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Testing the assumptions of exponential,
additive reaction time models

F. GREGORY ASHBY
Ohio State University, Columbus, Ohio 43210

Two assumptions commonly made by choice reaction time (RT) models are (1) that certain
experimental tasks can be found that cause an extra processing stage to be inserted into
the cognitive process and (2) that the duration of one or more processing stages is random
with an exponential distribution. Few rigorous tests of either assumption exist. This paper
reviews existing tests and presents several new results that can be used to test these
assumptions. First, in the case in which the duration of an inserted stage is exponentially dis
tributed, it is shown that the observable RT density functions must always intersect at
the mode of the density requiring the extra processing stage. Second, when only the first
assumption (Assumption 1)is made, it is shown that the cumulative RT distribution functions
and, in many cases, the hazard functions must be ordered. Finally, when only Assumption 2 is
assumed, it is shown that, under fairly weak conditions, the tail of the RT density function
must be exponential. The first two results are applied to data from a memory scanning experi
ment, and the two assumptions are found to receive tentative support.
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An assumption found in many early theories of

choice reaction time (RT) is that two experimental
tasks can be found such that the second task requires all

the cognitive processes or stages of the first, plus one
additional stage. It is also usually required that the

inserted stage have no effect on the duration of any
other stage. This assumption, popularized by Donders

(1969) in 1868, has been termed the assumption of pure
insertion, and it formed the basis of Donders' method of

subtraction. His idea was to estimate the duration of the
inserted stage by subtracting the mean RTs of the two
tasks from each other. After a brief period of popularity,
the method of subtraction fell into disfavor; its downfall
proved to be introspectionistic reports, coming first

from Wundt's laboratory and later from Ki.ilpe's in
Wurzburg, that the tasks recommended by Donders
evoked qualitatively different experiences. Trained
observers did not report experiencing concatenated
mental processes, as pure insertion predicts.

Despite the subsequent loss of confidence in intro

spection, the bias against the subtractive method
remained. A telling example of this attitude can be
found in Boring's (1950) influential History of Experi-
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mental Psychology, in which the method is dismissed on

what are essentially these same subjective grounds. One
seemingly more objective criticism of the assumption is

that, at times, there is a large variability in the obtained

estimates of the inserted stage (mean) duration (e.g.,

Boring, 1963; Smith, 1968). While this finding may
cause a loss of confidence in subtractive method esti

mates, it has nothing to do with the validity of the
pure insertion assumption. If there is a large variability

in the duration of the inserted stage, there will be a
large variability in the subtractive method estimate,
regardless of whether pure insertion holds.

Despite these disclaimers, in certain experimental
paradigms the assumption of pure insertion is still
heavily relied upon. Examples include signal detection
(e.g., Luce & Green, 1972; Kohfeld, Santee, & Wallace,
Note 1), memory scanning (e.g., Sternberg, 1966), visual
search (e.g., Atkinson, Holmgren, & Juola, 1969), and

the Posner and Mitchell (1967) letter identification
task (e.g., Hunt, 1978). Other examples include develop
mental studies in which subtraction is used to correct
for differences in response execution time across differ
ent age populations (e.g., Surwillo, 1977). Thus, in spite
of its many critics, the assumption of pure insertion
enjoys continued popularity. A more objective test of

the pure insertion hypothesis is a major goal of this
paper.

A second assumption popular in RT theories is that

the duration of one or more of the processing stages is
random with an exponential distribution (e.g., Christie

& Luce, 1956; Green & Luce, 1971; Hohle, 1965;

Luce & Green, 1970; McGill, 1963; McGill & Gibbon,
1965; Restle, 1961; Taylor, 1976; Townsend, 1972,
1974, 1976). This seems to be the most commonly
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made distributional assumption about the duration of

RT components. Much of its popularity is undoubtedly

due to its mathematical simplicity, but despite its prev

alence, it too has been attacked on what are largely

subjective grounds. Sternberg (1975) criticized the

assumption because the exponential distribution is used

as a model of waiting times and thus, in his words, ''is

fundamentally inconsistent with what we normally

mean by the concept of processing over time" (p. 18).

The influence of these subjective criticisms can be

attributed to the lack of adequate tests in the case of

both assumptions. By far the oldest and best known test

of pure insertion is to examine the difference between

observed mean RTs from the two experimental condi

tions. If the mean from the condition thought to require

the extra processing stage is greater than the mean from

the other condition, then pure insertion is supported.

Only if the means are ordered in the opposite direction

can the assumption be rejected. Unfortunately, this is

a weak test, since the experimental task thought to

require the extra processing stage is invariably the more

complex of the two.

A more rigorous approach is to first assume pure

insertion holds and then try to estimate the probability

distribution of the inserted stage duration. If the result

ing estimate is reasonable, then pure insertion is sup

ported; if it is not, the assumption can be rejected. As

will be seen below, there are several variants of this

potentially very powerful approach (e.g., Green, 1971;

Green & Luce, 1971; Kohfeld et al., Note 1; Sternberg,

Note 2), but unfortunately, they tend to be computa

tionally complex and to be associated with some rather

thorny statistical problems that are not yet completely

resolved.

The assumption that at least some RT components
are exponentially distributed is in much the same

straits. No completely acceptable test exists. One possi

bility is based on the fact that if all RT components are

exponentially distributed or if all RT components not

exponentially distributed have a maximum time, then

the tail of the observable RT density function is expo

nential (Green & Luce, 1971; Luce & Green, 1970;

McGill & Gibbon, 1965). Indeed, considerable evidence

exists that, at least in signal detection tasks in which

weak signals are used, the tails of empirical RT densities

are exponential (e.g., Green & Luce, 1967,1971; Luce &

Green, 1970; McGill, 1963; McGill & Gibbon, 1965;

Burbeck & Luce, Note 3). Unfortunately, the above

conditions under which the tail is known to be expo

nential are satisfied by a fairly small set of choice RT

models. These conditions will be weakened below,

where it will be shown that a much larger class of

models predict such tails.

A second approach has been to fit a theoretical RT

distribution containing an exponential component to an

empirically obtained distribution (Hohle, 1965; Ratcliff,

1978; Ratcliff & Murdock, 1976; Snodgrass, Luce, &

Galanter, 1967). A good fit supports the exponential

assumption. Hohle (1965) had good success fitting the

convolution of a normal and an exponential distribu

tion to data from a signal detection task, and Ratcliff

(1978; Ratcliff & Murdock, 1976) found this same

family of distributions gave good fits to empirical RT

distributions obtained in memory experiments. One

drawback of this procedure, of course, is that it requires

precise specification of all RT components and not just

the exponential one.

Recently, Ashby and Townsend (1980) derived a

testable condition that is predicted by all models assum

ing both pure insertion and that the duration of the

inserted stage is exponentially distributed. The proposed

test is very strong, since, in addition, the condition can

be predicted only by models making these assumptions.

While the test is not particularly difficult to implement,

neither is it trivial to do so. The next section of this

paper details a second test of these two assumptions

that is not quite as strong as the Ashby and Townsend

(1980) test but has the advantage of being extremely

easy to apply. It is therefore meant to playa diagnostic

role, allowing one to quickly reject exponential, additive

models when they are not appropriate. When the data do

not allow this class of models to be rejected, an appeal

to the stronger Ashby and Townsend (1980) test is

recommended, since its resolving powers are greater.

In the third section of this paper, the consequences of

dropping the exponential assumption will be examined

and some alternative tests of models assuming only

pure insertion will be suggested. Finally, the last section

briefly considers tests of the exponential assumption

that do not require pure insertion to hold.

A TRANSMODAL PROPERTY OF EXPONENTIAL,

ADDITNE LATENCY MODELS

Let me begin by formalizing the assumptions a bit.

First, denote the observable RT in the experimental

condition thought to require the extra processing stage

as RTk and the observable RT in the simpler task as

RTk_l. Finally, call the duration of the unobservable

inserted stage Tk- While the additivities predicted by

pure insertion might occur only at the level of mean

RTs, I will assume that pure insertion imposes addi

tivities at the distributional level. Thus the assumption

of pure insertion at the distributional level can be

stated for k > 1 as

(1)

where RTk-l and Tk are independent random vari

ables.' The idea of the subscripts here is that at some

point we may wish to consider the possibility of a

third experimental condition, requiring one less process

ing stage than Condition k - 1. With the present nota

tion, the observable RT in this new condition can be

called RTk-2.
Equation 1, together with the independence assump-
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tion, implies additivity, not only of the means, but

also of all cumulants (e.g., Parzen, 1960). In addition, it

implies that the observable RT density functions,

gk(t) and gk-1 (t), from the two experimental condi

tions are related by

Figure I. Two gamma densities. The leftmost curve is a two
stage gamma, and the rightmost curve is a three-stage gamma
with the same rate. Theorem I predicts that they will intersect
at the mode of the three-stage gamma.

mode of gk(t) and only there. Prior to that mode,

gk(t) < gk-1 (t), whereas after the mode this ordering is

reversed. This situation is illustrated in Figure I, in

which both ~ and gk-1 are gamma densities with the

same rate. The leftmost curve, gk-1(t), is a two-stage

gamma, and the rightmost curve, gk(t), has three stages

(thus, k=3). Clearly, the assumptions of Theorem I

are met in this case, and the intersection of the two

curves is precisely at the gk(t) mode.

The transmodal property of Theorem I is in the

same spirit as Falmagne's (1968) fixed-point property of

binary mixtures, which states that the density functions

of all binary mixtures of the same processes must

intersect at the same time point if they intersect at all.

Just as the fixed-point property must hold for all binary

mixtures, Theorem I must hold for all values of k for

which pure insertion and the exponential assumption

are appropriate, and thus a very ordered picture of the

set of RT densities from the various experimental

conditions emerges. This ordering is illustrated in Fig

ure 2, again with gamma densities having the same rate,

for the case in which k runs from two through five. The

two-stage gamma is the leftmost curve, and the five

stage gamma is the rightmost. Between these, the order

ing induced by the number of stages is preserved. In all

cases, the Theorem I prediction that the gk and gk-1

densities intersect at the mode of gk(t) is upheld.

A question that naturally arises in connection with

Theorem I is whether any models not making the two

assumptions can also predict the Figure 2 result. Unfor

tunately, this possibility cannot be ruled out, and it

is rather easy to see why not. Note that in the proof

of Theorem I, no use was made of the fact that Vk is

a positive constant, but only that it is always positive.

This admits the possibility that other representations

could yield densities corresponding to this same pattern,
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Vk = ----~- , for all t > 0,
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where fk(t) is the density function of the unobservable

inserted stage duration. Thus, pure insertion at the dis

tributionallevel implies that the observable RT density,

gk(t), is the convolution of the observable density

gk-1(t) and the unobservable fk(t).

The assumption that the inserted stage duration is

exponentially distributed with rate Vk is formalized as

This exponential assumption imposes no restrictions

on the distribution of RTk-1, since it applies only to

Tk, the duration of the inserted stage. In general, the

results to be described in this paper will hold for any

well-defined density function, gk-1 (t).

Under these two assumptions, Ashby and Townsend

(1980) showed that

where ~(t) is the cumulative distribution function

associated with gk(t). A test of the assumptions is

possible, since the left-hand side of Equation 4 is time

invariant and thus a plot of g k ( t ) / [ ~ - 1 ( t ) - ~ ( t ) ]

vs. time should be constant if Equations 2 and 3 are

true. Further, it turns out that if such a plot is constant,

the two assumptions must be satisfied by the data from

the two experimental conditions. Ashby and Townsend

(1980) also suggest statistical decision rules that can be

utilized when implementing such a test.

As it happens, there is another very simple way of

telling if the assumptions embodied in Equations 2 and 3

are violated, which merely involves plotting the empirical

RT density function estimates and checking their

points of intersection.

Theorem 1: If pure insertion holds at the distribu

tional level and if the duration of the inserted stage is

exponentially distributed, then ~ ( t ) and gk-1(t)

intersect at the maxima and minima of gk(t) and only

at these points.

Proof: The proofs of all results in this paper are con

tained in the appendix.

When ~(t) is unimodal, there is, of course, only

one maximum (in conventional cases, consideration of

minima can be excluded), and so the theorem requires

the two densities, gk and gk-1, to intersect at the
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Figure 2. Four gamma densities, all with the same rate. The
leftmost curve is a two-stage gamma, and the rightmost curve
has five stages. Between these are three- and four-stage densities.

and so, unlike the Equation 4 test, Theorem 1 cannot

be stated in an "if-and-only-if' fashion.

To review the development as it now stands, Theo

rem 1 and Equation 4 both provide tests of the double

assumption of pure insertion at the distributional

level and that the duration of the inserted stage is expo

nentially distributed (Theorem 1 through its falsifica

tion). The Equation 4 result is stronger, however, since it

is both necessary and sufficient for the assumptions to

hold, and since it also provides us with an estimate of

the processing rate of the inserted stage. The primary

advantage of Theorem 1 is the simplicity with which it

can be invoked. It is a much more qualitative result.

The empirical densities can be plotted and the condition

can be checked. If it is obvious that the condition does

not hold, then there is no need to invoke the more

involved Equation 4 test, for the assumptions can be

immediately rejected. On the other hand, if the condi

tions of Theorem 1 appear to be approximately satisfied,

there is apparently no good reason to worry about

developing a rigorous statistical test to decide whether

they are. Instead, the more powerful Equation 4 test

can be applied, for which some statistical decision rules

are already available.

An Empirical Application

For an empirical application of the test suggested by

Theorem 1, I chose the same memory scanning data

(i.e., from Townsend & Roos, 1973) employed by

Ashby and Townsend (1980) in their application of the

Equation 4 test. In a typical memory scanning experi

ment (see, e.g., Sternberg, 1966), a subject is first shown

a short list of items (e.g., words or alphanumeric charac

ters) called the memory set and then, a short time

later, a single item called the probe. The subject's task

is to respond "yes" or "no" as quickly as possible,

depending on whether the probe was contained in the

memory set. The idea is that adding an item to the

memory set might insert a stage into the RT process

whose duration is the time it takes the subject to com

pare this new memory set item with the probe?

The memory set in the Townsend and Roos (1973)

experiment contained from one to five alphanumeric

characters. Each of three subjects participated in 500

trials with each memory set size; 250 of these entailed

''yes'' responses (i.e., "probe is in the memory set")

and 250 entailed "no" responses ("probe is not in the

memory set"). Error rates averaged about 1.8%. The

analyses reported below deal only with the target

absent, or "no," data. Here, the subscripted notation

will come in handy; gk(t) will refer to conditions in

which there are k items in the memory set.

Since Theorem 1 is meant as a more qualitative result

than Equation 4, it is recommended that the condition

be checked by the eye rather than by some statistical

procedure. This will be sufficient to detect gross viola

tions. If there are none, the statistical decision rules

developed for the Equation 4 test can be utilized. To

aid the eye's task, some of the higher frequency com

ponents of the empirical densities were attenuated by

passing the density estimates" through a Hamming

window (see, e.g., Green & Luce, 1971) of width

100 msec for Subjects 1 and 3 and 120 msec for Sub

ject 2, since the data of Subject 2 displayed more vari

ability than did those of the others. This procedure will

not change the mean of the density estimate, but it may

change the mode slightly. On the other hand, the high

frequency components that the smoothing eliminates

can make determination of the mode a difficult task.

Figure 3 shows the estimated RT densities for the

three subjects for all five values of the memory set size.

After some study, it can be seen that the condition of
Theorem 1 is severely (Le., obviously) violated for only

one pair of densities, that is, for the pair k = 1 and

k =2 for Subject 1. For Subject 2, the k =5 density has

such a broad mode that it probably means little that

~ ( t ) passes through it. Overall, the assumptions of pure

insertion at the distributional level and that the inserted

stage duration is exponentially distributed can be sum

marily rejected in only one instance." Even though this

set of assumptions may eventually prove false, an appeal

to the statistical test suggested by Equation 4 is clearly

called for.

The results of this application agree nicely with

Ashby and Townsend's (1980) application of the latter

test to the same data. They tentatively accepted the null

hypothesis of pure insertion at the distributional level

and that the duration of the inserted stage is exponen

tially distributed in 9 of the 12 instances. Both analyses

led to the rejection of these assumptions for the pair

k = 1 and k =2for Subject 1.

DROPPING THE EXPONENTIAL ASSUMPTION:
TESTSOF PURE INSERTION

Clearly, the combination of exponentiality and pure

insertion is strong enough to impose some fairly striking
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constraints on the observable RT data, constraints that

are easily tested. In this section, the consequences of

dropping all distributional assumptions will be investi
gated by considering models that assume only pure

insertion.

While this will tend to weaken possible tests, the

assumption of pure insertion at the distributional level,

by itself, still imparts enough regularity to data sets to

generate testable predictions. For instance, it was noted

earlier that the assumption implies an ordering on the

means, so that a possible test is to check if the empirical
means are ordered. That is, a possible decision rule is to

accept pure insertion if RTk > RTk-1 and if the order
ing is reversed to reject it. Unfortunately, this test is

very weak, in the sense that many other sets of assump

tions predict a similar ordering on the means, In fact,

the prediction of ordered means is weak even for pure

insertion at the distributional level, since the assumption

can be shown to predict much stronger orderings.

Lemma1: If pure insertion holds at the level of the

distribution, then Gk-1 (t);;;' Gk(t) for all t > O.

In addition to imparting an ordering on the mean

RTs, pure insertion thus implies the stronger ordering

on the distribution functions. The word "stronger"

here refers to the fact that an ordering on distribution

functions implies a mean ordering but that a mean

ordering does not imply an ordering on the distribution

functions (e.g., Townsend & Ashby, 1978).

Lemma 1 suggests that a test of pure insertion is to

cpmpare Gk(t) and Gk_1(t) and reject the assumption if

Gk_1(t) is not always greater than or equal to Gk(t).
Such a comparison will be facilitated by a statistical

test such as the Kolmogorov-Smirnov one-sided test. The

Kolmogorov-Smirnov is a nonparametric test that uses
the maximum deviation of the two empirical distribu

tion functions as its test statistic, that is,

It was found to be a more powerful goodness-of-fit test
than the more widely known chi-square test (e.g.,
Massey, 1951).

Even stronger than an ordering on the distribution

functions is an ordering on the hazard functions. The

hazard function, hk(t), gives the conditional probability

density that processing will be completed in the next

instant given that it is not yet completed, and the

function is defined as hk(t) = gk(t)/[l - ~(t)]. An

ordering on the hazard functions is very strong, since it

implies a concomitant ordering on the distribution
functions, but the reverse ordering need not hold (e.g.,
Townsend & Ashby, 1978). Theorem 2, therefore,

provides a stronger test of pure insertion than Lemma 1.

Theorem 2: If pure insertion holds at the distribu

tional level and if hk-1 (t) is nondecreasing in t, then

hk-1 (t);;;' hk(t) for all t > o.

The requirement that ~ -1 (t) be nondecreasing

means that the conditional probability density that

processing will be completed in the instant after time t,

given that it has not been completed by that time, is

a nondecreasing function of t. With the exponential

distribution, this conditional probability is time invariant

(and hence, nondecreasing), and it is just this property

that was the target of Sternberg's (1975) criticisms.

Many densities that would make good candidates for

models of the time course of cognitive processes have

increasing hazard functions (e.g., the convolution of a

normal and an exponential, gamma, Rayleigh, etc.),

and in addition, there is some empirical evidence in

support of this assumption. Burbeck and Luce (Note 3)

report that in a signal detection task the RT hazard

function to a weak signal (thus ensuring a nonnegligible

decision component) increases approximately monotoni

cally to an asymptote. Thus, the requirement that

hk-1 (t) is nondecreasing does not appear excessively

severe. Of course, this is an empirical question rather

than a theoretical one, and fortunately, tests for increas

ing hazard functions do exist (see, e.g., Barlow &
Proschan, 1965).5

Hazard functions are starting to playa more important

role in RT theorizing (e.g., Green & Luce, 1967; McGill

& Gibbon, 1965; Thomas, 1971; Townsend & Ashby,

1978; Burbeck & Luce, Note 3), and in addition, the

estimation problem is receiving attention from statis

ticians (e.g., Miller & Singpurwalla, 1977; Rice &

Rosenblatt, 1976). Thus, application of a test such as

the one suggested by Theorem 2 is becoming more and

more feasible.

It should be emphasized that neither the Lemma 1nor

the Theorem 2 results are sufficient to conclude that
pure insertion holds. There are other models that can

predict these same orderings. Even so, as tests, both
are much more powerful than a simple comparison of

means.

A condition that is necessary and sufficient for pure

insertion is that the function fk(t) of Equation 2 be a

true probability density function, that is, that it is
always nonnegative, it encloses an area of one, and

since the variable of interest is time, it equals zero for

all negative 1. As mentioned earlier, these facts have

led to various attempts to develop a technique to test

pure insertion and, if it is supported, to estimate the

unobservable fk(t). Green (1971) and Green and Luce

(1971) made use of the fact that Equation 2 implies

that the Fourier transform of gk(t) divided by the

Fourier transform of gk-1(t) equals the transform of

fk(t). Thus, the unobservable density, fk(t), can be
estimated by taking the inverse transform of this ratio.
Applying this technique to data obtained in a standard

signal detection task consistently led to fk(t) estimates
with regions of negative density, thus impugning the

assumption of pure insertion in these experimental
circumstances.



This procedure, however, is not without its diffi

culties. Classical density function estimates contain

many high-frequency components, and the process of

dividing Fourier transforms tends to magnify these to

such an extent that the resulting fk(t) estimates are

swamped by noise. Thus, if classical density estimates

are employed, considerable smoothing must be per

formed before the technique is feasible. The use of

smoothing functions such as the Hamming window (used

by Green, 1971, and Green & Luce, 1971) cause a loss

of information and also artificially increase the variance

of the density estimate and thus may introduce a subtle

bias into the whole procedure.

An alternative approach, which might prove more

successful, is to use the newer density estimates based

on spline transformations (e.g., Bloxom, 1979; Wahba,

1976). Basically, these consist of several segments of

truncated polynomials joined end to end and con

strained to have continuous first- and second-order

derivatives at all points at which different segments

join. Since these very smooth estimates contain virtually

no high-frequency components, they might reduce some

of the statistical problems associated with this procedure.

Kohfeld et al. (Note 1) slightly modified Green's

(1971) approach by using the digitalized z-transform

rather than the Fourier transform. The z-transform is

insensitive to high-frequency components, and thus

this method requires no extra smoothing. Using data

from a signal detection task, Kohfeld et al. estimated

the probability density function of the inserted stage

duration and convolved this estimate with gk-1 (t).

As is predicted by pure insertion, they consistently

found the result to correspond closely with the gk(t)
estimate.

A modified version of this general technique might

also be used to simultaneously test the added assump

tion that the duration of the inserted stage is exponen

tially distributed. For instance, under the assumptions

embodied in Equations 2 and 3, the exponential rate,

Vk, can be estimated via a modified method of moments

from the mean RTs as Yk = l/(RTk - RTk-d. An

exponential probability density function with this rate

can now be convolved with gk-1 (t), and the result can

be compared with gk(t) to test if Equation 2 holds. This

method works almost as well when other distributional

assumptions are made. For instance, in the case in

which the inserted stage duration has a gamma distri

bution, Ashby and Townsend (1980) provide estimates

of its parameters in terms of the means and variances of

RTk andRTk_1·

Of course, it is also possible to obtain nonparametric

estimates of all moments of the unobservable Tk

distribution [i.e., since E(Tk) = E(RTk) - E(RTk_d,

var(Tk) =var(RTk) - var(RTk_d, etc.]. Under certain

general conditions, these can then be used to estimate

the unobservable fk(t) (e.g., Sternberg, Note 2). This
procedure, however, requires accurate estimation of at
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least some higher moments (e.g., the third and fourth

in the Pearson system), and unfortunately, these are

associated with very large standard errors (e.g., Ratcliff,

1979). Thus, this approach is not likely to playa central

role in RT theory development until some of its rather

severe statistical problems are solved.

With regard to empirical applications of the nonpara

metric tests suggested above, Townsend and Ashby

(in press) report the results of applying the Lemma 1

test to the same Townsend and Roos (1973) data con

sidered earlier. The test of ~ -1 (t) ~ ~ (t) reported

by Townsend and Ashby was motivated by a suggestion

of Sternberg (Note 4) that the condition might be

incorporated into a test of self-terminating vs. exhaus

tive search strategies. As a test of pure insertion, one

would certainly expect the distribution functions to be

ordered as predicted by Lemma 1 in light of the fairly

successful application of Theorem 1 and the Equation 4

test to this same data set. This is precisely the result

found by Townsend and Ashby. For each subject,

20 tests were performed, 10 for the target-absent data

[i.e., G1(t) ~ G2(t), G1 (t) ~ G3(t),... , G4(t) ~ Gs(t)],

and 10 on the target-present data. Of the total of 60

tests for the three subjects, 59 accepted the null hypoth

esis of Gi(t) ~ Gj(t) for j > i.
6 The single rejection of

this hypothesis was in the target-present data for Sub

ject 2 when k = 4 and 5. As it turned out, there was a

concomitant decrease in the mean RTs in this case.

Although, as mentioned earlier, the condition of

ordered distribution functions is perhaps not the strongest

possible test of pure insertion, the overwhelming support

found for it by Townsend and Ashby (in press) assures

that pure insertion at the distributional level is at least a

good first approximation in the Townsend and Roos

(1973) data.

RELAXING PURE INSERTION: TESTS OF THE

EXPONENTIAL ASSUMPTION

This last section briefly considers tests of the expo

nential assumption that do not require pure Insertion to

hold. Specifically, I will address the following question.

Given an observable RT density function, how can one

tell whether the duration of one or more of the com

ponent processes or stages comprising the cognitive pro

cess is exponentially distributed? This is a difficult

problem, and the answer must be more tentative than

those in the previous sections.

The following result generalizes the arguments of

Luce and Green (1970) and McGill and Gibbon (1965).

Theorem 3: Suppose that the durations of all RT

components have nondecreasing hazard functions and

that the duration of one or more of these is exponentially

distributed. Let V be the rate of the slowest of these

exponential stages (i.e., all other exponential rates are

greater than or equal to V). Under these conditions,
the observable RT density function, get), will have an



132 ASHBY

exponential tail, Wexp{-Wt), for some constant W ~ V,

and thus the tail of -Jn [1 - G{t)] will be linear, with

slope W.

Thus, if the duration of one or more RT components

is exponentially distributed, then under fairly general

conditions, the observable RT density function will have

an exponential tail, the tail of the RT hazard function

will be constant, and the tail of -Jn] l - G{t)] will be

linear [where, as before, G(t) is the RT cumulative

distribution function]. One obvious problem associated

with this test is that the result does not say how far out

in the tail it is necessary to go before it becomes expo

nential. Also, while Theorem 3 generalizes the condi

tions under which to expect the RT density function to

possess an exponential tail, unlike the results of Luce
and Green (1970) and McGill and Gibbon (1965), it

does not provide a method of estimating the exponential

rate V.

SUMMARY AND CONCLUSIONS

Several new tests of the assumptions of pure insertion

at the distributional level and that the duration of the

inserted stage is exponentially distributed were suggested.

Two of these were applied to the data of a memory

scanning experiment reported by Townsend and Roos

(1973). In fact, altogether three separate tests of these

assumptions were applied to this same data set. Ashby

and Townsend (1980) applied the Equation 4 test, and

applications of the Theorem 1 and the Lemma 1 tests
were reported above. The results of applying these

three different tests were highly consistent, and the

assumptions being tested were supported in each case.

While there is possibility of error in any statistical test,
the converging evidence provided by the successful

application of each of the three tests to the Townsend
and Roos (1973) data suggests that pure insertion and

the exponential assumption may provide at least a good

first approximation in many standard memory scanning

tasks.
Whether pure insertion is a valid assumption in other

experimental paradigms is a question that must be
answered case by case. It is hoped, however, that the

results presented here will provide at least a first step

toward making this a question that, perhaps for the first

time, can be answered empirically.
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NOTES

1. This assumption is not limited to serial systems. For
example, many parallel models satisfy Equation I (see, e.g.,
Ashby & Townsend, 1980). In these cases, Tk does not repre
sent the duration of the inserted stage but, instead, an inter
completion time (see, e.g., Townsend, 1974), that is, the ran
dom time between the successive completions of two stages.
Alternatively, Tk can be thought of as the random time by
which the total processing time is delayed in the more complex
task as compared with the simpler task, thus allowing for over
lap of processing stages. Thus the results given below are not

restricted to serial systems but are valid for any of the large
classes of models satisfying Equation I.

2. It should be reemphasized here that the development does
not require this comparison of the memory set items to the
probe to be performed sequentially. As was explained in Foot-
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note I (see also Ashby & Townsend, 1980), a simultaneous

comparison might occur. All that is required is that the random

time, Tk, by which RTk_l is lengthened when a new item is
added to the memory set, be independent of the random time

RTk-I'
3. As in Ashby and Townsend (1980), the RT density func

tions were estimated following Parzen (1962) with a gaussian
kernel (see either of these papers for a more detailed discussion
of the estimation procedure). Conventional histogram estimates,
however, should be sufficiently sensitive to detect severe vio
lations of the assumptions.

4. For those wishing a more rigorous criterion for rejecting
the transmodal property, note that under the null hypothesis
that the property holds, gk-l(mk) - gk(mk) = 0, where mk
is the mode of the gk density. Following the development of
Parzen (1962), it can be shown that under this null hypothesis
and with the density estimates used in this application, the

statistic gk-l (rnj) - gk(mk) is asymptotically unbiased and
normally distributed, and its variance is approximately

var[gk_l(mk) - gk(mk)] ~ [gk(mk)/(10n-/;;)j,

where n is the size of the sample used to estimate gk(t). This

last result can be used to obtain an estimate of the standard error
of the vertical distance between the two density estimates at the
gk mode (i.e., at mj), under the null hypothesis that the trans
modal property holds. The obtained vertical distances can then
be compared with this standard error, and the transmodal
property can be accepted or rejected depending on the outcome
of this comparison. One problem with this strategy is that mk,
the true mode of gk, is not known and must be estimated from

gk(mk) =maxt gk(t)·
In the present application, the sample size, n, was always

250, and gk(mk) can be roughly estimated from Figure 3 by

gk(mk) (giving values of about .005 for Subjects I and 3 and
.0025 for Subject 2). Using these values, the estimated standard

error of gk-l(mk) - gk(mk) is about .00106 for Subjects I and

3 and about .00075 for Subject 2. In every case except one, the
distance Igk-l (Itlk) - gk(Itlk) I is less than I standard error. The
one pair of densities for which the vertical distance is greater
than I standard error is the same Subject I, k =I and k =2
pair that our visual analysis decided is a violation of the trans
modal property.

5. Besides this test, there are various restrictions that non
decreasing hazard functions impose on the associated cumulative
distribution function, Gk-l(t), which might be useful in decid
ing whether hk_l(t) is nondecreasing, without ever having to
estimate this function. The reader is referred to a standard text,
such as Barlow and Proschan (1965), for an elaboration. One
of the more useful is that if hk-l (t) is nondecreasing, then
10g[1 - Gk_l(t») must be concave. If 10g[1 - Gk-l(t)] is not
concave, then hk-l (t) cannot be nondecreasing. In fact, if
hk-l(t) is nonincreasing, then 10g[1 - Gk_I(t») must be
convex.

6. Using a one-sided Kolmogorov-Smirnov test with Q = .05.
7. Of course, gk(t) may also have inflection points at which

the derivative equals zero, but which are neither maxima nor
minima. Clearly, under the conditions of the theorem, gk(t)

and gk-l(t) must intersect wherever (d/dt)gk(t) =O.
8. Note that the following equality is not necessarily exact,

since h(t) may approach W without ever reaching it. Even so,
for any E arbitrarily small, it will always be possible to find a
time to > 0, such that for all t > to' W - h(t) < E. In other
words, the fact that the equality may not be exact will make
absolutely no difference, empirically.

APPENDIX

Proof of Theorem I
Equation 4, which follows from Equations 2 and 3 (Ashby

& Townsend, 1980), implies Vk[Gk_l(t) - Gk(t)) = gk(t), for
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all t > O. Differentiating both sides with respect to t yields
Vk[gk-l (t) - gk(t») = (d/dt)gk(t), for all t > O. The right-hand
side equals zero only at the maxima and minima7 of gk(t), and
the left-hand side equals zero only at the intersection of gk(t)
and gk-l (t). The equality of the two sides establishes the
theorem, QED.

Proof of Lemma I
Under the assumption of pure insertion (i.e., Equation I,

together with independence), Gk(t) = P(RTk";; t) = P(RTk-l +
Tk";; t). Thus, Gk(t) = P(RTk-l + Tk";; t)= P(RTk-l ..;; t - Tk)
..;; P(RTk_l..;;t) = Gk_l(t). The inequality follows, since
Tk~ a,QED.

Proof of Theorem 2

ft[I-Gk_l(t-x»)fk(X)dx
hk-l (tj "-0 _

ft[1- Gk_1(t - x»)fk(x)dx
o

gk-l(t-X)
f [I - Gk-l (t - xj] fk(X)dx

1- Gk-l(t -x)

Fk(t) - Gk(t)

Pgk-l (t - x)fk(x)dx
o

Fk(t) - Gk(t)

gk(t)

Fk(t) - Gk(t)

gk(t)

1- Gk(t)

hk(t).

Therefore, hk-l (t) ~ hk(t) for all t > a, QED.

Proof of Theorem 3
By a generalization of Theorem 2 above, if all component

hazard functions are nondecreasing, then h(t) is dominated by
each component hazard function. In particular, h(t)..;; V for all
t > a. Further, the hazard function of the convolution of densi
ties with nondecreasing hazard functions is nondecreasing
(Barlow & Proschan, 1965), and therefore, by hypothesis, the
hazard function of g(t), h(t), must have some asymptote W ..;; V.
Thus, there will exist some to > a such that" h(t):, W for all
t > to' Now h(t) determines the density function, g(t), and
therefore, g(t):, Wexp(-Wt), for all t > to' Similarly, G(t) =
1 - exp(-Wt), for all t > to' and thus, -In[ 1 - G(t») =Wt, for
all t > to' QED.
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