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Assessing the correctness of a structural equation model is essential to avoid drawing incorrect

conclusions from empirical research. In the past, the chi-square test was recommended for assessing

the correctness of the model but this test has been criticized because of its sensitivity to sample size.

As a reaction, an abundance of fit indexes have been developed. The result of these developments

is that structural equation modeling packages are now producing a large list of fit measures. One

would think that this progression has led to a clear understanding of evaluating models with

respect to model misspecifications. In this article we question the validity of approaches for model

evaluation based on overall goodness-of-fit indexes. The argument against such usage is that they do

not provide an adequate indication of the “size” of the model’s misspecification. That is, they vary

dramatically with the values of incidental parameters that are unrelated with the misspecification

in the model. This is illustrated using simple but fundamental models. As an alternative method

of model evaluation, we suggest using the expected parameter change in combination with the

modification index (MI) and the power of the MI test.

In an influential paper, MacCallum, Browne, and Sugawara (1996) wrote, “If the model is truly
a good model in terms of its fit in the population, we wish to avoid concluding that the model
is a bad one. Alternatively, if the model is truly a bad one, we wish to avoid concluding that it
is a good one” (p. 131). The mentioned two types of wrong conclusions correspond to what in
statistics are known as Type I and Type II errors, the probabilities of occurrence of which are
called ’ and “ respectively. Although everybody would agree that ’ and “ should be as small as
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562 SARIS, SATORRA, VAN DER VELD

possible, in the practice of structural equation modeling (SEM) these probabilities are seldom
controlled. In this article we show the consequences of not controlling the probabilities ’ and “.

To discuss this issue we first have to define what good and bad models are in terms of
misspecifications. MacCallum et al. (1996) did not give a definition of good and bad models.
We suggest that good and bad are defined in this context by the absence (good) or presence (bad)
of misspecifications in the model, as done by Hu and Bentler (1998), who stated that “a model is
said to be misspecified when (a) one or more parameters are estimated whose population values
are zeros (i.e., an over-parameterized misspecified model), (b) one or more parameters are fixed
to zeros whose population values are non-zeros (i.e., an under-parameterized misspecified
model) or both” (p. 427). In line with Hu and Bentler, we believe that the second is the type
of misspecification that has more serious consequences, so in this article we merely discuss
that type. In the case of just one parameter of a model being misspecified, the size of the
misspecification is the absolute difference between the true value of the parameter and the
value specified in the analysis. If there is more than one parameter misspecified, the size of
the misspecification of the model is also determined by the differences between the restricted
values in the specified model and the true population values of the parameters under the correct
model. This definition of the size of the misspecifications deviates from the definition of other
scholars such as Fan and Sivo (2007), who defined the size of the misspecification on the basis
of the noncentrality parameter or the power of the test.

Some authors (e.g., Browne & Cudeck, 1992; MacCallum et al., 1996) have argued that
models are always simplifications of reality and are therefore always misspecified. Although
there is truth in this argument, this is not a good reason to completely change the approach to
model testing. What is needed is for (a) models with substantially relevant misspecifications
to be rejected, and (b) models with substantially irrelevant misspecifications to be accepted.

To make our discussion more concrete, we now provide examples using population data on
what we mean by substantially relevant misspecifications and substantially irrelevant misspec-
ifications.

A SUBSTANTIVELY RELEVANT MISSPECIFICATION

As an example of a substantively relevant misspecification, consider the fundamental causal
model example M1:

y1 D ”11x1 C —1 (1)

y2 D “21y1 C ”22x1 C —2 (2)

where all the observable variables are centered and standardized, E.xi —j / D 0, i; j D 1, 2,
and possibly nonzero, and E.—1; —2/ D §21.

The purpose of many studies is to determine whether there is an effect of one variable (i.e.,
y1) on another one (i.e., y2). To test this hypothesis, it is essential to ensure that all variables
causing spurious relationships between the two variables have been introduced. If that is not
the case, the covariance between the disturbance terms (§21) will not be zero.

If §21 is other than zero and the researcher specifies a model M0 where §21 D 0, the effect
“21 will be over- or underestimated1 and incorrect conclusions about this parameter might be

1The effect (“21) could also be underestimated if the correlation between the disturbance term is negative.
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TESTING STRUCTURAL EQUATION MODELS 563

FIGURE 1 The causal population model M1 , with

correlated disturbance term.

FIGURE 2 The hypothesized causal model M0 , with-

out correlated disturbance term .§21 D 0/.

drawn. Depending on the size of the misspecification of the model M0 (absolute value of the
deviation of §21 from zero) a substantial misspecification can be attained, in which case the
model should be rejected.

To make the example more complete, consider the following (true) population parameter
values for model M1 (see Figure 1): ”11 D :4, “21 D :0, ”22 D :1, and §21 D :2. According to
Hu and Bentler’s definition of misspecification, the model M0 (see Figure 2) is misspecified
because it imposes the incorrect restriction of §21 D 0.

The size of the misspecification is .2, that is, the difference between the value of §21 under
M0 and its value under the correct model M1. Note that the size of the misspecification would
always be .2 regardless of the size of the other parameters in the model.

The consequence of the misspecification is that the effect “21 will be overestimated when
fitting M0 instead of the true model M1. The expected value would be .2 and not .0 and so
the wrong conclusion will be drawn that the variable y1 has an effect on y2. This example
illustrates a case where a misspecification yields incorrect conclusions, so this is a case of a
bad model that should be rejected.

A SUBSTANTIVELY IRRELEVANT MISSPECIFICATION

As an example of a model with an irrelevant misspecification we use a simple but important
example from factor analysis. Consider the following two-factor model M1:

x1 D b11f1 C e1

x2 D b21f1 C e2

x3 D b31f2 C e3

x4 D b41f2 C e4

(3)

where E.fi / D 0 and E.f 2
i / D 1; E.fi ej / D 0; and E.ei ej / D 0 while E.f1f2/ D ¡, and

suppose that our interest lies in assessing whether this is a one-factor model; that is, whether
the correlation ¡ is equal to 1. Let’s note as M0 the model that imposes ¡ to be equal to
1. Suppose that population values for the parameters of loadings equal .8 and the correlation
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564 SARIS, SATORRA, VAN DER VELD

FIGURE 3 The population factor model (M1), with

a correlation of .95 between the two factors.

FIGURE 4 The hypothesized factor model (M0), with

perfect correlation between the two factors.

coefficient (¡) equals .95. In that case, substantive researchers would agree that the two factors
are the same; that is, there is only one factor and not two. According to the definition stated
previously, in this case the size of the misspecification of M0 is .05, regardless of the size of
the other parameters in the model. The size of this misspecification is substantively irrelevant,
and therefore one would not like to reject the model M0 because the model is adequate for
all practical purposes even though it is not exactly correct. This illustrates the situation of a
model with substantively irrelevant misspecifications that should be accepted. Figures 3 and 4
show the corresponding path diagram of the true and the approximate models.

The preceding two examples should not imply that relevant misspecifications occur only for
path analysis models and irrelevant misspecifications occur only in factor analysis models. The
problems mentioned can occur in both types of models and, of course, in the combination of
both models.

In this article we want to show, first of all, that the standard procedures for the evaluation of
models do not work as required. After that we suggest an alternative approach for the evaluation
of structural equation models.

The structure of the article is as follows. The next section reviews the standard procedure
of using goodness-of-fit testing and goodness-of-fit indexes for evaluation of models in the
SEM tradition. Following that, we illustrate how not controlling for Type I and Type II errors
does not work well, in that, even in the case of very simple but fundamental models, a
bad model is typically accepted whereas a model that is good for all practical purposes is
typically rejected. The next section describes the reason for these problems. We then suggest
an alternative approach based on detection of model misspecification and describe an illustration
with empirical data of the proposed procedures. We conclude the article with a discussion.

TRADITIONAL GOODNESS-OF-FIT TESTING IN SEM

In SEM, the goodness-of-fit of a specified model M is typically tested using a chi-square
goodness-of-fit test statistic T (the so called chi-square test), defined as n (the sample size)
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TESTING STRUCTURAL EQUATION MODELS 565

times the value of a discrepancy function that evaluates the differences between the observed
covariance matrix in the sample and the fitted covariance matrices based on the parameter
estimates and the specified model. Different discrepancy functions that take care of different
distributional assumptions can be used (see Bollen, 1989). Under standard assumptions and
when the model holds, T is asymptotically ¦2 distributed with degrees of freedom (df) equal
to the number of overidentifying restrictions implied by the specified model. So, in the standard
approach, M is rejected when

T > c’ (4)

where c’ is the critical value of the test; that is, the value for which pr.¦2.df / > c’/ D ’,
and ’ being the chosen significance level of the test. Typically, researchers choose ’ D :05,
so the probability ’ of rejecting the model when the model is exactly correct (Type I error)
is .05. The power of this test, that is, the probability of rejecting M0 when the model does
not hold, can be computed conditional to specific values of parameters of an alternative model
(Ma) that deviates from M0 (cf. Satorra & Saris, 1985), with M0 nested in Ma . Power values
are seldom computed in applications, which means that no proper control of the probability “
of a Type II error (the wrong decision of accepting the model when it is a wrong model) is
exerted.2

To evaluate models, most researchers and editors of journals prefer to rely on the information
provided by one or more (goodness–badness) fit indexes (FIs) that measure deviation of the
analyzed model from baseline models instead of the chi-square test. One of the reasons for this
shift is that the use of the chi-square test for model evaluation is not problem-free. A classical
criticism of the chi-square test is its severe dependence on sample size, in the sense that any
small misspecification in the model will be detected by the chi-square test (leading to rejection
of the model) provided the sample size is large enough. Hu and Bentler (1998) say about this:
“the decision for accepting or rejecting a particular model may vary as a function of sample
size, which is certainly not desirable” (p. 429). This problem with the chi-square test has led
to the development of a plethora of FIs. Marsh, Hau, and Grayson (2005) provided a detailed
overview of these FIs, from which it is clear that many of them are functions of the chi-square
test statistic (see Appendix A).

Nowadays, the traditional model evaluation method has been replaced by a similar procedure
using FI statistics, with the model being rejected if:

FI < Cf i (5a)

where Cf i is a fixed cutoff value developed specifically for each FI.
This procedure is used for FIs such as Adjusted Goodness-of-Fit Index (AGFI) and Goodness-

of-Fit Index (GFI; Jöreskog & Sörbom, 1996) that have a theoretical upper value of 1 for good
fitting models. There are however, also FIs for which a theoretical lower value of 0 indicates a
good fit, such as root mean squared error of approximation (RMSEA; Steiger & Lind, 1980),
for which the model is rejected if:

FI > Cf i (5b)

2Note that power D 1 ! “.
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566 SARIS, SATORRA, VAN DER VELD

In Equations 5a and 5b, Cf i is the cutoff value for the specific FI. Such values have been
derived from analyses of simulated data (see, e.g., Hu & Bentler, 1999). In Appendix A we
report the cutoff values (Cf i ) of the FIs discussed in this article. Marsh, Hau, and Wen (2004)
emphasized, however, that no rationale has been given for using fixed cutoff values. In fact, by
using a fixed cutoff value for FI in the way described, the FI acts as a statistic for hypothesis
testing: that is, if the critical value is exceeded, the model is rejected; if not, the model is
accepted. However, the choice for a specific cutoff value is not based on controlling either
Type I or Type II errors, or the probabilities ’ and “ mentioned earlier. Some researchers (e.g.,
Barrett, 2006; Fan & Sivo, 2005; Marsh, Hau, & Wen, 2004) have criticized using FI with
fixed cutoff values as if they were test statistics.

We argue that regardless of whether we use the traditional chi-square test or the FIs, without
attending to the probabilities ’ and “, models with serious misspecifications (i.e., “bad” models)
might have a high chance of being accepted, whereas models with irrelevant misspecification
(i.e., “good” models) might have a high chance of being rejected. Illustrations of both instances
are given later using the two models already discussed and depicted in Figures 2 and 4.

ILLUSTRATION OF THE PROBLEM USING POPULATION DATA

In this section, we use population data to illustrate the consequences of the standard procedures
for model evaluation. We begin with a model that is definitely wrong but has a high chance
of being accepted when using the standard procedures. This is the case of the path analysis
model M1, whose path diagram and population values of parameters are shown in Figure 1.
Table 1 shows the covariance matrix implied by the model in Figure 1.

These data have been analyzed with the bad model M0 depicted in Figure 2. Just as a
reminder, we say it is a bad model because the size of the misspecification of assuming no
correlation between the disturbance term .§21 D 0/ is big (.2) and this misspecification leads
to severely wrong conclusions regarding the effect of y1 on y2. The results of the analysis of
M0 using the covariance matrix presented in Table 1 are shown in the first row of Table 2.
Attending to all goodness-of-fit measures, it follows—without exception—that the model should
be accepted.

We can generate more implied covariance matrices by specifying other parameter values.
These covariance matrices can also be analyzed with the same model to find out whether the
size of the population parameter values influences the ability of the goodness-of-fit measures
to detect the misspecification in model M0. This has been carried out for different values of
the parameter ”22, keeping the other parameters of the model fixed to the population values

TABLE 1
Implied Correlation Matrix of the Model Depicted in Figure 1

y1 y2 x1 x2

y1 1.00
y2 0.20 1.00
x1 0.40 0.00 1.00
x2 0.00 0.10 0.00 1.00
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TESTING STRUCTURAL EQUATION MODELS 567

TABLE 2
Goodness-of-Fit Measures for Model M0 With a Constant Misspecification (§21 D 0)

and With an Increasing Size of the Incidental Parameter ”22

”22 ¦2a Powerb RMSEA CFI AGFI SRMR MI of §21

0.1 3.20 0.34 0.00 1.00 0.99 0.025 3.20
0.2 3.30 0.35 0.00 1.00 0.99 0.025 3.30
0.3 3.49 0.37 0.00 1.00 0.99 0.025 3.49
0.4 3.80 0.38 0.00 1.00 0.99 0.025 3.80
0.5 4.20 0.43 0.01 1.00 0.99 0.025 4.20
0.6 5.07 0.50 0.03 1.00 0.98 0.025 5.07
0.7 6.47 0.62 0.04 0.99 0.98 0.025 6.47
0.8 9.50 0.79 0.06 0.98 0.97 0.025 9.50
0.9 20.27 0.99 0.10 0.96 0.94 0.025 20.27

Note. Analysis carried out by the maximum-likelihood procedure of LISREL 8.80.
The sample size is 400. RMSEA D root mean squared error of approximation; CFI D comparative fit index;

AGFI D adjusted goodness-of-fit index; SRMR D standardized root mean squared residual; MI D modification index.
aThe chi-square is equal to the noncentrality parameter in this case, because population data are analyzed (Saris &
Satorra, 1985). bThe power values were computed with ’ D .05 and 4 df (because the model has 4 df). To obtain the
correct power value, we used tables, such as can be found in Saris and Stronkhorst (1984), that relate the power, the
degrees of freedom of the test, and the noncentrality parameter.

specified earlier. Note that the size of the misspecification does not change. The results of those
analyses are summarized in Table 2.

Table 2 shows the values of the chi-square statistic, the power of the chi-square test of
this model3 based on the population covariance matrices implied by the model in Figure 1,
with varying values for ”22 (first column of Table 2). We also provide the population values
for the fit indexes standardized root mean squared residual (SRMR), RMSEA, comparative fit
index (CFI), and AGFI to illustrate their performance in model evaluation. In this study the
sample size is fixed at 400, which is not an unusual sample size in research. If the chi-square
test statistic would only be affected by the size of the misspecification of the model, then the
chi-square test statistic would have the same value across all analyses because the size of the
misspecification is the same for all of them. However, Table 2 shows that the chi-square test
statistic is not only affected by the size of the misspecification of the model, but also by the
value of the parameter ”22. This parameter has nothing to do with the misspecification, thus
the chi-square test statistic is also (next to sample size) affected by the value of incidental
parameters in the model.

The chi-square values show that the misspecification of the model is likely to be detected
only for very large values of the parameter ”22. Therefore, in practice, with the 5% level chi-
square test, the misspecification of the model will not be detected, unless the ”22 is very large
or unless the sample size is very large. As a consequence, a biased estimate for the parameter
of major interest .“21/ will be reported. This problem with the chi-square test statistic, has
already been discussed by Saris, Satorra, and Sörbom (1987) and Saris, den Ronden, and
Satorra (1987) who suggested considering the power of the test. The third column shows that

3The power of the test is estimated on the basis of the noncentrality parameters obtained by analyzing population

data (Satorra & Saris 1985). The noncentrality parameter is equal to the chi-square statistic in this case.
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568 SARIS, SATORRA, VAN DER VELD

TABLE 3
Goodness-of-Fit Measures for Model M0 With a Constant Misspecification (¡21 D 1)

and With Increasing Size of the Incidental Parameters bij

bij ncpa Powerb RMSEA CFI AGFI SRMR MI of ¡21

0.70 1.09 0.18 0.000 1.00 0.99 1.00 1.09
0.75 2.15 0.24 0.014 1.00 0.99 1.00 2.15
0.80 3.75 0.39 0.047 1.00 0.98 1.00 3.75
0.85 8.81 0.76 0.092 0.99 0.95 0.99 8.81
0.90 18.13 0.96 0.140 0.99 0.89 0.99 18.13

Note. Estimates obtained with the quasi-maximum likelihood procedure in LISREL 8.80.
The population size is 400. ncp D noncentrality parameter; RMSEA D root mean squared error of approximation;

CFI D comparative fit index; AGFI D Adjusted Goodness-of-Fit Index; SRMR D standardized root mean squared
residual; MI D modification index. aThe noncentrality parameter (ncp) is equal to the chi-square in this case because
population data are analyzed (Saris & Satorra, 1985). bThe power values were computed with ’ D .05 and 2 df
(because the model has 2 df). To obtain the correct power value, we used tables, such as can be found in Saris and
Stronkhorst (1984), that relate the power, the degrees of freedom of the test, and the noncentrality parameter.

the 5% level chi-square test statistic has reasonable power to reject a wrong model only when
”22 exceeds the value of .8.

This problem with the chi-square test statistic is inherited by most of the FIs (e.g., RMSEA,
CFI, and AGFI). This might not be that surprising, because these FIs are functions of the
chi-square test. For example, in Table 2 we see that in the same way as with the chi-square
test, the RMSEA increases with the value of ”22 and only when ”22 is above .7 does RMSEA
exceed the suggested cutoff value of .05. The other indexes react in similar ways, except for the
SRMR, which remains constant.4 Furthermore, besides similar behavior to the chi-square test
statistic, the other FIs—except the RMSEA—do not reject the model in any circumstance (the
FIs do not exceed the threshold values). Finally, we see that the use of the modification index
(MI) for §21 is not the solution (Saris et al., 1987) because the MI behaves exactly in the same
way as the chi-square test statistic. In this particular study, with only one misspecification, the
MI equals the chi-square test.

Under typical circumstances—a sample size of 400 and commonly found parameter values—
the seriously misspecified model depicted in Figure 2 will not be rejected. This holds regardless
of whether we use the chi-square test or the commonly used FIs.

Let us now look at the second example where the model is adequate for all practical
purposes and should therefore be accepted in a substantive research. Using the same approach,
we calculate the correlation matrices for different values of the loadings of model M1, keeping
the correlation between the factors equal to .95. Thereafter, the different computed population
correlation matrices were used as input to estimate the parameters for a factor model under the
restriction that ¡21 D 1; that is, assuming that the correlations between the observed variables
can be explained by a single factor (model M0). Table 3 summarizes the results of this analysis.

Table 3 shows that the model, which could be seen as a good model for all practical purposes,
would very likely be rejected when the loadings are larger than .8, using the standard procedures
for model evaluation. An exception is found for the CFI, which accepts the model. Table 3

4In general, this is not the case. It is due to a specific character of this model.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
d
b
o
u
d
 
U
n
i
v
e
r
s
i
t
y
 
N
i
j
m
e
g
e
n
]
 
A
t
:
 
1
0
:
2
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



TESTING STRUCTURAL EQUATION MODELS 569

shows that the model is rejected for most of the statistics if the size of the loadings is large. This
is a very inconvenient result, because the better the measurement model—high loadings—the
higher probability of getting rejected.

The preceding two examples illustrate the fact that the standard methods for model evaluation
can lead to precisely the decisions that MacCallum et al. (1996) stated should be avoided.
These problems associated with the chi-square test have been documented in several papers
that appeared 20 years ago (see Saris, den Ronden, & Satorra, 1987; Saris & Satorra, 1986;
Saris et al., 1987). Given the relationship between the standard test statistic T and the FIs,
the same problems occur for the FIs as have been documented in detail by Fan and Sivo
(2007).

WHAT IS THE PROBLEM OF THE MODEL TEST AND FIT INDEXES?

As the preceding examples illustrate, there is a fundamental problem with the use of the
standard 5% level chi-square test as well as with the FIs to assess model misspecification. The
problem is that the FIs as well as the chi-square test are not only affected by the size of the
misspecification of the model, but also by other characteristics of the model. We have shown
the effect on the FIs of the size of incidental parameters unrelated with the misspecification.
The phenomenon shown is similar to the classical problem of dependency of the 5% level
chi-square test on sample size. Although the FIs have been developed mainly to cope with the
effect of sample size on the chi-square test, they offer no protection from parameter values
unrelated with the misspecification of the model (Saris & Satorra, 1988); therefore, whether
a misspecification is detected or not will depend heavily on characteristics unrelated to the
misspecification (e.g., sample size, values of the parameters, number of indicators, etc.).

The situation is even more complex when it comes to multiple hypothesis testing. In this case,
the chi-square test and other FIs will have different sensitivity for different misspecifications
of the model—this is discussed in Saris et al. (1987)—and one might therefore doubt whether
a critical value can be specified at all for the model as a whole. A rejection of the model might
be due to the test’s high sensitivity to a specific misspecification; acceptance of the model
might be due to low test sensitivity to important misspecifications.

From all of this information, we can conclude that the standard model evaluation procedures
do not satisfy the requirements mentioned earlier of MacCallum et al. (1996): “If the model is
truly a good model in term of its fit in the population, we wish to avoid concluding that the
model is a bad one. Alternatively, if the model is truly a bad one, we wish to avoid concluding
that it is a good one” (p. 131).

Saris et al. (1987) argued that there is no simple procedure to test the model as a whole. The
standard chi-square test and the FIs, as they are currently used, do not give a proper answer
to the issue of validity of the model, as they are affected by characteristics other than just the
size of the misspecification.

To tackle the issue of the dependency of the chi-square test on other model characteristics,
Satorra and Saris (1985) suggested taking the power of the test into account. This approach
is rather tedious for routine practice and can only be applied to limited sets of parameter
restrictions if the rest of the model does not contain misspecifications. It is clear that this is a
rather unlikely situation in most research.
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AN ALTERNATIVE APPROACH

An alternative to the goodness-of-fit test is to turn attention to investigating whether specific
misspecifications are present in the model. According to our definition, a model that contains
one or more relevant misspecifications is not a good model. Starting from that principle, Saris
et al. (1987) suggested evaluating the quality of a model using the combination of expected
parameters change (EPC) and the MI. They noted that the EPC gives a direct estimate of the
size of the misspecification for all fixed parameters, whereas the MI provides a significance
test (with 1 df) for the estimated misspecification (for more details we refer to the paper
by Saris et al., 1987). However, one should realize that the MI has the same problem as
the chi-square test, which is that the power of the test depends on other characteristics of the
model. In addition, the direct EPC misspecification estimates are problematic because sampling
fluctuations can be rather large as shown later. To tackle this issue we introduce the standard
error of the EPC and the power of the MI test.

More Information About Misspecifications

Fortunately, the following simple but fundamental relationship exists among the three statistics
already mentioned (Saris et al., 1987, p. 121):

MI D .EP C=¢/2 (6)

where ¢ is the standard error of the EPC. From this relationship it follows that

¢ D EP C=
p

MI I (7)

Thus, ¢ can be estimated from EPC and MI, statistics that are now provided by most SEM
software.

This formula allows one to estimate the EPC’s standard error for alternative restrictions.
Information on the EPC standard error is helpful because it can be used to construct a confidence
interval for the EPC. Because EPC is asymptotically normally distributed (see Satorra, 1989,
Theorem 5.3), the 95% confidence interval is defined for any fixed parameter (™) as:

EP C ! 1:96¢ < ™ < EP C C 1:96¢ (8)

Knowing the size of the EPC and the MI also provides a simple way to estimate the power
of the test for the size of each misspecification. Consider a specific deviation • for which one
would like to know the power. Hence, • would be the minimum size of the misspecification that
one would like to be detected by the test with a high likelihood (power). By standard theory,
under deviation from the null hypothesis, the asymptotic distribution of the MI is noncentral
¦2 with the noncentrality parameter (ncp) given by

ncp D .•=¢/2 (9)

By combining Equations 7 and 9 we obtain:

ncp D .MI=EP C 2/•2 (10)
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TABLE 4
Statistical Information About the Misspecification (§21 D 0) in Model M0,
Including the Power Related to the Size of the Incidental Parameter ”22

95% Confidence
Interval

”22 EPC§21 MI Low High ¢ ncp Power

0.1 0.2 3.20 !0.019 0.419 0.112 0.80 0.146
0.2 0.2 3.30 !0.016 0.416 0.110 0.83 0.149
0.3 0.2 3.49 !0.010 0.410 0.107 0.87 0.155
0.4 0.2 3.80 !0.001 0.401 0.103 0.95 0.164
0.5 0.2 4.20 0.009 0.391 0.098 1.05 0.176
0.6 0.2 5.07 0.026 0.374 0.089 1.27 0.202
0.7 0.2 6.47 0.046 0.354 0.079 1.62 0.245
0.8 0.2 9.50 0.073 0.327 0.065 2.38 0.336
0.9 0.2 20.27 0.113 0.287 0.044 5.07 0.615

Note. The expected parameter change (EPC) and modification index (MI) are taken from the LISREL output
(carried out for Table 2). The 95% confidence interval for the EPC is estimated with Equation 8, the standard error
of the EPC (¢) is estimated with Equation 7, the noncentrality parameter (ncp) is estimated with Equation 10 for
a misspecification of • D 0.1 or larger, and the power can be found in power tables in the literature (e.g., Saris &
Stronkhorst, 1984). The power was estimated with ’ D .05 and df D 1, because the test is on a single parameter.

an expression of the ncp that is a function of statistics provided by the standard software and
the user-specified value • of maximally acceptable misspecification. This ncp can be used to
determine the power given a misspecification size • and the ’-level of the test, and for all
restricted parameters. The power of the test can be obtained from the tables of the noncentral
chi-square distribution (or using any computer-based routine5 ) as:

Prob.¦2.1; ncp/ > c’/ (11)

where c’ is the critical value of an ’-level test based on a chi-square distribution with df D 1
and ¦2(1, ncp) is the noncentral chi-square distribution with noncentrality parameter ncp.

Note that this approach requires the specification of the deviation •. We suggest that for a
standardized structural parameter and for a correlated error term a misspecification of 0.1 is
substantively important and should be detected by a test. For factor loadings, one might follow
the standard approach where loadings smaller than .4 are ignored. These values are merely
suggestions and one could use other values for • that are more appropriate within a specific
theory of interest.

In the examples of the two misspecified models discussed earlier, for all the misspecified
parameters we have computed the standard error (¢) of the EPC, the confidence interval for
the EPC, the noncentrality parameter for a deviation •, and the power of the test to detect
a misspecification of • or larger. These statistics obtained using Equations 7, 8, and 10 are
presented in Tables 4 and 5. We discuss the results from the population study presented in
Table 4 first.

5A computer program, JRule, that produces statistics for all the restricted parameters, based on the output of

LISREL, has been developed by us. The program can be requested by sending an e-mail to vdveld@telfort.nl and

putting JRule in the subject line.
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572 SARIS, SATORRA, VAN DER VELD

TABLE 5
Statistical Information About the Misspecification (¡21 D 1) in Model M0,

Including the Power Related to the Size of the Incidental Parameters bij (the Factor Loadings)

95% Confidence
Interval

bij EPC¡21 MI Low High ¢ ncp Power

0.70 !0.05 1.09 !0.15 0.05 0.050 4.36 0.550
0.75 !0.05 2.15 !0.12 0.02 0.034 8.65 0.840
0.80 !0.05 3.75 !0.11 0.01 0.026 15.0 0.972
0.85 !0.05 8.81 !0.08 !0.16 0.017 34.6 1.000
0.90 !0.05 18.13 !0.07 !0.03 0.012 72.5 1.000

Note. The expected parameter change (EPC) and modification index (MI) are taken from the LISREL output
(carried out for Table 2). The 95% confidence interval for the EPC is estimated with Equation 8, the standard error
of the EPC (¢) is estimated with Equation 7, the noncentrality parameter (ncp) is estimated with Equation 10 for
a misspecification of • D 0.1 or larger, and the power can be found in power tables in the literature (e.g., Saris &
Stronkhorst, 1984). The power was estimated with ’ D .05 and df D 1, because the test is on a single parameter.

The results show that the EPC values vary, in this case, around the proper value of the
parameter and that the size of the interval depends on the value of ”22. For small values of
”22, the EPC values for §21 can be negative but values that are close to .4 are also possible. If
”22 is .5 or larger, the probability of obtaining a value for §21 close to zero becomes smaller,
which is an indication that there is a misspecification in the model. Under this condition the
MI also shows that the EPC is significantly different from zero, which was not true for smaller
values of ”22. Note that the power of this test for a misspecification of .1 or larger for the
parameter §21 is fairly low for all different values of ”22.

Let us now look at the second example. The results in Table 5 indicate that the MI increases
rapidly with an increase in the size of the loadings. For values of the loadings larger than .8,
the MI is significant even though the misspecification is minimal for all practical purposes.
Accordingly, the power of the test also increases rapidly. This explains why this model, although
it is good for all practical purposes, is likely to be rejected if the loadings get larger than .8.

What Should Be Done?

As mentioned earlier, we suggest switching from goodness-of-fit testing, based on the chi-square
test, FIs, or both, to searching for possible (one-parameter) misspecifications in the model,
using the MI, the EPC, and the power of the MI test. The approach we propose distinguishes
the following four possible situations shown in Table 6, which result from combining the
significance or nonsignificance of the MI test and the high or low power of the MI test.

When MI is significant and the power of the MI test is low, we conclude that there is a
misspecification because the test is not very sensitive (low power) and nevertheless a significant
value of the MI has been obtained. This situation appears in Table 4 for values of ”22 > :4.
This is the cell in Table 6 labeled “m” for misspecification. Using a reversed argument, the
decision is also simple if the MI is not significant and the power of the MI is high. In that
case, the conclusion is that there is no misspecification, so the corresponding cell in Table 6
is labeled “nm.” This situation does not occur in the tables presented.
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TABLE 6
Decisions to be Made in the Different Situations Defined on Size of the

Modification Index (MI) and the Power of the Test

High Power Low Power

Significant MI Inspect EPC (EPC) Misspecification present (m)
Nonsignificant MI No misspecification (nm) Inconclusive (I)

Note. EPC D expected parameter change.

The situation is more complex if the MI is significant but the power of the MI test is
high. In that case it might be a serious misspecification, but it could also be that the MI
is significant due to a high sensitivity of the test for this misspecification. Therefore, in that
situation, we suggest looking at the substantive relevance of the EPC: If the EPC is rather small,
one concludes that there is no serious misspecification. This makes sense because, generally,
we do not want to adjust our model for a standardized coefficient of .001 even though this
coefficient is significant. However, when the EPC is large (e.g., larger than .2), it is concluded
that there is a relevant misspecification in the model. The first situation, with small EPC, occurs
in Table 5 for values of the loadings larger than .8 and the decision would again be correct
for all practical purposes. This cell in Table 6 is labeled “EPC,” for EPC use. If the decision
is that there is a misspecification, we denote it as “EPC:m.” If it is decided that there is no
misspecification, this is denoted as “EPC:nm.”

The fourth and last situation is that in which MI is low, and the power of the MI test is
also low. In that case it should be concluded that one lacks sufficient information to make a
decision. This is the most frequently occurring situation in our examples. It occurs in Table 4
for values of ”22 < :4, and also in Table 5 for loadings of .8 or smaller. Concluding that
not enough information is available to reach a decision for the validity or not of a specific
restriction should in itself be informative. This case is labeled as inconclusive (“I”).

Thus, Table 6 helps to classify the different options we might be confronted with in
conducting model evaluation.

Some Complications

Unfortunately, the situation is more complex than that already presented because in empirical
research we do not know which parameter is misspecified and SEM analysis software provides
EPCs for all restricted parameters. This point has also been discussed extensively in the review
paper of Kaplan (1990) and in their discussion. We can compute the 95% confidence interval
for the EPC and the power for every restricted parameter. As an illustration, we did so for two
restricted parameters, “12 and ”21, in model M0 (Figure 2). The results are presented in Table 7.

For this specific model (M0), the introduction of either §21 or ”21 will lead to a perfect-
fitting model. Hence, model M0 extended with either §21 or ”21 are equivalent. The EPC
estimates for the parameter ”21 are consistent estimates of the possible parameter values in this
population study. In addition, for ”21—just as for §21—the standard errors of the EPC differ
considerably for different values of ”22 (an incidental parameter) and so does the power of the
test. Therefore, the choice to include ”21 or §21 cannot be made solely on statistical grounds
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TABLE 7
Statistical Information About the Misspecification (“12 and ”21) in Model M0,

Including the Power Related to the Size of the Incidental Parameter ”22

Parameter “12 Parameter ”21

”22 EPC”12 95% Interval MI Power EPC”21 95% Interval MI Power

0.1 0.200 !0.026 0.426 3.00 0.140 !0.095 !0.199 0.009 3.20 0.478
0.2 0.170 !0.037 0.377 2.60 0.158 !0.095 !0.197 0.007 3.30 0.491
0.3 0.140 !0.049 0.329 2.10 0.179 !0.095 !0.195 0.005 3.49 0.517
0.4 0.110 !0.055 0.275 1.70 0.219 !0.095 !0.191 0.001 3.80 0.536
0.5 0.090 !0.065 0.245 1.30 0.243 !0.095 !0.186 !0.004 4.20 0.578
0.6 0.070 !0.061 0.201 1.10 0.321 !0.095 !0.178 !0.012 5.07 0.659
0.7 0.060 !0.064 0.184 0.90 0.352 !0.095 !0.168 !0.022 6.47 0.764
0.8 0.050 !0.067 0.167 0.70 0.388 !0.095 !0.155 !0.035 9.50 0.900
0.9 0.040 !0.061 0.141 0.60 0.503 !0.095 !0.136 !0.054 20.27 0.997

Note. The expected parameter change (EPC) and modification index (MI) are taken from the LISREL output
(carried out for Table 2). The 95% confidence interval for the EPC is estimated with Equation 8, the standard error
of the EPC (¢) is estimated with Equation 7, the noncentrality parameter (ncp) is estimated with Equation 10 for
a misspecification of • D 0.1 or larger, and the power can be found in power tables in the literature (e.g., Saris &
Stronkhorst, 1984). The power was estimated with ’ D .05 and df D 1, because the test is on a single parameter.

but should also be based on substantive arguments. This was also the conclusion reached by
Kaplan (1990) at the end of the discussion about this issue in Multivariate Behavioral Research.

The situation for the parameter “12 is rather different. The introduction of the parameter
“12 does not lead to a perfect-fitting model. The EPC gives an impression of what would be
the most likely value for this parameter if estimated given the specified model. This value is
decreasing with increasing values of ”22. The confidence interval behaves in a similar way, so
that it becomes more and more likely that the population (true) value is zero for this parameter.
In addition, the MI never indicates that the EPC is significantly different from zero, but on the
other hand the power of this test is rather low for all data sets.

The situation becomes even more complicated if there is more than one important misspec-
ification in the model. The EPCs are consistent estimates of the true value of the parameter
provided that the other restrictions in the model are (approximately) correct. If this is not
the case, multivariate EPC (Satorra, 1989) should be used to obtain consistent estimates
of the change in a restricted parameter vector. This, however, would complicate the matter
considerably and is not pursued here.

As indicated earlier, one could construct confidence intervals for the EPCs. To illustrate this,
consider the population data corresponding to M1 with ”22 D :1 and §21 D :2 and consider
the fit of M0. Suppose the EPC for §21 is found to be smaller than .20, say .10 with a standard
error (¢) of .112. In this case, the 95% level confidence interval would run from !.124 to
.324, and would thus contain zero, and the MI would not be significant. In such a case, one
would typically conclude that there is no misspecification. However, we know that there is
a misspecification in this model given the way in which the data have been generated (see
model M1), hence this conclusion is incorrect. The cause of this wrong conclusion is that the
power is too low to detect a misspecification of .1 in this situation. This illustration shows
that a nonsignificant MI does not necessarily mean that the EPC is zero in the population. A
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nonsignificant MI can also mean that there is not enough information (low power) to detect
whether the value of the parameter deviates from zero. This is a rather different conclusion to
just reporting nonsignificance of the parameter.

AN ILLUSTRATION: MODELING SCHOOL CAREER

For the sake of illustration, the preceding methodology will be applied to a study in which the
principal author of this article was consulted some years ago. It corresponds to the analysis of
school career data in The Netherlands (see Blok & Saris, 1980). At the end of primary school,
the type of secondary education that children should go on to has to be decided. This choice is
very important because only the highest types of secondary schools allow pupils to continue on
to higher educational studies. The causal model, presented in Figure 5, was initially formulated
on the basis of prior substantive information on this issue.

The correlation matrix, means, and standard deviations of the variables involved, based on
a sample of 383 pupils, are presented in Appendix B. Using these data, the model in Figure 5
was fitted obtaining the following values for chi-square and FIs: ¦2.9/ D 161, SRMR D .073,
RMSEA D .21, CFI D .95, and AGFI D .67. According to the suggested cutoff values, all FI,
with the exception of CFI, would reject the model. How can we be sure of this conclusion? It
is also possible that there are only very small misspecification(s) for which all the test statistics
and FIs, with the exception of CFI, are very sensitive.

Using the methods developed in this article we now sketch the typical steps to assess
whether or not the model is substantially misspecified. Table 8 lists the MI test for each of
the restricted parameters of the model. Table 8 reports the MI, EPC, and the power for each
restricted parameter and the decisions based on Table 6. In the calculations, • D :1 was chosen
and the power was classified as high when it was above .75. The JRule software (van der Veld,
Saris, & Satorra, 2008) was used to obtain the information reported in Table 8.

From this we can see that the model is misspecified, because for several parameters the
decision is m, which corresponds to the case of low power but substantially large MI. In
addition to that, we have the EPC decision for several parameters, which means that one has
to inspect the reported EPC for substantive significance (this is the case for high power).

FIGURE 5 The school career model of Blok and Saris (1980) where it is assumed that all variables were

measured without errors, therefore ˜i D yi and Ÿj D xj .
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TABLE 8
The Test on Misspecifications in the School Career Model (see Figure 5)

Parameter From To MI EPC Power Decision

BE 5 1 ˜5 ˜1 0.02 0.00 0.999 nm
BE 1 2 ˜1 ˜2 18.66 !0.68 0.098 m
BE 4 2 ˜4 ˜2 36.82 0.10 0.999 EPC:m
BE 1 3 ˜1 ˜3 22.41 !0.52 0.149 m
BE 2 3 ˜2 ˜3 27.35 0.66 0.125 m
BE 4 3 ˜4 ˜3 46.07 0.11 0.999 EPC:m
BE 1 4 ˜1 ˜4 68.81 0.00 0.999 EPC:nm
BE 2 4 ˜2 ˜4 43.36 0.00 0.999 EPC:nm
BE 3 4 ˜3 ˜4 13.24 0.00 0.999 EPC:nm
BE 1 5 ˜1 ˜5 20.35 !0.46 0.165 m
BE 2 5 ˜2 ˜5 18.97 0.35 0.236 m
BE 3 5 ˜3 ˜5 2.57 0.26 0.095 I
BE 4 5 ˜4 ˜5 45.97 0.11 0.999 EPC:m
GA 3 1 ˜3 Ÿ1 10.30 0.08 0.980 EPC:nm
GA 4 1 ˜4 Ÿ1 70.93 0.26 0.899 EPC:m
GA 5 1 ˜5 Ÿ1 0.00 0.00 0.999 nm
GA 2 2 ˜2 Ÿ2 18.66 0.13 0.914 EPC:m
GA 4 2 ˜4 Ÿ2 8.25 0.09 0.890 EPC:nm
GA 5 2 ˜5 Ÿ2 0.03 0.00 0.999 nm
PS 2 1 ˜2 ˜1 18.66 !0.74 0.090 m
PS 3 1 ˜3 ˜1 10.30 !0.30 0.187 m
PS 5 1 ˜5 ˜1 0.00 0.00 0.999 nm
PS 3 2 ˜3 ˜2 10.30 0.79 0.060 m
PS 4 2 ˜4 ˜2 43.36 0.12 0.999 EPC:m
PS 5 2 ˜5 ˜2 0.02 0.00 0.999 nm
PS 4 3 ˜4 ˜3 13.24 0.05 0.999 EPC:nm
PS 5 3 ˜5 ˜3 0.03 0.00 0.999 nm
PS 5 4 ˜5 ˜4 0.02 0.00 0.999 nm
TE 1 1 y1 y1 95.53 0.23 0.989 EPC:m
TE 2 1 y2 y1 9.86 !0.05 0.999 EPC:nm
TE 3 1 y3 y1 0.97 0.00 0.999 nm
TE 4 1 y4 y1 78.50 !0.17 0.999 EPC:m
TE 5 1 y5 y1 8.01 0.00 0.999 nm
TE 2 2 y2 y2 2.08 !0.28 0.081 I
TE 3 2 y3 y2 0.05 0.00 0.999 nm
TE 4 2 y4 y2 10.25 0.04 0.999 EPC:nm
TE 5 2 y5 y2 0.01 0.00 0.999 nm
TE 3 3 y3 y3 0.03 0.00 0.999 nm
TE 4 3 y4 y3 3.32 0.01 0.999 nm
TE 5 3 y5 y3 0.03 0.00 0.999 nm
TE 5 4 y5 y4 0.02 0.00 0.999 nm
TD 1 1 x1 x1 77.17 !0.29 0.857 EPC:m
TD 2 1 x2 x1 16.10 !0.10 0.980 EPC:m
TD 2 2 x2 x2 19.29 0.13 0.925 EPC:m

Note. MI D modification index; EPC D expected parameter change; m D mis-
specification; nm D no misspecification; EPC:m D inspection of the EPC leads to
conclusion: misspecification; EPC:nm D inspection of the EPC leads to conclusion: no
misspecification; I D inconclusive.
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For several of these restricted parameters, BE 1 4, BE 2 4, and BE 3 4, the EPC is smaller
than .01 (those labeled EPC:nm); but there are other restrictions with EPC large enough to
indicate a serious misspecification (those labeled EPC:m). We also see that there are a number
of parameters that are most likely to be not misspecified (nm) because the power is high but
nevertheless the MI is not significant. Finally, there is only one parameter for which the status
is unclear because the power is too low (the one labeled I for “inconclusive”).

Given the number of restrictions that are found to be severely misspecified, the model can be
adjusted in many different directions. The number of possibilities can be reduced by theoretical
information on the described process; for example, time ordering and other theoretical reasons
exclude certain effects. Substantive considerations not discussed in this article (but detailed in
Saris & Stronkhorst, 1984) lead to the alternative model specification depicted in Figure 6.
Analysis of this alternative model leads to the following results regarding chi-square test and
FIs: ¦2.5/ D 3:88, p D :57, SRMR D .0076, RMSEA D 0, CFI D 1.0 AGFI D .98. Now all
indexes suggest that the model fits the data. However, this decision is also doubtful, as it is
possible that the power of the tests is so low for this model that the misspecifications are not
detected. If we apply the method discussed in this article we get the MI test results reported
in Table 9.

In Table 9 we can see that there are several parameters for which the power of the test is
too low to decide if there is a misspecification or not (parameters labeled I). The table also
shows that for many parameters we can conclude that there is no misspecification (nm) because
the power is high but the MI is not significant. In contrast with the standard evaluation of the
model, we do not conclude that the model is acceptable. On the basis of these tests we should
conclude that the model is not misspecified for those parameters for which the power is high
enough to test for misspecification, but that there are some parameters for which this study
cannot determine whether they are misspecified due to of lack of power. This conclusion is
quite different from the conclusion derived using the standard model evaluation procedures.

FIGURE 6 The adjusted model for the school career model of Blok and Saris (1980) where it is assumed

that all variables were measured without errors, therefore ˜i D yi and Ÿj D xj , except ˜1, which is not equal

to y1 , while ˜6 D y1 .
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TABLE 9
The Test on Misspecifications in the Adjusted School Career Model (see Figure 6)

Parameter From To MI EPC Power Decision

BE 5 1 ˜5 ˜1 0.01 0.00 0.999 nm
BE 1 2 ˜1 ˜2 0.86 !0.10 0.153 I
BE 4 2 ˜4 ˜2 0.65 !0.04 0.522 I
BE 6 2 ˜6 ˜2 0.33 0.03 0.482 I
BE 1 3 ˜1 ˜3 0.02 !0.01 0.294 I
BE 2 3 ˜2 ˜3 1.84 !0.05 0.774 nm
BE 4 3 ˜4 ˜3 0.04 0.00 0.999 nm
BE 6 3 ˜6 ˜3 1.08 0.02 0.999 nm
BE 1 4 ˜1 ˜4 3.76 0.21 0.152 I
BE 2 4 ˜2 ˜4 0.17 0.01 0.985 nm
BE 3 4 ˜3 ˜4 0.21 0.00 0.999 nm
BE 6 4 ˜6 ˜4 0.84 !0.03 0.863 nm
BE 1 5 ˜1 ˜5 0.04 !0.01 0.516 I
BE 2 5 ˜2 ˜5 1.73 !0.05 0.749 I
BE 3 5 ˜3 ˜5 0.00 0.01 0.000 I
BE 4 5 ˜4 ˜5 0.02 0.00 0.999 nm
BE 6 5 ˜6 ˜5 1.03 0.02 0.999 nm
BE 2 6 ˜2 ˜6 0.50 !0.02 0.947 nm
BE 3 6 ˜3 ˜6 1.38 0.02 0.999 nm
BE 4 6 ˜4 ˜6 0.16 !0.01 0.979 nm
BE 5 6 ˜5 ˜6 0.01 0.00 0.999 nm
GA 3 1 ˜3 Ÿ1 2.30 !0.06 0.714 I
GA 4 1 ˜4 Ÿ1 3.59 0.14 0.271 I
GA 5 1 ˜5 Ÿ1 0.00 0.00 0.999 nm
GA 6 1 ˜6 Ÿ1 1.07 !0.08 0.251 I
GA 2 2 ˜2 Ÿ2 1.91 0.05 0.789 nm
GA 4 2 ˜4 Ÿ2 3.85 !0.06 0.904 EPC:nm
GA 5 2 ˜5 Ÿ2 0.03 0.00 0.999 nm
GA 6 2 ˜6 Ÿ2 1.07 0.04 0.734 I
PS 2 1 ˜2 ˜1 0.86 !0.07 0.261 I
PS 3 1 ˜3 ˜1 0.01 0.00 0.999 nm
PS 4 1 ˜4 ˜1 3.76 0.30 0.100 I
PS 5 1 ˜5 ˜1 0.03 0.00 0.999 nm
PS 3 2 ˜3 ˜2 2.30 !0.04 1.000 nm
PS 4 2 ˜4 ˜2 0.17 0.01 0.985 nm
PS 5 2 ˜5 ˜2 0.02 0.00 0.999 nm
PS 6 2 ˜6 ˜2 0.00 0.00 0.999 nm
PS 4 3 ˜4 ˜3 0.21 0.01 0.996 nm
PS 5 3 ˜5 ˜3 0.02 0.00 0.999 nm
PS 6 3 ˜6 ˜3 0.55 0.01 0.999 nm
PS 5 4 ˜5 ˜4 0.01 0.00 0.999 nm
PS 6 4 ˜6 ˜4 0.84 !0.04 0.630 I
PS 6 5 ˜6 ˜5 0.02 0.00 0.999 nm
TE 2 1 y2 y1 0.22 !0.01 0.997 nm
TE 3 1 y3 y1 0.01 0.00 0.999 nm
TE 4 1 y4 y1 0.80 !0.03 0.846 nm
TE 5 1 y5 y1 0.02 0.00 0.999 nm
TE 2 2 y2 y2 2.20 0.07 0.563 I
TE 3 2 y3 y2 0.14 0.00 0.999 nm
TE 4 2 y4 y2 0.00 0.00 0.999 nm
TE 5 2 y5 y2 0.01 0.00 0.999 nm

(continued)
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TABLE 9
(Continued)

Parameter From To MI EPC Power Decision

TE 3 3 y3 y3 0.02 0.00 0.999 nm
TE 4 3 y4 y3 0.09 0.00 0.999 nm
TE 5 3 y5 y3 0.02 0.00 0.999 nm
TE 4 4 y4 y4 0.01 0.02 0.079 I
TE 5 4 y5 y4 0.01 0.00 0.999 nm
TD 1 1 x1 x1 0.89 !0.05 0.471 I
TD 2 1 x2 x1 0.95 0.03 0.901 nm
TD 2 2 x2 x2 1.72 0.04 0.906 nm

Note. MI D modification index; EPC D expected parameter change; m D misspecification; nm D no
misspecification; EPC:m D inspection of the EPC leads to conclusion: misspecification; EPC:nm D inspection of
the EPC leads to conclusion: no misspecification; I D inconclusive.

CONCLUSIONS

We have argued that the commonly used evaluation procedures for structural equation models
cannot be trusted. The reason is that the test statistics and FIs used are not only affected
by the size of the misspecifications, but also by other unrelated characteristics of the model.
For a more elaborate study of this phenomenon, providing data for more different types of
misspecifications and more FIs, we refer to Miles and Shevlin (2007) and for the effect of the
model specification to Fan and Sivo (2007).

By power analysis for different possible misspecifications in the model, one can see that
the chi-square test statistic and FIs are unequally sensitive for different misspecifications. A
standard test for the complete model with a fixed critical value could lead to rejection because
of a small misspecification for which the test is very sensitive. On the other hand, it could just
as well lead to accepting a model with a large misspecification because the test is not sensitive
enough for that misspecification. The conclusion is that, based on a general model test, it is
hard to draw conclusions as to possible misspecification of a model.

An alternative to the model test is to look for possible misspecified restrictions in the
model. Estimates of the misspecifications can be obtained from EPCs and the significance
of that misspecification can be evaluated using the MI test. We have argued, however, that a
decision as to whether a restriction is misspecified should include information on the power
of the MI test. In many situations there is not enough information (i.e., power is too low) to
say whether or not the restriction is misspecified. The standard practice of concluding that a
model is a good model if the fit is acceptable, or no significant MIs are found, is unjustified
because nonsignificance could just be due to lack of power. Nonsignificance should not imply
that the parameter is zero, except when there is reasonable power.

We propose using the MI for detection of misspecifications in combination with the power of
the MI test. This allows one to specify four different situations (Table 6) for which the decision
concerning the presence or absence of misspecification can be made. In some situations, where
the power is low and the MI is not significant, one will come to the conclusion that not enough
information is available regarding the validity of that restriction.
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Besides the power of the test, one also has to take into account the substantive relevance
of the misspecifications. Very small misspecifications can lead to significant MIs if the power
is high. However, if these deviations are very small, one should consider whether it makes
sense to reduce the parsimony of the model by introducing parameters that do not deviate
substantively from zero or any other fixed value.

We have also shown that many different corrections will be suggested in some cases, with
the MI statistics giving insufficient evidence regarding the best correction. The decision as to
the specific “direction” in which a model needs to be augmented should be based on theoretical
grounds. In our approach, we did not specify what constitutes high and low power. It should
be made clear that these specifications are rather arbitrary. The choice of the critical deviations
and the threshold value for power should be dictated by the standards of the specific discipline.
We suggested, as a critical deviation, .1 for standardized structural parameters and .4 for factor
loading (because these are often used as critical values in social science research); also .75
for the threshold of high power value. These values, however, are rather arbitrary and can
change in different areas, and over time as the research advances. Different disciplines should
choose their standards. We do not wish to claim any higher precision than this. Further research
should show if greater precision is possible and thus whether there is scope to making these
cutting points more precise. It is important that once a choice is made regarding the power
and the unacceptable misspecification (•), it is clear what the result of the test means. This
is in sharp contrast to the standard model test and the use of the FI where the power is
neglected.

REFERENCES

Barrett, P. (2006). Structural equation modeling: Adjudging model fit. Personality and Individual Differences, 42,

815–824.

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures.

Psychological Bulletin, 88, 588–606.

Blok, H., & Saris, W. E. (1980). Relevante variabelen bij het doorverwijzen na de lagere school: een structureel model

[Relevant variables in the school career: A structural equation model approach]. Tijdschrift voor onderwijs, 5, 63–80.

Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods and Research,

21, 230–258.

Fan, X., & Sivo, S. A. (2005). Sensitivity of fit indices to misspecified structural or measurement model components:

Rational of two. Index strategy revisited. Structural Equation Modeling, 12, 343–367.

Fan, X., & Sivo, S. A. (2007). Sensitivity of fit indices to model misspecification and model types. Multivariate

Behavioral Research, 42, 509–529.

Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model

specification. Psychological Methods, 3, 424–453.

Hu, L., & Bentler, P. M. (1999). Cut-off criteria for fit indexes in covariance structure analysis: Conventional criteria

versus new alternatives. Structural Equation Modeling, 6, 1–55.

Jöreskog, K. G., & Sörbom, D. (1989). Lisrel 7. A guide to the program and applications. Chicago: SPSS.

Jöreskog, K. J., & Sörbom, D. (1996). LISREL 8: Users reference guide. Chicago: SSI.

Kaplan, D. (1990). Evaluating and modifying covariance structure models: A review and recommendation. Multivariate

Behavioral Research, 25, 137–155.

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for

covariance structure modeling. Psychological Methods, 1, 130–149.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
d
b
o
u
d
 
U
n
i
v
e
r
s
i
t
y
 
N
i
j
m
e
g
e
n
]
 
A
t
:
 
1
0
:
2
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



TESTING STRUCTURAL EQUATION MODELS 581

Marsh, H. W., Hau, K.-T., & Grayson, D. (2005). Goodness of fit in structural equation models. In A. Maydeu-Olivares

& J. J. McArdle (Eds.), Contemporary Psychometrics (pp. 275–340). Mahwah, NJ: Lawrence Erlbaum Associates.

Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis. Testing approaches

to setting cut-off values for fit indices and dangers in overgeneralising Hu and Bentler’s (1999) findings. Structural

Equation Modeling, 11, 320–341.

Miles, J., & Shevlin, M. (2007). A time and a place for incremental fit indices. Personality and Individual Differences,

42, 869–874.

Saris, W. E., den Ronden, J., & Satorra, A. (1987). Testing structural equation models. In P. Cuttance & R. Ecob

(Eds.), Structural modeling by example (pp. 202–220). New York: Cambridge University Press.

Saris, W. E., & Satorra, A. (1988). Characteristics of structural equation models which affect the power of the

Likelihood Ratio Test. In W. E. Saris & I. N. Gallhofer (Eds.), Sociometric research (Vol. 2, pp. 222–236). London:

Macmillan.

Saris, W. E., Satorra, A., & Sörbom, D. (1987). The detection and correction of specification errors in structural

equation models. Sociological Methodology, 17, 105–129.

Saris, W. E., & Stronkhorst, H. (1984). Causal modelling in nonexperimental research. Amsterdam: Sociometric

Research Foundation.

Satorra, A. (1989). Alternative test criteria in covariance structure analysis: A unified approach. Psychometrika, 54(1),

131–151.

Satorra, A., & Saris, W. E. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika,

50, 83–90.

Steiger, J. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behav-

ioral Research, 25, 173–180.

Steiger, J., & Lind, J. M. (1980, May). Statistically-based tests for a number of common factors. Paper presented at

the Psychometrika Society Meeting, Iowa City, IA.

van der Veld, W. M., Saris, W. E., & Satorra, A. (2008). JRule 2.0: User manual. Unpublished document.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
d
b
o
u
d
 
U
n
i
v
e
r
s
i
t
y
 
N
i
j
m
e
g
e
n
]
 
A
t
:
 
1
0
:
2
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



582 SARIS, SATORRA, VAN DER VELD

APPENDIX A

The Definition of the Fit Indices Included in This Study

Fit Index Formula Reference
Cutoff
Value

AGFI 1 !

!

p.p C 1/

2dfh

"

Œ1 ! GFI" Jöreskog & Sörbom (1989) .9

GFI 1 !

 

¦2
h

¦2
u

!

Jöreskog & Sörbom (1989) .95

SRMR

v

u

u

u

u

u

t

p
X

iD1

i
X

j D1

Œ.sij ! O¢ij /=si i sjj "
2

p.p C 1/=2
Jöreskog & Sörbom (1989) .05

NFI or BBI
.¦2

b ! ¦2
h/

¦2
b

Bentler & Bonett (1980) .95

CFI
Oœb ! Oœh

Oœb

Bentler (1990) .95

RMSEA

s

OF0

dfh
D

v

u

u

tMax

( 

OFh

dfh
!

1

n

!

; 0

)

Steiger (1990), Steiger & Lind (1980) .05

Note. AGFI D adjusted goodness-of-fit index; GFI D goodness-of-fit index; SRMR D standardized root mean
squared residual; NFI D normed fit index; BBI D Bentler and Bonett’s index; CFI D comparative fit index; RMSEA D
root mean squared error of approximation; F is the fitting function, ¦2 D n " F . n D N ! 1, N is the sample size;
h refers to the hypothesized model; u refers to the ultimate null model in which all estimations are fixed at zero; b
refers to the baseline model, which is usually the null model in which no common factors for the input measures and
no covariances among these measures are specified; this is usually done by setting all of the covariances among the
measures at zero while allowing their variances to be estimated as free parameters; p D number of observed variables;
œ D noncentrality parameter.

APPENDIX B

Correlations, Means, and Standard Deviations of the Variables
of the School Career Model

Variables Correlations SD M

School achievement 1.000 22.5 53.7
Advise teacher .8113 1.000 1.8 3.0
Preference parents .7858 .8534 1.000 1.8 3.3
School test score .8109 .7641 .7611 1.000 27.8 50.5
School choice .7921 .8605 .9879 .7747 1.000 1.8 3.3
Quality school .2763 .1905 .2799 .4664 .2847 1.000 28.0 50.9
Background parents .1963 .2821 .2969 .2435 .2966 .1399 1.000 1.5 3.2

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
d
b
o
u
d
 
U
n
i
v
e
r
s
i
t
y
 
N
i
j
m
e
g
e
n
]
 
A
t
:
 
1
0
:
2
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9


