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Summary. Nonparametric tests for investigating the separability of a spatial-temporal marked point pro-
cess are described and compared. It is shown that a Cramer–von Mises-type test is very powerful at detecting
gradual departures from separability, and that a residual test based on randomly rescaling the process is
powerful at detecting nonseparable clustering or inhibition of the marks. An application to Los Angeles
County wildfire data is given, in which it is shown that the separability hypothesis is invalidated largely due
to clustering of fires of similar sizes within periods of up to 3.9 years.
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1. Introduction
Spatial-temporal marked point process models have been in-
creasingly used in a wide variety of applications to repre-
sent observations of rare events such as earthquakes, wildfires,
sightings of rare species, incidence of epidemics (see Ripley,
1977; Diggle, 1983; Guttorp, 1995; Schoenberg, Brillinger, and
Guttorp, 2002a). The models commonly in use in such appli-
cations almost invariably have a conditional intensity that has
a product form, or that, in the terminology of Cressie (1993),
is separable.

The assumption of separability is quite strong: For instance,
a separable model for wildfires would posit that the ratio
of the risk of a fire of a certain size occurring to that of
a fire of another size does not change over time. Despite
the importance of this assumption, the separability of such
processes is rarely rigorously scrutinized. Ogata (1988) and
Schoenberg (2004) used parametric rescaling methods to ob-
serve departures from separability in the epidemic-type af-
tershock sequence (ETAS) model for earthquake occurrences,
and Guttorp (1995) detected nonseparability in precipitation
data from Middletown, Pennsylvania. Several authors have
investigated spatial-temporal changes in mark distributions
quite generally (e.g., Ogata and Katsura (1993) and Kagan
(1999) in seismology; Johnson (1992), Keeley, Fotheringham,
and Morais (1999), and Flannigan and Wotton (2001) in the
case of wildfires), and separability tests have been constructed
for time series and spatial autoregressive processes (e.g.,
Shitan and Brockwell, 1995), but other examples of tests for
separability in point processes are elusive.

The purpose of the present article is to explore nonpara-
metric methods for testing whether a marked point process
is separable. The problem is defined more precisely in terms
of conditional intensities in Section 2. In Section 3, direct
methods of testing separability based on comparing condi-
tional intensity estimates are explored and in Section 4 their
performance is compared under various alternative hypothe-

ses. Section 5 describes a different class of tests, based on as-
sessment of the residuals of the point process after rescaling.
These tests are employed in Section 6 to detect departures
from separability in wildfire data from Los Angeles County,
followed by a summary and conclusions in Section 7.

2. Separability
A point process N is a random collection of points in some
metric space X . We consider the case of spatial-temporal
marked point processes, where X is a portion of R1+n+d and
each point is represented by one temporal coordinate, n spa-
tial coordinates, and a d-dimensional mark. In modeling the
occurrence of wildfires or earthquakes, for instance, one may
identify with each event a point (t, x, m) ∈ R5, where t rep-
resents the time of the event’s origin, x the corresponding
three-dimensional location, and m a real-valued measure of
its size.

The construct basic to point process modeling is the Con-
ditional Intensity (CI), λ(t, x, m), which may be construed as
the limiting expected rate at which points of mark m accumu-
late around any location (t, x) of spacetime, conditional on
the history of the process prior to time t. For background on
point processes and conditional intensities, see Fishman and
Snyder (1976) and Daley and Vere-Jones (2003).

Of interest here is to investigate whether the CI can be
expressed as

λ(t,x,m) = f(m)λ1(t,x), (1)

where f is a fixed nonnegative function and λ1 is a nonnegative
predictable process. If (1) holds we call the process separable
with respect to the mark m. If the CI may be further reduced
to the form

λ(t,x,m) = λ1(t)f1(x)f2(m), (2)

where λ1 is again nonnegative and predictable and f 1 and f 2

are fixed nonnegative functions, then the process is completely
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separable. An example of complete separability is the com-
pound marginal temporal point process on page 386 of
Rathbun (1993), designed to describe the annual germination
of plants, where the event locations are modeled as completely
independent of the event times: In such cases, the parameters
governing each of the marginal processes may be estimated
individually.

Even the most ambitious modelers would seldom claim that
the temporal and spatial coordinates may be separated as in
(2), so complete separability is rarely assumed. However, sep-
arability of the mark dimension is nearly always implicitly as-
sumed in models for spatial-temporal marked point processes.
The ETAS models of Ogata (1988 and 1998) which are com-
monly used to model the times, locations, and magnitudes
of earthquake hypocenters form an important example. Note
that in ETAS models, although the CI of earthquakes at time
t depends on the marks of previous earthquakes, the model
is nevertheless separable since the magnitude distribution at
time t does not depend on t and is not influenced by prior
events; see Schoenberg (2004) for further elaboration.

One nonparametric way to investigate the validity of the
null hypothesis (1) is the following: obtain a nonparamet-
ric (e.g., kernel, spline, wavelet) estimate λ̄1 of the spatial-
temporal conditional intensity λ1(t, x1, . . . ,xn) and a non-
parametric estimate f̄ of the mark density f (Vere-Jones, 1992;
Brillinger, 1998). That is, in the case of (n + 1)-variate and
d-variate kernel estimates for example, let

λ̄1(t, x1, . . . , xn) =

∫
X
kn+1(t− u, x1 − y1, . . . , xn − yn) dN

× (u, y1, . . . , yn,m) (3)

and

f̄(m) =

∫
X
kd(m−m′) dN(t, x1, . . . , xn,m

′), (4)

where kn+1 and kd are (n + 1)-dimensional and d-dimensional
kernel densities, respectively.

Next, find a nonparametric estimate λ̂ of the full spatial-
temporal-marked CI λ(t, x1, . . . ,xn , m), e.g., the kernel
estimate

λ̂(t, x1, . . . , xn,m)

=

∫
X
kn+d+1(t− u, x1 − y1, . . . , xn − yn,m−m′) dN

× (u, y1, . . . , yn,m
′), (5)

where k(n+d+1) is an n + d + 1-dimensional kernel density.
One may then compare the resulting CI estimates

λ̂(t, x1, . . . , xn,m) and λ̃(t, x1, . . . , xn,m) := λ̄1(t, x1, . . . ,
xn)f̄(m)/N(X ). Thus λ̃ is a separable nonparametric CI
estimate satisfying (1), while λ̂ may be nonseparable.

Comparisons between λ̂ and λ̃ apply equivalently to purely
temporal marked point processes (where the spatial dimen-
sion n = 0). Indeed, in examining the separability of the mark
coordinate, the dimension of the other (spatial-temporal) co-
ordinates of the process is quite immaterial, in the sense that
changes in the mark distribution over time and over space are
treated equivalently.

Much has been written about optimally selecting kernel
densities and bandwidths and correcting for edge effects. We
refer the reader to Silverman (1998). We used Gaussian ker-
nel estimates throughout, with bandwidth 1/20 the range in
each dimension. Of concern in the present article is not the
construction of suitable nonparametric conditional intensity
estimates, but rather how to test for separability after such
estimates have been obtained.

Note that in some circumstances nonparametric estimates
such as the kernel smoothing in (5) may be viewed as esti-
mates of the overall intensity or mean measure µ, rather than
the conditional intensity λ, and in these situations compar-
isons of λ̃ and λ̂, such as those proposed in the following sec-
tion, may be viewed as tests on whether the function µ has a
product form analogous to that of λ in (1). However, it is well
known that kernel smoothings are in general poor estimates
of overall intensities; for instance such estimates exhibit ex-
cessive variability when applied to stationary clustered point
processes (Musmeci and Vere-Jones, 1986; Vere-Jones, 1992).
Hence the tests considered here may primarily be considered
tests of the separability of the CI, as expressed in (1).

3. Direct Tests of Separability
Under the null hypothesis (1), the two CI estimates λ̂ and λ̃
should be similar. One way to compare the two estimates is
by finding the maximum or minimum (standardized) absolute
difference between the two:

S1 = sup
{
|λ̂(t,x,m)− λ̃(t,x,m)|

/√
λ̃(t,x,m); (t,x,m)∈X

}
,

S2 = inf
{
|λ̂(t,x,m)− λ̃(t,x,m)|

/√
λ̃(t,x,m); (t,x,m)∈X

}
.

Other options include the Cramer–von Mises-type statistic

S3 =

∫ T

0

∫
Rn

∫
Rd

[λ̂(t,x,m) − λ̃(t,x,m)]2 dmdx dt,

or the difference of the log likelihoods under the two models
λ̂ and λ̃:

S4 =

∫
X
[log{λ̂(t,x,m)} − log{λ̃(t,x,m)}] dN

−
∫ T

0

∫
Rn

∫
Rd

[λ̂(t,x,m) − λ̃(t,x,m)] dmdx dt.

Abnormally large values of any of these test statistics indicate
a departure from the separability hypothesis (1). Still other
possibilities are to examine the squared differences between λ̂
and λ̃ at the points of N, and take their mean S5 or maximum
value S6 as a test statistic. Though especially simple to com-
pute, such tests have the obvious deficiency that they cannot
detect differences on portions of the space X where N has no
points.

Statistics similar to those reported above have been used
in the detection of spatial clustering. For instance, Anderson
and Titterington (1997) investigated the power of statistics
such as the integrated squared distance and the maximum
absolute difference between two kernel density estimates, to
identify clustering in the difference between two interrelated
spatial point process data sets. Zimmerman (1993) studied the
integrated squared difference between the empirical distribu-
tion function of a point process and that of a corresponding
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Poisson process as a test for spatial clustering, and compared
variations on this statistic to more standard measures of clus-
tering including nearest-neighbor statistics and the K- and
L-functions of Ripley (1977), which are described further in
Section 5. For a survey of clustering tests applied to spatial
point processes, see Chapters 8.2 and 8.4 of Cressie (1993).

It is important to note, however, that clustering in spatial-
temporal marked point processes is fundamentally different
from separability. Indeed, a process may be strongly clustered
and yet not be at all in violation of the separability condi-
tion (1). For instance, many commonly used Hawkes models,
such as the ETAS model of Ogata (1998), exhibit spatial and
temporal clustering, but such a model is still separable pro-
vided that despite variations in the rate of points over space
and time, the mark distribution remains unchanged. When
the marks are clustered, i.e., when spatial-temporal and mark
clustering interact, then the existence of a point at (t, x, m)
may change the mark distribution so that in the near future
the likelihood of a point having a mark near m increases, and
this violates condition (1).

4. Performance of Direct Tests
The performance of the tests of Section 3 may be investigated
under various alternatives to (1). One such alternative is that

Figure 1. (a) Simulated Poisson process with additive, exponential CI (11 and 12); (b) nonseparable kernel conditional
intensity estimate λ̂; and (c) separable CI estimate λ̃.

the interaction between m and the other variables is additive
rather than multiplicative, i.e.,

λ(t,x,m) = f(m) + λ1(t,x), (6)

where λ1 is a nonnegative predictable process and f is a fixed
nonnegative function.

To determine which test statistic seems most sensitive to
this type of alternative, many realizations of point processes
were simulated according to (6). The domain for all the simu-
lations was set to [0, 1] for t and m, and [0, 1]2 for x. For each
of the simulations, kernel estimates λ̂ and λ̃ were generated,
and the Monte Carlo distribution of S1–S6 were obtained.

An example is shown in Figure 1. A realization of a Poisson
process with nonseparable, additive CI (6) and

λ1(t,x) = exp(a1 + b1t); f(m) = exp(a2 + b2m), (7)

with (a1, a2, b1, b2) = (3, 3, 3, 1), is depicted in Figure 1a.
The model is clearly nonseparable, since near time t = 0, it is
much more likely that a point has a large value of m, but near
time t = 1, the distribution of m becomes somewhat closer to
uniform. Figures 1b and 1c show kernel CI estimates λ̂ and λ̃
for the simulation in Figure 1, integrated over all values of x.
One sees in Figure 1c the symmetry of the estimate λ̃; it is
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Figure 2. Power curves for S1–S6 applied to 1000 realiza-
tions of (a) the exponential additive process (11 and 12);
(b) the uniform additive process (13).

precisely this symmetry that is mandated by the assumption
of separability.

Figure 2a shows the power of the six test statistics, S1

through S6, applied to simulations of the process (6 and 7).
The process (6 and 7) was simulated 1000 times. For each
simulation, the test statistics S1, . . . ,S6 were computed, and
these statistics were compared to an empirical distribution
of 1000 simulated separable processes, which was obtained as
follows: For each simulation of (6 and 7), its separable CI es-
timate λ̃ was obtained; then separable point processes with
CI equal to λ̃ were simulated; finally, for each such separable
simulation, its CI was estimated via λ̃ and λ̂, and the statis-
tics S1, . . . ,S6 were computed. After 1000 repetitions of this
procedure, we calculated, for each statistic Si and for values
of the significance level α ∈ (0, 1), the fraction of the simu-
lated nonseparable processes (7) that had values of Si greater

than fraction 1 − α of the simulated separable processes. The
results shown in Figure 2a suggest that the Cramer-von Mises
test S3 is considerably more powerful than the alternatives.
For instance, for α = 0.05, we found that for 287 of the 1000
simulated nonseparable processes (7) was its test statistic S4

greater than that of 95% of the simulated separable processes.
Hence our estimate of the probability of a type II error for
test S4 at significance level α = 0.05 is 1 − 28.7%, or 71.3%.
By contrast, the estimated probability of a type II error for
the test S3 at α = 0.05 is just 63.8%. For small α, the weak-
est of the six tests was S1, which essentially could not detect
any nonseparability in the process (6 and 7): for α = 0.05 the
estimated probability of a type II error for S1 was 95.1%.

Other nonseparable Poisson models were simulated and the
results were similar to that above. The Cramer–von Mises-
type statistic S3 was most powerful at detecting nonsepara-
bility, particularly for small values of α. For instance, for a
model such as

λ(t,x,m) = 200
(
1{t∈[0.4,0.6]} + 1{m≤0.3}

)
, (8)

the change in the distribution of the m-values over time is
readily apparent, since for t between 0.4 and 0.6 marks greater
than 0.3 are feasible, whereas for all other times such marks
are excluded. Figure 2b displays the power of the six test
statistics for 1000 simulations of the model (6, 8). Here again
the statistic S3 is substantially more sensitive than the oth-
ers to the departure from separability in the additive model.
Note that the Kolmogorov-Smirnov-type statistic S1 appears
to have surprisingly low power. The reason for this is that for
a typical realization of the model (6, 8), differences between λ̃
and λ̂ are moderately sized across the entire domain, but there
are no times and marks in particular where these differences
are especially large, and S1 fails to detect gradual departures
from separability. By contrast, the statistic S3, which inte-
grates the squared difference between the two CI estimates
over all times and locations, appears to be a very powerful
test statistic under Poisson alternatives.

However, while the test statistic S3 is quite powerful at
detecting broad, gradual variations in the conditional distri-
bution of m, its sensitivity to nonseparability in the form of
clustering or inhibition of the marks is not optimal. Figure 3
shows the power of the test statistics S1 − S6 for 1000 re-
alizations of temporal marked Hawkes cluster and inhibition
processes, simulated using the Lewis–Shedler–Ogata thinning
method (Lewis and Shedler, 1979; Ogata, 1981). The Hawkes
cluster process corresponding to Figure 3a has CI

λ(t,m) = α + β
∑
t′<t

exp{γ(t′ − t) − φ|m−m′|}, (9)

with (α, β, γ, φ) = (20, 800, 50, 50) so the distribution of
the marks changes dramatically over time in violation of (1).
Figure 3b corresponds to an inhibitory analog of (9) with CI

λ(t,m) =

[
α− β

∑
t′<t

exp{γ(t′ − t) − δ|m−m′|}

]+

, (10)

with α = 100 and the other parameters the same as in the clus-
tering case. Here a point at time t and mark m decreases the
CI for points with similar marks at times shortly thereafter,
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and the positivity restriction is imposed merely to ensure that
the CI is nonnegative. The resulting processes are both highly
nonseparable, because for the cluster (resp., inhibition) pro-
cess the occurrence of a point with mark m greatly increases
(resp., decreases) the likelihood that a point occurring shortly
thereafter will have a mark near m. Thus the mark distribu-
tion at any time t depends on previous points, in violation of
(1). However, in these cases the nonseparability is localized,
and statistics such as S3 have difficulty detecting these types
of nonseparability.

Figure 3a shows that the test statistic S3 is somewhat sen-
sitive at detecting nonseparability in the form of clustered
marks, though not optimally so. S3 is a bit more powerful
than statistics S1 and S2, but less powerful than the other
three statistics. For the inhibitory process (10), all of the six
test statistics shown in Figure 3b have extremely low power:

Figure 3. Power curves for S1–S6 applied to 1000 realiza-
tions of (a) a Hawkes process with CI (14); (b) its inhibitory
analog with CI (15).

S3 is a bit more powerful than the other statistics with the
exception of S2, but even S2 appears to be quite insensitive
at detecting this very strong inhibition between the marks.
One might suspect that statistics such as S3 would take on
unusually small values in the presence of inhibition and could
thus be used to detect inhibition of the marks, but unfortu-
nately this is not the case. Indeed, typical values of S3, for
instance, are well within the range of most of the simulated
values for separable processes, and the medians of the two
distributions are quite close. The reason for the lack of power
of these statistics is not that the statistics take abnormally
low values in the presence of inhibition, but rather that their
inhibition prevents them from ever taking very large values,
whereas separable processes occasionally do.

We applied the six tests listed above to several other dif-
ferent cluster and inhibition processes, and in each case the
results were similar to those of the Hawkes cluster process (9)
and inhibition process (10) shown in Figure 3. Some results
are summarized in Table 1, which shows, for each of the mod-
els, the proportion of times each statistic fails to reject the null
hypothesis of separability when implemented at significance
level α = 0.05. For each entry in Table 1, the statistics were
compared to an empirical distribution of 1000 simulated sep-
arable processes exactly as with Figure 2; for each simulation
of each model, the estimate λ̃ was obtained, then separable
point processes with CI equal to λ̃ were simulated, and then
these separable processes’ CIs were in turn estimated via λ̃
and λ̂, and the statistics S1, . . . ,S6 computed.

The temporal marked point processes of Table 1, which
were simulated for times t and marks m in the unit interval,
may be described briefly as follows. A Neyman–Scott cluster
process is constructed by generating clusters of points whose
centers are governed by a homogeneous Poisson process of
rate α. For the particular example which is simply abbrevi-
ated “N-S” in Table 1, the clusters each consist of a fixed in-
teger k of points which are positioned uniformly and indepen-
dently within a ball of radius r around each cluster’s center.

Table 1
Estimated probabilities of type II error at significance level
α = 0.05, for various nonseparable models. All probabilities
are expressed in percentages. “Hawkes” denotes the Hawkes

cluster model of (9), and “Inhib” refers to its inhibitory
analog in (10). “N-S” means Neyman–Scott, with parameters
α = 20, k = 3, r = 0.06. “C-M” means Cox–Matern, with
α = 20, β = 3, r = 0.06. For the Thomas process, α = 20,
β = 3, σ = 0.03. “Mat1” means Matern(I), with α = 70,

r = 0.03. “Mat2” means Matern(II), with α = 50, r = 0.03.
For the SSI process, k = 20, r = 0.03.

S1 S2 S3 S4 S5 S6

Hawkes 43.8 83.9 22.3 20.2 2.9 13.9
N-S 34.7 82.8 14.0 9.1 2.4 31.4
C-M 21.8 81.3 10.0 8.3 0.3 14.2
Thomas 28.5 78.8 8.3 6.6 1.1 13.0

Inhib 100.0 98.1 100.0 100.0 100.0 100.0
Mat1 97.4 94.4 97.7 85.1 99.7 98.5
Mat2 93.9 91.7 96.0 83.3 98.3 98.0
SSI 95.4 92.0 98.5 80.4 98.3 97.5
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The Cox–Matern cluster process and Thomas process are two
other examples of Neyman–Scott processes, where the cluster
sizes are not fixed but instead are i.i.d. Poisson random vari-
ables with mean β. For the Cox–Matern process, the points
in each cluster are again distributed uniformly and indepen-
dently within a ball of radius r around each cluster center,
while for the Thomas process these points are distributed in-
dependently and isotropically according to a Gaussian distri-
bution with standard deviation σ. The Matern (I) inhibition
process is constructed by initially generating a homogeneous
Poisson process of rate α, and then deleting all pairs of points
(ti , mi ) and (tj , mj ) with [(ti − tj )

2 + (mi − mj )
2](1/2) < r.

For the Matern (II) model, one generates points according to
a homogeneous Poisson process of rate α, indexes the points
i = 1, 2, . . . ,n, at random, and then successively deletes any
point i if it is within a distance r from any retained point with
smaller index. The simple sequential inhibition (SSI) model is
constructed similarly, except that candidate points continue
to be simulated until ultimately exactly k points are retained,
where k is some fixed nonrandom integer. For further descrip-
tions see Chapter 8.5 of Cressie (1993).

One sees from Table 1 that the statistics S1 through S6 are
quite powerless to detect inhibitory behavior in the marks.
Regarding detection of clustering of the marks, the results
are somewhat mixed. The six statistics have some sensitivity
to violations of (1) due to clustering of the marks, but their
power is hardly overwhelming. Comparison of the power of
these statistics for different processes is complicated by the
different distributions of the total numbers of points per real-
ization for each process, but the results generally suggest gross
lack of power among the statistics for the inhibitive processes
and moderate power at detecting clustering of the marks. An
alternative test that is more sensitive to nonseparable inhibi-
tion and clustering is described in Section 5.

5. Residual Test of Separability
An alternative way to test a point process for separability is
to inspect the residuals of the point process after rescaling in
such a way that the rescaled points, under the null hypothesis
of separability, should be approximately homogeneous Pois-
son. The source of the rescaling method dates back to Meyer
(1971) who showed that for a simple temporal marked point
process with countable mark space {m1, m2, . . .}, if one trans-

forms each point (t, mi ) by moving it to (
∫ t

0 λ(u,mi) du,mi),
what results is a sequence of independent Poisson processes
of unit rate. Meyer’s theorem generalizes readily to multidi-
mensional point processes: one focuses on one nontemporal
coordinate m in R+, and each point (t, x, m) is shifted to
(t,x,

∫m

0 λ(t,x,m′) dm′). Under quite general conditions, the
resulting process is Poisson with unit rate (Schoenberg, 1999).

This method of rescaling may be used in conjunction with
nonparametric (e.g., kernel) CI estimation to construct a non-
parametric test for separability, as follows. Given a nonpara-
metric separable CI estimate such as λ̃ described in Section 2,
one may rescale the process, moving each point (t, x, m) to

(
t,x,

∫ m

0

λ̃(t,x,m′) dm′

)
; (11)

the resulting points form the rescaled or residual process. If the
process is indeed separable, then λ̃ should closely approximate
λ and thus the residual process should closely resemble a Pois-
son process of unit rate. One may then apply any of a multi-
tude of tests to examine whether this is the case. For instance,
section 8.2 of Cressie (1993) lists 17 different tests based on
nearest-neighbors, 6 statistics based on quadrat counts, and
several others. Perhaps the most used among these, particu-
larly if one is interested in detecting clustering among the
residual points, is the estimated L-function (Ripley, 1977;
Diggle, 1983; Baddeley, Møller, and Waagepetersen, 2000).
The L-function, which is a normalized version of K̂(u), the
(boundary-corrected) mean number of points within a dis-
tance u of any given point, indicates the amount of clustering
or inhibition in the process. For instance, in R2, using
Euclidean distance, L̂(u) is defined as (K̂(u)/π)1/2. Positive
and negative values of L̂(u) indicate more or less clustering,
respectively, at scale u than one would expect of a homoge-
neous Poisson process. Note that clustering of points in the
original process N is quite different from separability, and
such clustering will not be present in the residuals if the
original process is separable. The reason is that such clusters
will concentrate in locations, times, and marks of higher esti-
mated CI, so that the difference between integrals of the form∫m

0 λ̃(t,x,m′) dm′ in (11) will be especially large where such
clusters occur and the rescaled mark coordinates of the points
will hence be well-dispersed. Thus, clustering in the residuals
does not indicate clustering in the original process, but rather
is an indication of nonseparable clustering of the marks in vi-
olation of the separability hypothesis (1). Note also that the
L-function cannot distinguish nonstationary and clustering al-
ternatives, as is well known, and that the L-function of the
residuals is unlikely to detect departures from separability in
the form of gradual changes in rate among the residuals, and
hence should be viewed as a complement to, rather than a
replacement for, the statistics discussed in Sections 3 and 4.

Figures 4a and 4b summarize the L-function estimates for
the simulated nonseparable Hawkes clustered and inhibitory
processes corresponding to Figure 3a and 3b, respectively. The
L-functions are estimated for the residual points (11) for the
two processes, after adjusting the axes of the residual pro-
cesses so that the scales of each dimension are commensu-
rate. The solid curve shows the median centered L-function
for these nonseparable processes, and the dotted curves show
upper and lower 95 percentile bounds for their corresponding
simulated separable processes (i.e., the simulated processes
with separable CI λ̃, whose CI is in turn estimated via λ̃;
the points are then rescaled and the K-function estimated,
as with the nonseparable processes). From these bounds, one
sees the negative bias in the estimated L-function applied to
the simulated separable processes. This is due to the fact that
the CIs of the processes are estimated, causing the residual
points to be slightly more well-dispersed than a homogeneous
Poisson process (Solow, 1992; Schoenberg, 2002).

Departure from separability is readily detected from
Figure 4a, which shows that for a typical realization of this
Hawkes clustered process, its residuals remain significantly
clustered at small scales after rescaling according to λ̃ as in
(11). Similarly, from Figure 4b one discerns that the residu-
als of a typical realization of the process (10) are significantly
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Figure 4. Estimated centered L-functions applied to the
rescaled residuals of (a) a Hawkes process with CI (14); (b) its
inhibitory analog with CI (15). The solid curves show the
median value of L̂(r) − r over 1000 realizations of each pro-
cess. The dashed curves represent empirical 95% bounds for
the separable Monte Carlo distributions, i.e., for 1000 simu-
lated separable processes whose true conditional intensities
are given by the separable CI estimate λ̃ applied to each
Hawkes and inhibitory process.

less clustered than one would expect if the process were indeed
separable. Although the median L-function estimates shown
in Figure 4a and 4b do not appear to be very far from the 95%
bounds, they are nevertheless highly significant. Note that the
linear decrease in the lower bound is due to the fact that, for
a substantial percentage of the simulated separable processes,
the rescaled residuals are so well dispersed that there are no
pairs of points at all within these small distances of one an-
other. For the other clustered and inhibitive processes listed
in Table 1, the results were quite similar to Figure 5a and 5b,

respectively. The results suggest that the L̂-test applied to the
rescaled residuals can be a quite powerful test for nonsepara-
ble clustering and inhibition in violation of assumption (1),
compared with S3 or the other tests described in Section 3.

6. Application: Los Angeles County Wildfires
Wildfires in Los Angeles County, California, are important
public safety concerns, often causing significant ecological
upheaval, millions of dollars in property damage, and occa-
sionally loss of human lives (Whelan, 1995; Pyne, Andrews,
and Laren, 1996). The hot, dry climate, the warm, seasonal
Santa Ana winds, and the fact that the predominant vegeta-
tion is highly flammable chaparral combine to make Southern
California one of the most fire-prone areas in the world (Yool,
Eckhardt, and Cosentino, 1985; Keeley and Keeley, 1988).
Data on wildfires have been systematically recorded in Los
Angeles County since the late 19th century; the records on
fires burning greater than 100 acres are believed to be nearly
complete dating back to 1950. Figures 5a and 5b show the
times, centroid locations, and burn areas of such wildfires,
from January 1950 to January 2001, recorded by the Los
Angeles County Fire Department (LACFD) and Los Angeles
County Department of Public Works (LACDPW). A few of
the wildfires have centroids outside the County border; all
such fires are included provided they burned at least 100 acres
of area in Los Angeles County. Numerous variables on each
fire have been analyzed (see, e.g., Schoenberg et al., 2002b),
but for this example we focus exclusively on wildfire sizes
as marks. Point process models for such data sets, as well
as other forestry data, are typically separable (Stoyan and
Pettinen, 2000), though this assumption is generally not
checked.

Nonseparable and separable kernel CI estimates of the
LACFD data are shown in Figure 5c and 5d. Though some
clustering appears to be present, no other obvious departures
are immediately observable at a glance. The distribution of
wildfire sizes does not appear to change drastically over time.
The statistic S3 applied to the wildfire data has a p-value
of 14.9%, when compared with its Monte Carlo distribution
based on simulating 1000 separable processes each with CI
λ̃ shown in Figure 5d. As S3 is quite powerful at detecting
nonseparability in the form of broad regions where the dis-
tribution of wildfire sizes changes, the fact that the observed
value is not significant suggests that such departures from
separability in this data set are not excessive.

On the other hand, there does seem to be highly signif-
icant clustering of wildfire sizes, in violation of the separa-
bility hypothesis, as demonstrated in Figure 6. Figure 6a
shows the times and rescaled sizes of the rescaled residual
points, using the separable space–time-mark CI estimate λ̃.
The high volatility of the boundary is a result of the fact
that λ̃ varies dramatically across locations, resulting in large
changes of the integral

∫m

0 λ̃(t,x,m′) dm′ from point to point.
One can more easily discern how the wildfire sizes vary over
time from Figure 6b, which shows the rescaled residual points
after integrating λ̃ over all spatial locations, x. From Figure
6b one may detect some clustering of the marks in the residual
points directly. This is confirmed from Figure 6c, which shows
the estimated centered L-function of these rescaled points,
along with 99%-confidence bounds based on 1000 Monte Carlo
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Figure 5. (a) Times and burn areas greater than 100 acres from January 1950 to January 2001 in Los Angeles County,
according to LACFD wildfire data; (b) centroid locations of each such fire burn area; (c) nonseparable kernel CI estimate λ̂;
and (d) separable kernel CI estimate λ̃.

simulations: For each of the 1000 simulations of a separable
process with CI λ̃ shown in Figure 5d, we reestimated its
CI via kernel smoothing, constructing a new separable con-
ditional intensity estimate λ̃′, and then rescaled this simu-
lated process according to λ̃′ and calculated the resulting L-
function estimate. From Figure 6c one sees that the clustering
in the residuals is highly significant for rescaled distances up
to 0.077, which correspond to differences between points in
the original data set of up to 3.9 years.

Further inspection of Figures 5a and 6b can illuminate some
of the main sources of clustering of the marks in the residuals.
In rescaling, the mark axis is stretched where λ̃ is large and
compressed where λ̃ is small. Hence clusters of fires for which
λ̃ is small, i.e., those of large area in times when fewer fires
occurred, are moved even closer together, and a large frac-
tion of the clustering in the residuals is attributable to such
clusters. For instance, consider the two fires in Figure 5a oc-
curring in the year 1970 and with areas of 4.5 and 4.7 log km2.
In Figure 5a these two points do not appear particularly close
together. However, fires of that size are rare, so λ̃ is small in
that portion of the space. Therefore the residuals correspond-
ing to these two points are bunched very closely together:
Their y-coordinates in Figure 6b are both approximately 6.3.
Another example is the cluster of four fires occurring in 1997,
of sizes 0.54 to 0.75 log km2. Because 1997 was a year with
relatively few fires, λ̃ is rather low in this year, so these fires
are clumped together in the residual plot of Figure 6b, with

all four residual points having y-coordinates of very nearly
0.5.

7. Discussion
While the lack of a very significant gradual change in the wild-
fire area distribution over time is not surprising, the signifi-
cant, nonseparable small-scale clustering observed in the Los
Angeles County wildfire dataset may seem curious. Note that
most of the fires within any given year occur at very disparate
spatial locations, and the notion that they are causally related
to one another, i.e., that certain fires are causing other fires
of similar size to occur shortly thereafter, seems highly im-
plausible. The clustering may not be attributed to boundary
effects or bias due to the estimation of λ̃, since the L-function
estimates were boundary-corrected and the simulated separa-
ble processes used for the confidence bounds in Figure 6c had
rescaled processes with similar boundaries and had their CIs
estimated using the identical method as that used on the wild-
fire data. Nor can the apparent nonseparability reasonably
be attributed to errors or rounding in the data set: Wildfire
areas were recorded by LACFD officials using digitized wild-
fire maps which are believed to be accurate to approximately
10–20 meters (Schoenberg et al., 2002b). The apparent clus-
tering in the data set also cannot be due to the insuitability
of a model, because the methods used in its detection were
nonparametric.
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Figure 6. (a) Rescaling of LACFD wildfire data using the separable space-time-magnitude CI estimate λ̃(t,x,m); (b) rescal-
ing of LACFD wildfire data using the separable CI estimate λ̃(t,m), i.e., the integral of λ̃(t,x,m) over all locations; (c) es-
timated L-function (solid curve) applied to rescaled residuals in (b), along with 99% bounds (dashed curves) for L-function
estimates applied to 1000 Monte Carlo simulations of separable processes with CI λ̃(t,m), after estimating the CI of each
simulated process and rescaling it accordingly.

One possible explanation is that the clustering of sizes
in the wildfire data set may be partly due to climatic and
temporal variations. Not only does fire incidence vary dra-
matically by season in Los Angeles, largely due to the pres-
ence or absence of warm Santa Ana winds, but also average
temperatures in Los Angeles County increased quite dra-
matically throughout the 20th century while precipitation
and winds exhibited significant variations (Moritz, 1997;
Keeley and Fotheringham, 2001; Schoenberg et al., 2002b),

and fires of certain sizes may be especially likely under par-
ticular weather conditions. Clustering of marks may similarly
result from variations in human response or ignition patterns,
which may cause more fires of a given size to occur in some pe-
riods rather than others (Kauffman, 1993). In addition, clus-
tering of the type observed here may be a natural feature of
the mosaic of fire patterns in Los Angeles County. For in-
stance, in view of the often-noted cyclic or renewal-type be-
havior of wildfires due to slow regeneration of fuel in general
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and chaparral in particular (Hanes, 1971; Johnson and
Gutsell, 1994), clusters of fires of similar size that happen
to occur at one time may tend to repeat, resulting in mul-
tiple clusters throughout the data set. However, perhaps the
most plausible explanation is that separability is simply a very
strong condition. There are many ways in which the size distri-
bution can change over time, so it should not be surprising to
observe some significant nonseparability in a data set; rather
it would be quite surprising if the separability condition were
met. This last conclusion has serious implications for multi-
dimensional point process modeling, in which at present sep-
arable models are regularly assumed without testing whether
the assumption of separability appears to be reasonable.

The Cramer–von Mises type statistic S3 and the L-function
applied to rescaled residuals appear to be quite powerful
tests for separability in multidimensional point process mod-
els. The statistic S3 seems most sensitive to gradual or
global changes in the distribution of the marks, while the
L-function on the residuals appears to capture local non-
separability in the form of clustering and inhibition of the
marks quite well. This conclusion closely parallels that of
Zimmerman (1993), whose study of tests for detecting inho-
mogeneity in spatial point processes suggests that Cramer–
von Mises type tests are powerful against broad, global
departures from spatial homogeneity, but weaker than
distance-based methods such as the L-function in the face of
clustered and inhibitory alternatives. The application of sep-
arability tests to other wildfire data sets in other areas, and
to other point process data in general, should be performed
in the future.
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Résumé

Des tests non paramétriques pour étudier la séparabilité d’un
processus spatiaux temporels de points marqués sont décrits
et comparés. Il est montré qu’un test de type Cramer-von
Mises est très puissant dans la détection de déviations gradu-
elles de la séparabilité, et qu’un test résiduel basé sur la
re-graduation aléatoire du processus est puissante dans la
détection de groupes non séparables ou d’inhibition des mar-
ques. Une application aux données de trâınée de poudre du
comté de Los Angeles est réalisée, on montre que l’hypothèse
de séparabilité n’est pas validée en raison de feux de
groupes de tailles semblables pendant les périodes et jusqu’à
3.9 ans.
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