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Abstract The family of density power divergences is an useful class which gener-
ates robust parameter estimates with high efficiency. None of these divergences require
any non-parametric density estimate to carry out the inference procedure. However,
these divergences have so far not been used effectively in robust testing of hypotheses.
In this paper, we develop tests of hypotheses based on this family of divergences.
The asymptotic variances of the estimators are generally different from the inverse of
the Fisher information matrix, so that the usual drop-in-divergence type statistics do
not lead to standard Chi-square limits. It is shown that the alternative test statistics
proposed herein have asymptotic limits which are described by linear combinations
of Chi-square statistics. Extensive simulation results are presented to substantiate the
theory developed.

Keywords Density power divergence · Linear combination of Chi-squares ·
Robustness · Tests of hypotheses

1 Introduction

Let F = {Fθ : θ ∈ � ⊂ R
p} be a parametric family which models the distribution of

the random variable X of interest.
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320 A. Basu et al.

We assume that the densities fθ (x) of the probability measures Pθ exist with respect
to a dominating measure μ. Let X1, . . . , Xn be a random sample from the distribution
of X , and suppose that we are interested in testing parametric hypothesis about θ .
It has been shown (see Simpson 1989; Lindsay 1994; Pardo 2006, Chapter 9; Basu
et al. 2011, Chapter 5) that test statistics based on φ-divergence measures or dispar-
ities provide useful robust alternatives to the classical tests. In continuous models,
however, these procedures suffer from the drawback that it is necessary to use some
non-parametric density estimation technique—such as kernel density estimation—to
generate a continuous density estimate of the unknown population density; thus, the
procedure inherits all the associated complications and difficulties of the kernel den-
sity estimation method such as bandwidth selection. Handling continuous models with
bounded support (or at least bounded at one end) becomes even more difficult in such
cases because the kernel requires further modification to preserve the support. In fact
the associated complications become so overwhelming that one rarely sees, if ever,
the application of the minimum φ-divergence method for estimation and hypotheses
testing for any continuous model other than the normal.

Basu et al. (1998) introduced a new family of density-based divergence measures
called the density power divergence family; a single parameter β controls the trade-off
between robustness and asymptotic efficiency of the parameter estimates which are the
minimizers of this family of divergences. When β = 0, the density power divergence
is the Kullback–Leibler divergence and the corresponding minimizer is the maximum
likelihood estimator of θ . For positive values of β, the corresponding minimum dis-
tance procedure is substantially more robust, with the degree of robustness increasing
with β. All minimum distance estimators within this class have bounded influence
functions except for the case when β = 0. The remarkable thing about this family is
that none of its members requires any non-parametric density estimation procedure
for the minimization routine. Although minimum density power divergence estima-
tion provides excellent robust estimators in standard parametric models, this family
of divergences has not been, so far, used successfully in parametric hypothesis testing
problems. This is partly because the asymptotic variance of (

√
n times) the minimum

density power divergence estimator is different from the Fisher information matrix
(except in the case β = 0), and the usual analogues of the disparity difference tests
(e.g. Lindsay 1994) do not have standard Chi-squared limits in this case. Here, we
consider alternative tests of hypothesis based on the density power divergence. The
distribution of our statistics can asymptotically be described as linear combinations of
independent Chi-square variables. These tests provide excellent robust alternatives to
the likelihood ratio test and the tests based on φ-divergences. The construction of these
test statistics do not require any non-parametric smoothing in any parametric model.

Methods based on maximum likelihood form the backbone of the theory of statisti-
cal inference. However, it is well known that under this method even small deviations
from the assumed conditions can have a substantial undesirable impact on the infer-
ence procedure and the final conclusions. We allow the possibility of the true (data
generating) distribution G being in a small neighborhood of the assumed parametric
model F , rather than being strictly inside it. The best fitting parameter in this case
corresponds to the model element nearest to the true distribution, where the measure
of closeness is in terms of the divergence in question. “Robust” divergences, such as
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Hypothesis testing based on density power divergence 321

those corresponding to moderate and large values of the tuning parameter β within the
density power divergence family, can effectively downweight small deviations from
the model so that the parametric modeling often provides a good fit to the large major-
ity of the data while leaving out a small proportion of outlying observations. This is
in contrast with the methods based on maximum likelihood, which try to fit all the
observations in such cases, and end up providing a poor fit for all. In similar spirit,
the tests of hypotheses based on robust divergences can provide meaningful tests for
the parameter of the larger, dominant, component represented by the majority of the
data, while essentially eliminating the small deviations; these tests largely preserve
their level and power in comparison to the quantities which one would obtain under
pure data. However, the likelihood ratio test can experience significant magnification
in the level or loss in power, depending on the situation, for such problems.

It is worth mentioning that although the test statistics proposed in this paper are
similar in spirit to the disparity difference (or generally, drop-in-divergence) type tests,
they are different from the latter in one significant way. The test statistics depend on
the data only through the parameter estimates; in this development, these estimates
are the minimum density power divergence estimates of the parameters. Thus, the
robustness of the test statistics are directly linked to the robustness of the estimators,
which has already been discussed in the literature. Also, in our numerical studies, the
model misspecifications are envisaged to be in the form of mixture contaminations;
this is the most common set up to study the robustness of proposed methods. Model
violations of other natures could also possibly be studied, but we believe that could
be the topic of a different article.

The rest of the paper is organized as follows. In Sect. 2, we discuss the density
power divergence family and the resulting parametric estimation based on this diver-
gence. Tests of hypothesis based on the density power divergence are introduced in
Sect. 3. The different cases under consideration and relevant theory are developed
in this section. Numerical illustrations of the performance of these test statistics are
presented in Sect. 4 and 5. Section 6 has some concluding remarks.

Throughout the paper, we will make the standard assumptions about asymptotic
inference as given by Assumptions A, B, C and D of Lehmann (1983, p. 429). We will
refer to them as the Lehmann conditions.

2 The density power divergence and parametric estimation

2.1 The divergence

The density power divergence family (Basu et al. 1998) represents a rich class of
density-based divergences. Let G denote the set of all distributions having densities
with respect to the dominating measure. Given densities g, f ∈ G the density power
divergence between them is defined, as a function of a non-negative parameter β, as

dβ(g, f )=
⎧
⎨

⎩

∫ {
f 1+β(x)−

(
1+ 1

β

)
f β(x)g(x)+ 1

β
g1+β(x)

}
dx, for β > 0,

∫
g(x) log

(
g(x)
f (x)

)
dx, for β = 0.

(1)
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322 A. Basu et al.

The case corresponding to β = 0 may be derived from the general case by taking the
continuous limit as β → 0. The quantities defined in Eq. (1) are genuine divergences
in the sense dβ(g, f ) ≥ 0 for all g, f ∈ G and all β ≥ 0, and dβ(g, f ) is equal to
zero if and only if the densities g and f are identically equal.

We consider the parametric model of densities { fθ : θ ∈ � ⊂ R
p}; suppose we

are interested in the estimation of θ . Let G represent the distribution function corre-
sponding to the density g. The minimum density power divergence functional Tβ(G)

at G is defined by the requirement dβ(g, fTβ(G)) = minθ∈� dβ(g, fθ ). Clearly the
term

∫
g1+β(x)dx has no role in the minimization of dβ(g, fθ ) over θ ∈ �. Thus,

the essential objective function to be minimized in the computation of the minimum
density power divergence functional Tβ(G) reduces to

∫ {

f 1+β

θ (x)−
(

1+ 1

β

)

f β

θ (x)g(x)

}

dx =
∫

f 1+β

θ (x)dx−
(

1+ 1

β

)∫

f β

θ (x)dG(x).

Notice that in the above objective function, the density g appears only as a linear term
(unlike, say, the computation of the minimum Hellinger distance functional where the
square root of the density g is the relevant quantity). Thus, given a random sample
X1, . . . , Xn from the distribution G, we can approximate the above objective func-
tion by replacing G with its empirical estimate Gn . For a given tuning parameter β,
therefore, the minimum density power divergence estimator θ̂β of θ can be obtained
by minimizing

∫

f 1+β

θ (x)dx−
(

1+ 1

β

)∫

f β

θ (x)dGn(x)=
∫

f 1+β

θ (x)dx−
(

1+ 1

β

)
1

n

n∑

i=1

f β

θ (Xi )

= 1

n

n∑

i=1

Vθ (Xi ) (2)

over θ ∈ �, where Vθ (x) = ∫
f 1+β

θ (y)dy −
(

1 + 1
β

)
f β

θ (x). The minimization of

the above expression over θ does not require the use of a non-parametric density esti-
mate. Existing theory (e.g. De Angelis and Young 1992) shows that in general there
is little or no advantage in introducing smoothing for such functionals which may be
empirically estimated using the empirical distribution function alone, except in very
special cases. Using Gn to substitute G, if possible, is, therefore, a natural step.

Let uθ (x) = ∂
∂θ

log fθ be the score function of the model. Under differentiability of
the model, the maximization of the objective function in Eq. (2) leads to an estimating
equation of the form

1

n

n∑

i=1

uθ (Xi ) f β

θ (Xi ) −
∫

uθ (x) f 1+β

θ (x)dx = 0, (3)

which is an unbiased estimating equation under the model. Since the corresponding
estimating equation weights the score uθ (Xi ) with the power of the density f β

θ (Xi ),
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Hypothesis testing based on density power divergence 323

the outlier resistant behavior of the estimator is intuitively apparent. See Basu et al.
(1998) and Jones et al. (2001) for more details.

The functional Tβ(G) is Fisher consistent; it takes the value θ when the true den-
sity g = fθ is in the model. When it does not, θ

g
β = Tβ(G) represents the best fitting

parameter. For brevity we will suppress the β subscript in the notation for θ
g
β ; then

fθg is the model element closest to g in the density power divergence sense.

2.2 The asymptotic distribution of the minimum density
power divergence estimator

Let g be the true data generating density and θ g = Tβ(G) be the best fitting parameter.
We define

Jβ(θ) =
∫

uθ (x)uT
θ (x) f 1+β

θ (x)dx+
∫

{iθ (x) − βuθ (x)uT
θ (x)}

×{g(x) − fθ (x)} f β

θ (x)dx (4)

and

Kβ(θ) =
∫

uθ (x)uT
θ (x) f 2β

θ (x)g(x)dx − ξβ(θ)ξ T
β (θ), (5)

where ξβ(θ) = ∫ uθ (x) f β

θ (x)g(x)dx , and iθ (x) = − ∂
∂θ

uθ (x), the so-called informa-
tion function of the model.

For the rest of the paper, we will assume the conditions D1–D5 of Basu et al.
(2011, p. 304) which we will refer to as the Basu et al. conditions. The following
results are then available about the asymptotic distribution of the minimum density
power divergence estimators:

(a) The minimum density power divergence estimating Eq. (3) has a consistent
sequence of roots θ̂β = θ̂n .

(b) n1/2(θ̂β − θ g) has an asymptotic multivariate normal distribution with (vector)
mean zero and covariance matrix J−1KJ−1, where J = Jβ(θ g), K = Kβ(θ g),
and Jβ and Kβ are as in (4) and (5) respectively; see Basu et al. (1998) and Basu
et al. (2011).

When the true distribution G belongs to the model so that G = Fθ for some θ ∈ �,
the formula for J = Jβ(θ), K = Kβ(θ) and ξ = ξβ(θ) simplify to

J =
∫

uθ (x)uT
θ (x) f 1+β

θ (x)dx, K =
∫

uθ (x)uT
θ (x) f 1+2β

θ (x)dx − ξξ T ,

ξ =
∫

uθ (x) f 1+β

θ (x)dx . (6)
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324 A. Basu et al.

3 Testing parametric hypotheses using the density power divergence

In this section, we will develop tests of parametric hypothesis based on the density
power divergence family. As the usual drop-in-divergence type statistics constructed
with the density power divergence do not lead to standard Chi-square limits, we con-
sider an alternative test statistic based on the density power divergence. To keep a clear
focus in our presentations, we consider the following specific cases:

(a) The one sample problem described by the hypotheses

H0 : θ = θ0 against H1 : θ �= θ0. (7)

when a random sample of size n is available from the population of interest.
(b) The two-sample problem described by the hypotheses

H0 : θ1 = θ2 against H1 : θ1 �= θ2,

where random samples of size m and n are available from two different popula-
tions, and θ1 and θ2 are the parameters of the model density describing the two
different populations.

3.1 The one sample problem

We consider a parametric family of densities { fθ : θ ∈ � ⊆ R
p} and a random sam-

ple X1, . . . , Xn of size n from the population. We denote by θ0 a known value of the
parameter and our interest is in testing H0 : θ = θ0 against H1 : θ �= θ0. There is no
uniformly most powerful test for the problem under consideration for most parametric
models. When the model is correctly specified and the null hypothesis is correct, fθ0

is the data generating density. In the next theorem, we shall obtain the asymptotic
distribution of our proposed test statistic

Tγ (̂θβ, θ0) = 2ndγ ( fθ̂β
, fθ0),

dγ ( fθ̂β
, fθ0)=

⎧
⎪⎨

⎪⎩

∫ (
f 1+γ

θ0
(x)−

(
1+ 1

γ

)
f γ

θ0
(x) fθ̂β

(x)+ 1
γ

f 1+γ

θ̂β
(x)
)

dx, for γ > 0

∫
fθ̂β

(x) log

(
fθ̂β

(x)

fθ0 (x)

)

dx, for γ = 0,

(8)

under the null hypothesis H0, where θ̂β is the minimum density power divergence
estimator of θ . Observe that the test statistic defined in (8) depends on two different
tuning parameters β and γ . The density power divergence associated with the param-
eter β is used for estimating the unknown parameters and the divergence associated
with the parameter γ is used for obtaining the test statistic to test the hypotheses of
interest.
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Hypothesis testing based on density power divergence 325

Theorem 1 Suppose that the model satisfies the Lehmann and the Basu et al. condi-
tions. Under the null hypothesis H0 : θ = θ0, the asymptotic distribution of Tγ (̂θβ, θ0)

coincides with the distribution of

r∑

i=1

λ
γ,β

i (θ0)Z2
i ,

where Z1, . . . , Zr are independent standard normal variables, λγ,β
1 , . . . , λ

γ,β
r are the

non-zero eigenvalues of Aγ (θ0) J−1
β (θ0) Kβ (θ0) J−1

β (θ0), and the matrix Aγ (θ0) is
as defined later in (9), and

r = rank
(

Kβ (θ0) J−1
β (θ0) Aγ (θ0) J−1

β (θ0) Kβ (θ0)
)

.

Proof A second-order Taylor expansion of dγ ( fθ , fθ0) around θ = θ0 at θ =θ̂β gives,

dγ ( fθ̂β
, fθ0) = dγ ( fθ0 , fθ0) +

p∑

i=1

(
∂dγ ( fθ , fθ0)

∂θi

)

θ=θ0

(
θ̂ i
β − θ0i

)

+ 1

2

p∑

i=1

p∑

j=1

(
∂2dγ ( fθ , fθ0)

∂θi∂θ j

)

θ=θ0

(
θ̂ i
β − θ0i

) (
θ̂

j
β − θ0 j

)

+ o
(∥
∥̂θβ − θ0

∥
∥2
)

,

where the scripts denote the indicated components. Clearly dγ ( fθ0 , fθ0) = 0 and

(
∂dγ ( fθ , fθ0 )

∂θi
)θ=θ0 = 0. Also

aγ

i j (θ0)=
(

∂2dγ ( fθ , fθ0)

∂θi∂θ j

)

θ=θ0

= (1 + γ )

∫

X
f γ−1
θ0

(x)

(
∂ fθ (x)

∂θ j

∂ fθ (x)

∂θi

)

θ=θ0

dx,

which proves that the asymptotic distributions of

Tγ (θ̂β, θ0) = 2ndγ ( fθ̂β
, fθ0) and n1/2(̂θβ − θ0)

T Aγ (θ0) n1/2(̂θβ − θ0)

are the same because

n × o
(∥
∥̂θβ − θ0

∥
∥2
)

= op (1) .

The matrix Aγ (θ0) is defined by

Aγ (θ0) =
(

aγ

i j (θ0)
)

i, j=1,...,p
. (9)
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326 A. Basu et al.

For X ∼ Nq(0,�), and a q dimensional real symmetric matrix A, the distribution of
the quadratic form XT AX is the same as that of

∑r
i=1λi Z2

i , where Z1, . . . , Zr are
independent standard normal variables, r = rank(�A�), r ≥ 1 and λ1, . . . , λr are the
non-zero eigenvalues of A� (Dik and de Ghunst 1985, Corollary 2.1). An application
of the same establishes that the asymptotic distribution of Tγ (̂θβ, θ0) is described by

the random variable
∑r

i=1λ
γ,β

i Z2
i , where λ

γ,β
1 , . . . , λ

γ,β
r , are the non-zero eigenvalues

of Aγ (θ0) J−1
β (θ0) Kβ (θ0) J−1

β (θ0), and

r = rank
(

J−1
β (θ0) Kβ (θ0) J−1

β (θ0) Aγ (θ0) J−1
β (θ0) Kβ (θ0) J−1

β (θ0)
)

= rank
(

Kβ (θ0) J−1
β (θ0) Aγ (θ0) J−1

β (θ0) Kβ (θ0)
)

, (10)

where the last equality follows from Corollary 8.3.3 of Harville (2008). 
�
Remark 2 The most common situation with usual density functions is r = rank
(Kβ(θ0)) = rank(Aγ (θ0)) = p. This is observed, for example, in the test involv-
ing the two parameter normal model in Sect. 5.1.

Remark 3 The works of Rao and Scott (1981) and Modarres and Jernigan (1992)
facilitate the calculation of the tail probabilities of linear combinations of Chi-square
variables. A variety of problems in statistical inference and applied probability require
percentiles or probabilities from the distribution of linear combinations of Chi-squares
(see Jensen and Solomon 1972). Following Corollary 1 of Rao and Scott (1981), one
can use the statistic

1Tγ (̂θβ, θ0) = Tγ (̂θβ, θ0)

λ
γ,β
max

≤
r∑

i=1
Z2

i ,

where λ
γ,β
max = max(λ

γ,β
1 , . . . , λ

γ,β
r ). As

∑r
i=1 Z2

i ∼ χ2
r , a strategy that rejects the null

in (7) for 1Tγ (̂θβ, θ0) > χ2
r,α produces an asymptotically conservative test at nominal

level α, where χ2
r,α is the quantile of order 1−α for χ2

r . Another approximation to the
asymptotic tail probabilities of Tγ (̂θβ, θ0) can be obtained through the modification

2Tγ (̂θβ, θ0) = Tγ (̂θβ, θ0)

λ
γ,β

,

where λ
γ,β = 1

r

∑r
i=1λ

γ,β

i (see Satterthwaite 1946), considered approximated by a
Chi-squared distribution with r degrees of freedom. In this case, we can observe that

E
[

2Tγ (̂θβ, θ0)
]

= r = E
[
χ2

r

]
,

Var
[

2Tγ (̂θβ, θ0)
]

= 2
∑r

i=1(λ
γ,β

i )2

(λ
γ,β

)2
=2r + 2

r∑

i=1

(
λ

γ,β

i − λ
γ,β
)2

(λ
γ,β

)2
> 2r =Var

[
χ2

r

]
.

123



Hypothesis testing based on density power divergence 327

If we denote by �γ,β = diag(λ
γ,β
1 , . . . , λ

γ,β
r ), we get

E

[
r∑

i=1

λ
γ,β

i Z2
i

]

=
r∑

i=1

λ
γ,β

i = trace
(
�γ,β

)

= trace
(

Aγ (θ0) J−1
β (θ0) Kβ (θ0) J−1

β (θ0)
)

.

The test given by the statistic 2Tγ (̂θβ, θ0) is more conservative than the one based on
Tγ (̂θβ, θ0). However, if we consider the test-statistic

3Tγ (̂θβ, θ0) =
2Tγ (̂θβ, θ0)

νγ,β
= Tγ (̂θβ, θ0)

νγ,βλ
γ,β

,

we can find νγ,β imposing Var[3Tγ (̂θβ, θ0)] = 2E[3Tγ (̂θβ, θ0)] as in the Chi-squared
distribution. Because

E
[

3Tγ (̂θβ, θ0)
]

= r

νγ,β
and Var

[
3Tγ (̂θβ, θ0)

]
= 2r

νγ,β
,

νγ,β = 1 +
r∑

i=1

(
λ

γ,β

i − λ
γ,β
)2

r(λ
γ,β

)2
= 1 + CV2({λγ,β

i }r
i=1),

where CV represents the coefficient of variation. Then a Chi-square distribution with
r

νγ,β degrees of freedom approximates the asymptotic distribution of the statistic
3Tγ (̂θβ, θ0) for large n.

The degrees of freedom of 3Tγ (̂θβ, θ0) is r
νγ,β , which may not be an integer. To

avoid this difficulty one can modify the statistic such that the first two moments match
specifically with the χ2(r) distribution (rather than with just any other χ2 distribution).
Specifically let

X = 2Tγ (̂θβ, θ0).

We have

E [X ] = r = E
[
χ2

r

]
,

Var[X ] = 2
∑r

i=1(λ
γ,β

i )2

(λ
γ,β

)2
= 2r + 2

r∑

i=1

(
λ

γ,β

i − λ
γ,β
)2

(λ
γ,β

)2
= 2r + c,

where c stands for the last term in the previous expression. We define Y = (X −a)/b,
where the constants a and b are such that

E(Y ) = r, Var(Y ) = 2r.
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328 A. Basu et al.

Thus,

r − a

b
= r,

2r + c

b2 = 2r.

Solving these set of equations, we get

b =
√

1 + c

2r
, a = r(1 − b).

Thus, it makes sense to consider another modification of the statistic given by

4Tγ (̂θβ, θ0) =
2Tγ (̂θβ, θ0) − a

b
,

the large sample distribution of which may be approximated by the χ2(r) distribution.
Apart from the above approximations, it is possible to consider tables of the cumu-

lative distribution
∑r

i=1ai Z2
i in the case of small r (see Solomon 1960; Johnson and

Kotz 1968; Eckler 1969; Gupta 1963).

Now we consider the power of the density power divergence test at contiguous
alternative hypotheses described by

H1,n : θn = θ0 + n−1/2d, (11)

where d is a fixed vector in R
p such that θn ∈ � ⊂ R

p. In the following theorem, we
present the asymptotic distribution of Tγ (̂θβ, θ0) under (11). The proof is based on
Corollary 2.2 in Dik and de Gunst (1985). This Corollary establishes the following:
Let X ∼ Nq(μ,�), a q-variate normal distribution. Let Q be a real symmetric non-
negative definite matrix of order q. Let r = rank(�Q�), r ≥ 1, and let λ1, . . . , λr

be the positive eigenvalues of Q�. Then, the quadratic form XT QX has the same
distribution as the random variable

r∑

i=1

λi (Ui + wi )
2 + ξ ,

where U1, . . . , Ur are independent, each having a standard normal distribution. Values
of w and ξ are given by

w = �−1
p PT ST Qμ, ξ = μT Qμ − wT �pw,

where S is any q × s square root of �, �p = diag (λ1, . . . , λr ) and P is the matrix of
corresponding orthonormal eigenvectors. This result leads to the following theorem.
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Hypothesis testing based on density power divergence 329

Theorem 4 Suppose that the model satisfies the Lehmann and the Basu et al. condi-
tions. Under the contiguous alternative hypotheses H1,n given in (11), the asymptotic
distribution of Tγ (̂θβ, θ0), coincides with the distribution of

r∑

i=1

λ
γ,β

i (θ0) (Zi + wi )
2 + ξ ,

where Z1, . . . , Zr are independent standard normal variables,λγ,β
1 (θ0), . . . , λ

γ,β
r (θ0)

are the positive eigenvalues of Aγ (θ0) J−1
β (θ0) Kβ (θ0) J−1

β (θ0), the values w =
(w1, . . . , wr ) and ξ are given by

w = �−1
r PT ST Aγ (θ0) d, ξ = dT Aγ (θ0) d − wT �r w,

S is any square root of J−1
β (θ0) Kβ (θ0) J−1

β (θ0) ,�r =diag(λ
γ,β
1 (θ0), . . . , λ

γ,β
r (θ0))

and P is the matrix of corresponding orthonormal eigenvectors.

Proof We can write

√
n(̂θβ − θ0) = √

n(̂θβ − θn) + √
n (θn − θ0) = √

n(̂θβ − θn) + d.

Under H1,n one has

√
n(̂θβ − θn)

L−→
n→∞ N

(
0, J−1

β (θ0) Kβ (θ0) J−1
β (θ0)

)

and

√
n(̂θβ − θ0)

L−→
n→∞ N

(
d, J−1

β (θ0) Kβ (θ0) J−1
β (θ0)

)

We know that

Tγ (̂θβ, θ0) = n1/2(̂θβ − θ0)
T Aγ (θ0) n1/2(̂θβ − θ0) + n o

(∥
∥̂θβ − θ0

∥
∥2
)

.

Then, Tγ (̂θβ, θ0) has the same asymptotic distribution as the quadratic form
n1/2(̂θβ − θ0)

T Aγ (θ0) n1/2(̂θβ − θ0). Now the result follows from Corollary 2.2
of Dik and de Gunst (1985). 
�

While the above theorem is in many ways instructive, it is not necessarily helpful
in determining a quick approximation to the power function of our proposed tests. In
the next theorem we will get an approximation of the power function for Tγ (̂θβ, θ0),
the test statistic given in (8).

Theorem 5 Suppose that the model satisfies the Lehmann and the Basu et al. con-
ditions. An approximation to the power function of the test statistic Tγ (̂θβ, θ0) for
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testing H0 : θ = θ0 against H1 : θ �= θ0 is given by

π
β,γ
n,α

(
θ∗) = 1 − �

( √
n

σβ,γ

(
θ∗)

(
tγ,β
α

2n
− dγ ( fθ∗ , fθ0)

))

for θ∗ �= θ0, where tγ,β
α is the quantile of order (1 − α) of the asymptotic distribution

of Tγ (̂θβ, θ0), and σβ,γ

(
θ∗) is as in (12) defined later.

Proof A first-order Taylor expansion of dγ ( fθ̂β
, fθ0) under fθ∗ , where θ∗ �= θ0, gives

dγ ( fθ̂β
, fθ0) = dγ ( fθ∗ , fθ0) + BT

γ (̂θβ − θ∗) + o
(∥
∥̂θβ − θ∗∥∥) .

where Bγ = (Bγ
1 , . . . , Bγ

k )T and Bγ

j = (
∂dγ ( fθ , fθ0 )

∂θ j
)θ=θ∗ . We know

√
n(̂θβ − θ∗) L−→

n→∞ N
(

0, J−1
β

(
θ∗)Kβ

(
θ∗) J−1

β

(
θ∗))

and

√
n × o

(∥
∥̂θβ − θ∗∥∥) = oP (1) .

Then, it is clear that the random variables,

√
n
(

dγ ( fθ̂β
, fθ0) − dγ ( fθ∗ , fθ0)

)
and BT

γ

√
n(̂θβ − θ∗)

have the same asymptotic distribution. Therefore,

√
n
(

dγ ( fθ̂β
, fθ0) − dγ ( fθ∗ , fθ0)

)
L−→

n→∞ N (0, σ 2
β,γ

(
θ∗) ,

where

σ 2
β,γ

(
θ∗) = BT

γ J−1
β

(
θ∗)Kβ

(
θ∗) J−1

β

(
θ∗)Bγ . (12)

Based on this result a first approximation to the power function, at θ∗ �= θ0, is

π
β,γ
n,α

(
θ∗) = 1 − �

( √
n

σβ,γ

(
θ∗)

(
tγ,β
α

2n
− dγ ( fθ∗ , fθ0)

))

,

where �(x) is the standard normal distribution function. 
�
If θ∗ is different from θ0, the probability of rejecting the null with the rejection rule

Tγ (̂θβ, θ)0 > tγ,β
α tends to 1 for any fixed significance level α > 0 as n → ∞. The

test statistic is consistent in the Fraser’s sense.
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Theorems 1 and 4 demonstrate that the test statistic defined in (8) has asymptotic
properties similar to the likelihood ratio type tests of Heritier and Ronchetti (1994,
Proposition 1 and 3). Although the properties of the robust bounded influence type
tests are more difficult to determine for the likelihood ratio type tests compared to
the Wald and score statistics, the robustness of the density power divergence tests are
apparent since these statistics involve the data only through the parameter estimates.
The robustness and bounded influence properties of the density power divergence
measures have been described in Basu et al. (1998). The link between the density
power divergence test statistic and the minimum density power divergence estimator
is clearly observed in the example of Sect. 5.1 later.

3.2 The normal model

The normal model is perhaps the most widely used model in statistics. While the tech-
nique we have developed is quite general, it is useful in this connection to present the
specific values in the context of a normal distribution. Here, we derive the expressions
in case of the two parameter normal model.

Let X1, . . . , Xn be a random sample from a normal population with mean μ and
variance σ 2. Let � = R × R

+ be the parameter space, where R is the set of real
numbers and R

+ is the set of positive real numbers; also let θ = (μ, σ ) ∈ �. We are
interested in testing the null hypothesis

H0 : θ = θ0 = (μ0, σ0) versus H1 : θ �= θ0.

The minimum density power divergence estimator θ̂β = (
μ̂β ,̂σβ

)
is obtained by

maximizing in σ and μ, for each β,

1

nβ

n∑

i=1

(
1

σ
√

2π

)β

exp

(

−1

2

(
Xi − μ

σ

)2

β

)

− 1

1 + β

∫

R

(
1

σ
√

2π

)1+β

exp

(

−1

2

(
x − μ

σ

)2

(1 + β)

)

dx .

Since

∫

R

(
1

σ
√

2π

)1+β

exp

(

−1

2

(
x − μ

σ

)2

(1 + β)

)

dx = 1

σβ
√

1 + β (2π)
β
2

,

it is necessary to maximize in μ and σ , for each β, the expression

1

σβ (2π)
β
2

{
1

nβ

n∑

i=1

exp

(

−1

2

(
Xi − μ

σ

)2

β

)

− 1

(1 + β)3/2

}

to get the estimates μ̂β and σ̂β . Subsequently, we need to derive the expression of
the density power divergence test statistic for our problem. After some algebra, we
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obtain the density power divergence measure dγ (N (μ1, σ1) , N (μ2, σ2)) between the
indicated normal densities as

dγ (N (μ1, σ1) , N (μ2, σ2)) = 1

σ
γ
2

√
1 + γ (2π)γ/2

−
(

1 + 1

γ

)
1

σ
γ−1
2 (γ σ 2

1 + σ 2
2 )1/2 (2π)γ/2

× exp

⎧
⎪⎨

⎪⎩
−1

2

⎛

⎜
⎝

μ2
2

(
σ2√
γ

)2 + μ2
1

σ 2
1

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

× exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2

(

σ 2
1 μ2 + μ1

(
σ2√
γ

)2
)2

(

σ 2
1 +

(
σ2√
γ

)2
)(

σ2√
γ

)2
σ 2

1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ 1

γ σ
γ
1

√
1 + γ (2π)γ/2 .

Therefore,

Tγ

(
θ̂β, θ0

) = 2ndγ (N
(
μ̂β, σ̂β

)
, N (μ0, σ0))

= 2n

(2π)γ/2 √
1 + γ

(
1

σ
γ
0

−
(

1 + 1

γ

) √
1 + γ

σ
γ−1
0 (γ σ̂ 2

β + σ 2
0 )1/2

× exp

⎧
⎪⎨

⎪⎩
−1

2

⎛

⎜
⎝

μ2
0

(
σ0√
γ

)2 + μ̂2
β

σ̂ 2
β

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

× exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2

(

σ̂ 2
βμ0 + μ̂β

(
σ0√
γ

)2
)2

(

σ̂ 2
β +

(
σ0√
γ

)2
)(

σ0√
γ

)2
σ̂ 2

β

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ 1

γ σ̂
γ
β

⎞

⎟
⎟
⎟
⎠

.

For θ = (μ, σ ), the score function for the normal model is given by

uθ (x) =
⎛

⎜
⎝

x − μ

σ 2

1

σ

(
x − μ

σ

)2

− 1

σ

⎞

⎟
⎠ .

The expressions of Jβ(θ), Kβ(θ) and Aγ (θ) can be obtained after some algebra and
using expressions for the moments of a normal distribution as
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Jβ(θ) = 1√
1 + β (2π)β/2 σ 2+β

⎛

⎜
⎜
⎝

1

1 + β
0

0
β2 + 2

(1 + β)2

⎞

⎟
⎟
⎠

= 1

(1 + β)3/2 (2π)β/2 σ 2+β

⎛

⎝
1 0

0
β2 + 2

(1 + β)

⎞

⎠

Kβ(θ) = 1

σ 2+2β (2π)β

⎧
⎨

⎩

1

(1 + 2β)3/2

⎛

⎝
1 0

0
4β2 + 2

1 + 2β

⎞

⎠−
⎛

⎝
0 0

0
β2

(1 + β)3

⎞

⎠

⎫
⎬

⎭
,

Aγ (θ) = 1

(2π)γ/2 σ 2+γ (1 + γ )1/2

⎛

⎝
1 0

0
γ 2 + 2

(1 + γ )

⎞

⎠ .

Tests involving only one of the two parameters μ and σ (with the other parameter
known) are simpler since in such cases the parameter is a scalar (and hence so are the
matrices Jβ , Kβ and Aγ ). One simply needs to pick out the correct components from
the 2 × 2 matrices needed to perform the test for θ = (μ, σ ) to determine the single
eigenvalue that is now involved in the distribution of our test statistic. An example
will be given in Sect. 5.1.

3.3 The two-sample problem

We consider a parametric model fθ (x), θ ∈ � ⊆ R
k , random samples of sizes n and

m from two populations with parameters θ1 and θ2 respectively, and the corresponding
estimators, (1)̂θβ = (θ̂11

β , . . . , θ̂
1p
β )T and (2)̂θβ = (θ̂21

β , . . . , θ̂
2p
β )T , associated with

them. Here, we will derive the asymptotic distribution of the test statistic

Sγ

(
(1)̂θβ,(2) θ̂β

)
= 2nm

(m + n)
dγ ( f(1)θ̂β

, f(2) θ̂β
) (13)

in order to test

H0 : θ1 = θ2 against H1 : θ1 �= θ2.

Theorem 6 Suppose that the model satisfies the Lehmann and the Basu et al. con-
ditions. Under the null hypothesis H0 : θ1 = θ2, the asymptotic distribution of
Sγ

(
(1)̂θβ,(2) θ̂β

)
coincides with the distribution of

r∑

i=1

λ
γ,β

i Z2
i ,

where λ
γ,β
1 , . . . , λ

γ,β
r are the non-zero eigenvalues of Aγ (θ1) J−1

β (θ1) Kβ (θ1) J−1
β

(θ1) and
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r = rank
(

Kβ (θ1) J−1
β (θ1) Aγ (θ1) J−1

β (θ1) Kβ (θ1)
)

.

Proof We know

√
n
(

(1)̂θβ − θ1

)
L−→

n→∞ N
(

0, J−1
β (θ1) Kβ (θ1) J−1

β (θ1)
)

,

√
m
(

(2)̂θβ − θ2

)
L−→

m→∞ N
(

0, J−1
β (θ2) Kβ (θ2) J−1

β (θ2)
)

,

then

√
mn

m + n

(
(1)̂θβ − θ1

)
L−→

n,m→∞ N
(

0, ωJ−1
β (θ1) Kβ (θ1) J−1

β (θ1)
)

,

√
mn

m + n

(
(2)̂θβ − θ2

)
L−→

n,m→∞ N
(

0, (1 − ω) J−1
β (θ2) Kβ (θ2) J−1

β (θ2)
)

,

where

ω = lim
n,m→∞

m

m + n
.

Under the hypothesis θ1 = θ2, we have

√
mn

m + n

(
(1)̂θβ −(2) θ̂β

)
L−→

n,m→∞ N
(

0, J−1
β (θ1) Kβ (θ1) J−1

β (θ1)
)

.

A second Taylor expansion of dγ ( fθ1 , fθ2) around θ1 = θ2 at
(
(1)̂θβ,(2) θ̂β

)
gives,

dγ ( f(1)θ̂β
, f(2)θ̂β

) = 1

2

p∑

i, j=1

(
∂2dγ ( fθ1 , fθ2)

∂θ1i∂θ1 j

)

θ1=θ2

(θ̂1i
β − θ1i )(θ̂

1 j
β − θ1 j )

+
p∑

i, j=1

(
∂2dγ ( fθ1 , fθ2)

∂θ1i∂θ2 j

)

θ1=θ2

(θ̂1i
β − θ1i )(θ̂

2 j
β − θ2 j )

+ 1

2

p∑

i, j=1

(
∂2dγ ( fθ1 , fθ2)

∂θ2i∂θ2 j

)

θ1=θ2

(θ̂2i
β − θ2i )(θ̂

2 j
β − θ2 j )

+ o

(∥
∥
∥

(1)̂θβ − θ1

∥
∥
∥

2
)

+ o

(∥
∥
∥

(2)̂θβ − θ2

∥
∥
∥

2
)

.

But

∂dγ ( fθ1 , fθ2)

∂θ1i
=
(

1+ 1

γ

)∫

X
{− fθ2 (x)γ + fθ1 (x)γ

} ∂ fθ1 (x)

∂θ1i
dμ (x) i = 1, . . . , k

123



Hypothesis testing based on density power divergence 335

then
(

∂2dγ ( fθ1 , fθ2)

∂θ1i∂θ1 j

)

θ1=θ2

= (1 + γ )

(∫

X
fθ2 (x)γ−1 ∂ fθ1 (x)

∂θ1i

∂ fθ1 (x)

∂θ1 j
dμ(x)

)

θ1=θ2

= aγ

i j (θ1),
(

∂2dγ ( fθ1 , fθ2)

∂θ1i∂θ2 j

)

θ1=θ2

= −
(

∂2dγ ( fθ1 , fθ2)

∂θ1i∂θ1 j

)

θ1=θ2

,

(
∂2dγ ( fθ1 , fθ2)

∂θ2i∂θ2 j

)

θ1=θ2

=
(

∂2dγ ( fθ1 , fθ2)

∂θ1i∂θ1 j

)

θ1=θ2

.

Therefore,

2dγ ( fθ̂1
, fθ̂2

) = ((1)̂θβ − θ1)
T Aγ (θ1) ((1)̂θβ − θ1)

− 2((1)̂θβ − θ1)
T Aγ (θ1) ((2)̂θβ − θ2)

+ ((2)̂θβ − θ1)
T Aγ (θ1) ((2)̂θβ − θ1) + o

(∥
∥
∥

(1)̂θβ − θ1

∥
∥
∥

2
)

+ o

(∥
∥
∥

(2)̂θβ − θ2

∥
∥
∥

2
)

= ((1)̂θβ −(2) θ̂β)T Aγ (θ1) ((1)̂θβ −(2) θ̂β) + o

(∥
∥
∥

(1)̂θβ − θ1

∥
∥
∥

2
)

+ o

(∥
∥
∥

(2)̂θβ − θ2

∥
∥
∥

2
)

,

and the asymptotic distribution of

Sγ

(
(1)̂θβ,(2) θ̂β

)
= 2mn

m + n
dγ ( fθ̂1

, fθ̂2
)

coincides with the distribution of the random variable
∑r

i=1λ
γ,β

i Z2
i because

o(‖(1)̂θβ − θ1‖2) = oP (n−1) and o(‖(2)̂θβ − θ2‖2) = oP (m−1). 
�
Remark 7 To approximate the power function of the statistic in (13) consider the
Taylor expansion

dγ ( f(1) θ̂β
, f(2)θ̂β

) = dγ ( fθ1 , fθ2) +
p∑

i=1

∂dγ ( fθ1 , fθ2)

∂θ1i
(θ̂1i

β − θ1i )

+
p∑

i=1

∂dγ ( fθ1 , fθ2)

∂θ2i
(θ̂2i

β − θ2i )

+ o
(∥
∥
∥

(1)̂θβ − θ1

∥
∥
∥

)
+ o

(∥
∥
∥

(2)̂θβ − θ2

∥
∥
∥

)
,
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then

√
nm

n + m

(
dγ ( f(1)θ̂β

, f(2)θ̂β
) − dγ ( fθ1 , fθ2)

)

= GT
γ ((1)̂θβ − θ1) + HT

γ ((2)̂θβ − θ2) + o
(∥
∥
∥

(1)̂θβ − θ1

∥
∥
∥

)
+ o

(∥
∥
∥

(2)̂θβ − θ2

∥
∥
∥

)

where

Gγ = (gγ
1 , . . . , gγ

p
)T

and Hγ = (hγ
1 , . . . , hγ

p
)T

with gγ

i = ∂dγ ( fθ1 , fθ2)

∂θ1i
, i = 1, . . . , p and hγ

i = ∂dγ ( fθ1 , fθ2)

∂θ2i
, i = 1, . . . , p. On

the other hand

√
nGT

γ ((1)̂θβ − θ1)
L−→

n→∞ N
(

0, J−1
β (θ1) Kβ (θ1) J−1

β (θ1)
)

,

√
mHT

γ ((2)̂θβ − θ2)
L−→

n→∞ N
(

0, J−1
β (θ2) Kβ (θ2) J−1

β (θ2)
)

.

Therefore, the random variable

√
nm

n + m

(
dγ ( f(1)θ̂β

, f(2) θ̂β
) − dγ ( fθ1 , fθ2)

)

is asymptotically distributed as a normal distribution with mean zero and variance

σ 2
γ,β (θ1, θ2) = ωGT

γ J−1
β (θ1) Kβ (θ1) J−1

β (θ1) Gγ

+ (1 − ω) HT
γ J−1

β (θ2) Kβ (θ2) J−1
β (θ2) Hγ , (14)

because o(‖(1)̂θβ − θ1‖) = oP (n−1/2) and o(‖(2)̂θβ − θ2‖) = oP (m−1/2).

As in the one sample case, simple calculations show that the power of the test
statistic in (13) is approximately

π
β,γ
m,n,α (θ1, θ2) = 1 − �

⎛

⎝

√
nm

n+m

σ 2
γ,β (θ1, θ2)

(
sγ,β
α

2

n + m

nm
− dγ ( fθ1, fθ2)

)⎞

⎠ ,

where �(x) is the standard normal distribution function. If some alternative θ1 �= θ2
is the true parameter, then the probability of rejecting θ1 = θ2 with the rejection rule
Sγ

(
(1)̂θβ,(2) θ̂β

)
> sβ,γ

α , for fixed significance level α, tends to one as n, m → ∞.
The test statistic is consistent in Fraser’s sense.
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4 Simulation study

To focus on a case where the support is bounded on one side and estimation or testing
using the minimum φ-divergence technique is problematic, we consider the exponen-
tial distribution with mean θ and explore the performance of our proposed statistics for
testing hypothesis about θ . Routine calculations show that the minimum density power
divergence estimator θ̂β of θ corresponding to tuning parameter β can be obtained by
iteratively solving the equation

θ̂β =
∑n

i=1 Xi exp
{
−β Xi

θ̂β

}

∑n
i=1 exp

{
−β Xi

θ̂β

}
− nβ

(1+β)2

, (15)

where X1, . . . , Xn represents a random sample of size n from Exp(θ), the exponential
distribution with mean θ . The MLE of θ (minimum density power divergence estima-
tor with β = 0) has an explicit expression given by θ̂0 = n

/∑n
i=1 Xi . For general β,

the components in Eq. (6) simplify to provide the expression

Var[n 1
2 θ̂β ] = h(β)θ2, (16)

where

h(β)= (1 + β)2 P(β)

(1 + β2)2(1+2β)3 , P(β)=1+4β + 9β2 + 14β3 + 13β4 + 8β5 + 4β6.

(17)

The function h(β) is increasing with β; the relative efficiencies of θ̂β , therefore, are
decreasing with β.

In testing the hypothesis H0 : θ = θ0 against H1 : θ �= θ0 about a scalar parameter
θ , it is readily seen that

Tγ (θ̂β, θ0)

λγ,β(θ0)
−→
n→∞ χ2

1 , (18)

where λγ,β(θ0) is the unique eigenvalue in question and the tests given by Tγ , 1Tγ and
2Tγ are equivalent. The expression of λγ,β(θ0) for β > 0 is easily obtained through
standard calculations as (see Theorem 1)

λγ,β(θ0) = aγ (θ0)Var[n 1
2 θ̂β ] = P(β)Q(γ, β)θ

−γ
0(

1 + β2
)
(1 + 2β)3

,

with

aγ (θ0) = ∂2dγ ( fθ , fθ0)

∂θ2

]

θ=θ0

= θ
−γ−2
0

(1 + γ )2

(
1 + γ 2

)
,

dγ ( fθ , fθ0) = θ
−γ
0

1 + γ
+ θ−γ

γ (1 + γ )
− γ + 1

γ

θ
−γ
0

γ θ
θ0

+ 1
, Q(γ, β)= (1 + γ 2)(1 + β)2

(1 + β2)(1 + γ )2 .
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Note that Q(β, β) = 1 and when β = 0, λβ,β(θ0) = 1, as it happens with the
likelihood ratio statistic. On the other hand, Eq. (8) gives

Tγ (θ̂β, θ0) =

⎧
⎪⎪⎨

⎪⎪⎩

2n

(
θ

−γ
0

1+γ
+ θ̂

−γ
β

γ (1+γ )
− γ+1

γ

θ
−γ
0

γ
θ̂β
θ0

+1

)

, if γ > 0

2n
(

log θ0
θ̂β

+
(

1 − θ0
θ̂β

))
, if γ = 0,

and hence

Tγ (θ̂β, θ0)

λγ,β(θ0)
=

⎧
⎪⎪⎨

⎪⎪⎩

2n
(
1+β2

)
(1+2β)3

P(β)Q(γ,β)
1

γ (1+γ )

(

γ +
(

θ̂β

θ0

)−γ − (1+γ )2

γ
θ̂β
θ0

+1

)

, if γ > 0

2n
(

log θ0
θ̂β

+
(

1 − θ0
θ̂β

))
, if γ = 0.

(19)

To analyze the performance of our family of test statistics (19), we will com-

pare the observed (empirical) sizes of Tγ (θ̂β )

λγ,β (θ0)
for β = 0, 0.1, 0.2, . . . , 1. Without

any loss of generality, we choose θ0 = 2 for our simulation since an observation
from X ∼ Exp(θ0) can be generated through an observation from X ′ ∼ Exp(1) as
X = θ0 X ′, which means that the ratio θ0/θ̂β will remain constant and, therefore, so
will Tγ (θ̂β, θ0)/λ

γ,β(θ0); the scale equivariance of the minimum density power diver-
gence estimator is obvious from Eq. (15). Our Monte-Carlo study is performed with
100,000 replications for each sample size.

To study the stability of the level, we generate samples from the exponential mixture

f X (ε)
θ0

= (1 − ε) fθ0(x) + ε f2θ0(x), (20)

where fθ (x) represents the density function of the Exp(θ) distribution. The pure model
corresponds to ε = 0, and in this case we expect the nominal level—here chosen as
0.05—will be closely approximated by the empirical level; the latter is determined,
for each ε, by the empirical proportion of rejections given by

α̂(ε) = #

{
T (i)

γ (θ̂β(ε), θ0)

λγ,β(θ0)
> χ2

1,0.05 = 3.84146

}

/100,000, i = 1, . . . , 100,000.

(21)

Good level stability is indicated if the procedure guards against large displacements in
α̂(ε), compared to α̂(0). In our study, we will present the values of α̂(0.05) together
with α̂(0).

The performance of a robust test of hypothesis cannot be described by its level sta-
bility alone; one must also investigate the stability of the power of the statistic when
true distributions outside the null are contaminated leading to possible loss in power.
To investigate the power scenario, we generate data from the mixture

f W (ε)

θ ′
0

(w) = (1 − ε) fθ ′
0
(w) + ε fθ ′

0/3(w) (22)
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Fig. 1 Probability density functions for the pure and the contaminated distributions

where the real value of the parameter is θ ′
0 = 3 θ0

2 . For ε = 0, this represents the test
of H0 : θ = 2 when θ = 3 is the true parameter, so that one should expect reasonable
power. For ε > 0 the contaminating proportion brings the mean closer to that of the
null, and some loss in power is likely. As in Eq. (21), let the empirical power π̂(ε) be
the empirical proportion of rejections, and good power stability will be indicated by
a slow decline in π̂(ε) over increasing ε. To compare with π̂(0), here we will present
values of π̂(ε) for ε = 0.1, 0.15 and 0.2.

In the first panel of Fig. 1, the density of the pure Exp(2) distribution is provided
by the solid line, while the 5 % contaminated density (ε = 0.05) is presented by the
dashed line. The shift between the densities is small, almost invisible to the naked eye,
but is sufficient to produce an large inflation in the level of the likelihood ratio test
in our simulations. In the second panel, the density of the Exp(3) distribution is pre-
sented by the thick solid line, and the three contaminated densities used in our power
calculations by the thin solid line (ε = 0.1), dashed line (ε = 0.15) and the dotted
line (ε = 0.2). Clearly, the contaminations do force the density somewhat closer to
the null, and a major loss in power for the likelihood ratio test is not unexpected.

Tables 1, 2, 3, 4 and 5 provide extensive representations of the simulated sizes and
powers, α̂(ε) and π̂ (ε), for several samples sizes, n ∈ {10, 25, 50, 75, 300}. We restrict
ourselves to the β = γ case here. The likelihood based method (β = γ = 0) per-
forms well under the model, although values of γ close to zero generate procedures
which are competitive in this respect. For contaminated data, the situation changes
drastically, and the likelihood based method turns out to be a poor choice. Values of
γ around 0.3 or 0.4 appear to provide good compromise solutions, exhibiting small
losses at the model and greatly improved performances under contamination. At a
sample size of n = 300, e.g. a contamination of ε = 0.2 pulls down the power of the
likelihood ratio test to 28.6 from 100 %, while those for γ = 0.3 and 0.4 hold their
own close to 85 %. Similar stabilities are observed in case of the attained size of these
tests. Overall, the density power divergence statistics provide great alternatives to the
likelihood ratio test for testing problems about the exponential mean. The boldfaced
entries in the tables indicate the optimal results.
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Table 1 Simulated sizes and powers with and without contamination when n = 10

β = γ α̂(0) α̂(0.05) π̂(0) π̂(0.1) π̂(0.15) π̂(0.2)

0.0 0.05186 0.06235 0.22627 0.15268 0.13266 0.12187

0.1 0.05205 0.05816 0.23347 0.15528 0.13084 0.11421

0.2 0.05257 0.05497 0.23516 0.16600 0.14089 0.12119

0.3 0.05420 0.05458 0.23444 0.17574 0.15182 0.13182

0.4 0.05783 0.05681 0.23412 0.18224 0.16001 0.14048

0.5 0.06135 0.05877 0.23296 0.18568 0.16471 0.14607

0.6 0.06464 0.06141 0.23320 0.18886 0.16833 0.15069

0.7 0.06731 0.06344 0.23352 0.19074 0.17102 0.15389

0.8 0.06967 0.06556 0.23397 0.19295 0.17356 0.15639

0.9 0.07194 0.06740 0.23518 0.19402 0.17499 0.15825

1.0 0.07398 0.06911 0.23660 0.19594 0.17678 0.15987

Table 2 Simulated sizes and powers with and without contamination when n = 25

β = γ α̂(0) α̂(0.05) π̂(0) π̂(0.1) π̂(0.15) π̂(0.2)

0.0 0.05008 0.06590 0.50177 0.24823 0.17799 0.13669

0.1 0.05004 0.05913 0.50161 0.27259 0.19594 0.14131

0.2 0.04987 0.05465 0.48533 0.29479 0.22168 0.16486

0.3 0.05105 0.05314 0.46323 0.30450 0.23906 0.18488

0.4 0.05232 0.05233 0.44237 0.30573 0.24805 0.19661

0.5 0.05330 0.05199 0.42395 0.30251 0.25010 0.20299

0.6 0.05494 0.05188 0.41001 0.29929 0.25007 0.20526

0.7 0.05601 0.05245 0.39829 0.29561 0.24872 0.20644

0.8 0.05745 0.05279 0.39047 0.29206 0.24697 0.20673

0.9 0.05866 0.05322 0.38415 0.28948 0.24547 0.20637

1.0 0.05987 0.05383 0.37952 0.28743 0.24395 0.20603

5 Real data examples

5.1 Telephone-fault data: normal example

We consider the data on telephone line faults presented and analyzed by Welch (1987);
the data were also analyzed by Simpson (1989). The data are given in Table 6 and
consist of the ordered differences between the inverse test rates and the inverse con-
trol rates in 14 matched pairs of areas. A simple parametric approach would be to
model these data as a random sample from a normal distribution with mean μ and
standard deviation σ . One fact immediately noticeable is that the first observation of
this dataset is a huge outlier with respect to the normal model, while the remaining 13
observations appear to be reasonable with respect to the same. In Fig. 2, we present
a kernel density estimate for these data, the normal model fit based on the maximum

123



Hypothesis testing based on density power divergence 341

Table 3 Simulated sizes and powers with and without contamination when n = 50

β = γ α̂(0) α̂(0.05) π̂(0) π̂(0.1) π̂(0.15) π̂(0.2)

0.0 0.04898 0.07258 0.81121 0.38287 0.23805 0.15453

0.1 0.04915 0.06258 0.80430 0.44973 0.29753 0.18599

0.2 0.04910 0.05716 0.78038 0.49277 0.35238 0.23477

0.3 0.04949 0.05430 0.75005 0.50492 0.38170 0.27141

0.4 0.05014 0.05261 0.71781 0.50164 0.39232 0.29166

0.5 0.05060 0.05186 0.68791 0.49089 0.39220 0.29991

0.6 0.05128 0.05100 0.66197 0.47797 0.38663 0.30164

0.7 0.05194 0.05024 0.63966 0.46579 0.38020 0.29908

0.8 0.05267 0.04978 0.62166 0.45447 0.37279 0.29647

0.9 0.05298 0.04961 0.60760 0.44483 0.36586 0.29284

1.0 0.05359 0.04946 0.59591 0.43697 0.36046 0.28970

Table 4 Simulated sizes and powers with and without contamination when n = 75

β = γ α̂(0) α̂(0.05) π̂(0) π̂(0.1) π̂(0.15) π̂(0.2)

0.0 0.05014 0.08150 0.93975 0.49559 0.29245 0.16693

0.1 0.05020 0.07037 0.93475 0.59902 0.39282 0.22999

0.2 0.04972 0.06273 0.91925 0.65181 0.47018 0.30457

0.3 0.04988 0.05787 0.89802 0.66476 0.50925 0.35600

0.4 0.05008 0.05501 0.87429 0.65893 0.52161 0.38406

0.5 0.05029 0.05317 0.84879 0.64511 0.51979 0.39510

0.6 0.05081 0.05181 0.82460 0.62877 0.51209 0.39577

0.7 0.05098 0.05063 0.80295 0.61258 0.50145 0.39197

0.8 0.05157 0.04964 0.78486 0.59735 0.49058 0.38568

0.9 0.05169 0.04906 0.76840 0.58388 0.48043 0.37904

1.0 0.05201 0.04881 0.75507 0.57196 0.47246 0.37332

likelihood estimates of μ and σ , a normal model fit based on the minimum density
power divergence estimates (with tuning parameter 0.15) of the normal parameters,
and a normal model fit based on the minimum Hellinger distance estimates of the nor-
mal parameters (Simpson 1989). The figure shows that if a small hump to the extreme
left could be ignored, these data would have a nice unimodal structure which could be
well modeled by an appropriate normal density. Apart from the minimum Hellinger
distance estimates, such a normal density is provided in this figure by the minimum
density power divergence estimates which correspond to μ = 121.3 and σ = 134.2.
The maximum likelihood estimates, on the other hand, try to be inclusive and generate
a result which neither models the outlier deleted data, nor provides a fit to the outlier
component.

For the full data, the t test for the null hypothesis H0 : μ = 0 against H1 :
μ > 0 fails to reject the null due to the presence of the large outlier; however, the

123



342 A. Basu et al.

Table 5 Simulated sizes and powers with and without contamination when n = 300

β = γ α̂(0) α̂(0.05) π̂(0) π̂(0.1) π̂(0.15) π̂(0.2)

0.0 0.04945 0.14692 1.00000 0.942270 0.66559 0.28573

0.1 0.04949 0.11434 1.00000 0.98903 0.87863 0.56135

0.2 0.04962 0.09495 1.00000 0.99579 0.94733 0.75300

0.3 0.04962 0.08261 1.00000 0.99685 0.96668 0.83884

0.4 0.04979 0.07404 1.00000 0.99647 0.97114 0.87163

0.5 0.04982 0.06889 0.99998 0.99552 0.97068 0.88287

0.6 0.05014 0.06507 0.99989 0.99408 0.96769 0.88387

0.7 0.04990 0.06241 0.99988 0.99228 0.96345 0.87870

0.8 0.05002 0.06038 0.99983 0.99006 0.95829 0.87117

0.9 0.04999 0.05847 0.99970 0.98768 0.95242 0.86276

1.0 0.05028 0.05743 0.99959 0.985310 0.94677 0.85388

Table 6 Telephone-line faults data

Pair 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Difference −988 −135 −78 3 59 83 93 110 189 197 204 229 289 310

−1000 −500 0 500 1000
0

0.5

1

1.5

2

2.5

3
x 10

−3

 

 

DPD(0.15)

Kernel

HD

ML

Fig. 2 Kernel density estimate and different normal fits for the drosophila data

robust Hellinger deviance test (Simpson 1989) comfortably rejects the null, as does the
t-test based on the cleaned data after the removal of the large outlier. The minimum
Hellinger distance estimate of the mean parameter as reported by Simpson (116.8) is
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Fig. 3 The p values of the density power divergence tests for H0 : σ = 132 against H1 : σ �= 132, under
normal model with μ = 115, for different values of γ

remarkably close to the maximum likelihood estimate of the mean parameter based
on the cleaned data (117.9).

Under the normal model, the usual estimates of scale are highly inflated due to the
presence of the large outlier, and as a result the likelihood ratio test under the normal
model is likely to reject null hypotheses about the scale parameter where the null value
is chosen to be close to the standard deviation of the normal model fitting the last 13
observations (132.82), but far off from the standard deviation based on the full data
(321.94). From the robustness perspective, this is precisely what we will like to avoid,
and here we demonstrate that proper choices of the tuning parameter within the class
of tests developed in this paper achieve this goal. We consider a N (115, σ 2) model
for the data, and test the null hypotheses H0 : σ = σ0 against H1 : σ �= σ0 for the null
value of σ0 = 132. For the density power divergence test with β = γ , the expression
for the sole eigenvalue is given by

(1 + γ )7/2

σ
2γ
0 (2π)γ/2(γ 2 + 2)

[
4γ 2 + 2

(1 + 2γ )5/2
− γ 2

(1 + γ )3

]

,

which reduces to 1 when γ = 0. Figure 3 represents the p values of the tests for
different values of γ in a region of interest. While it is clearly seen that the tests fail
to recognize 132 as a likely scale value for these data at very small values of γ , the
decision turns in favor of σ0 = 132, sharply, as γ crosses and goes beyond 0.1. This
stable behavior of the test statistic based on the density power divergence approxi-
mately coincides with the stability of the density power divergence estimate of σ itself,
which is presented in Fig. 4. The density power divergence estimate of σ (for μ = 115)
drops from the neighborhood of 319.41 at γ = 0 to approximately 153.79 at γ = 0.11,
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Fig. 4 Estimates of σ for the telephone line fault data under the normal model

about 142.56 at γ = 0.12, and about 134.81 at γ = 0.15. At least in this example, the
robustness of the test statistic is clearly linked to the robustness of the estimator.

We also consider testing the hypotheses H0 : μ = 115, σ = 132 against the not
equal to alternative. For this problem, where the dimension of the parameter vector
is greater than 1, we have discussed four approximations to the null distribution in
Sect. 3.1. The hypothesis testing results based on these four approximations are quite
similar, and to keep a clear focus in our presentations we have presented only the
results for the statistic 2Tγ (̂θβ, θ0) with γ = β. Figure 5 presents the p values of this
test for values of γ ∈ [0, 0.2], and the observations are quite similar to those of Fig. 3.

5.2 Two-sample drosophila data: Poisson example

Here, we present a two-sample real data example. This experiment, considered in
Woodruff et al. (1984) and Simpson (1989), is known to produce occasional spurious
counts. Male flies were exposed either to a certain degree of chemical to be screened
or to control conditions and the responses are the numbers of recessive lethal muta-
tions among the daughters of such flies. The responses are assumed to be Poisson with
means θ1 (control group) and θ2 (treated group) respectively. The data are given in
Table 7. We want to test the hypothesis

H0 : θ1 ≥ θ2 against H1 : θ1 < θ2. (23)

The apprehension is that the presence of the two large counts for the treated group
may make the mean of the second group appear larger, although this conclusion may
not be supported by the rest of the data.

Suppose Poisson(θ) denotes the Poisson probability mass function with parame-
ter θ, n and m are the sample size from the two populations, (1)θ̂β and (2)θ̂β are the
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Fig. 5 The p values of the density power divergence tests for H0 : σ = 132 and μ = 115 against
H0 : σ �= 132 or μ �= 115, under normal model, for different values of γ

Table 7 Frequencies of the number of recessive lethal daughters for Drosophila data

0 1 2 3 4 5 6 7

Observed (control) 159 15 3 0 0 0 0 0

Observed (treated) 110 11 5 0 0 0 1 1

minimum density power divergence estimators (MDPDEs) of the two populations and
(Null)θ̂β is the common MDPDE under the null. We consider the hypothesis

H0 : θ1 = θ2 against H1 : θ1 �= θ2. (24)

It follows from Theorem 6 that the test statistic for testing the last set of hypotheses
is given by

∗Sγ

(
(1)θ̂β ,(2) θ̂β

)
= 1

λ
(
(Null)θ̂β

)
2nm

(m + n)
dγ

(
Poisson

(
(1)θ̂β

)
, Poisson

(
(2)θ̂β

))
,

where

λ
(

(Null)θ̂β

)
= Aγ

(
(Null)θ̂β

)
Kβ

(
(Null)θ̂β

)/
J 2
β

(
(Null)θ̂β

)
,

aγ (θ) = (1 + γ )

∞∑

x=0

(
e−θ θ x

x !
)γ+1 ( x

θ
− 1
)2

,

Jβ(θ) =
∞∑

x=0

(
e−θ θ x

x !
)1+β ( x

θ
− 1
)2
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Table 8 Estimated Poisson parameters for the two-sample example

β = 0 β = 0.25 β = 0.5 β = 0.75 β = 1

(1)θ̂β 0.1186 0.1075 0.1021 0.1008 0.1016
(2)θ̂β 0.2656 0.1418 0.1270 0.1249 0.1287
(Null)θ̂β 0.1803 0.1211 0.1120 0.1105 0.1127

Table 9 The signed test
statistics and the associated p
values for the two-sample data

β = γ Full data Outlier deleted data

LRT 2.9586 (0.0015) 1.0986 (0.1359)

0.00 2.7622 (0.0029) 1.0646 (0.1435)

0.25 0.8043 (0.2106) 0.7400 (0.2296)

0.50 0.5991 (0.2746) 0.5151 (0.3032)

0.75 0.5835 (0.2798) 0.4475 (0.3273)

1.00 0.6543 (0.2565) 0.4638 (0.3311)

and

Kβ(θ) =
∞∑

x=0

(
e−θ θ x

x !
)1+2β ( x

θ
− 1
)2 −

[ ∞∑

x=0

(
e−θ θ x

x !
)1+β ( x

θ
− 1
)
]2

.

The asymptotic distribution of the statistic ∗Sγ ((1)θ̂β ,(2) θ̂β) is Chi-square with one
degree of freedom. An approximate test statistic for testing (23) is then given by the
signed square root

∗T β,γ =
√

∗Sγ

(
(1)θ̂β ,(2) θ̂β

)
sign

(
(2)θ̂β −(1) θ̂β

)

whose asymptotic distribution may be approximated by the standard normal distri-
bution. Table 8 presents the estimators for different values of β for the null and the
unrestricted situations for the full data.

The value of the signed square root of the likelihood ratio test (LRT) statistic is
2.9586, which gives a p value of 0.0015 using normal approximation. It is clear that
this apparently significant result is due to the two large observations in the treated
group; the exclusion of the outliers produces a signed statistic of 1.0986 for the likeli-
hood ratio test with an associated p value of 0.1359. Unlike the one sample problem,
the statistic for γ = β = 0 case no longer equals the likelihood ratio statistic; how-
ever, the density power divergence test for this case exhibits the same behavior. But
all the other signed square root statistics generate p values which are insignificant by
any usual standard, whether with or without the outliers. Thus, the two outliers do
not affect the decision for our robust tests, although the likelihood ratio test and the
γ = β = 0 statistic fail to hold up against the outliers. The values of ∗T β,γ for the
full and the outlier deleted (with the two outliers removed) data are given in Table 9.
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6 Concluding remarks

The density power divergence family has already demonstrated its worth in robust
parametric estimation. The application of the same divergence for parametric hypoth-
esis testing problems is more tricky since usual drop-in-divergence type tests are
difficult to adapt to this scenario. Here we have proposed a statistic based on the above
divergence which generates a structure that is asymptotically described by a linear
combination of independent χ2 variables. Within the domain of its applicability, our
numerical results show that the tests based on moderate values of γ (such as those
between 0.1 and 0.4) can work as very useful robust alternatives to the likelihood ratio
test.

In order to keep a clear focus in our presentations, the discussion, derivation and
implications of this paper has been kept limited to the case of the simple null. While
our examples and simulation results have demonstrated the worth of our method in
these situations, for greater scope of application it will be important to extend these
results to the case of the composite null. We hope to undertake this extension in a
sequel paper.
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