1.6

Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Conference 1 1.6

International Conference on Computational Science Conference 1 1.6

The Computer Journal Journal 1 1.6

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 36

T
ab

le
 8

Q
ua

lit
y 

as
se

ss
m

en
t r

es
ul

ts
 o

f 
qu

an
tit

at
iv

e 
st

ud
ie

s

R
ef

. N
o.

G
1

S1
S2

E
1

E
2

G
2

G
3

S3
C

1
E

3
G

4
G

5

[1
7]

ye
s

N
/A

N
/A

N
/A

N
/A

no
no

N
/A

ye
s

N
/A

no
no

[5
7]

ye
s

N
/A

N
/A

no
no

ye
s

no
N

/A
N

/A
ye

s
ye

s
ye

s

[5
5]

ye
s

N
/A

N
/A

no
no

ye
s

no
N

/A
N

/A
ye

s
ye

s
ye

s

[3
6]

ye
s

N
/A

N
/A

ye
s

no
ye

s
ye

s
N

/A
N

/A
ye

s
no

ye
s

[6
0]

ye
s

N
/A

N
/A

N
/A

N
/A

ye
s

no
N

/A
ye

s
N

/A
ye

s
ye

s

[1
]

ye
s

N
/A

N
/A

N
/A

N
/A

ye
s

no
N

/A
ye

s
N

/A
no

ye
s

[1
3]

ye
s

N
/A

N
/A

no
no

ye
s

ye
s

N
/A

N
/A

ye
s

no
ye

s

[1
5]

ye
s

N
/A

N
/A

ye
s

no
ye

s
no

N
/A

N
/A

ye
s

no
ye

s

[8
]

ye
s

ye
s

no
N

/A
N

/A
ye

s
ye

s
ye

s
N

/A
N

/A
no

ye
s

[5
9]

ye
s

ye
s

no
N

/A
N

/A
ye

s
no

ye
s

N
/A

N
/A

ye
s

ye
s

[6
1]

ye
s

N
/A

N
/A

N
/A

N
/A

ye
s

no
N

/A
ye

s
N

/A
no

ye
s

[6
3]

ye
s

N
/A

N
/A

N
/A

N
/A

ye
s

no
N

/A
ye

s
N

/A
no

ye
s

[3
2]

ye
s

N
/A

N
/A

ye
s

no
ye

s
no

N
/A

N
/A

ye
s

no
ye

s

[1
4]

ye
s

N
/A

N
/A

ye
s

no
ye

s
no

N
/A

N
/A

ye
s

no
ye

s

[4
8]

ye
s

N
/A

N
/A

no
no

ye
s

no
N

/A
N

/A
ye

s
no

ye
s

[1
1]

ye
s

N
/A

N
/A

N
/A

N
/A

ye
s

no
N

/A
ye

s
N

/A
ye

s
ye

s

[9
]

ye
s

N
/A

N
/A

N
/A

N
/A

ye
s

no
N

/A
ye

s
N

/A
no

ye
s

[7
9]

ye
s

N
/A

N
/A

N
/A

N
/A

ye
s

no
N

/A
ye

s
N

/A
ye

s
no

[5
]

ye
s

N
/A

N
/A

ye
s

no
ye

s
no

N
/A

N
/A

ye
s

no
ye

s

[2
6]

ye
s

ye
s

no
N

/A
N

/A
ye

s
no

ye
s

N
/A

N
/A

ye
s

ye
s

[2
7]

ye
s

N
/A

N
/A

no
no

ye
s

ye
s

N
/A

N
/A

ye
s

no
no

[2
8]

ye
s

N
/A

N
/A

no
no

ye
s

ye
s

N
/A

N
/A

ye
s

no
no

[5
0]

ye
s

N
/A

N
/A

ye
s

no
ye

s
no

N
/A

N
/A

ye
s

no
ye

s

[7
9]

ye
s

N
/A

N
/A

N
/A

N
/A

ye
s

no
N

/A
ye

s
N

/A
no

ye
s

G
1:

 A
re

 th
e 

st
ud

y 
ai

m
s 

cl
ea

rl
y 

st
at

ed
?

S1
: W

as
 th

e 
m

et
ho

d 
fo

r 
co

lle
ct

in
g 

th
e 

sa
m

pl
e 

da
ta

 s
pe

ci
fi

ed
?

S2
, E

1:
 I

s 
th

er
e 

a 
co

nt
ro

l g
ro

up
?

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 37
E

2:
 W

er
e 

th
e 

tr
ea

tm
en

ts
 r

an
do

m
ly

 a
llo

ca
te

d?

G
2:

 A
re

 th
e 

da
ta

 c
ol

le
ct

io
n 

m
et

ho
ds

 a
de

qu
at

el
y 

de
sc

ri
be

d?

G
3:

 W
as

 th
er

e 
an

y 
st

at
is

tic
al

 a
ss

es
sm

en
t o

f 
re

su
lts

?

S3
: D

o 
th

e 
ob

se
rv

at
io

ns
 s

up
po

rt
 th

e 
cl

ai
m

s?

C
1,

 E
3:

 I
s 

th
er

e 
en

ou
gh

 e
vi

de
nc

e 
pr

ov
id

ed
 to

 s
up

po
rt

 th
e 

cl
ai

m
s?

G
4:

 A
re

 th
re

at
s 

to
 v

al
id

ity
 a

nd
/o

r 
lim

ita
tio

ns
 r

ep
or

te
d?

G
5:

 C
an

 th
e 

st
ud

y 
be

 r
ep

lic
at

ed
?

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 38

T
ab

le
 9

Q
ua

lit
y 

as
se

ss
m

en
t r

es
ul

ts
 o

f 
qu

al
ita

tiv
e 

st
ud

ie
s

R
ef

. N
o.

A
B

C
D

E

[6
2]

ye
s

ye
s

ye
s

ye
s

ye
s

[6
4]

ye
s

ye
s

no
ye

s
no

[6
7]

ye
s

ye
s

no
ye

s
no

[5
3]

ye
s

ye
s

ye
s

ye
s

no

[2
]

ye
s

ye
s

ye
s

ye
s

no

[4
0]

ye
s

ye
s

no
ye

s
no

[3
9]

ye
s

ye
s

ye
s

ye
s

no

[7
5]

ye
s

ye
s

no
ye

s
no

[3
0]

ye
s

ye
s

ye
s

ye
s

no

[4
7]

ye
s

ye
s

no
ye

s
no

[2
0]

ye
s

ye
s

no
ye

s
no

[3
8]

ye
s

ye
s

ye
s

ye
s

no

[6
6]

ye
s

ye
s

ye
s

ye
s

no

[1
2]

ye
s

ye
s

no
ye

s
no

[1
8]

ye
s

ye
s

ye
s

ye
s

ye
s

[7
4]

ye
s

ye
s

ye
s

ye
s

no

[4
5]

ye
s

ye
s

ye
s

ye
s

no

[5
6]

ye
s

ye
s

ye
s

ye
s

ye
s

[3
1]

ye
s

ye
s

ye
s

ye
s

ye
s

[4
9]

ye
s

ye
s

ye
s

ye
s

ye
s

[1
6]

ye
s

ye
s

no
ye

s
no

[7
0]

ye
s

ye
s

ye
s

ye
s

ye
s

[7
1]

ye
s

ye
s

ye
s

ye
s

ye
s

[7
]

ye
s

ye
s

ye
s

ye
s

no

[6
8]

ye
s

ye
s

ye
s

ye
s

no

[5
4]

ye
s

ye
s

ye
s

ye
s

ye
s

[2
9]

ye
s

ye
s

ye
s

ye
s

no

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 39

R
ef

. N
o.

A
B

C
D

E

[3
3]

ye
s

ye
s

ye
s

ye
s

no

[2
4]

ye
s

ye
s

ye
s

ye
s

no

[3
7]

ye
s

ye
s

no
ye

s
no

[5
2]

ye
s

ye
s

ye
s

ye
s

ye
s

[2
1]

ye
s

ye
s

ye
s

ye
s

ye
s

[2
2]

ye
s

ye
s

no
no

no

[6
5]

ye
s

ye
s

ye
s

ye
s

ye
s

[7
2]

ye
s

ye
s

ye
s

ye
s

no

[6
9]

ye
s

ye
s

ye
s

ye
s

no

[7
3]

ye
s

ye
s

ye
s

ye
s

ye
s

[7
8]

ye
s

ye
s

no
no

no

A
: A

re
 th

e 
st

ud
y 

ai
m

s 
cl

ea
rl

y 
st

at
ed

?

B
: D

oe
s 

th
e 

ev
al

ua
tio

n 
ad

dr
es

s 
its

 s
ta

te
d 

ai
m

s 
an

d 
pu

rp
os

e?

C
: I

s 
sa

m
pl

e 
de

si
gn

/ta
rg

et
 s

el
ec

tio
n 

of
 c

as
es

/d
oc

um
en

ts
 d

ef
in

ed
?

D
: I

s 
en

ou
gh

 e
vi

de
nc

e 
pr

ov
id

ed
 to

 s
up

po
rt

 th
e 

cl
ai

m
s?

E
: C

an
 th

e 
st

ud
y 

be
 r

ep
lic

at
ed

?

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 40

Table 10

Details of scientific software listed in primary studies

Ref. No. Description Programing language Size

[64] Medical software (e.g. software for blood chemistry analyzer and medical image
processing system)

N/S N/S

[62] Nuclear weapons simulation software FORTRAN 500 KLOC

[17, 20] Climate modeling software N/S N/S

[67] Embedded software for spacecrafts N/S N/S

[53] Software developed for space scientists and biologists N/S N/S

[2] Control and data acquisition software for Synchrotron Radiation Source (SRS)
experiment stations

Java N/S

[57] Health care simulation software(e.g. discreet event simulation engine and insulin
titration algorithm simulation)

Java, MAT- LAB N/S

[55] Machine learning ranking algorithm implementations Perl, C N/S

[60] Climate modeling software FORTRAN, C 400 KLOC

[40] Astronomy software package MAT LAB, C++ 10 KLOC

[1] Software packages providing uncertainty estimates for tri-dimensional measurements N/S N/S

[75] Implementation of a time dependent simulation of a complex physical system N/S N/S

[15] Implementation of scientific mesh traversal algorithms N/S 38–50 LOC

[30] Implementations of parallel solver algorithms and libraries for large scale, complex,
multi physics engineering and scientific applications

N/S N/S

[61] Software for cardiac modeling in computational biology C++, Python 50 KLOC

[24] Numerical simulations in geophysical fluid dynamics N/S N/S

[63] Program for solving partial differential equations C++ 250 KLOC

[12] Calculates the trajectory of the billions of air particles in the atmosphere C++ N/S

[12] Implementation of a numerical model that simulates the growth of virtual snow
flakes

C++ N/S

[14] Implementations of mesh traversal algorithms N/S N/S

[48] Image processing application N/S N/S

[11] Bioinformatics program for analyzing and simulating gene regulatory net- works and
mapping short sequence reads to a reference genome

N/S N/S

[55, 54] Implementations of machine learning algorithms N/S N/S

[31] Simulations in solid mechanics, fluid mechanics and combustion C, C++, FOR- TRAN 100–500 KLOC

[79] Program to evaluate the performance of a numerical scheme to solve a model
advection-diffusion problem

Ruby 2.5 KLOC

[49] Implementation of dilation of binary images N/S N/S

[71] Infrastructure software for the structural protein community N/S N/S

[7] Performance prediction software for a product that otherwise requires large,
expensive and potentially dangerous empirical tests for performance evaluation

FORTRAN, C 405 KLOC

[7] Provide computational predictions to analyze the manufacturing process of
composite material products

C++, C 134 KLOC

[7] Simulation of material behavior when placed under extreme stress FORTRAN 200 KLOC

[7] Provide real-time processing of sensor data C++, MAT- LAB 100 KLOC

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kanewala and Bieman Page 41

Ref. No. Description Programing language Size

[7] Calculate the properties of molecules using computational quantum mechanical
models

FORTRAN 750 KLOC

[5] Program for avoiding collisions in unmanned aircrafts C N/S

[29] Numerical libraries to be used by computational science and engineering software
projects

N/S N/S

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.


