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abstract: Simple measures of habitat proximity made primarily
on the basis of land cover are widely used in the ecological literature
to infer habitat connectivity, or the potential for animal movement
among resource patches. However, such indices rarely have been
tested against observations of animal movement or against more
detailed biological models. We developed a priori expectations as to
the types of study systems and organisms for which various habitat
proximity indices would be best suited. We then used data from three
study systems and four species to test which, if any, of the indices
were good predictors of population-level responses. Our a priori
expectations about index performance were not upheld. The indices
that consider both habitat area and distance from the focal patch
were highly correlated with each other, suggesting that they do index
similar quantities. However, none of the indices performed well in
predicting population response variables. The results suggest that the
pattern of habitat cover alone may be insufficient to predict the
process of animal movement.
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The movement of individuals among resource patches in
a landscape can be an important determinant of popu-
lation persistence, population size, and genetic diversity.
Thus, there is great interest among ecologists in measuring
connectivity, defined as the degree to which the landscape
facilitates or impedes movement among resource patches
(Taylor et al. 1993). In the ecological literature, indices
based primarily on habitat structure are often used as a
surrogate for connectivity (reviewed in Hanski 1999; Moil-
anen and Hanski 2001; Bender et al. 2003). The use of
such habitat proximity indices has proliferated with ad-
vances in GIS (geographical information systems) tech-
nology, which has made it easier to quantify landscape
structure (Goodwin 2003), whereas collecting data on the
process of animal movement remains labor intensive. Hab-
itat proximity indices assume that ecological function
(movement) can be inferred from structure (habitat
cover). If this assumption were correct, proximity indices
would provide a powerful way to test the importance of
connectivity for numerous ecological processes.

The appropriate use of habitat proximity indices has
recently been debated in the context of metapopulation
biology (where the term “patch isolation index” is com-
monly used; Moilanen and Hanski 2001) and landscape
ecology (where the term “connectivity index” is more often
used; Tischendorf and Fahrig 2000b, 2001). One problem-
atic issue is that despite their widespread use, simple in-
dices based on habitat structure rarely have been tested
against observations of animal movement or immigration
or against models that include a greater level of ecological
information (Calabrese and Fagan 2004). In the first such
effort, Moilanen and Nieminen (2002) reviewed the use
of three habitat proximity indices and compared their util-
ity in explaining patch colonization by butterflies. They
found that when the indices were fit to detailed biological
information, the weighted sum of surrounding habitat area
(see eq. [2]) performed best, and the nearest neighbor
distance (see eq. [1]) performed worst. Bender et al. (2003)
compared the same three indices with immigration of a
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simulated organism and found that the weighted sum and
the simple proportion of habitat cover (see eq. [3]) per-
formed best, although neither explained more than 35%
of the variation.

In this article, we review the habitat proximity indices
currently in use and point out some misleading indices
that have appeared in the recent literature. We then com-
pare the ability of four indices to explain animal movement
in three study systems. Unlike Moilanen and Nieminen
(2002), our goal is not to develop biologically realistic
estimates of connectivity in these systems. Rather, we focus
on systems for which we already have a detailed under-
standing of movement in spatially structured landscapes
and test which, if any, of the simple indices are good
predictors of movement. We calculate the indices using
only information on land cover and a scaling constant
representing organism mobility because this is the level of
detail researchers generally have when they are using these
indices. Specifically, we ask first, for what types of study
systems and organisms is each index most suitable? Sec-
ond, which indices have the most explanatory power in
our study systems? Third, within each system, how con-
cordant are the indices among themselves?

Indices Considered

In this article, we consider indices that measure habitat
proximity relative to a particular focal patch or point where
data were collected (location-specific indices). We do not
investigate measures meant to assess the connectivity of
an entire landscape without reference to a particular lo-
cation (landscape-wide indices) because this is a qualita-
tively different question (Schumaker 1996; Wiegand et al.
1999; Tischendorf and Fahrig 2000a; Tischendorf 2001; Li
and Wu 2004). Location-specific habitat proximity indices
generally consider the area of surrounding patches of suit-
able habitat and their distance from the focal patch; this
distance is sometimes scaled relative to the mobility of the
study organism. When data are available, multiple habitat
quality categories could be considered, but in this article
we follow the traditional binary distinction between “suit-
able habitat” and “other.” This assumption is consistent
with situations in which researchers typically use indices;
they know the distribution of suitable habitat but do not
know enough to parameterize detailed models of habitat
quality, occupancy of surrounding patches, and/or animal
movement.

Nearest neighbor index. The least detailed index in use
is the nearest neighbor index, which is simply the distance
to the nearest habitat patch:

H p d , (1)x i

where Hx is the index of habitat proximity with respect to
focal patch x, and di is the distance to the nearest neighbor
patch i. Note that this index decreases with increasing
habitat proximity, whereas the others increase.

Patch-based weighted sum. Another widely used index
considers all surrounding habitat patches and their areas.
This index was developed in island biogeography studies
done at a large scale—that of species colonizing oceanic
islands (MacArthur and Wilson 1967; Diamond et al. 1976;
Gilpin and Diamond 1976)—and was later used at a
smaller scale for metapopulation studies (Harrison et al.
1988; Adler and Nuernberger 1994; Hanski 1994, 1999).
It assumes a fragmented landscape in which discrete hab-
itat patches can be defined. In its most basic form, this
index is

�d /DiH p A e , (2)�x i
i(x

where Ai is the area of patch i, di is the distance between
the focal patch x and patch i considered over all patches
in the system, and D is a mobility constant scaled to the
study organism. Equation (2) assumes that population size
in patch i is linearly proportional to patch area, Ai, and
that per capita emigration rate is constant. (An alternative
assumption is that per capita emigration rate scales with
the perimeter/area ratio, so that A0.5 is used in place of Ai

in eq. [2].) Because the index can be interpreted as sum-
ming predicted immigration from the surrounding patches
into the focal patch, it is often used to represent the po-
tential for immigration or patch colonization. Moilanen
and Nieminen (2002) found it to be a good predictor of
butterfly colonization of habitat patches. More generally,
the index provides a weighted sum of the surrounding
habitat patches, where the weightings decrease with dis-
tance from the focal patch.

The next two indices we consider are suitable both for
patchy landscapes and for landscapes with more contin-
uous habitat cover where discrete habitat patches cannot
be readily defined. Although both can be used as sums
(i.e., by using the numerators only), we recommend the
proportional forms that have the advantages of being
unitless and of scaling between 0 and 1 (so that the end-
points are biologically interpretable as zero and complete
habitat cover).

Simple proportion. The most commonly used propor-
tional index is

A(r)
H p , (3)x 2pr

where A(r) is the total habitat area within radius r of the
focal patch. A problem with this metric is that it assumes
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that within radius r, all habitat affects the focal patch
equally, while habitat outside of radius r has no effect.
Because this index weights all habitat within the radius
equally, we recommend choosing a radius similar to the
movement distance of the organism under consideration.
However, researchers potentially could choose very dif-
ferent summation radii. Lack of clear theoretical basis for
choosing the radius of summation is an inherent weakness
of this index.

Weighted proportion. The last index is a modified form
of equation (2) adapted to use grid cells instead of habitat
patches to measure habitat area and distance from the focal
point (Gu et al. 2001; Luoto et al. 2001). Here we use a
normalized form that provides a proportion rather than
a sum:

�d /Dj� F e Aj j
j�xH p , (4)x �d /Dj� e Aj

j�x

where the summations are now over grid cells instead of
patches and Fj is the fraction of grid cell j (where j is
outside of focal patch x) that is covered by suitable habitat
(Bernhardsen 1999), dj is the distance between grid cell j
and the focal point (which is generally taken to be the
center of the focal patch), D is the species-specific mobility
constant, and Aj is the area of a grid cell (which cancels
if grid cell size is constant). Compared with the simple
proportion, this index makes the assumption that the im-
portance of surrounding habitat declines gradually with
distance from the focal point.

Index data requirements. Of the four indices, the nearest
neighbor (eq. [1]) has the smallest data requirements: dis-
tance to the nearest habitat patch. The simple proportion
(eq. [3]) requires total habitat area within some radius
relevant to study organism mobility. The patch-based
weighted sum (eq. [2]) requires patch area and interpatch
distance for all patches as well as an estimate of mobility.
The weighted proportion (eq. [4]) requires this same in-
formation but at the greater resolution of the grid cell
(assuming that grid cells are smaller than habitat patches).
The land cover data required by all four indices are readily
available for many parts of the world in GIS format.

Problems with Current Index Use

In the literature, some indices have been used to measure
habitat proximity despite the fact that they are ill-suited
for this purpose. First, equation (2) or its variants have
sometimes been used in a confusing way. For example, the
D term is sometimes dropped from the exponent, leaving
the function as (Hanski et al. 1994; Hanski and Tho-�die
mas 1994; Thies and Tscharntke 1999; Steffan-Dewenter

and Tscharntke 2000). This expression is difficult to in-
terpret because it contains units of distance in the expo-
nent, whereas the units cancel in the original version. It
could be argued that using implicitly assumes a de-�die
nominator of 1 distance unit; however, failure to make
this assumption explicit leads to confusion.

Another problematic modification involves adding an
inappropriate denominator to equation (2), for example,

n
�d /Di� A ei

ip1H p (5)nx
�d /Di� e

ip1

(Eber and Brandl 1996; Thies and Tscharntke 1999). Equa-
tion (5) provides the weighted mean patch area for all the
habitat patches in the system. This is a poor index of total
habitat proximity. For example, adding habitat to a system
should increase a habitat proximity index, but when equa-
tion (5) is used, adding a patch with an area smaller than
the current index value ( ) decreases rather thanA ! Hj x

increases the value of Hx.
Another index in use (Sullivan and Shaffer 1975; Whit-

comb et al. 1981; Siegfried et al. 1998) is

n
AiH p . (6)�x 2dip1 i

This index has the advantages of being dimensionless and
simple to calculate. However, it cannot be scaled to the
study organism, and unlike indices (1)–(4), it does not
converge as the area for which data are available increases.
Indices (5) and (6) are not considered further here.

General Properties of the Indices

Due to their basic properties, the indices differ in their
suitability for types of study systems and organisms. The
patch-based indices (eqq. [1], [2]) are well suited for sys-
tems that are highly fragmented relative to the mobility
of the study organism (Moilanen and Hanski 2001; Moil-
anen and Nieminen 2002). These indices assume that the
distance between two patches can be represented by a
single value, which is most precise when habitat patches
are clearly definable and are widely separated relative to
organism mobility. The nearest neighbor index is most
suitable for extremely fragmented landscapes because it
assumes that populations will be affected by only the clos-
est habitat patch.

In contrast, the grid-based or proportional indices (eqq.
[3], [4]) are well suited for cases in which habitat patches
are difficult to define, oddly shaped, or close together rel-
ative to the mobility of the study organism. These indices,
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Table 1: A priori expectations for suitability of the habitat proximity indices for different ecological circumstances

Habitat patches widely separated
and easily definable

Habitat patches close together
or difficult to define

Study species with directed dispersal Nearest neighbor (eq. [1]) None of the indices considered here
Study species with nondirected dispersal Nearest neighbor (eq. [1]) Simple proportion (eq. [3])

Weighted patch sum (eq. [2]) Weighted proportion (eq. [4])
Simple proportion (eq.[3])
Weighted proportion (eq. [4])

in effect, average patch area over all of the intercell dis-
tances found within the landscape.

None of the indices fully accounts for directed move-
ment—that is, for the organism preferentially moving to-
ward or settling in suitable habitat. The nearest neighbor
index is the most compatible with directed movement be-
cause the nearest neighboring patch could be the most
important when movement is directed. Table 1 summa-
rizes the ecological circumstances for which each index is
most appropriate.

Empirical Studies

We tested the ability of all four indices to predict dis-
tribution and movement in three study systems that span
a broad range of situations in which researchers lacking
detailed information might choose to use proximity in-
dices. On the basis of the properties of the indices, our
expectations were as follows. First, in general, the nearest
neighbor index would perform less well than the others
because it does not include information about the two-
dimensional surrounding habitat cover or organism mo-
bility; however, we thought it might perform well for the
butterflies (see “Study Systems”), which have slightly di-
rected movement and inhabit a highly fragmented system
(Schultz and Crone 2001, forthcoming). Second, the
grid-based weighted proportion would perform best be-
cause it represents the existing habitat cover most pre-
cisely. Third, the patch-based weighted sum would per-
form as well as the grid-based index only in the most
fragmented system, where habitat patches are so small
and widely separated that there is no reason to use a grid.
Fourth, the simple proportion would perform less well
than the weighted indices because it only weakly accounts
for the distance of each surrounding habitat patch from
the focal plot.

Study Systems

Fender’s blue butterfly. The Fender’s blue butterfly (Icaricia
icarioides fenderi) is an endangered species that inhabits
patches of upland prairie in the Willamette Valley, Oregon.
The butterfly is found only in patches containing its larval

host plants, Kincaid’s lupine (Lupinus sulphureus spp. kin-
caidii) and spur lupine (Lupinus arbustus), so that suitable
habitat is clearly defined. The study system consisted of a
set of 19 habitat patches, most of which are highly isolated
(fig. 1A). Two of us have studied the Fender’s blue exten-
sively (Schultz 1998; Schultz and Crone 1998, 2001, forth-
coming). In many ways, the Fender’s blue typifies the kinds
of animals for which proximity indices are used. Habitat
is highly fragmented, movement is only slightly directed
(Schultz and Crone 2001), and larger patches, if occupied,
support larger populations (Schultz and Hammond 2003).

We reasoned that in this system, biologists would be
interested in using habitat proximity indices as a surrogate
for immigration. For example, conservation biologists and
land managers are interested in determining whether re-
stored patches would be naturally colonized or whether
reintroductions are necessary to initiate restored popula-
tions. We therefore chose immigration as the most relevant
measure of movement in this system. We compared index
predictions to immigration results from Schultz and
Crone’s (2001) biased, correlated random walk model for
this species, which is based on field observations of 447
female butterfly flight moves. We used the model to sim-
ulate the lifetime movement of one generation of butter-
flies, starting with empirical population sizes in each patch
and repeating the simulation 150 times. We measured im-
migration as the total number of individuals arriving in
each patch. For additional details on the mechanics of
these simulations, see the article by Schultz and Crone
(forthcoming). In the index calculations, we used 1,000
m for the scaling parameter, D; this number is an estimate
of the lifetime displacement of an individual butterfly from
its birth location (Schultz 1998). The GIS land cover data
used to calculated index values were developed during
Schultz’s previous research on this system. GIS data from
the Oregon Natural Heritage Program were modified using
topographic maps, street maps, aerial photos, and re-
searcher knowledge of the sites to delimit patches of host
plants with a line accuracy of 10–30 m.

Tvärminne field voles. Our second study system con-
sisted of 72 islands in the Tvärminne archipelago of Fin-
land (fig. 1B), which are inhabited by field voles (Microtus
agrestis). This population has been the subject of intensive



Figure 1: Habitat cover surrounding a typical focal patch in each of the three study systems. A, Lupine patches suitable for Fender’s blue butterfly
in Oregon, United States. B, Islands inhabited by field voles in the Tvärminne Peninsula, Finland. C, Pine-oak-ericaceous heath habitat used by two
species of bees in New Jersey, United States. Black dots show the centroid of the focal patch (butterflies) or island (voles) or location where data
were collected (bees). The study systems ranged from highly fragmented for the butterflies (mean of SE suitable habitat cover at a0.6% � 0.1%
radius of 2D around each focal patch, where D is the typical movement distance of the study organism) to moderately fragmented for the voles
( habitat cover at radius 2D) to relatively unfragmented for the bees ( habitat cover at radius 2D).17% � 1% 63% � 8%
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previous analysis (Pokki 1981; Crone et al. 2001). On the
basis of these studies, we know that the Tvärminne vole
metapopulation experiences frequent extinctions and col-
onizations of island subpopulations. Larger islands are
likely to be occupied by voles and support large vole pop-
ulations that exist for ∼10 generations. Smaller islands are
less likely to be occupied, support smaller populations
when occupied, and persist for ∼1 vole generation.

Given frequent local extinctions and colonizations, we
chose the colonization rate for each island as the most
relevant measure of movement. For each island, we cal-
culated the fraction of all possible unoccupied r occupied
transitions that occurred during the 6-year study period.
To calculate indices for the voles, we used 180 m for D;
this is a typical interisland movement distance, determined
on the basis of movements of individual voles (Pokki
1981). The GIS data were obtained from the National Land
Survey of Finland, which has a scale accuracy of about 5
m. Since the analysis includes only two categories, land
and water, and was done on the basis of high-resolution
data, the classification accuracy will be very high.

New Jersey bees. Our third study system consisted of 20
locations in the New Jersey Pinelands Biosphere Reserve
where we studied two wild bee species, Augochlorella au-
rata and Lasioglossum (Dialictus) oblongus (R. Winfree and
C. Kremen, unpublished data). Bees of all species were
collected by standard methods (hand-netting and pan
trapping) from late spring to fall 2002, and we used the
total number of bees collected at each site as our measure
of abundance. The two species with the largest sample
sizes ( and 125 individuals, respectively) were usedN p 44
in the analysis. Unlike the butterfly and vole systems,
where habitat is highly fragmented and interpatch move-
ment is infrequent, natural habitat is relatively continuous
in this system, and movement is dominated by daily for-
aging of these central-place foragers. In other words, local
abundance primarily reflects daily movement among hab-
itat areas, as opposed to population dynamics over time
within a discrete patch. We therefore chose abundance as
our population response variable for both solitary bee spe-
cies. Because it is difficult to define discrete habitat patches
in this system (fig. 1C), we did not attempt to measure
patch-level abundance of bees but instead defined a 110-
m transect where bees were collected, and we calculated
index values around the center of the transect. We defined
suitable habitat as pine-oak-ericaceous heath, which is the
natural habitat in this system; although the bees are not
known to be limited to this habitat type, further studies
have shown both species to be strongly associated with it
(R. Winfree, unpublished data). Because suitable habitat
is not as clearly defined, and movement was indirectly
measured, the bee system provides a weaker test of the
indices than do the butterfly and vole systems.

The estimate of D for each bee species was made on
the basis of intertegular length, a body size measurement
that explains 78% of the variation in daily foraging dis-
tances for bees (Greenleaf et al. 2005). Mean intertegular
lengths of (SE) mm for A. aurata resulted in1.45 � 0.02
an estimated typical foraging distance of m, and151 � 8
lengths of (SE) mm for L. (Dialictus) oblongus1.13 � 0.02
resulted in an estimated typical foraging distance of

m. We therefore used m for A. aurata65 � 4 D p 151
and m for L. oblongus. The GIS land cover dataD p 65
were obtained from the state of New Jersey and were based
on aerial photos taken at a 1-m resolution. Photos were
subsequently classified to 53 land cover types at a reso-
lution of at most 0.4 ha; in practice, land cover polygons
in the data set are as small as 0.004 ha. Because of the
high resolution of the original data, and because we com-
bined multiple natural land cover types for this analysis,
the classification accuracy will be very high.

Methods

We used GIS land cover data and software (ArcGIS 9.0
and Arcview 3.3; Environmental Systems Research Insti-
tute) to calculate index values for all three systems. The
simple proportion of habitat cover at a radius of 1D and
2D around the focal patch was calculated using buffers
in Arcview. (See discussion of summation radius under
“Indices Considered”; eq. [3].) We calculated nearest-
neighbor and patch-based weighted sums by defining con-
tinuous habitat to be a “patch” and using the centroids
of each patch and the closest points on the patch perim-
eters to calculate interpatch distances, using the Arcview
software extension “Distance by ID” (Jenness Enterprises).
As discussed above (“Indices Considered”; eq. [2]), we
calculated patch-based weighted sums using both A and
A0.5, to represent area-proportional and perimeter/area-
proportional emigration, respectively. We calculated grid-
based indices by overlaying a -m grid on the land60 # 60
cover data for each landscape, and calculating the pro-
portion of habitat cover within each grid cell (Bernhardsen
1999) and the distances between the focal plot and grid
cell j. The grid-based index had a higher resolution than
the patch-based index, both because grid cells were smaller
than patches (the average-sized patch contained four to
seven grid cells) and because we used proportional habitat
cover within each grid cell rather than binary values. The
indices that use a weighting function (eqq. [2], [4]) were
calculated out to a radius of 4D; habitat patches beyond
this radius had a minimal effect on index values (R. Win-
free, unpublished data). In calculating the weighted in-
dices, we used the most commonly used distance function,
the negative exponential. Other distance functions could
be used (Tufto et al. 1997; Turchin 1998; Clark et al. 1999),
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Table 2: Explanatory value of indices

Butterfly,
immigration

Vole
colonization

Bee abundance

Augochlorella
aurata

Lasioglossum
(Dialictus) oblongus

NN, centroid .075 1.32 NA NA
NN, edge .079 �.08 NA NA
PBWS, centroid, A .009 1.43 NA NA
PBWS, centroid, A.5 .021 .99 NA NA
PBWS, edge, A .001 1.70 NA NA
PBWS, edge, A.5 .011 1.54 NA NA
SP .002 .69 .11 .14
WP .008 1.06 .12 .17*

Note: neighbor (eq. [1]); weighted sum (eq. [2]); pro-NN p nearest PBWS p patch-based SP p simple

portion (eq. [3]) calculated at a 2D radius; proportion (eq. [4]). Interpatch distances wereWP p weighted

measured either between patch centroids (“centroid”) or as the shortest distance between patch perimeters

(“edge”). For the butterfly data, we report the squared partial correlation coefficient for each index, from

multiple regressions with focal patch area included as a covariate. For the vole data, we report the Wald’s Z

for each index, from logistic regressions in which focal patch area was included as a covariate. For the bee

data, we report the adjusted R2 from bivariate regression; the focal patch is not considered separately, and

patch-based indices are not calculated because discrete patches are not definable in this system.

* .P ! .05

but more information about the actual distribution of dis-
persal distances would be required to choose among them,
and our objective was to compare the performance of
indices in the absence of more detailed biological infor-
mation. We used our empirical typical movement distances
as D in the index equations (see appendix in the online
edition of the American Naturalist). For the butterfly sys-
tem, we had occupancy data for all of the patches in the
system, and we were thus able to calculate the indices a
second way, by including only occupied patches in the
index summation (e.g., Moilanen and Nieminen 2002).

To assess the predictive value of the indices we regressed
each population response variable against each index. To
separate the effects of focal patch area and the surrounding
habitat proximity, we calculated index values without the
focal patch and included focal patch area as a covariate
in the regressions. We report the squared partial correla-
tion coefficient (Johnson and Wichern 1988) and the P
value for each index; P values were calculated using robust
standard errors to minimize the effect of any heteroske-
dasticity in the data (White 1980). Analyses were done in
JMP, version 5.0.1 (SAS Institute), and Stata 8.2
(StataCorp). We analyzed vole colonization using logistic
regression of the number of colonization events relative
to the number of years in which each island was unoc-
cupied (R statistical package, version 1.7.0) and report
Wald’s Z for each index (Sokal and Rohlf 1995).

In the New Jersey bees system (fig. 1C) habitat cover is
relatively continuous, and discrete habitat patches are dif-
ficult to define. In this system, we did not calculate the
patch-based indices (eqq. [1], [2]), and we did not attempt

to separate the focal patch from the surrounding habitat
cover because many such distinctions would be arbitrary.
Instead, we regressed the population response variables
against the two indices that do not require the use of
discrete patches (eqq. [3], [4]) and compared the resulting
R2 values between indices.

To ask whether the different indices ranked the focal
patches in the same way within a system, we used non-
parametric correlation to make all pairwise comparisons
among indices (JMP 5.0.1).

Results

Overall, proximity indices were poor predictors of move-
ment (table 2). None of the indices predicted simulation
results for butterfly immigration into focal patches (all
partial , ) or island colonization for the2R ≤ 0.08 P 1 .10
Tvärminne voles (Wald’s , ). For the bees,Z ≤ 1.70 P 1 .09
the simple proportion index was not significantly related
to abundance of either species (both , ).2R ≤ 0.14 P 1 .06
The weighted proportion index was weakly related to L.
(Dialictus) oblongus abundance ( , ) but2R p 0.17 P 1 .04
not to A. aurata abundance ( , ). Focal2R ≤ 0.12 P 1 .08
patch area was not significantly related to any population
response variable. Different forms of the patch-based
weighted sum (A vs. A0.5 and centroid-to-centroid vs. edge-
to-edge distances) differed little in explanatory ability.
Similarly, measuring distance using centroids versus closest
edges made little difference in the functioning of the near-
est neighbor index. For the simple proportion index, we
tried two different radii (1D and 2D), but neither was
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Table 3: Values of Spearman’s r showing the rank correlation among indices

NN, edge
PBWS,

centroid, A
PBWS,

centroid, A.5

PBWS,
edge, A

PBWS,
edge, A.5 SP WP

NN, centroid:
Butterfly .90*** �.41 �.73*** �.37 �.69*** �.01 �.42
Vole .51*** �.19 �.43*** .03 �.07 �.15 �.13

NN, edge:
Butterfly �.54* �.66** �.49* �.67** �.18 �.52*
Vole �.05 �.22 �.06 �.24* �.11 .01

PBWS, centroid, A:
Butterfly .77*** .98*** .84*** .74*** .98***
Vole .83*** .90*** .82*** .88*** .94***

PBWS, centroid, A.5:
Butterfly .69*** .98*** .31 .75***
Vole .61*** .69*** .77*** .77***

PBWS, edge, A:
Butterfly .76*** .76*** .99***
Vole .92*** .76*** .84***

PBWS, edge, A.5:
Butterfly .39 .81***
Vole .71*** .75***

SP:
Butterfly .72***
Vole .84***
Bee .97***

Note: Expected sign of relationship is negative for comparisons involving the nearest neighbor index and positive for all others.

neighbor (eq. [1]); weighted sum (eq. [2]); proportion (eq. [3]) calculated at aNN p nearest PBWS p patch-based SP p simple

2D radius; proportion (eq. [4]). Interpatch distances were measured either between patch centroids (“centroid”)WP p weighted

or as the shortest distance between patch perimeters (“edge”).

* P ! .05

** .P ! .01

*** .P ! .001

explanatory; the results we report are for the more ex-
planatory 2D radius. Using only occupied patches in the
index summation, which we were able to do for the but-
terfly system, improved index performance somewhat,
but still only one index was a significant predictor of im-
migration (the patch-based weighted sum using A0.5 and
centroid-to-centroid measurements, ; other P val-P p .02
ues ≥.07).

Within a given study system, most indices were highly
concordant (table 3). The weighted indices (all variants of
the patch-based weighted sum and the weighted propor-
tion) were highly correlated with each other (Spearman’s

, ). The simple proportion was highly cor-r ≥ 0.61 P ≤ .002
related with all of the weighted indices (Spearman’s r ≥

, ) except in the butterfly system, where it was0.71 P ≤ .001
not significantly correlated with one version of the patch-
based weighted sum. The nearest neighbor index was in
some cases significantly correlated with the area-based in-
dices, and in other cases it was not.

Discussion

We were struck by the overall poor fit of the simple indices
to patterns in well-studied systems. Although neither the
butterfly nor the vole systems conformed perfectly to the
assumptions of index models, both met the key assump-
tions of discrete habitat/nonhabitat distinctions, larger
populations in larger occupied habitat patches, and local
dispersal. We speculate that none of the indices adequately
predicted population response variables because simple
static relationships with patch size and location do not
adequately capture the dynamics in these systems. In the
vole system, an important factor may be that emigration
appears to be tightly tied to stochastic fluctuations in food
availability and population size (Crone et al. 2001); per
capita emigration is much higher from small islands than
from large islands because of larger fluctuations in food
availability (Pokki 1981). In the Fender’s blue system, we
know that in addition to patch size, habitat quality (which
is rapidly changing due to presence or absence of invasive
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species and of habitat management) has a significant in-
fluence on abundance (Schultz and Dlugosch 1999; Schultz
et al. 2003). In addition, successful emigration by Fender’s
blues scales with area more slowly than A0.5 (Schultz and
Crone, forthcoming). A related point is that butterflies will
have longer residence times in larger patches, so that in-
dividuals from large patches have less time to reach other
patches before the end of their 2–3-week life spans (Crone
and Schultz 2003). The indices cannot capture this com-
plexity but rather assume that all emigrants disperse in the
same way. In the butterfly system, we tested whether a
mismatch between habitat area and occupancy prevented
the indices from being predictive by calculating the indices
using occupied patches only. One index then became a
significant predictor of immigration, although it was not
significant after correcting for multiple comparisons. In
sum, we conclude that the indices were poor predictors
of animal movement in the two fragmented systems.

The simple-proportion and weighted-proportion indi-
ces were also tested in the bee system, where habitat cover
is more continuous. These are the only two indices suitable
for landscapes where discrete habitat patches are not read-
ily defined. The indices performed similarly and neither
was strongly predictive, although one index (the weighted
proportion) was a significant predictor for one bee species.
These indices performed better in the bee system, however,
than in the butterfly or vole systems. It is possible that
daily foraging movements are better reflected by the prox-
imity indices than are rare movement events among but-
terfly habitat patches or vole dispersal among islands. Con-
sistent with this explanation, the simple proportion index
has explained abundance for central place foragers in other
studies (e.g., Kremen et al. 2004). Alternatively, we cannot
rule out the possibility that higher apparent predictive
power reflects spurious correlation because none of the
relationships would be significant after accounting for
multiple comparisons.

Moilanen and Nieminen (2002) tested variations of
equations (1)–(3) against data on patch colonization by
butterflies in a highly fragmented landscape. Their data
sets included far more biological detail than those we used
to calculate indices here; for example, they included ad-
ditional scaling parameters that related patch area to em-
igration and immigration, and indices were calculated us-
ing the area of occupied patches only. Our goals differ
fundamentally from theirs in that they asked what level
of detail is required for indices to predict colonization,
whereas we asked whether simple indices, if used in the
absence of biological knowledge, would have power to
predict movement. In their study, the nearest neighbor
performed the worst and the weighted sum index per-
formed the best. In contrast, we found that none of the
indices consistently worked well. Comparison of the two

studies suggests that in order to make simple indices pre-
dictive, more detailed biological information must be used
in conjunction with land cover.

Although indices designed to measure the connectivity
of an entire landscape without reference to a focal patch
(landscape-wide indices) are qualitatively different from
the indices investigated in this article, it is worth noting
that recent studies have questioned their ability to pre-
dict animal movement as well (Schumaker 1996; Wiegand
et al. 1999; Tischendorf and Fahrig 2000a; Tischendorf
2001; Li and Wu 2004). Perhaps both landscape-wide and
location-specific indices fail to predict connectivity suc-
cessfully because animal movement can vary with factors
such as habitat type, habitat heterogeneity, edge-crossing
behavior, perceptual ability, and density (see Goodwin
2003), none of which are captured by indices, which are
based on habitat structure alone and assume undirected
movement. For example, Bender and Fahrig (2005) ob-
served that patch size and connectivity were poor predic-
tors of animal movement when the matrix consisted of
many habitat types, which probably have different effects
on the study organism.

Overall, our results also suggest that simple indices func-
tion better as measures of habitat structure than as mea-
sures of habitat connectivity from the organism’s point of
view. In all three systems, the area-based indices (eqq. [2]–
[4]) were highly correlated with each other, suggesting that
they were measuring the same qualitative property. How-
ever, no index performed well in the tests against animal
movement. Indices based on land cover alone might be
best used to ask whether surrounding land cover has an
effect on some response variable of interest (Ricketts et al.
2001; Pearman 2002; Kremen et al. 2004), rather than
assuming that these indices represent animal movement
or habitat connectivity. The choice of which simple index
to use may be less important than the decision to use a
simple index at all, as opposed to a more biologically de-
tailed model.
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Appendix from R. Winfree et al., “Testing Simple Indices of Habitat
Proximity”
(Am. Nat., vol. 165, no. 6, p. 707)

Weighting Functions and Distance Distributions
In order to use the weighted indices (eqq. [2], [4]), researchers need to incorporate their empirical measure of
study organism mobility into the distance weighting function, exp(�d/D), where d is the distance from the focal
point to a given habitat patch or grid cell, and D is a mobility constant scaled to the study organism. The
purpose of this appendix is to clarify the relationship between empirical measures of organism mobility and the
index parameter D.

It is often implicitly (and incorrectly) assumed that an exponential weighting function of points on the
landscape corresponds to an exponential distribution of distance traveled. In a two-dimensional landscape, if the
relative probability of arriving at any point is exp(�d/D), where d is the distance of the point from the focal
point, then the relative probability of traveling a distance d is d exp(�d/D). This is because the length of the arc
at distance d from the focal point has length 2pd.

Thus, a function that treats the weight of a point as exp(�d/D) corresponds to a movement kernel that is
proportional to d exp(�d/D). We make this kernel into a distribution by normalizing it:

d exp (�d/D) d exp (�d/D)
g(d) p p .2Dx exp (�x/D)dx∫

The mean distance is given by

dg(d)dd p 2D.�
The modal distance is given by

d exp (�d/D)
0 p dg(d)/dd p 1 � .2( )D D

Thus, the mode is D. The median distance satisfies

m

1
g(d)dd p .� 2

0

This can be scaled to remove D and solved numerically to find that .m ≈ 1.68D
If researchers using the indices know whether their empirical estimates represent means, modes, or medians,

they can relate them to D as above. The more likely situation, however, is that researchers using simple indices
will not have complete distributions of movement distances and therefore will not know whether their empirical
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estimate of typical movement distance represents a mean, mode, or median. This situation suggests the
importance of doing sensitivity analysis around the empirical estimate.

By contrast, an exponential distance distribution exp(�d/D)/D), which would correspond to the singular
weighting function exp(�d/D)/d), has mean D, mode 0, and median ≈0.69D. We do not consider this distribution
in our analysis.


