
13

Testing Strategies for Communicating FSMs

A. Petrenko, N. YevtushenkoO, R. Dssouli

Universite de Montreal, Canada

o Tomsk State University, Russia

The paper addresses grey-box testing of a system of communicating finite state machines
under the assumptions that the system's structure is preserved in all potential implementations,
and that at most one component can be faulty. Several possible testing strategies which rely on
these assumptions in various manners are presented and compared. The ideas behind these
strategies are explained on a simple serial composition of two communicating FSMs. The
existing FSM-based test derivation methods are assessed for their applicability to solve the
problems arising from grey-box testing.

Key Word Codes: C.2.2: D.2.5
Key Words: Network Protocols; Testing and Debugging

1. INTRODUCTION

There have been many research efforts on conformance test derivation for protocols based on
their formal models, mainly the LTS and FSM models, and the black-box representation of an
implementation under test (1U'l). According to the black-box strategy, a test suite is generated
from, for example, a single FSM representing the reference behavior, and it is assumed that all
possible faults are modeled by a finite set of mutant (faulty) FSMs [Petr93a]. This test suite is
to be considered as complete, i.e. having complete fault coverage, if it can detect
nonequivalence of any FSM from the predefined set of machines (the fault domain) to the
reference (deterministic) FSM. It is natural to believe that as the power of this set increases, the
length of the complete test suite increases as well. Thus, its length essentially depends on the
accuracy of our choice of the set of mutants. In context of black-box testing, this set is usually
defined by an upper bound on the number of states in all potential implementations, since no
assumptions are made about the internal structure of an IUT [Gill62].

In practice, however, an IUT is often embedded within a complex system under test (see,
e.g. the embedded test method of ISO [IS9646]), or it has some components that have been
thoroughly tested in isolation. A similar situation arises when testing has to be performed based
on the assumption that at most one component can be faulty in the known structure of the given
compound implementation. A test engineer may impose this assumption because it is, in fact,
plausible under the given circumstances, i.e. the probability of several components being faulty
is realistically assumed to be much less than that of a single one. On the other hand, the
engineer may wish to simply avoid test explosion at the price, perhaps, of a worse fault
coverage. In the last case, he has in his support a widely acknowledged observation that tests
for single faults usually capture multiple faults as well.

In all the above presented situations, a black-box representation of an implementation
becomes inadequate for the amount of available information. Actually, this information could be
used to refine the fault domain and reduce the number of tests. The related testing strategy is
known as grey-box testing [Morr93] or structured testing [Lee93]. In particular, grey-box

T. Mizuno et al. (eds.), Protocol Test Systems

© Springer Science+Business Media Dordrecht 1995

194 Part Four

testing is interpreted as a situation where the structure of the tested composed system is known,
but the implementation details within each component remain hidden. As an example, testing
concurrent systems for interoperability is essentially grey-box testing [Cast93]. Grey-box
testing of FSMs was fust considered in the context of functional testing of sequential circuits
[Oas75].

In this paper, we consider grey-box testing of a system of communicating fmite state
machines, assuming that its structure is preserved in all potential implementations and that at
most one component can be faulty. We present and compare several possible testing strategies
which rely on these assumptions in various manners. The ideas behind these strategies are
explained on a simple serial composition of two communicating FSMs. The existing FSM­
based test derivation methods are assessed for their applicability to solve the problems arising
from grey-box testing.

The rest of this paper is structured as follows. Section 2 contains several notions related to
the FSM model and introduces the problem of the grey-box testing of communicating FSMs. In

Section 3, we analyze the testing strategy based on the composed machine construction as well
as an ad hoc strategy based on the choice of a subset of transitions to be checked. Section 4
presents a strategy that relies on use of a so-called fault function which allows one to refine the
fault domain needed for deriving a complete test suite. Section 5 presents a strategy that is
based on the idea of transforming the given modular specification into a so-called testable
representation of behavior of the component under test. Because of space constraints, the
proofs are omitted, for more details, see [petr94]. In Section 6, we compare these strategies
based on the length of complete test suites obtained for a simple example which is used
throughout the paper. Open issues are discussed in Section 7.

2. BASIC NOTIONS AND DEFINITIONS

2.1. NFSMs
A nondeterministic finite state machine (NFSM), often simply called a machine throughout

this paper, is an initialized nondeterministic Mealy machine which can be formally defined as
follows [petr93a]. A nondeterministic finite state machine A is a 6-tuple (S. X, Y, h. so, DA),
where S is a set of n states with so as the initial state; X - a fmite set of input symbols; Y - a
finite set of output symbols; D A - a specification domain which is a subset of S x X; h - a

behavior function h: DA ~ JP(S x 1'), and JP(S x 1') is the powerset of S x Y.

Let a = X1XZ ... Xk eX*. a is called an acceptable input sequence for state Si eS, if there

exist k states Silo SiZ • ...• si/c e S and an output sequence r= YIYZ ... Yk e Y* such that there is
a sequence of transitions Si-Xl/Yl->SiJ-XZ/YZ->SiZ -> ... -> Si/c-l-xiIy/c>Si/c in the machine. We . . .
use X i to denote the set of all the acceptable mput sequences for the state Si and X A for the state
so, i.e. for A.

An NFSM A is said to be completely specified, if D A = S X X. We will omit the
specification domain DA in the case of completely specified machines. If DA is a proper subset

of S x X then A is considered partially specified. An NFSM can be referred to as a complete or
a partial machine.

• We extend the behavior function to the set XA of all acceptable input words (sequences)
• containing the empty word e. i.e., h: S x XA ..-.? JP(S x Y*). The function hI is the next state

function, while hZ is the output function of NFSM A [petr93a].

The machine A becomes deterministic when Ih(s.x)1 = 1 for all (s.x) e DA. In a
deterministic FSM, instead of the behavior function, we use two functions: the next state

function 0, and the output function A..

The equivalence relation between two states Si and Sj in the NFSM A holds if

Testing strategies for communicating FSMs 195

(i) X;" = X/ and (ii) 'Va e X;" (h2(sj,a) = h2(sj,a)), otherwise, they are nonequivalent.

Two NFSMs A and B are said to be equivalent if their initial states are equivalent
We will be interested in machines which are initially connected. Given a NFSM A = (S, X,

• Y, h, so, DA), A is said to be initially connected if'Vs e S 3ae XA (s e hI (so, a». Every
NFSM is equivalent to an initially connected one.

The complete NFSM B = (T, X, Y, H, to) is said to be quasi-equivalent to A if for all

acceptable input sequences a e X ~ (H2(to, a) = h2(sO, a)).

Given the NFSM A = (S, X, Y, h, so, DA), and complete NFSM B, B is said to be a
reduction of A. written B ~ A. if

'Vae X~ (H2(t(),a)~ h2(so,a».

If B ~A and B is deterministic then it is referred to as a D-reduction of A.
An NFSM B = (S', X. Y, h', SO) is said to be a submachine of the NFSM A = (S, X, Y, h,

so) if S' ~ Sand h'(s,x) ~ h(s,x) for all (s,x) e S'x X. Obviously, all submachines of A are
its reductions. If a submachine of A is deterministic then it is said to be a D-submachine of A.

We will use the reduction and quasi-equivalence relations between NFSMs as the
conformance relations between implementations and their specifications which are essential to
deriving test suites [Petr93a]. We assume that all potential faults are represented by a finite set

of "mutant" NFSMs of the reference machine A [Petr93a], i.e., the set S of completely
specified NFSMs with the same input alphabet X is the fault model. If this set is a universal set

of all machines with at most m states then we denote it Sm .

• Let E be a fmite set of fmite input sequences from X A. A test suite E is said to be complete

for the specification NFSM A w.r.t. the reduction relation in the class S if for any NFSM B =

(T, X, Y, H, to) in this set S which is not a reduction of A

3 ae E 3re H2(t(),a) (r~ h2(s(),a».

In words, for every possible mutant NFSM that is not a reduction of the NFSM A, the test suite
E should have at least one input sequence which eliminates it Note that in the rest of the paper,
we assume a reliable reset feature in potential implementations.

A test suite E is said to be complete for the NFSM A w.r.t. the quasi-equivalence relation in

the class S if, for any B = (T, X, Y, H, to) in this set S which is not quasi-equivalent to A

3 a e E (H2(to,a) ¢ h2(s(),a)).

A complete test suite guarantees complete coverage of all faults from the predefined domain S.

2.2. Seri~1 composition of NFSMs and its testing
Consider testing a component of a system C (Figure 1) which is the serial connection of two

complete NFSMs, H = (S, X, Z, hI, SO) and T = (P, Z, Y, h2, po).
Suppose a next input symbol is only submitted t!l the system after it has produced an output

symbol in response to the previous input symbol. This means the behavior of the system C can

be specified by an NFSM AC = (SxP, X, Y, h, sOPO) further referred to as a composed

machine, where the behavior function h is defined as follows. For any (sp,x)e SxPxX

h(sp,x) = ((s'p',y) I s'e hhs,x), (p',y)e h2(P,Z), (s',z)e hI (s,x) }.

The defmed composed machine could have equivalent states as well as states that are not
reachable from the initial state. If we are only interested in analyzing the behavior the whole
system then we can always merge all equivalent states and delete unreachable states.

Two systems are said to be equivalent if their corresponding NFSMs are equivalent. The
system C is a reduction of the system D if the NFSM AC is a reduction of the NFSM AD.

Now, we define a fault model and complete test suite for the composed NFSM AC of the
given system C under the assumption that only one component, either H or T, can be faulty.

196 Part Four

Let Sm(C,H) be a set of all composed NFSMs which correspond to the systems obtained

from the given system C by replacing the component H with a mutant of Sm, which is the set

of all mutants of H, ~ISI. A complete test suite for a component H of C in the class Sm w.r.t
the reduction (equivalence) relation is now defined as a complete test suite for the NFSM Ac in

the class Sm(C,H) w.r.t. the reduction (equivalence) relation. A fault model Sm(C,1) and
complete test suite for a component T are similarly dermed.

In the remaining part of this paper, we consider compositions of only deterministic machines
to simplify our discussion on grey-box based testing strategies.

x~
~O""-L2J""-

Figure 1: The system C.

~ elY b'L ylq

Figure 2: The FSM H. Figure 3: The FSM T.

:dq

Figure 4: The composed FSM.

Example. Consider the system shown in Figure 1. Assume the behavior of the head
component is specified by the FSM H given in Figure 2, and that of the tail component by the
FSM T in Figure 3. Following the rules for constructing a composed machine given above, we
obtain the machine in Figure 4. The initial state of this machine is 11, since the initial states of
H and T are assumed to be 1 and 1. This machine corresponds to an "ideal" case when a
composed machine has no equivalent or unreachable states.

•
We will use this simple example to compare the length of test suites derived, when different

methodologies are used for testing this system under the assumption that only one component
can be faulty. Such a testing is referred to as grey-box testing of the given system, in contrast to
black-box testing, which requires no knowledge of the internal IUT structure, or assumptions
of fault-free components.

This system can be easily tested on a component by component basis with the black-box
strategy applied to each isolated component, provided that a point of control and observation
(PeO) is introduced into the system. Since this is not always feasible, we further consider the
testing strategies which do not rely on the existence of PCOs. At the same time, we may
interpret the composition as a part of some modular system with the point of control at the input
of H and the point of observation at the output of T.

Concluding this section, we derive for our example, two complete test suites for the
components tested in isolation, in order to have a common basis for comparing length of
various test suites obtained by following the different strategies. We assume that no fault can
increase the number of states in implementations of a reference machine and apply a method
such as the Wp-method [Fuji91]. For the isolated FSM H, the complete test suite in the class of

S2 is { raaa, raba, rba }.

It has length of 11 (resets "r" are also counted). The complete test suite for the isolated FSM T

in the class S3 has length 27:
{ rxz, ryxz, ryyz, ryzz, rzxz, rzyz, rzxz, rzu }.

Comparing the length of the above given test suite with that of a test suite needed to test the
corresponding component embedded into the given system, we could see how its testability
deteriorates.

Testing strategies for communicating FSMs 197

3. TESTING THROUGH THE COMPOSED MACHINE CONSTRUCTION

3.1. Black-box testing of the composed machine
In order to finally exploit a traditional FSM-based test derivation method [Petr93a],

[Sidh89], we can replace the grey-box view of the given system by the composed machine.
This machine now serves as a reference machine for deriving test suites, provided an upper
bound on the number of states in the implementation under test is known, i.e. the fault model is
defmed [Lu094a]. Unfortunately, even if it is assumed that the faults in any implementation of
any component do not increase its number of states, a corresponding composed machine may
still have a larger number of states than the reference composed machine. There may exist
unreachable or equivalent states in the reference machine, which may become reachable or

distinct in the mutant composed machine. In the worst case, alllSxPl states are reachable and

distinct, so a test suite has to be constructed in the class $m, where m= ISxPl. At the same time,

consider the example where faults in the head component can increase the number of states

from lSI to IS'!. It does not necessarily imply that IS'xPI should be taken as a proper upper

bound. A more rigorous analysis is needed to identify the exact maximal number of states in all
possible mutants, assuming that faults are only located in a single component The actual goal is
the reduction of a final test suite, since it is well-known that the size of a test suite required to
test a machine with m states with respect to a reference machine with n states (n~m) grows
exponentially as (m-n) increases [Vasi73], [Chow78], [Fuji91]. A more exact fault model
would usually yield a shorter complete test suite.

Example. To illustrate the results of treating the above constructed composed FSM as a black­
box, we derive a complete test suite for the composed machine (Figure 4) in the class of all
FSMs with at most 6 states, assuming that no fault can increase the number of states in any
component. The Wp-method [Fuji91] gives the following result. The state cover set is V = {e,
a, b, ba, bab, baba}. The characterization set is W = {a, bb}; based on this set, we can
construct the following state identifiers: WI = {a,b}, W2 = {bb}, W3 = {a,bb}, W4 = {b}, W5
= {a,b}, W6 = {a,b}. The resulting test suite contains 11 test sequences of total length 63:

{ raaa, raab, rabbb, rbba, rbbb, rbaabb, rbabaabb, rbababa, rbababbb, rbabba, rbabbbb }.

To test both components in isolation we need only 38 test events as shown in Section 2.2.

•
A test suite derived in this way from a reference composed machine usually contains a large

amount of redundancy, since it neglects to exploit the assumption that all components but one,
and the interconnection between them, are correctly implemented. More sophisticated strategies
are required to reduce this kind of redundancy. In the remaining part of the paper, we present
some of them and compare the length of the resulting test suites for the same example presented
in Figures 1 - 4.

Summarizing the above discussion we conclude that a straightforward application of the
black-box testing methodology to the grey-box testing:

- requires a precise analysis of the effect of faults on the maximal number of states in
potential implementations;

- relies upon the existing test derivation methods once that upper bound is established;
- faces the problem of test explosion;
- results in a test suite with a certain amount of redundancy which should and could be

avoided.
In the following sections we elaborate certain strategies which take more advantage of the

knowledge of the internal structure and the assumption of a single faulty component.

3.2. Checking transitions in the composed machine
Since the states of a composed machine are structured and the transitions between states are

composed of transitions of component machines, it is natural to try (see, for example,

198 Part Four

[Dam91]) to construct a complete test suite for the composed machine Ac in such a way that
only an appropriate subset of the transitions in AC are checked. An implied approach, however,
heavily depends on what is meant by saying "a transition is, in fact, checked". The test
derivation methods such as the W- [Vasi73], [Chow78], Wp- [Fuji91], UIOv- [Vuon89]
methods foresee the two distinct phases of testing a machine under test, namely: the state
verification phase and transition checking phase; others, like [petr91], [Petr92], do so
implicitly. Omitting the former makes the latter indeterminate; one can no longer state that a
transition has then been checked (see the related discussion in [Vuon89] on the UIO-based
methods). Consequently, we further base our discussion on checking a restricted D.umber of
transitions on existence of the state verification phase.

Clearly the choice of an appropriate subset of transitions in a composed machine depends to
a large extent on the manner in which the output signal of component H is propagated to the
external output. As can be seen from Figures 2 and 3, certain errors in H which are
distinguishable at the output of H are masked by T. For example, component T in state 1
processes its inputs x and y in the same manner. Thus, if the composed machine is in state 11,
the erroneous output y of component H in response to the input a will not be detected at the
output of the system; this particular error can be detected if the composed machine is in state 13.
However, an erroneous output z of component H in response to the input a will not be detected
at the external output if the composed machine is in state 13, but it will be detected if the system
is in state 11, reversing the roles played by these two states.

The above example clearly shows that in certain cases, it is not enough to check a transition
in component H once only. In fact, component T in Figure 3 has been so constructed to
demonstrate this fact. Note that in this example, there are two transitions in the head
component, from state 2, that can be tested only once in the composed machine, but not in an
arbitrary its state. For example, the transition from state 2 under input a cannot be tested only
once if the composed machine is in state 22. However, in a complex system, such an analysis
becomes rather cumbersome.

Example. Based on the above discussion, we construct a complete test suite for this particular
example in an ad hoc manner. The idea behind this construction is to use the characterization set
W = {a, bb} for state identification, and state identifiers for checking tail states of transitions
chosen in an appropriate way. In particular, assuming that only the head component can be
faulty, i.e. the tail component is fault-free, it is sufficient to check the following transitions: 11-
alq->22, ll-b/q->12, 13-alp->23, 13-b/p->33, 23-alq->12, 22-b/q->12. The test suite has 8
test sequences of total length 44:

{ raa, rabbb, rbaa, rbabaabb, rbababb, rbabba, rbabbbb, rbbb }.

In a similar way, we derive a test suite assuming that only the tail component can be faulty. We
obtain 9 test sequences of total length 52:

{ raaa, raab, rabbb, rbaabb, rbabaabb, rbababa, rbababbb, rbabbb, rbbb }.

If we now merge these test suites, we obtain the test suite which can reveal faults located in
either the head or the tail component:

{ raaa, raab, rabbb, rbaabb, rbabaabb, rbababa, rbababbb, rbabba, rbabbbb, rbbb }.
The test suite has length of 59, i.e. slightly shorter that the one constructed in Section 3.1.

•
We call such an approach the ad hoc strategy. This strategy can be characterized as follows:
- it may give better results than the black-box strategy, since a complete test suite can always

be obtained by deleting, in an ad hoc manner, some (sub) sequences from the test suite
constructed by the last strategy;

- a very rigorous analysis is needed to guarantee the complete fault coverage;
- it is not easy to automate.

Testing strategiesJor communicating FSMs 199

Next we consider more fonnalized grey-box based testing strategies.

4. THE USE OF A FAULT FUNCTION

As mentioned above, test derivation from the reference composed machine in the class Sm
results in redundant tests. The main reason for this is that this fault domain includes mutants
that should be excluded under a single faulty component assumption. Consider, for example,
the transition ll-blq->12 in the composed machineAc (Figure 4). If all the potential faults are
in the tail component, then it does not make sense to distinguish the reference machine from
mutants having transitions from 11 to 21, 22, or to 23 under b/q. In fact, since the head
component does not have any errors, the composed machine cannot enter those states due to
faults in the tail component. The conclusion is that the fault domain has to be refmed to get a
shorter, but still complete test suite.

The fault domain can be specified exactly by explicitly enumerating all the mutant machines
of the constructed composed machine. In this case, the fault model would actually be a list of
FSMs as, for example, in [Bn091]. However, the number of mutants tends to explode, and
therefore there is a need for a more compact representation of mutants with restricted faults
which may occur in a composed machine. An appropriate method should tune a test suite to
cover these mutants exclusively. So far, there is only one such method, namely, the FF-method
[Petr92] that is based on the notion of a fault function. The method partially meets these
requirements. In the next section, we recall the notion of a fault function from [petr92].

4.1. The fault function

Let A = (S, X, Y, 6, A. SO) be a complete reference FSM. To model potential deviations of
the IUT behavior from the reference FSM or, in other words, the mutants of A, a function F is

introduced describing their range. The function F: S'x X ~ JP(S'x y), where S';2 S, and

JP(S'xY) is the set of all subsets from S'xY, is called a fault function for the given reference
machine A, if

V(s,x) e SXX ([6(s,x),A,(s,x)] e F(s,x».

Thus, to represent the superfluous states implemented by mistake or due to other reasons, the

set S'\S is used. The set F(so) ~ S' represents all possible mutant initial states.
We associate with the fault function F a set F(A) of detenninistic FSMs which are mutants of

the given reference machine A, i.e.

F(A) = {B=(S',X,Y,Li,A,sOB) I SOB E F(so) & V(s,x) E (SxX) ([Li(s,x),A(s,x)] E F(s,x)) }.

The set F(A) defmes a fault domain for the reference machine A. The quintuple AF =
(S',X,Y,F,F(so» is, in fact, a (weakly initialized [Starn]) NFSM with the set of initial states
F(so), and the defined function F specifies exactly its reaction to input words. It is conceded

that F(s, a) comprises, in the general case, states and output words that are not the reactions of
any detenninistic machines from F(A). The following relations between the reactions of the
reference FSM A, machine AF and a joint reaction of the mutants from F(A) hold:

[6(s,a),A,(s,a)] e { [Li(s,a),A(s,a)] I (S',X,Y,..1,A,soB)e F(A) } ~ F(s, a).

The use of the fault function allows us to refme the fault domain for the composed machine.
In particular, we next show how a fault function for the composed machine can be fonnally
defmed based on a single faulty component assumption.

4.2. Constructing the fault function for the faulty head machine
Now we describe the construction of the fault function for the given composed machine

under the assumption that only the head component can be faulty. Let H = (S, x. ~ aI, A,l,

SO) and T = (P, Z, Y, a2, A,2, PO) be the component machines of C. The idea of the
construction is as follows. Consider a transition in the composed machine from state sp under

200 Part Four

the input x. As a result of the head component's malfunctioning, the composed machine can
enter some state s'p'. The first component state s' is any state of the head machine. The second
state p' is a successor of the state p in the tail machine for any its input, producing the output
corresponding to the transition from p into the successor p'. Formally, the fault function is

specified for any spe SXP and xe X:

F(sp, x) = ((s'p',y) I s'e S & (P',y) = (oiP,z), AiP,Z» for all zeZ }, F(sopo) = S x {po}.

Example. Table 1 gives the fault function for our example when the tail component is
assumed to be fault-free. F(ll) = {ll,2I}. Bold symbols in the table correspond to the
reference composed machine (Figure 4).

Table 1: The fault function for the faulty head component.

This table is interpreted also as a state table of the NFSM CF which characterizes all the
mutants, i.e. the fault domain, of the composed machine, under the assumption that the tail
component is fault-free.

•
Proposition 4.1. Let CF be an NFSM defined by the constructed fault function F. Any
mutant of the composed machine with a faulty head machine is a D-submachine of C F.

•
However, the converse is not true, since not every its D-submachine is a mutant of the

composed machine with a faulty head machine. Consider Table 1 and a mutant composed
machine with the transition from state 11 to state 12 under input a. Since the faulty head
component remains in the same state 1 under input a, this machine cannot have a transition, for
example, from the state 12 to state 21 under this input; however, such a machine is included in
the fault domain F(Ac).

As shown in [Petr92], the fault function provides a compressed representation of the set of
mutants of the given reference machine. A test suite complete w.r.t. these restricted faults can
be derived by applying the so-called FF-method, presented in the same paper.

Finally, we use this method to derive a complete test suite for the composed machine (Figure
4) and the fault function in Table 1. The test suite has 37 test events:

{ raab, rabb, rbaab, rbabaab, rbababa, rbabba, rbbb }.

4.3. Constructing the fault function for the faulty tail machine
In this section, we describe the construction of the fault function G for the given composed

machine under the assumption that only the tail component can be faulty.
The idea behind this construction is similar to the one in the previous section. Consider a

transition in the composed machine from state sp under the input x. As a result of the
malfunctioning of the tail component, the composed machine can enter any state s'p'. The first
component s' is the successor state of the head machine under this input. The second
component p' is any state of the tail machine, producing any output. Formally, the fault

function G is specified for any spe SXP and xe X:

G(sp, x) = ((s'p',y) Is' = OI(S,X), p'e P, ye Y}, G(sopo) = {so} x P.

Example. Table 1 gives the fault function for the composition. G(l1) = {1l,I2,13}. Bold
symbols in the table corresponds to the reference composed machine (Figure 4).

Testing strategies for communicating FSMs 201

Table 2: The fault function for the faulty tail component

b

•
The corresponding NFSM CG describes the fault domain in this case, as stated by the

following proposition.

Proposition 4.2. Let CG be an NFSM defined by the constructed fault function G. Any
mutant of the composed machine with a faulty tail machine is a D-submachine of CG.

•
Example. We derive a complete test suite for the composed machine (Figure 4) and the fault
function in Table 2 using the FF-method. The resulting complete test suite has 42 symbols:

{ raab, rabbb, rbaabb, rbabaabb, rbababbb, rbabbbb, rbbb }.

Finally, we merge these test suites to obtain the test suite which can reveal faults located in
either the head or the tail component:

{ rfUlb, rbababa, rbabba, rabbb, rbaabb, rbabaabb, rbababbb, rbabbbb, rbbb }.

It has length of 55, i.e. it is shorter that the ones generated by the Wp-method with 63 symbols
and by the ad hoc method with 59 symbols.

•
We call this presented approach to testing the composed system the FF-based strategy. Its

main features are as follows:
- it provides a compact representation of mutants with faults which may occur in a limited

number of components of the composed system;
- the resulting complete test suites are less redundant than in the case of black-box testing

since the fault domain is more accurately determined;
- it is based on the formal method as opposed to the ad hoc strategy.

As shown above, this strategy yields such a test suite that covers not only all the potential
faults but also the ones resulting in a nondeterministic behavior the system. Based on the
assumption that any implementation of the given deterministic system also can be represented as
a deterministic FSM, we conclude that the test suite might still be redundant. A strategy which
takes care of this situation could give a better result. In the next section, we present such a
strategy.

5. TESTABLE REPRESENTATION OF A COMPONENT UNDER TEST

When a component is connected as part of a compound system, the ability to control its
inputs and observe its outputs is decreased. The state table of the isolated component does not
characterize its behavior in the system. This problem was addressed in design of sequential
circuits, and some procedures for modifying the state tables of components were proposed
[Kim72]. The modified FSM is a specification of the component's behavior such that is
controllable from the external inputs and observable at the external outputs of the whole system.
In the context of design of sequential circuits, the modified FSM is used for achieving a further
optimization of the given system of interacting FSMs [Rh091], [Deva89]. Here, we further
develop this approach for constructing such "testable" representations of the components that
can be used for test derivation [Petr93b].

202 Part Four

5.1. A component with nonobservable output
If the head component is faulty, then in response to a certain input sequence, it can produce

an output sequence which does not coincide with the output sequence of H. However, the
failure on the external output occurs if the tail component reacts differently to these input
sequences; otherwise the fault may go undetected. As shown below, the FSM formalism will
provide an elegant characterization of externally undetectable deviations in the behavior of an
imbedded component.

Two input sequences of the FSM T a and r are said to be T-equivalent, if T produces the
same output sequence when these sequences are applied to its initial state. The relation of T­
equivalence partitions the set of all input sequences of T into the equivalence classes. If an
output reaction of the faulty head machine and the reaction of the reference head machine lead to
the same extemally observed output reaction in response to any input sequence, then there is no
experiment (test) which could detect the faulty head component.

Two FSMs HI and H2 are said to be T-equivalent if their output reactions to any input
sequence are T-equivalent. The T-equivalence of different head components implies the
equivalence of the composed machines, since their compositions with T have the same
behavior.

Proposition 5.1. The two composed FSMs Cl and C2 with the same tail FSM Tare
equivalent iff their head FSMs are T -equivalent.

•
Now we introduce an inductive rule for constructing the set of input sequences of T which

are T -equiValent to an output response)t of the FSM H when an input sequence en is applied.

Suppose such a set is already defined for 'Yo and let pbe a sequence T-equivalent to 1- We must

determine which symbol z' can extend the sequence 13 in order to form aT -equivalent sequence

to)t. It is known that H enters state s under a, and T enters state P] under 'Yo i.e. the state of

the composed machine is now SP] = ~sop(), a). The output of the composed machine is

A.(sp],x). Assume T enters state P2 under the sequence p. Then f3z' is T -equivalent to Yl if and

only if)..(sP],x) =)..2Cp2,Z~.
The above described rule for constructing the set of sequences leads us to the formal

specification of a nondeterministic FSM H that contains all the sequences which are T­

equivalent to the output response rof the FSM H to any input sequence a.

Let Ac = (SxP, X, Y, 6,).., sOPo) be the composed machine. Then H = (SxPxP, X, Z, h,

sOPOPo), where for any xeX, SP]P2eSxPxP, the behavior function is specified as follows:

h(sP]P2,X) is equal to { (SP']P'2,Z) I Sp'] = ~SP],x), zeZ and)..2Cp2,Z) =)..(sPJ,X) } if there

exists a z such that)..»2,Z) =).,(sP],x), otherwise it remains undefmed.

Example. The NFSM H obtained from the above example is shown in Figure 5. A composed

machine constructed from H and the machine T is isomorphic to the composed machine AC
(Figure 4). In other words, given the composed system, no experiment can distinguish which

of the machines, the FSM H, or any reduction of H is used as the first component.

Figure 5: The NFSM H

•

Testing strategies for communicating FSMs 203

Proposition 5.2. Let II be the NFSM constructed for the head FSM H of the composition C
and let AL be the composed FSM of a composition L with the same tail FSM T. AL is

equivalent to the composed FSM AC iff the head FSM of L is a D-reduction of the NFSM II.

•
The set of D-reductions of the NFSM H can have machines which are not equivalent to the

head FSM H. These FSMs correspond to the implementations that would not conform to the
isolated FSM H, but when considered in the composition C, become conforming to H. In other

words, the NFSM II is a complete characterization of all implementations with undetectable
faults. Note that the problem of the characterization of conforming implementations w.r.t. the
environment in terms of LTSs was recently discussed in [Drir93], and in terms of FSMs was
independently considered in [petr93b].

Proposition 5.3. Any complete test suite for the NFSM II w.r.t. the reduction relation in the

class 3m is also a complete test suite for the component H of C w.r.t. the equivalence relation
in the same class; and conversely, any complete test suite for the component H of C w.r.t. the

equivalence relation in the class 3m is also a complete test suite for the NFSM II w.r.t. the
reduction relation in the same class.

•
This proposition states that in order to test the deterministic head component in the serial

composition, we have to derive a test suite from a nondeterministic FSM. The problem of test
derivation in the grey-box context is thus transformed to a well-known problem of deriving
tests in the black-box context, using a nondeterministic FSM and the reduction relation. So far,
there are very few formal methods for solving the latter problem [Yevt91], [petr93b].

Example. We now continue our example by deriving a complete test suite for the NFSM II in
Figure 5 with a version of the SC-method [petr93b]. We know that all implementations of the

specification NFSM II are deterministic machines, so, assuming that faults in component H do
not increase the number of states, we conclude that a complete test suite has to be derived for

the class 32 . The resulting test suite has length of 22: { raabaa, raaa, raabb, raba, rba }.

•
Note that in spite of the fact that any input sequence is acceptable for the constructed NFSM

H. this machine can be, in general, partially specified, which makes test derivation even more
difficult for this class of nondeterministic machines.

This section demonstrates that nondeterministic machines provide a formal tool to describe
potential deviations in the behavior of an imbedded deterministic component which do not alter
the externally observed behavior.

5.2. A component with noncontrollable input
Two FSMs T1 and T2 are said to be H-equivalent if their output reactions to any output

sequence of H coincide. The H-·equivalence of different tail components implies the equivalence
of the composed machines.

Proposition 5.4. The two composed FSMs C1 and C2 with the same head FSM H are
equivalent iff their tail FSMs are H-equivalent.

•
The FSM T, once it is completely specified, can accept any input sequence from its input

alphabet, however, the FSM H does not at all guarantee to deliver all these sequences.
Therefore, we need to fmd such a "portion" of the behavior of T that can be enabled by H. The
intuition behind is that only this part of T is of importance to the composed behavior. Even if
the remaining part is faulty, there is no impact on the composed behavior. Since it cannot be
externally tested anyway, it should be excluded from testing.

204 Part Four

To proceed in this way, we ftrst construct an acceptor to specify all the output sequences of
the FSM H. Next, suppose we run this acceptor in parallel to the FSM T in such way that the
acceptor signals to a current state of Twhether its behavior is deftned for a current input

Fonnally, a (nondetenninistic) acceptor is deftned over the alphabet Z and the state set S with

sa as the initial state, its next state function CP'is specifted as follows:

CP'(s,z) = { s' 13 xeX (Ol(S,X) = s' & Al(S,X) = z) }

if the FSM H in state S can produce output z, otherwise CP'(s,z) is left undefmed. All its states
are accepting states. If the acceptor is nondetenninistic, then applying the standard technique

[Hopc79] will yield a detenninistic acceptor Az = (B, Z; tb, ba).

Now we are able to fonnally deftne a direct product T = (PxB, Z; Y, ..1, A, paba, D) of the
acceptor Az and the FSM Twhich corresponds to their parallel composition.

The speciftcation domain D is the set { (pb, z) I «b,z) is deftned}. The functions of T are:

,d(pb,z) = (ONJ,x), tP(b,z»; A(Pb,z) = ANJ,X) for all (pb, z)eD.
This constructed FSM represents the testable behavior of the tail component, in the sense that
all input sequences which detennine this behavior can be delivered to the input of the

component through the head machine. Moreover, T and T produce the same output responses

to these sequences. The above procedure for obtaining the partial FSM (PFSM) T is similar to
the one presented in [Kim72J.

Example. The detenninistic acceptor for the head component (Figure 2) is given in Figure 6.

Figure 7 gives the PFSM T for our example.

x x

~
y z

Figure 6: The acceptor Az Figure 7: The PFSM T
•

PrQPositiQO 5.5. Let T be the PFSM constructed for the tail machine T of the composition C
and let AL be the composed FSM of a composition L with the same head FSM H. AL is

equivalent to the composed FSM AC iff the tail FSM of L is quasi-equivalent to the PFSM T .
•

In general, the set of machines that are quasi-equivalent to the PFSM T can have machines
which are not equivalent to the tail FSM T. These FSMs correspond to the implementations that
would not confonn to the isolated FSM T, but when considered in the composition C, they

become confonning to Tin C. In other words, the PFSM T is a complete characterization of all
implementations with undetectable faults.

Any test suite for the PFSM T has the property that it is always possible to ftnd a

corresponding test suite for the whole system which produces the test suite for T on the internal
input of the tail component. We say in this case, that there is a translation of one test suite into
another.

PrQPQsjtiQO 5.6. Any complete test suite for the PFSM T w.r.t. the quasi-equivalence

relation in the class !]m is translated into a test suite which is complete for the component T of C

Testing strategies for communicating FSMs 205

w.r.t. the equivalence relation in the same class; conversely, any complete test suite for the

component T of C w.r.t. the equivalence relation in the class Sm is translated into a complete

test suite for the PFSM Tw.r.t. the quasi-equivalence relation in the same class.

•
Since this proposition states that in order to test the tail component in the serial composition

we must derive a test suite from a partial FSM, the problem of test derivation in the grey-box
context is thus transformed to a well-known problem of deriving tests in the black-box context,
from a partial (possibly unreduced) FSM w.r.t. the quasi-equivalence relation. However,
almost all of the currently available methods are based on the so-called completeness

assumption (see, for example, [petr93a]), which is useless in this case. The unacceptable for T
input sequences cannot be delivered to the tail component through the head component and
there is no way to test the behavior of the tail machine caused by these sequences. There are,
however, test derivation methods [Yevt90], [Petr9I], [Lu094] which do not rely on this
assumption, and can be applied to partially specified and unreduced FSMs.

Example. We continue our example by deriving a complete test suite for the PFSM T (Figure

7) in the class Sm with the method [yevt90], [Petr91]. The result is:

{ rxxxx, rxxyxx, rxxz:a, rxxzxyx, rxxzxzx, rxyx, rxzx }.

Then, we translate this test suite into a set of input sequences of the FSM H which cause them
to occur on the input of the FSM T:

{ rbbbb, rbaabb, rbabbbb, rbabaab, rbababb, raab, raba }.

This test suite has 40 test events. Finally, we merge this test suite and the one derived in
Section 5.1.1 and obtain the test suite which can reveal faults located in either the head or the
tail component and has length of 51:

{ raaa, raabaa, raabb, raba, rbaabb, rbabaab, rbababb, rbabbbb, rbbbb }.

5.3. Summary of the presented strategy
As follows from the above discussion on transforming FSM-specifications, there is a new

testing strategy based on the testable representations, which at the moment seems very
promising and worth further research. In short, this strategy:

- gives a complete characterization of the implementations that do not conform to the isolated
component, but when considered in the composition, they become conforming;

- provides the exact specification of the fault domain needed for test derivation;
- could produce non-redundant complete test suites if appropriate test generation methods are

applied;
- requires that these methods deal with partially specified, nondeterministic possibly

unreduced FSMs and the reduction relation.
- relies on the testable representations which are not as tractable as composed machines.

6. COMPARING THE RESULTS OBTAINED WITH DIFFERENT
STRATEGIES

We have considered in this paper the following grey-box-based testing strategies:
- Test derivation from the constructed composed machine based on the black-box
representation of the given system;

- Test derivation based on an ad hoc choice of a subset of transitions to be checked in the
composed machine;

206 Part Four

- Test derivation based on the construction of a fault function;
- Test derivation from a testable behavior representation of the embedded component
The order in which these strategies are placed reflects the achieved refinement of the fault

domain. The fault domain for the strategy based on construction of the testable behavior is the
smallest domain. The same example was used throughout this paper to illustrate the results
obtained with different strategies. The results are summarized in Table 3. The last row gives the
length of the test suites which are used for testing the component machines in isolation.

One can see from this table that the refmement of the fault domain has a tendency (at least in
this example) to decrease the length of a corresponding complete test suite, as expected.

Table 3: Summary of the results of test derivation.

7. CONCLUSION

We have considered in this paper the problem of testing an implementation treated as a grey­
box, assuming that the specification structure is preserved in all potential implementations, and
that at most one component is faulty. We have presented and compared several possible testing
strategies which rely on these assumptions in various manners. All these strategies have at least
one common feature: they transfer in one way or another the problem of grey-box testing into
the realm of black-box testing by finding a suitable black-box representation and an appropriate
fault domain for which there already exists certain fonnal methods for test derivation. At the
moment, every presented strategy seems to have its own suitability, although it should be
mentioned that the strategy based on a constructed testable behavior of the component under test
is capable of providing the complete characterization of detectable and undetectable faults, as
well as the shortest complete test suite.

The basic techniques needed for constructing testable behavior have been presented in this
paper for a simple system of communicating detenninistic FSMs; however, they can be
generalized to cover more complex systems of even nondetenninistic machines. By comparing
the testable representation of a component with the original one, it is possible to assess how its
testability changes when it is embedded within the given system [petI94]. The presented results
give us some insight on design of "easily testable" systems; they could also be used to locate
the points of observation and control. It is believed that the results presented in this paper for
the FSM model can be applied to the LTS model as well, following a semantics-dependent
transfonnation of an LTS into a corresponding FSM as it has been recently proposed in
[PetI93a].

At the same time, having a good characterization of a testable behavior does not necessarily
mean that there is a good algorithm. A lot of work remains to develop efficient methods for
deriving tests from the nondetenninistic FSM representation of the testable behavior. The grey­
box testing requires efficient test derivation methods for various types of FSMs, especially for
those which are nondetenninistic and partially specified. The universality of the completeness
assumption often implied by a number of existing methods seems to have been overestimated,
and as a result there are not yet many test derivation methods for partially specified systems.

Testillg strategies for cOllllllullicatillg FSMs 207

Acknowledgments. This work was partly supported by the IDACOM-NSERC-CW ARC
Industrial Research Chair on Communication Protocols, Universi~ de Montreal, NSERC grant
N=B020629188, "Analyse et conception des protocoles diagnosticables et modifiables", and by
the Russian Found for Fundamental Research. The authors would like to thank G. v.
Bochmann for stimulating discussions and S. A. Ezust for comments.

REFERENCES

[Brzo92] J. A. Brzozowski, H. Jurgensen, "A Model for Sequential Machine Testing and
Diagnosis", Journal of Electronic Testing: Theory and Applications, 2,1992, pp.219-
234.

[Cast93] R. Castanet, O. Kone, "Deriving Coordinated Testers for Interoperability", IFIP
Transactions, Protocol Test Systems, VI, (the Proceedings of IFIP TC6 Fifth
International Workshop on Protocol Test Systems, 1993), Ed. by O. Rafiq, 1994,
North-Holland, pp.331-345.

[Chow78] T. S. Chow, "Testing Software Design Modeled by Finite-State Machines", IEEE
Transactions on Software Engineering, Vol. SE-4, No.3, 1978, pp.178-187.

[Dam91] H. v. Dam, H. Klooster, E. Kwast, "Test Derivation for Standardized Test
Methods", IFIP Transactions, Protocol Test Systems, IV (the Proceedings of IFIP
TC6 Fourth International Workshop on Protocol Test Systems, 1991), Ed. by J.
Kroon, R. J. Heijink and E. Brinksma, 1992, pp.69-82.

[Das75] P. Das, D. E. Farmer, "Fdult-Detection Experiments for Parallel-Decomposable
Sequential Machines", IEE~Transactions on Computers, Vol. C-24, No.H, 1975,
pp.H04-1109.

[Deva89] S. Devadas, "Approaches to Mlllti-level Sequential Logic Synthesis", In Proceedings
of the 26th Design Automation Conference, Las Vegas, 1989, pp.270-276.

[Drir93] K. Drira, P. Azema, B. Soulas, A.M. Chemali, "Testability of a Communicating
System through an Environment", In Proc. of T APSOFT'93.

[Fuji91] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, A. Ghedamsi, "Test
Selection Based on Finite State Models", IEEE Transactions on Software Engineering,
Vol. SE-17, No.6, 1991, pp.591-603.

[Gill62] A. Gill, Introduction to the Theory of Finite-State Machines, McGraw-Hill, 1962,
207p.

[Hopc79] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley Publishing Company, Inc., 1979,418p.

[IS9646] ISO, OSI Conformance Testing Methodology and Framework, International Standard
IS9646.

[Kim72] J. Kim, M. Newborn, "The Simplification of Sequential Machines with Input
Restrictions", IEEE Transactions on Computers, Vol. C-21, No.12, 1972, pp.l440-
1443.

[Lee93] D. Lee, K. Sabnani, D. Krispot, S. Paul, M. Uyar, "Conformance Testing of
Protocols Specified as Communicating FSMs", INFOCOM'93, pp.115-127.

[Luo94] G. Luo, A. Petrenko, G. v. Bochmann, "Generating Tests for Communication
Software Modeled by Partially-Specified Finite State Machines", IEEFJACM
Transactions on Networking, (to appear in 1994).

[Luo94a] G. Luo, A. Petrenko, G. v. Bochmann, "Test Selection based on Communicating
Nondeterministic Finite State Machines using a Generalized Wp-Method", IEEE
Transactions on Software Engineering, Vol. SE-20, No.2, 1994, pp.149-162.

[Morr93] D. Morris, B. Tamm, Concise Encyclopedia of Software Engineering, Pergamon
Press, 1993, 4OOp.

[Petr91] A. Petrenko, "Checking Experiments with Protocol Machines", IFIP Transactions,
Protocol Test Systems, IV (the Proceedings of IFIP TC6 Fourth International
Workshop on Protocol Test Systems, 1991), Ed. by Jan Kroon, Rudolf 1. Heijink
and Ed Brinksma, 1992, North-Holland, pp.83-94.

208 Part Four

[Petr92] A. Petrenko, N. Yevtushenko, "Test Suite Generation for a FSM with a Given Type
of Implementation Errors", IFIP Transactions, Protocol Specification, Testing, and
Verification, XII (the Proceedings of IFIP TC6 12th International Symposium on
Protocoi Specification, Testing, and Verification, 1992), Ed. by R.J. Linn. Jr. and
M.U. Uyar, 1992, North-Holland, pp.229-243.

[Petr93a] A. Petrenko, G. v. Bochmann, R. Dssouli, "Conformance Relations and Test
Derivation", IFIP Transactions, Protocol Test Systems, VI, (the Proceedings of IFIP
TC6 Fifth International Workshop on Protocol Test Systems, 1993), Ed. by O. Rafiq,
1994, North-Holland, pp.157-178.

[petr93b] A. Petrenko, N. Yevtushenko, A. Lebedev, A. Das, "Nondeterministic State
• Machines in Protocol Conformance Testing", IFIP Transactions, Protocol Test

Systems, VI, (the Proceedings of IFIP TC6 Fifth International Workshop on Protocol
Test Systems, 1993), Ed. by O. Rafiq, 1994, North-Holland, pp.363-378.

[Petr94] A. Petrenko, N. Yevtushenko, R. Dssouli, "Grey-Box FSM-based Testing
Strategies", Department Publication 911, Universili de Montreal, 1994,221'.

[Rho91] J.-K. Rho, G. Hachtel, F. Somenzi, "Don't Care Sequences and the Optimization of
Interacting Finite State Machines", Proceedings of the ffiEE International Conference
on Computer Aided Design, Santa Clara, CA, 1991, pp.414-421.

[Sidh89] D. P. Sidhu, T. K. Leung, "Formal Methods for Protocol Testing: A Detailed Study",
IEEE Transactions on Software Engineering, Vol. SE-15, No.4, 1989, pp.413-426.

[Star72] P. H. Starke, Abstract Automata, North-Holland/American Elsevier, 1972, 419p.
[Vasi73] M. P. Vasilevski, "Failure Diagnosis of Automata", Cybernetics, Plenum Publishing

Corporation, New York, No.4, 1973, pp.653-665.
[Vuon89] S. T. Vuong, W.W.L. Chan, and M. R. Ito, "The UIOv-method for Protocol Test

Sequence Generation", IFIP Transactions, Protocol Test Systems, II, Proceedings of
IFIP TC6 Second International Workshop on Protocol Test Systems, 1989, Ed. by J.
de Meer, L. Machert and W. Effelsberg, pp.161-175.

[Yevt89] N. Yevtushenko and A. Petrenko, "Fault-Detection Capability of Multiple
Experiments", Automatic Control and Computer Sciences, Allerton Press, Inc., New
York, Vo1.23, No.3, 1989, pp.7-11.

[Yevt90] N. Yevtushenko, A. Petrenko, "Method of Constructing a Test Experiment for an
Arbitrary Deterministic Automaton", Automatic Control and Computer Sciences,
Allerton Press, Inc., New York, Vo1.24, No.5, 1990, pp.6S-68.

[Yevt91] N. Yevtushenko, A. Lebedev, A. Petrenko, "On the Checking Experiments with
Nondeterministic Automata", Automatic Control and Computer Sciences, Allerton
Press, Inc., New York, Vo1.25, No.6, 1991, pp.81-85.

