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The paper addresses grey-box testing of a system of communicating finite state machines 
under the assumptions that the system's structure is preserved in all potential implementations, 
and that at most one component can be faulty. Several possible testing strategies which rely on 
these assumptions in various manners are presented and compared. The ideas behind these 
strategies are explained on a simple serial composition of two communicating FSMs. The 
existing FSM-based test derivation methods are assessed for their applicability to solve the 
problems arising from grey-box testing. 
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1. INTRODUCTION 

There have been many research efforts on conformance test derivation for protocols based on 
their formal models, mainly the LTS and FSM models, and the black-box representation of an 
implementation under test (1U'l). According to the black-box strategy, a test suite is generated 
from, for example, a single FSM representing the reference behavior, and it is assumed that all 
possible faults are modeled by a finite set of mutant (faulty) FSMs [Petr93a]. This test suite is 
to be considered as complete, i.e. having complete fault coverage, if it can detect 
nonequivalence of any FSM from the predefined set of machines (the fault domain) to the 
reference (deterministic) FSM. It is natural to believe that as the power of this set increases, the 
length of the complete test suite increases as well. Thus, its length essentially depends on the 
accuracy of our choice of the set of mutants. In context of black-box testing, this set is usually 
defined by an upper bound on the number of states in all potential implementations, since no 
assumptions are made about the internal structure of an IUT [Gill62]. 

In practice, however, an IUT is often embedded within a complex system under test (see, 
e.g. the embedded test method of ISO [IS9646]), or it has some components that have been 
thoroughly tested in isolation. A similar situation arises when testing has to be performed based 
on the assumption that at most one component can be faulty in the known structure of the given 
compound implementation. A test engineer may impose this assumption because it is, in fact, 
plausible under the given circumstances, i.e. the probability of several components being faulty 
is realistically assumed to be much less than that of a single one. On the other hand, the 
engineer may wish to simply avoid test explosion at the price, perhaps, of a worse fault 
coverage. In the last case, he has in his support a widely acknowledged observation that tests 
for single faults usually capture multiple faults as well. 

In all the above presented situations, a black-box representation of an implementation 
becomes inadequate for the amount of available information. Actually, this information could be 
used to refine the fault domain and reduce the number of tests. The related testing strategy is 
known as grey-box testing [Morr93] or structured testing [Lee93]. In particular, grey-box 
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testing is interpreted as a situation where the structure of the tested composed system is known, 
but the implementation details within each component remain hidden. As an example, testing 
concurrent systems for interoperability is essentially grey-box testing [Cast93]. Grey-box 
testing of FSMs was fust considered in the context of functional testing of sequential circuits 
[Oas75]. 

In this paper, we consider grey-box testing of a system of communicating fmite state 
machines, assuming that its structure is preserved in all potential implementations and that at 
most one component can be faulty. We present and compare several possible testing strategies 
which rely on these assumptions in various manners. The ideas behind these strategies are 
explained on a simple serial composition of two communicating FSMs. The existing FSM­
based test derivation methods are assessed for their applicability to solve the problems arising 
from grey-box testing. 

The rest of this paper is structured as follows. Section 2 contains several notions related to 
the FSM model and introduces the problem of the grey-box testing of communicating FSMs. In 

Section 3, we analyze the testing strategy based on the composed machine construction as well 
as an ad hoc strategy based on the choice of a subset of transitions to be checked. Section 4 
presents a strategy that relies on use of a so-called fault function which allows one to refine the 
fault domain needed for deriving a complete test suite. Section 5 presents a strategy that is 
based on the idea of transforming the given modular specification into a so-called testable 
representation of behavior of the component under test. Because of space constraints, the 
proofs are omitted, for more details, see [petr94]. In Section 6, we compare these strategies 
based on the length of complete test suites obtained for a simple example which is used 
throughout the paper. Open issues are discussed in Section 7. 

2. BASIC NOTIONS AND DEFINITIONS 

2.1. NFSMs 
A nondeterministic finite state machine (NFSM), often simply called a machine throughout 

this paper, is an initialized nondeterministic Mealy machine which can be formally defined as 
follows [petr93a]. A nondeterministic finite state machine A is a 6-tuple (S. X, Y, h. so, DA), 
where S is a set of n states with so as the initial state; X - a fmite set of input symbols; Y - a 
finite set of output symbols; D A - a specification domain which is a subset of S x X; h - a 

behavior function h: DA ~ JP(S x 1'), and JP(S x 1') is the powerset of S x Y. 

Let a = X1XZ ... Xk eX*. a is called an acceptable input sequence for state Si eS, if there 

exist k states Silo SiZ • ...• si/c e S and an output sequence r= YIYZ ... Yk e Y* such that there is 
a sequence of transitions Si-Xl/Yl->SiJ-XZ/YZ->SiZ -> ... -> Si/c-l-xiIy/c>Si/c in the machine. We . . . 
use X i to denote the set of all the acceptable mput sequences for the state Si and X A for the state 
so, i.e. for A. 

An NFSM A is said to be completely specified, if D A = S X X. We will omit the 
specification domain DA in the case of completely specified machines. If DA is a proper subset 

of S x X then A is considered partially specified. An NFSM can be referred to as a complete or 
a partial machine. 

• We extend the behavior function to the set XA of all acceptable input words (sequences) 
• containing the empty word e. i.e., h: S x XA ..-.? JP(S x Y*). The function hI is the next state 

function, while hZ is the output function of NFSM A [petr93a]. 

The machine A becomes deterministic when Ih(s.x)1 = 1 for all (s.x) e DA. In a 
deterministic FSM, instead of the behavior function, we use two functions: the next state 

function 0, and the output function A.. 

The equivalence relation between two states Si and Sj in the NFSM A holds if 
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(i) X;" = X/ and (ii) 'Va e X;" (h2(sj,a) = h2(sj,a) ), otherwise, they are nonequivalent. 

Two NFSMs A and B are said to be equivalent if their initial states are equivalent 
We will be interested in machines which are initially connected. Given a NFSM A = (S, X, 

• Y, h, so, DA), A is said to be initially connected if'Vs e S 3ae XA (s e hI (so, a». Every 
NFSM is equivalent to an initially connected one. 

The complete NFSM B = (T, X, Y, H, to) is said to be quasi-equivalent to A if for all 

acceptable input sequences a e X ~ (H2(to, a) = h2(sO, a) ). 

Given the NFSM A = (S, X, Y, h, so, DA), and complete NFSM B, B is said to be a 
reduction of A. written B ~ A. if 

'Vae X~ (H2(t(),a)~ h2(so,a». 

If B ~A and B is deterministic then it is referred to as a D-reduction of A. 
An NFSM B = (S', X. Y, h', SO) is said to be a submachine of the NFSM A = (S, X, Y, h, 

so) if S' ~ Sand h'(s,x) ~ h(s,x) for all (s,x) e S'x X. Obviously, all submachines of A are 
its reductions. If a submachine of A is deterministic then it is said to be a D-submachine of A. 

We will use the reduction and quasi-equivalence relations between NFSMs as the 
conformance relations between implementations and their specifications which are essential to 
deriving test suites [Petr93a]. We assume that all potential faults are represented by a finite set 

of "mutant" NFSMs of the reference machine A [Petr93a], i.e., the set S of completely 
specified NFSMs with the same input alphabet X is the fault model. If this set is a universal set 

of all machines with at most m states then we denote it Sm . 

• Let E be a fmite set of fmite input sequences from X A. A test suite E is said to be complete 

for the specification NFSM A w.r.t. the reduction relation in the class S if for any NFSM B = 

(T, X, Y, H, to) in this set S which is not a reduction of A 

3 ae E 3re H2(t(),a) (r~ h2(s(),a». 

In words, for every possible mutant NFSM that is not a reduction of the NFSM A, the test suite 
E should have at least one input sequence which eliminates it Note that in the rest of the paper, 
we assume a reliable reset feature in potential implementations. 

A test suite E is said to be complete for the NFSM A w.r.t. the quasi-equivalence relation in 

the class S if, for any B = (T, X, Y, H, to) in this set S which is not quasi-equivalent to A 

3 a e E (H2(to,a) ¢ h2(s(),a) ). 

A complete test suite guarantees complete coverage of all faults from the predefined domain S. 

2.2. Seri~1 composition of NFSMs and its testing 
Consider testing a component of a system C (Figure 1) which is the serial connection of two 

complete NFSMs, H = (S, X, Z, hI, SO) and T = (P, Z, Y, h2, po). 
Suppose a next input symbol is only submitted t!l the system after it has produced an output 

symbol in response to the previous input symbol. This means the behavior of the system C can 

be specified by an NFSM AC = (SxP, X, Y, h, sOPO) further referred to as a composed 

machine, where the behavior function h is defined as follows. For any (sp,x)e SxPxX 

h(sp,x) = ( (s'p',y) I s'e hhs,x), (p',y)e h2(P,Z), (s',z)e hI (s,x) }. 

The defmed composed machine could have equivalent states as well as states that are not 
reachable from the initial state. If we are only interested in analyzing the behavior the whole 
system then we can always merge all equivalent states and delete unreachable states. 

Two systems are said to be equivalent if their corresponding NFSMs are equivalent. The 
system C is a reduction of the system D if the NFSM AC is a reduction of the NFSM AD. 

Now, we define a fault model and complete test suite for the composed NFSM AC of the 
given system C under the assumption that only one component, either H or T, can be faulty. 
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Let Sm(C,H) be a set of all composed NFSMs which correspond to the systems obtained 

from the given system C by replacing the component H with a mutant of Sm, which is the set 

of all mutants of H, ~ISI. A complete test suite for a component H of C in the class Sm w.r.t 
the reduction (equivalence) relation is now defined as a complete test suite for the NFSM Ac in 

the class Sm(C,H) w.r.t. the reduction (equivalence) relation. A fault model Sm(C,1) and 
complete test suite for a component T are similarly dermed. 

In the remaining part of this paper, we consider compositions of only deterministic machines 
to simplify our discussion on grey-box based testing strategies. 

x~ 
~O""-L2J""-

Figure 1: The system C. 

~ elY b'L ylq 

Figure 2: The FSM H. Figure 3: The FSM T. 

:dq 

Figure 4: The composed FSM. 

Example. Consider the system shown in Figure 1. Assume the behavior of the head 
component is specified by the FSM H given in Figure 2, and that of the tail component by the 
FSM T in Figure 3. Following the rules for constructing a composed machine given above, we 
obtain the machine in Figure 4. The initial state of this machine is 11, since the initial states of 
H and T are assumed to be 1 and 1. This machine corresponds to an "ideal" case when a 
composed machine has no equivalent or unreachable states. 

• 
We will use this simple example to compare the length of test suites derived, when different 

methodologies are used for testing this system under the assumption that only one component 
can be faulty. Such a testing is referred to as grey-box testing of the given system, in contrast to 
black-box testing, which requires no knowledge of the internal IUT structure, or assumptions 
of fault-free components. 

This system can be easily tested on a component by component basis with the black-box 
strategy applied to each isolated component, provided that a point of control and observation 
(PeO) is introduced into the system. Since this is not always feasible, we further consider the 
testing strategies which do not rely on the existence of PCOs. At the same time, we may 
interpret the composition as a part of some modular system with the point of control at the input 
of H and the point of observation at the output of T. 

Concluding this section, we derive for our example, two complete test suites for the 
components tested in isolation, in order to have a common basis for comparing length of 
various test suites obtained by following the different strategies. We assume that no fault can 
increase the number of states in implementations of a reference machine and apply a method 
such as the Wp-method [Fuji91]. For the isolated FSM H, the complete test suite in the class of 

S2 is { raaa, raba, rba }. 

It has length of 11 (resets "r" are also counted). The complete test suite for the isolated FSM T 

in the class S3 has length 27: 
{ rxz, ryxz, ryyz, ryzz, rzxz, rzyz, rzxz, rzu }. 

Comparing the length of the above given test suite with that of a test suite needed to test the 
corresponding component embedded into the given system, we could see how its testability 
deteriorates. 
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3. TESTING THROUGH THE COMPOSED MACHINE CONSTRUCTION 

3.1. Black-box testing of the composed machine 
In order to finally exploit a traditional FSM-based test derivation method [Petr93a], 

[Sidh89], we can replace the grey-box view of the given system by the composed machine. 
This machine now serves as a reference machine for deriving test suites, provided an upper 
bound on the number of states in the implementation under test is known, i.e. the fault model is 
defmed [Lu094a]. Unfortunately, even if it is assumed that the faults in any implementation of 
any component do not increase its number of states, a corresponding composed machine may 
still have a larger number of states than the reference composed machine. There may exist 
unreachable or equivalent states in the reference machine, which may become reachable or 

distinct in the mutant composed machine. In the worst case, alllSxPl states are reachable and 

distinct, so a test suite has to be constructed in the class $m, where m= ISxPl. At the same time, 

consider the example where faults in the head component can increase the number of states 

from lSI to IS'!. It does not necessarily imply that IS'xPI should be taken as a proper upper 

bound. A more rigorous analysis is needed to identify the exact maximal number of states in all 
possible mutants, assuming that faults are only located in a single component The actual goal is 
the reduction of a final test suite, since it is well-known that the size of a test suite required to 
test a machine with m states with respect to a reference machine with n states (n~m) grows 
exponentially as (m-n) increases [Vasi73], [Chow78], [Fuji91]. A more exact fault model 
would usually yield a shorter complete test suite. 

Example. To illustrate the results of treating the above constructed composed FSM as a black­
box, we derive a complete test suite for the composed machine (Figure 4) in the class of all 
FSMs with at most 6 states, assuming that no fault can increase the number of states in any 
component. The Wp-method [Fuji91] gives the following result. The state cover set is V = {e, 
a, b, ba, bab, baba}. The characterization set is W = {a, bb}; based on this set, we can 
construct the following state identifiers: WI = {a,b}, W2 = {bb}, W3 = {a,bb}, W4 = {b}, W5 
= {a,b}, W6 = {a,b}. The resulting test suite contains 11 test sequences of total length 63: 

{ raaa, raab, rabbb, rbba, rbbb, rbaabb, rbabaabb, rbababa, rbababbb, rbabba, rbabbbb }. 

To test both components in isolation we need only 38 test events as shown in Section 2.2. 

• 
A test suite derived in this way from a reference composed machine usually contains a large 

amount of redundancy, since it neglects to exploit the assumption that all components but one, 
and the interconnection between them, are correctly implemented. More sophisticated strategies 
are required to reduce this kind of redundancy. In the remaining part of the paper, we present 
some of them and compare the length of the resulting test suites for the same example presented 
in Figures 1 - 4. 

Summarizing the above discussion we conclude that a straightforward application of the 
black-box testing methodology to the grey-box testing: 

- requires a precise analysis of the effect of faults on the maximal number of states in 
potential implementations; 

- relies upon the existing test derivation methods once that upper bound is established; 
- faces the problem of test explosion; 
- results in a test suite with a certain amount of redundancy which should and could be 

avoided. 
In the following sections we elaborate certain strategies which take more advantage of the 

knowledge of the internal structure and the assumption of a single faulty component. 

3.2. Checking transitions in the composed machine 
Since the states of a composed machine are structured and the transitions between states are 

composed of transitions of component machines, it is natural to try (see, for example, 
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[Dam91]) to construct a complete test suite for the composed machine Ac in such a way that 
only an appropriate subset of the transitions in AC are checked. An implied approach, however, 
heavily depends on what is meant by saying "a transition is, in fact, checked". The test 
derivation methods such as the W- [Vasi73], [Chow78], Wp- [Fuji91], UIOv- [Vuon89] 
methods foresee the two distinct phases of testing a machine under test, namely: the state 
verification phase and transition checking phase; others, like [petr91], [Petr92], do so 
implicitly. Omitting the former makes the latter indeterminate; one can no longer state that a 
transition has then been checked (see the related discussion in [Vuon89] on the UIO-based 
methods). Consequently, we further base our discussion on checking a restricted D.umber of 
transitions on existence of the state verification phase. 

Clearly the choice of an appropriate subset of transitions in a composed machine depends to 
a large extent on the manner in which the output signal of component H is propagated to the 
external output. As can be seen from Figures 2 and 3, certain errors in H which are 
distinguishable at the output of H are masked by T. For example, component T in state 1 
processes its inputs x and y in the same manner. Thus, if the composed machine is in state 11, 
the erroneous output y of component H in response to the input a will not be detected at the 
output of the system; this particular error can be detected if the composed machine is in state 13. 
However, an erroneous output z of component H in response to the input a will not be detected 
at the external output if the composed machine is in state 13, but it will be detected if the system 
is in state 11, reversing the roles played by these two states. 

The above example clearly shows that in certain cases, it is not enough to check a transition 
in component H once only. In fact, component T in Figure 3 has been so constructed to 
demonstrate this fact. Note that in this example, there are two transitions in the head 
component, from state 2, that can be tested only once in the composed machine, but not in an 
arbitrary its state. For example, the transition from state 2 under input a cannot be tested only 
once if the composed machine is in state 22. However, in a complex system, such an analysis 
becomes rather cumbersome. 

Example. Based on the above discussion, we construct a complete test suite for this particular 
example in an ad hoc manner. The idea behind this construction is to use the characterization set 
W = {a, bb} for state identification, and state identifiers for checking tail states of transitions 
chosen in an appropriate way. In particular, assuming that only the head component can be 
faulty, i.e. the tail component is fault-free, it is sufficient to check the following transitions: 11-
alq->22, ll-b/q->12, 13-alp->23, 13-b/p->33, 23-alq->12, 22-b/q->12. The test suite has 8 
test sequences of total length 44: 

{ raa, rabbb, rbaa, rbabaabb, rbababb, rbabba, rbabbbb, rbbb }. 

In a similar way, we derive a test suite assuming that only the tail component can be faulty. We 
obtain 9 test sequences of total length 52: 

{ raaa, raab, rabbb, rbaabb, rbabaabb, rbababa, rbababbb, rbabbb, rbbb }. 

If we now merge these test suites, we obtain the test suite which can reveal faults located in 
either the head or the tail component: 

{ raaa, raab, rabbb, rbaabb, rbabaabb, rbababa, rbababbb, rbabba, rbabbbb, rbbb }. 
The test suite has length of 59, i.e. slightly shorter that the one constructed in Section 3.1. 

• 
We call such an approach the ad hoc strategy. This strategy can be characterized as follows: 
- it may give better results than the black-box strategy, since a complete test suite can always 

be obtained by deleting, in an ad hoc manner, some (sub) sequences from the test suite 
constructed by the last strategy; 

- a very rigorous analysis is needed to guarantee the complete fault coverage; 
- it is not easy to automate. 
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Next we consider more fonnalized grey-box based testing strategies. 

4. THE USE OF A FAULT FUNCTION 

As mentioned above, test derivation from the reference composed machine in the class Sm 
results in redundant tests. The main reason for this is that this fault domain includes mutants 
that should be excluded under a single faulty component assumption. Consider, for example, 
the transition ll-blq->12 in the composed machineAc (Figure 4). If all the potential faults are 
in the tail component, then it does not make sense to distinguish the reference machine from 
mutants having transitions from 11 to 21, 22, or to 23 under b/q. In fact, since the head 
component does not have any errors, the composed machine cannot enter those states due to 
faults in the tail component. The conclusion is that the fault domain has to be refmed to get a 
shorter, but still complete test suite. 

The fault domain can be specified exactly by explicitly enumerating all the mutant machines 
of the constructed composed machine. In this case, the fault model would actually be a list of 
FSMs as, for example, in [Bn091]. However, the number of mutants tends to explode, and 
therefore there is a need for a more compact representation of mutants with restricted faults 
which may occur in a composed machine. An appropriate method should tune a test suite to 
cover these mutants exclusively. So far, there is only one such method, namely, the FF-method 
[Petr92] that is based on the notion of a fault function. The method partially meets these 
requirements. In the next section, we recall the notion of a fault function from [petr92]. 

4.1. The fault function 

Let A = ( S, X, Y, 6, A. SO) be a complete reference FSM. To model potential deviations of 
the IUT behavior from the reference FSM or, in other words, the mutants of A, a function F is 

introduced describing their range. The function F: S'x X ~ JP(S'x y), where S';2 S, and 

JP(S'xY) is the set of all subsets from S'xY, is called a fault function for the given reference 
machine A, if 

V(s,x) e SXX ([6(s,x),A,(s,x)] e F(s,x». 

Thus, to represent the superfluous states implemented by mistake or due to other reasons, the 

set S'\S is used. The set F(so) ~ S' represents all possible mutant initial states. 
We associate with the fault function F a set F(A) of detenninistic FSMs which are mutants of 

the given reference machine A, i.e. 

F(A) = {B=(S',X,Y,Li,A,sOB) I SOB E F(so) & V(s,x) E (SxX) ( [Li(s,x),A(s,x)] E F(s,x) ) }. 

The set F(A) defmes a fault domain for the reference machine A. The quintuple AF = 
(S',X,Y,F,F(so» is, in fact, a (weakly initialized [Starn]) NFSM with the set of initial states 
F(so), and the defined function F specifies exactly its reaction to input words. It is conceded 

that F(s, a) comprises, in the general case, states and output words that are not the reactions of 
any detenninistic machines from F(A). The following relations between the reactions of the 
reference FSM A, machine AF and a joint reaction of the mutants from F(A) hold: 

[6(s,a),A,(s,a)] e { [Li(s,a),A(s,a)] I (S',X,Y,..1,A,soB)e F(A) } ~ F(s, a). 

The use of the fault function allows us to refme the fault domain for the composed machine. 
In particular, we next show how a fault function for the composed machine can be fonnally 
defmed based on a single faulty component assumption. 

4.2. Constructing the fault function for the faulty head machine 
Now we describe the construction of the fault function for the given composed machine 

under the assumption that only the head component can be faulty. Let H = (S, x. ~ aI, A,l, 

SO) and T = ( P, Z, Y, a2, A,2, PO) be the component machines of C. The idea of the 
construction is as follows. Consider a transition in the composed machine from state sp under 
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the input x. As a result of the head component's malfunctioning, the composed machine can 
enter some state s'p'. The first component state s' is any state of the head machine. The second 
state p' is a successor of the state p in the tail machine for any its input, producing the output 
corresponding to the transition from p into the successor p'. Formally, the fault function is 

specified for any spe SXP and xe X: 

F(sp, x) = ( (s'p',y) I s'e S & (P',y) = (oiP,z), AiP,Z» for all zeZ }, F(sopo) = S x {po}. 

Example. Table 1 gives the fault function for our example when the tail component is 
assumed to be fault-free. F(ll) = {ll,2I}. Bold symbols in the table correspond to the 
reference composed machine (Figure 4). 

Table 1: The fault function for the faulty head component. 

This table is interpreted also as a state table of the NFSM CF which characterizes all the 
mutants, i.e. the fault domain, of the composed machine, under the assumption that the tail 
component is fault-free. 

• 
Proposition 4.1. Let CF be an NFSM defined by the constructed fault function F. Any 
mutant of the composed machine with a faulty head machine is a D-submachine of C F. 

• 
However, the converse is not true, since not every its D-submachine is a mutant of the 

composed machine with a faulty head machine. Consider Table 1 and a mutant composed 
machine with the transition from state 11 to state 12 under input a. Since the faulty head 
component remains in the same state 1 under input a, this machine cannot have a transition, for 
example, from the state 12 to state 21 under this input; however, such a machine is included in 
the fault domain F(Ac). 

As shown in [Petr92], the fault function provides a compressed representation of the set of 
mutants of the given reference machine. A test suite complete w.r.t. these restricted faults can 
be derived by applying the so-called FF-method, presented in the same paper. 

Finally, we use this method to derive a complete test suite for the composed machine (Figure 
4) and the fault function in Table 1. The test suite has 37 test events: 

{ raab, rabb, rbaab, rbabaab, rbababa, rbabba, rbbb }. 

4.3. Constructing the fault function for the faulty tail machine 
In this section, we describe the construction of the fault function G for the given composed 

machine under the assumption that only the tail component can be faulty. 
The idea behind this construction is similar to the one in the previous section. Consider a 

transition in the composed machine from state sp under the input x. As a result of the 
malfunctioning of the tail component, the composed machine can enter any state s'p'. The first 
component s' is the successor state of the head machine under this input. The second 
component p' is any state of the tail machine, producing any output. Formally, the fault 

function G is specified for any spe SXP and xe X: 

G(sp, x) = ( (s'p',y) Is' = OI(S,X), p'e P, ye Y}, G(sopo) = {so} x P. 

Example. Table 1 gives the fault function for the composition. G(l1) = {1l,I2,13}. Bold 
symbols in the table corresponds to the reference composed machine (Figure 4). 
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Table 2: The fault function for the faulty tail component 

b 

• 
The corresponding NFSM CG describes the fault domain in this case, as stated by the 

following proposition. 

Proposition 4.2. Let CG be an NFSM defined by the constructed fault function G. Any 
mutant of the composed machine with a faulty tail machine is a D-submachine of CG. 

• 
Example. We derive a complete test suite for the composed machine (Figure 4) and the fault 
function in Table 2 using the FF-method. The resulting complete test suite has 42 symbols: 

{ raab, rabbb, rbaabb, rbabaabb, rbababbb, rbabbbb, rbbb }. 

Finally, we merge these test suites to obtain the test suite which can reveal faults located in 
either the head or the tail component: 

{ rfUlb, rbababa, rbabba, rabbb, rbaabb, rbabaabb, rbababbb, rbabbbb, rbbb }. 

It has length of 55, i.e. it is shorter that the ones generated by the Wp-method with 63 symbols 
and by the ad hoc method with 59 symbols. 

• 
We call this presented approach to testing the composed system the FF-based strategy. Its 

main features are as follows: 
- it provides a compact representation of mutants with faults which may occur in a limited 

number of components of the composed system; 
- the resulting complete test suites are less redundant than in the case of black-box testing 

since the fault domain is more accurately determined; 
- it is based on the formal method as opposed to the ad hoc strategy. 

As shown above, this strategy yields such a test suite that covers not only all the potential 
faults but also the ones resulting in a nondeterministic behavior the system. Based on the 
assumption that any implementation of the given deterministic system also can be represented as 
a deterministic FSM, we conclude that the test suite might still be redundant. A strategy which 
takes care of this situation could give a better result. In the next section, we present such a 
strategy. 

5. TESTABLE REPRESENTATION OF A COMPONENT UNDER TEST 

When a component is connected as part of a compound system, the ability to control its 
inputs and observe its outputs is decreased. The state table of the isolated component does not 
characterize its behavior in the system. This problem was addressed in design of sequential 
circuits, and some procedures for modifying the state tables of components were proposed 
[Kim72]. The modified FSM is a specification of the component's behavior such that is 
controllable from the external inputs and observable at the external outputs of the whole system. 
In the context of design of sequential circuits, the modified FSM is used for achieving a further 
optimization of the given system of interacting FSMs [Rh091], [Deva89]. Here, we further 
develop this approach for constructing such "testable" representations of the components that 
can be used for test derivation [Petr93b]. 
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5.1. A component with nonobservable output 
If the head component is faulty, then in response to a certain input sequence, it can produce 

an output sequence which does not coincide with the output sequence of H. However, the 
failure on the external output occurs if the tail component reacts differently to these input 
sequences; otherwise the fault may go undetected. As shown below, the FSM formalism will 
provide an elegant characterization of externally undetectable deviations in the behavior of an 
imbedded component. 

Two input sequences of the FSM T a and r are said to be T-equivalent, if T produces the 
same output sequence when these sequences are applied to its initial state. The relation of T­
equivalence partitions the set of all input sequences of T into the equivalence classes. If an 
output reaction of the faulty head machine and the reaction of the reference head machine lead to 
the same extemally observed output reaction in response to any input sequence, then there is no 
experiment (test) which could detect the faulty head component. 

Two FSMs HI and H2 are said to be T-equivalent if their output reactions to any input 
sequence are T-equivalent. The T-equivalence of different head components implies the 
equivalence of the composed machines, since their compositions with T have the same 
behavior. 

Proposition 5.1. The two composed FSMs Cl and C2 with the same tail FSM Tare 
equivalent iff their head FSMs are T -equivalent. 

• 
Now we introduce an inductive rule for constructing the set of input sequences of T which 

are T -equiValent to an output response )t of the FSM H when an input sequence en is applied. 

Suppose such a set is already defined for 'Yo and let pbe a sequence T-equivalent to 1- We must 

determine which symbol z' can extend the sequence 13 in order to form aT -equivalent sequence 

to )t. It is known that H enters state s under a, and T enters state P] under 'Yo i.e. the state of 

the composed machine is now SP] = ~sop(), a). The output of the composed machine is 

A.(sp ],x). Assume T enters state P2 under the sequence p. Then f3z' is T -equivalent to Yl if and 

only if )..(sP],x) = )..2Cp2,Z~. 
The above described rule for constructing the set of sequences leads us to the formal 

specification of a nondeterministic FSM H that contains all the sequences which are T­

equivalent to the output response rof the FSM H to any input sequence a. 

Let Ac = (SxP, X, Y, 6, ).., sOPo) be the composed machine. Then H = (SxPxP, X, Z, h, 

sOPOPo), where for any xeX, SP]P2eSxPxP, the behavior function is specified as follows: 

h(sP]P2,X) is equal to { (SP']P'2,Z) I Sp'] = ~SP],x), zeZ and )..2Cp2,Z) = )..(sPJ,X) } if there 

exists a z such that )..»2,Z) = ).,(sP],x), otherwise it remains undefmed. 

Example. The NFSM H obtained from the above example is shown in Figure 5. A composed 

machine constructed from H and the machine T is isomorphic to the composed machine AC 
(Figure 4). In other words, given the composed system, no experiment can distinguish which 

of the machines, the FSM H, or any reduction of H is used as the first component. 

Figure 5: The NFSM H 

• 
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Proposition 5.2. Let II be the NFSM constructed for the head FSM H of the composition C 
and let AL be the composed FSM of a composition L with the same tail FSM T. AL is 

equivalent to the composed FSM AC iff the head FSM of L is a D-reduction of the NFSM II. 

• 
The set of D-reductions of the NFSM H can have machines which are not equivalent to the 

head FSM H. These FSMs correspond to the implementations that would not conform to the 
isolated FSM H, but when considered in the composition C, become conforming to H. In other 

words, the NFSM II is a complete characterization of all implementations with undetectable 
faults. Note that the problem of the characterization of conforming implementations w.r.t. the 
environment in terms of LTSs was recently discussed in [Drir93], and in terms of FSMs was 
independently considered in [petr93b]. 

Proposition 5.3. Any complete test suite for the NFSM II w.r.t. the reduction relation in the 

class 3m is also a complete test suite for the component H of C w.r.t. the equivalence relation 
in the same class; and conversely, any complete test suite for the component H of C w.r.t. the 

equivalence relation in the class 3m is also a complete test suite for the NFSM II w.r.t. the 
reduction relation in the same class. 

• 
This proposition states that in order to test the deterministic head component in the serial 

composition, we have to derive a test suite from a nondeterministic FSM. The problem of test 
derivation in the grey-box context is thus transformed to a well-known problem of deriving 
tests in the black-box context, using a nondeterministic FSM and the reduction relation. So far, 
there are very few formal methods for solving the latter problem [Yevt91], [petr93b]. 

Example. We now continue our example by deriving a complete test suite for the NFSM II in 
Figure 5 with a version of the SC-method [petr93b]. We know that all implementations of the 

specification NFSM II are deterministic machines, so, assuming that faults in component H do 
not increase the number of states, we conclude that a complete test suite has to be derived for 

the class 32 . The resulting test suite has length of 22: { raabaa, raaa, raabb, raba, rba }. 

• 
Note that in spite of the fact that any input sequence is acceptable for the constructed NFSM 

H. this machine can be, in general, partially specified, which makes test derivation even more 
difficult for this class of nondeterministic machines. 

This section demonstrates that nondeterministic machines provide a formal tool to describe 
potential deviations in the behavior of an imbedded deterministic component which do not alter 
the externally observed behavior. 

5.2. A component with noncontrollable input 
Two FSMs T1 and T2 are said to be H-equivalent if their output reactions to any output 

sequence of H coincide. The H-·equivalence of different tail components implies the equivalence 
of the composed machines. 

Proposition 5.4. The two composed FSMs C1 and C2 with the same head FSM H are 
equivalent iff their tail FSMs are H-equivalent. 

• 
The FSM T, once it is completely specified, can accept any input sequence from its input 

alphabet, however, the FSM H does not at all guarantee to deliver all these sequences. 
Therefore, we need to fmd such a "portion" of the behavior of T that can be enabled by H. The 
intuition behind is that only this part of T is of importance to the composed behavior. Even if 
the remaining part is faulty, there is no impact on the composed behavior. Since it cannot be 
externally tested anyway, it should be excluded from testing. 
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To proceed in this way, we ftrst construct an acceptor to specify all the output sequences of 
the FSM H. Next, suppose we run this acceptor in parallel to the FSM T in such way that the 
acceptor signals to a current state of Twhether its behavior is deftned for a current input 

Fonnally, a (nondetenninistic) acceptor is deftned over the alphabet Z and the state set S with 

sa as the initial state, its next state function CP'is specifted as follows: 

CP'(s,z) = { s' 13 xeX ( Ol(S,X) = s' & Al(S,X) = z) } 

if the FSM H in state S can produce output z, otherwise CP'(s,z) is left undefmed. All its states 
are accepting states. If the acceptor is nondetenninistic, then applying the standard technique 

[Hopc79] will yield a detenninistic acceptor Az = ( B, Z; tb, ba). 

Now we are able to fonnally deftne a direct product T = (PxB, Z; Y, ..1, A, paba, D) of the 
acceptor Az and the FSM Twhich corresponds to their parallel composition. 

The speciftcation domain D is the set { (pb, z) I «b,z) is deftned}. The functions of T are: 

,d(pb,z) = (ONJ,x), tP(b,z»; A(Pb,z) = ANJ,X) for all (pb, z)eD. 
This constructed FSM represents the testable behavior of the tail component, in the sense that 
all input sequences which detennine this behavior can be delivered to the input of the 

component through the head machine. Moreover, T and T produce the same output responses 

to these sequences. The above procedure for obtaining the partial FSM (PFSM) T is similar to 
the one presented in [Kim72J. 

Example. The detenninistic acceptor for the head component (Figure 2) is given in Figure 6. 

Figure 7 gives the PFSM T for our example. 

x x 

~ 
y z 

Figure 6: The acceptor Az Figure 7: The PFSM T 
• 

PrQPositiQO 5.5. Let T be the PFSM constructed for the tail machine T of the composition C 
and let AL be the composed FSM of a composition L with the same head FSM H. AL is 

equivalent to the composed FSM AC iff the tail FSM of L is quasi-equivalent to the PFSM T . 
• 

In general, the set of machines that are quasi-equivalent to the PFSM T can have machines 
which are not equivalent to the tail FSM T. These FSMs correspond to the implementations that 
would not confonn to the isolated FSM T, but when considered in the composition C, they 

become confonning to Tin C. In other words, the PFSM T is a complete characterization of all 
implementations with undetectable faults. 

Any test suite for the PFSM T has the property that it is always possible to ftnd a 

corresponding test suite for the whole system which produces the test suite for T on the internal 
input of the tail component. We say in this case, that there is a translation of one test suite into 
another. 

PrQPQsjtiQO 5.6. Any complete test suite for the PFSM T w.r.t. the quasi-equivalence 

relation in the class !]m is translated into a test suite which is complete for the component T of C 
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w.r.t. the equivalence relation in the same class; conversely, any complete test suite for the 

component T of C w.r.t. the equivalence relation in the class Sm is translated into a complete 

test suite for the PFSM Tw.r.t. the quasi-equivalence relation in the same class. 

• 
Since this proposition states that in order to test the tail component in the serial composition 

we must derive a test suite from a partial FSM, the problem of test derivation in the grey-box 
context is thus transformed to a well-known problem of deriving tests in the black-box context, 
from a partial (possibly unreduced) FSM w.r.t. the quasi-equivalence relation. However, 
almost all of the currently available methods are based on the so-called completeness 

assumption (see, for example, [petr93a]), which is useless in this case. The unacceptable for T 
input sequences cannot be delivered to the tail component through the head component and 
there is no way to test the behavior of the tail machine caused by these sequences. There are, 
however, test derivation methods [Yevt90], [Petr9I], [Lu094] which do not rely on this 
assumption, and can be applied to partially specified and unreduced FSMs. 

Example. We continue our example by deriving a complete test suite for the PFSM T (Figure 

7) in the class Sm with the method [yevt90], [Petr91]. The result is: 

{ rxxxx, rxxyxx, rxxz:a, rxxzxyx, rxxzxzx, rxyx, rxzx }. 

Then, we translate this test suite into a set of input sequences of the FSM H which cause them 
to occur on the input of the FSM T: 

{ rbbbb, rbaabb, rbabbbb, rbabaab, rbababb, raab, raba }. 

This test suite has 40 test events. Finally, we merge this test suite and the one derived in 
Section 5.1.1 and obtain the test suite which can reveal faults located in either the head or the 
tail component and has length of 51: 

{ raaa, raabaa, raabb, raba, rbaabb, rbabaab, rbababb, rbabbbb, rbbbb }. 

5.3. Summary of the presented strategy 
As follows from the above discussion on transforming FSM-specifications, there is a new 

testing strategy based on the testable representations, which at the moment seems very 
promising and worth further research. In short, this strategy: 

- gives a complete characterization of the implementations that do not conform to the isolated 
component, but when considered in the composition, they become conforming; 

- provides the exact specification of the fault domain needed for test derivation; 
- could produce non-redundant complete test suites if appropriate test generation methods are 

applied; 
- requires that these methods deal with partially specified, nondeterministic possibly 

unreduced FSMs and the reduction relation. 
- relies on the testable representations which are not as tractable as composed machines. 

6. COMPARING THE RESULTS OBTAINED WITH DIFFERENT 
STRATEGIES 

We have considered in this paper the following grey-box-based testing strategies: 
- Test derivation from the constructed composed machine based on the black-box 
representation of the given system; 

- Test derivation based on an ad hoc choice of a subset of transitions to be checked in the 
composed machine; 
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- Test derivation based on the construction of a fault function; 
- Test derivation from a testable behavior representation of the embedded component 
The order in which these strategies are placed reflects the achieved refinement of the fault 

domain. The fault domain for the strategy based on construction of the testable behavior is the 
smallest domain. The same example was used throughout this paper to illustrate the results 
obtained with different strategies. The results are summarized in Table 3. The last row gives the 
length of the test suites which are used for testing the component machines in isolation. 

One can see from this table that the refmement of the fault domain has a tendency (at least in 
this example) to decrease the length of a corresponding complete test suite, as expected. 

Table 3: Summary of the results of test derivation. 

7. CONCLUSION 

We have considered in this paper the problem of testing an implementation treated as a grey­
box, assuming that the specification structure is preserved in all potential implementations, and 
that at most one component is faulty. We have presented and compared several possible testing 
strategies which rely on these assumptions in various manners. All these strategies have at least 
one common feature: they transfer in one way or another the problem of grey-box testing into 
the realm of black-box testing by finding a suitable black-box representation and an appropriate 
fault domain for which there already exists certain fonnal methods for test derivation. At the 
moment, every presented strategy seems to have its own suitability, although it should be 
mentioned that the strategy based on a constructed testable behavior of the component under test 
is capable of providing the complete characterization of detectable and undetectable faults, as 
well as the shortest complete test suite. 

The basic techniques needed for constructing testable behavior have been presented in this 
paper for a simple system of communicating detenninistic FSMs; however, they can be 
generalized to cover more complex systems of even nondetenninistic machines. By comparing 
the testable representation of a component with the original one, it is possible to assess how its 
testability changes when it is embedded within the given system [petI94]. The presented results 
give us some insight on design of "easily testable" systems; they could also be used to locate 
the points of observation and control. It is believed that the results presented in this paper for 
the FSM model can be applied to the LTS model as well, following a semantics-dependent 
transfonnation of an LTS into a corresponding FSM as it has been recently proposed in 
[PetI93a]. 

At the same time, having a good characterization of a testable behavior does not necessarily 
mean that there is a good algorithm. A lot of work remains to develop efficient methods for 
deriving tests from the nondetenninistic FSM representation of the testable behavior. The grey­
box testing requires efficient test derivation methods for various types of FSMs, especially for 
those which are nondetenninistic and partially specified. The universality of the completeness 
assumption often implied by a number of existing methods seems to have been overestimated, 
and as a result there are not yet many test derivation methods for partially specified systems. 
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