
UCLA
Department of Statistics Papers

Title
Testing the Assumptions Underlying Tetrachoric Correlations

Permalink
https://escholarship.org/uc/item/99w4g31j

Authors
Muthen, Bengt O.
Hofacker, Charlie

Publication Date
1988-08-08
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/99w4g31j
https://escholarship.org
http://www.cdlib.org/


PSYCHOMETR1KA--VOL. 53, NO. 4, 563--578 

DECEMBER 1988 

T E S T I N G  T H E  A S S U M P T I O N S  U N D E R L Y I N G  

T E T R A C H O R I C  C O R R E L A T I O N S  

BENGTMUTH~N 

GRADUATE SCHOOL OF EDUCATION 

UNIVERSITY OF CALIFORNIA, LOS ANGELES 

CHARLES HOFACKER 

COLLEGE OF BUSINESS AND MARKETING 

FLORIDA STATE UNIVERSITY 

A method is proposed for empirically testing the appropriateness of using tetrachoric corre- 
lations for a set of dichotomous variables. Trivariate marginal information is used to get a set of 
one-degree of freedom chi-square tests of the underlying normality. It is argued that such tests 
should preferrably preceed further modeling of tetrachorics, for example, modeling by factor 
analysis. The assumptions are tested in some real and simulated data. 

Key words: normality, dichotomous variables, LISCOMP, factor analysis. 

1. I n t roduc t ion  

Recent  discussions  of  the te t rachor ic  cor re la t ion  coefficient include the topics  of  

improved  efficiency and accuracy  of c o m p u t a t i o n  (see e.g., Divgi,  1979; Ki rk ,  1973), the 

stat is t ical  p roper t ies  of  the es t imate  and its s t anda rd  e r ror  (Brown & Benedett i ,  1977), and  

the fi t t ing of factor  analysis  models  to te t rachor ics  (see e.g., Bock & Lieberman,  1970; 

Chris toffersson,  1975; Muthen ,  1984; Muth6n  & Chris toffersson,  1981). The  a p p r o p r i -  

ateness of  using the te t rachor ic  cor re la t ion  coefficient, however,  has not  been given recent  

a t tent ion.  The  te t rachor ic  assumes b ivar ia te  no rma l i t y  for con t inuous  la tent  response  

var iables  under ly ing  a pa i r  of  d i cho tomous  measures.  T oda y ' s  t ex tbook  t r ea tment  of  

coefficients of  assoc ia t ion  for d i c h o t o m o u s  var iables  offers ra ther  vague gu idance  a b o u t  

the real ism of this. Li t t le  conci l ia t ion  seems to have been reached since the hea ted  tu rn  of  

the cen tury  deba te  between Pea r son  and  Yule, where in a rgu ing  for cons ider ing  only  the 

observed variables ,  Yule r emarked  (1912): 

. . .  all those who  have died of  smal lpox  are equal ly  dead :  no one is more  dead  or  

less dead  than  another ,  and  the dead  are qui te  dis t inct  f rom the survivors  (pp. 

611-612), 

with the famil iar  response:  

. . .  if Mr.  Yule 's  views are accepted,  i r reparab le  d a m a g e  will be done  to the 

g rowth  of  mode rn  s tat is t ical  theory  (Pearson & Heron ,  1913, p. 159). 

This  pape r  bui lds  on the view tha t  the appropr i a t eness  of  te t rachor ics  need not  be a 

ph i losophica l  ma t t e r  but  one of  s tat is t ical  inference. There  is a hypothes is  of  under ly ing  
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normality given which sample estimates of population tetrachorics are obtained. As usual, 

we should seek to test the hypothesis by confronting it with data. The estimates should 

only be used if the hypothesis is not rejected. 

One issue, which may have distracted from this approach, is that the estimation of 

tetrachoric correlations has always been performed using information from only bivariate 

distributions, that is, 2 x 2 tables. Here, the 3 independent probabilities describing the 

distribution are not restricted by the three parameters of the "tetrachoric model": The 2 

latent response variable thresholds and the single tetrachoric correlation. The model is 

"just-identified" and cannot be tested since it fits perfectly. We may note that given this 

bivariate information, the usual parameter estimates are maximum-likelihood estimates 

(MLEs), since there is a one-to-one relationship between these parameters and the prob- 

abilities, which have the observed proportions as MLEs. 

In the type of application we will study, a set of p dichotomous items is usually 

considered. Here, the bivariate normality specification may be extended to multivariate 

normality for p latent response variables. For  simplicity we will still call this a tetrachoric 

model, referring to underlying normality, despite the fact that "tetra" refers to the 2 x 2 

feature. The latent response variables have a population covariance matrix with unit 

diagonal elements and p(p - 1)/2 population tetrachoric correlations to be estimated. In 

addition, the tetrachoric model has p population thresholds to be estimated. The p-variate 

tetrachoric model hence imposes 2 p - 1 -  (t9 + p ( p -  1)/2) restrictions on the multi- 

nominal distribution. With multivariate normality the sample tetrachoric correlation 

matrix will be positive definite in large samples. In any given sample, sample fluctuations 

or deviations from underlying multivariate normality may prevent this. 

In factor analysis contexts, the p ( p -  1)/2 population tetrachorics are further re- 

stricted. Generalized least-squares factor analysis of tetrachoric correlations was discussed 

in Muthrn (1978). A large-sample chi-square test is obtained for testing the restrictions on 

the tetrachorics. It may be noted that the method of Muthrn  does not break down if the 

sample tetrachoric correlation matrix is not positive definite. In this paper, however, we 

are interested in testing the tetrachoric model itself, namely the multivariate normality 

assumption, without further restricting the tetrachorics in terms of a smaller set of param- 

eters. 

Optimally, the full p-variate information from all 2 p cells of the multiway table 

should be used to estimate the threshold and tetrachoric parameters and test the fit of the 

p-variate tetrachoric model. Straight-forward ML estimation would, however, involve the 

computation of the p-variate normal distribution function which is intractable. Even when 

efficient estimates are computable, reliable testing is prevented by sparsity of data, since 

already with p = I0 there are 1,024 cells. This is the case in the EM approach of Bock and 

Aitkin (1981), where ML estimation becomes tractable by considering the tetrachoric 

model with further restrictions on the correlations using a small number of uncorrelated 

factors. Instead of a model test against the unrestricted multinomial alternative, Bock and 

Aitkin consider chi-square difference tests of improvement in fit when adding factors. On 

the other hand, the traditional approach of estimating the tetrachoric model parameters 

by considering the p(p - 1)/2 marginal, bivariate tables prevents a test of model fit due to 

just-identification. 

In this paper we will propose a testing method that utilizes information from tri- 

variate marginal tables, noting that in this case the tetrachoric model describes the 7 

independent probabilities of each triplet in terms of 3 thresholds and 3 tetrachoric corre- 

lations. This yields one restriction to be tested against sample cell frequencies that are 

more likely to be large enough. While for a large value of p, this approach is obviously 

intractable due to a rapidly increasing number of "triplets", certain special cases of the 
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population tetrachoric correlation matrix make for relatively simple computations for 

small to moderate sized problems, say p < 20. 

The inference for triplet testing of trivariate normality is straight-forward when there 

are three variables. Triplet testing for p > 3 variables is less clearcut. We note that such 

testing cannot lead to support for multivariate normality, and that this is not needed for 

the use of tetrachorics, only bivariate normality for each pair. Furthermore, rejection in a 

certain triplet does not necessitate that any of the three pairs involved lacks bivariate 

normality. However, nonrejection in a certain triplet lends support for bivariate normality 

for all three pairs involved. Given this, we note that for p > 3 variables the set of triplet 

tests provide an ad hoc, but practically useful decision tool for the use of tetrachorics. 

Consider the two outcomes (i) no rejection is obtained, and (ii) a certain variable is 

involved in all rejected triplets. In case (i), we would be using a conservative test pro- 

cedure to get support for bivariate normality for all pairs involved. In case (ii), the certain 

variable may be excluded from the analysis of tetrachorics (see also the example in section 

3.2). 

The possibility of using trivariate information for testing was also considered by 

Vaswani (1950). (We are grateful to an anonymous reviewer for making us aware of this.) 

ML estimation of the parameters involved in a triplet was at that time deemed to be too 

cumbersome. Utilizing a simpler consistent estimator it was suggested that the Pearson 

chi-square formula could be used to get an indication of whether the sample would lead 

to an insignificant chi-square value, while it was recognized that significant values had to 

be deemed inconclusive due to nonefficient estimation of the cell frequencies. 
Section 2 describes our proposed "triplet" approach, which uses numerical integra- 

tion to carry out ML estimation by a simplified way of expressing the trivariate probabil- 

ities. In section 3 this approach is used to test the tetrachoric model with different data 

sets. Section 4 concludes. 

2. Estimation and Testing in Triplets 

Consider a 2 x 2 x 2 table for the items y~, y j ,  Yk, with corresponding latent re- 

sponse variables y*, y*, y*. Given the specification of p-variate normality, the three y*'s 

are trivariate normal with population correlations go, P~k, P~k, say. We will consider the 

special cases of a population tetrachoric correlation matrix for p variables for which each 

triplet has a "triad" obeying the restriction 

0 < 'Oij Plk 
< 1. (1) 

P~k 

In particular, this includes sets of items with positive correlations, as is often found among 

a set of items defining a scale, and sets of items where negative correlations can obtain a 

change of signs by turning the directions of items around. Although not necessary for the 

chi-square testing, this restriction allows a particularly simple representation of the tri- 

variate probabilities, reducing the computational work of the testing considerably. 

Under (1), we may describe the trivariate normal distribution of y*, y~', y* by a 

just-identified, single-factor model, 

y* = 2 s 11 + e, ; s = i, j, k. (2) 

where V(r/)= 1, V(es)= 1 - 2 2 ,  such that the y* variables have zero means, unit vari- 
ances, and correlations 

p,,, = 222~, ; s ¢ s'. (3) 
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In (2), we also assume that the factor ~/ and the residuals e's are independent and 

(multivariate) normally distributed. The e's are assumed to be uncorrelated. 

For  all trivariate standard normal y* distributions obeying (1), we may let 

(pstps~ 1/2 
- - ~ t ~ /  = ":~" (4) 

Then the correlations for the y*'s may be written as p~, = 2~ 2 t, which is the correlation 

structure in (2). This shows that all trivariate standard normal y* distributions for which 

(1) holds have a one-factor representation as in (2). There is a one-to-one relationship 

between the 3 2's and the 3 p's. Hence, this single-factor model is just-identified in terms 

of the 3 correlations and can be used to test the normality marginally in each triplet. 

Let L be the threshold parameter for y* and 

( ~ 2 - 1 / 2  )~) ( - ~  + ,~ ~)], P r ( y s =  l l T ) = P r  Ys > z s l r / ) = ~ [ ( 1 -  (5) 

where ~(.) is the standard normal distribution function. For  convenience we may use the 

equivalent "probit" parameterization of the right-hand-side of (5), 

with 

Pr (y~ = 11 ~/) = t l~(~ + fix ~/), (6) 

and 

where 

8 

Fo = ~ fc log x e, (11) 
C = 1  

F : =  ~ f ,  l o g ( - ~ ) . c = l  (12) 

Here, f ,  is the sample frequency in cell c and N is the sample size. In (10), F is scaled such 

that when calculated at the ML values, it gives the one degree of freedom likelihood-ratio 

ot s = _ Z s (  1 _ 22 ) -  1/2, (7) 

/~ = ; ,A1  - ~ ) - , / 2  (8)  

Fu r t he r ,  let  the p r o b a b i l i t y  o f  an obse rva t i on  f a l l i ng  i n  cel l  ¢ be deno ted  zr c ; c = 1, 2, . . . ,  

8. The computational advantage of our single-factor representation is obtained as in Bock 

and Lieberman (1970). We may consider the joint trivariate normal density of the y*'s as 

the product of the density of y*'s given 7, multiplied by the marginal density of 7. The 

former density simplifies due to conditional independence, and we obtain 

z~¢=ffo~{fi~=~ [O(a~+fl~rfflr-[1--cl,(~s+fl~rl)]t-rc'}~b(rl)drh (9) 

where y~ is 0/1 indicator variables for cell c and variable s. It can be seen from (9) that the 

trivariate probabilities can be expressed by integration over a single variable r/, which 

may be approximated by Gauss-Hermite quadrature as in Bock and Lieberman (1970). A 

40 point quadrature in used in the applications below, but this may be unnecessarily 

ambitious. 

For a given triplet, MLEs of the 6 parameters of the tetrachoric model may be 

obtained by minimizing 

F = -- 2(F o -- F1), (10) 
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chi-square. In (12), F 1 represents the negative of the log likelihood calculated for the 

alternative, unrestricted model (see also Bock & Lieberman, 1970). 

To further improve the speed of the calculations, we may use the traditional sample 

thresholds and sample tetrachorics to give initial estimates (starting values) for the ~'s and 

fl's via (4), (7), and (8). When such initial estimates obtain an F value less than the critical 

chi-square value at a certain significance level, that triplet needs no further iteration 

towards MLEs;  the normality of the tetrachoric model cannot be rejected. In examples 

studied, this event occurred most frequently. The calculations may be carried out with the 

L I S C O M P  computer program (Muth6n, 1987). 

The question of choice of significance level is a difficult one. The set of one-degree-of- 

freedom triplet tests are not independent and we may observe mass significance effects. 

Also, the power of the triplet tests needs further research. In practice, we may in fact want 

to use the triplet testing less as a rigorous inferential procedure, but rather as a tool for 

suggesting "abberrant"  items that are frequently involved in triplets with rejection of the 

model. 

3. Examples 

3.1 Eye Color 

The first example concerns eye color (light-eyed vs. not light-eyed individuals) ob- 

served in three generations. The data come from Galton 's  Natural Inheritance, as reported 

in Kendall and Stuart (1979, p. 572). The sample size is 5,008. The question of interest was 

whether the resemblance between grandparent and grandchild is mediated by the middle 

generation. We may hypothesize the underlying trivariate normality of the tetrachoric 

model. A further modeling step might be to hypothesize that the tetrachoric correlation 

between grandparent and grandchild is the product of the correlations between grand- 

parent and parent and parent and grandchild. As a first step, however, we may test the 

appropriateness of the tetrachoric model itself. The data are given in Table 1. The usual 

sample tetrachorics are all positive and yield a positive definite correlation matrix. 

While the 1% critical value is 6.635 with one degree of freedom, the likelihood ratio 

chi-square for the tetrachoric model was 11.407 (the Pearson chi-square was 11.500). 

Hence, the tetrachoric model is rejected and it would be inappropriate to proceed to 

interpretation and further modeling of the correlations. Since the sample size is very large 

we may consider whether the rejection is due to rather small residuals. To this aim the 

estimated frequencies under the tetrachoric model are given in Table 1. 

3.2 Abortion Attitudes 

As a second example, consider a set of six attitudinal items, all related to abortion. 

The wording is given in Table 2. The data were obtained from the National Opinion 

Research Center's General Social Surveys. A sample size of 3,921 was obtained by com- 

bining the responses for 1973, 1974, 1975. The response pattern frequencies are given in 

Table 3. 

It is relevant to hypothesize one, or possibly two, underlying dimension(s) of abortion 

attitude(s). We note that there are two "hard" (medical) reasons Defect, Health, three 

"soft" (social) reasons Nomore,  Poor, Single, while the Rape item is not easily classified. 

Considering the three soft items alone, the one-degree of freedom tetrachoric model 

test obtains a likelihood ratio chi-square value of 2.714 (the Pearson chi-square was 

2.711). This value corresponds to a probability level of about  .10, so the tetrachoric model 

cannot be rejected despite the fairly large sample. The estimated frequencies are given in 

Table 4. 
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T a b l e  1 

Three Gene ra t i ons  of  Eye Color  

(N = s , o o 8 )  

GRANDPARENTS 

Light Dark 

PARENTS - Light 

Child - Light 

C h i l d  - D a r k  

1928 596 

1 9 0 8 . 1  6 1 9 . 8  

.21 .91 

303 225 

3 2 6 . 2  2 0 0 . 9  

1 . 6 5  2 . 8 9  

PARENTS - Dark 

Child - Light 

Child - Dark 

552 508 

5 7 6 . 9  4 8 0 . 9  

1 . 0 2  1 . 5 3  

395 501 

3 6 8 . 3  5 2 7 . 0  

1 . 9 4  1 . 2 8  

E n t r i e s  a r e :  Observed f r equ e n c y  

Es t ima ted  f r e q u e n c y  

Ce l l  c o n t r i b u t i o n  t o  l i k e l i h o o d  r a t i o  c h i - s q u a r e .  

Considering all six items, the usual sample tetrachoric correlation matrix is positive 

definite with positive elements. There are 

triplets to be tested. The testing of these triplets is displayed in Table 5. For  12 out of 20 

triplets no iterations would have been needed since the tetrachoric model could not be 

rejected using the (inefficient) starting value estimates derived from the usual sample 

tetrachorics. Four  of the 20 triplets are rejected at the 5% level. We note that the Rape 

item is involved in all four of these rejected triplets (each item appears in 10 triplets). We 



BENGT MUTH~N AND CHARLES HOFACKER 

T a b l e  2 

A b o r t i o n  d a t a :  Wording of  Six  I t e m s  

569 

S h o u l d  I t  be  p o s s i b l e  f o r  a p r e g n a n t  woman t o  o b t a i n  a l e g a l  

a b o r t i o n  i f  . . .  

DEFECT 

NOMORE 

HEALTH 

POOR 

RAPE 

SINGLE 

(1) There i s  a s t r o n g  chance o f  a d e f e c t ?  

(2 )  She  i s  m a r r i e d  and w a n t s  no more c h i l d r e n ?  

(3) Her h e a l t h  i s  e n d a n g e r e d  by t h e  pregancy?  

(4) She cannot  a f f o r d  more c h i l d r e n  due t o  l o w  income? 

(5 )  She was raped?  

(6) She i s  not  mar r i ed?  

conclude that we have no evidence to reject multivariate normality for the five items 

excluding Rape, while the Rape item may warrant particular considerations. 

The triplet with the highest chi-square value is Nomore,  Poor, Rape (chi-square of 

11.964). In Table 6 the observed and estimated frequencies are given for this triplet. We 

note that the largest contributions to the misfit come from the category "No" on RAPE. 

Similar results are found for the other rejected Rape triplets. Hence, No respondents for 

Rape may be viewed as a different sub-group requiring special modeling. 

Another interesting question concerns the estimation of the tetrachoric correlations. 

How do the usual, pair-based correlations compare to the triplet based ones in well-fitting 

and mis-fitting triplets? Inspecting results for the 21 abortion item correlations we found 

little difference between the pair- and triplet-based correlations. Using bivariate infor- 

mation seems sufficient. Interestingly, the estimates are close also in misfitting triplets. 

The final aspect of the abortion example concerns the inappropriateness of using 

tetrachorics involving the Rape item when further modeling the tetrachorics in a factor 

analysis. Using the methodology of Muth6n (1978) we performed exploratory and con- 

firmatory factor analyses of the abortion items with and without the Rape item. While the 

results do not differ much between the five and six item solutions, the five item two-factor 

solutions do fit somewhat better than the six item two-factor solutions. Excluding the 

abberant Rape item seems to "polish" the results. 

3.3 Generated Data 

In the final example we will consider the triplet testing approach in some generated 

data with 12 variables, so that there are 4,096 possible response patterns. Hence, even 

with very large samples, many empty cells are to be expected, prohibiting a test against 

the unrestricted multinomial alternative. In line with (2), the population model is as 

follows. A single normal factor q and 12 uncorrelated normal residuals e generate 12 
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T a b l e  3 

F r e q u e n c y  o f  R e p o n s e  

(N = 3 , 9 2 1 )  

Patterns 

P a t t e r n  F r e q u e n c y  P a t t e r n  F r e q u e n c y  P a t t e r n  F r e q u e n c y  P a t t e r n  F r e q u e n c y  

000000 229 010000 0 100000 13 110000 0 

000001 0 010001 0 1 0 0 0 0 1  0 1 1 0 0 0 1  0 

000010 33 010010 1 100010 20 110010 2 

000011 3 010011 I 100011 0 110011 1 

000100 0 010100 1 100100 4 110100 0 

000101 0 010101 0 100101 1 110101 0 

0 0 0 1 1 0  2 0 1 0 1 1 0  2 1 0 0 1 1 0  2 1 1 0 1 1 0  0 

0 0 0 1 1 1  1 0 1 0 1 1 1  5 1 0 0 1 1 1  1 1 1 0 1 1 1  3 

001000 130 011000 4 101000 186 111000 12 

0 0 1 0 0 1  0 0 1 1 0 0 1  2 1 0 1 0 0 1  4 1 1 1 0 0 1  2 

001010 128 011010 5 101010 744 111010 55 

0 0 1 0 1 1  5 0 1 1 0 1 1  3 1 0 1 0 1 1  1 0 3  1 1 1 0 1 1  48 

001100 4 011100 1 101100 12 111100 6 

0 0 1 1 0 1  1 0 1 1 1 0 1  0 1 0 1 1 0 1  4 1 1 1 1 0 1  2 

0 0 1 1 1 0  15  0 1 1 1 1 0  4 1 0 1 1 1 0  1 7 4  1 1 1 1 1 0  1 2 3  

0 0 1 1 1 1  10  0 1 1 1 1 1  12  1 0 1 1 1 1  1 5 2  1 1 1 1 1 1  1 6 4 5  

2, 4,  6:  1483 f o r  (0,  O, O) 

multivariate normal  latent response variables y*. The factor  and the y*'s have unit popu-  

lation variances and zero popula t ion  means. The loadings 2 are all 0.7 which would result 

in popula t ion  tetrachoric correlat ions a m o n g  the y*'s of  0.49. All y's give y--- 1 as op-  

posed to y = 0 observat ions when exceeding a popula t ion  threshold of  zero, except Y*o 

and Y~'z for which the popula t ion  values are - 1 . 0  and 1.0, respectively. We will distort  

this model so that the specification of  underlying multivariate normal  y*'s no  longer holds 

for all y variables. This can be done  by violating the condit ional  independence assump- 

tions for y responses given r/, in a way that  only affects a few select cells in the mult iway 

table of  response patterns. Specifically, if Yt0 = 1 and Yil = 0 as predicted by the single 

factor model  (i.e., Y*0 > - 1.0 and y~*l < 0.0), we let y ~  = 1 with a 50% chance ( random- 

iy determined). Once this is determined, we let a response of  Ylo = 1 and yx ~ = 1 result in 

changing a predicted Yl2 = 0 response (Y*2 < 1.0) to Y12 = 1 with a 75% chance ( random- 

ly determined). This can illustrate items responded to  in order  1-12 with the last three 

items exhibiting a response consistency effect in att i tudinal studies or  the learning of  a 

problem-solving technique in achievement testing, in bo th  cases due to an inappropr ia te  

choice of  the last three items. Fo r  example, a person may  not  have a s t rong enough  

attitudinal propensi ty Yl*2 to warrant  the "agree" response Y12 = 1 (i.e., Y*z ~ 1.0), but  the 

wording of the last three items is such that  he/she feels a need to be consistent in 

agreement. 

While the first ten items still obey the normal i ty  assumpt ion  of  the tetrachoric model,  
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Table 4 

Abortion data: Observed and Estimated Frequencies 

For NOMORE, POOR, SINGLE 

571 

SINGLE 

No Yes 

NOMORE - No 

POOR - No 1483  115 

1 4 9 0 . 1  1 0 8 . 1  

. 0 3  . 4 4  

POOR - Yes 213 170 
206.2 176.5 
.22 .24 

NOMORE - Yes 

POOR - No 79 57 
71.9 6 3 . 9  

.70 .75 

POOR - Yes 137 1667 
143.7 1660.5 
.31 .03 

Entries are O b s e r v e d  f requency  

Es t imated  f requency  

Cel l  c o n t r i b u t i o n  to  l i k e l i h o o d  r a t i o  
c h l - s q u a r e .  

adding the last two items will violate multivariate normality of all y*'s. The violation of 

normality can for instance be seen in the trivariate distribution of the last three items. 

Using (i, j, k) to denote the pattern of O's and l 's  for items 10, I I ,  12, adding the 

conditional independence distortion shifts response probability units from (1, 0, 0) to (1, 1, 

0), from (1, 0, 1) to (1, 1, 1), and from (1, 1, 0) to (1, 1, 1), so that cells for which Yl0 = 0 are 

never affected. The trivariate normal model could be perfectly fitted to the four modified 

cells with Ylo = 1, but that would clearly involve changes in parameter  values, such that 

the four unaffected cells with Ylo = 0 no longer fit perfectly. This is shown in Table 7, 

where expected frequencies under the true model and predicted frequencies under the 

tetrachoric model are given for a sample of 2,000. The tetrachoric model will give varying 

degrees of misfit for all triplets involving item(s) 11 and/or 12. We note that in (unsuccess- 
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Table  5 

T e s t s  o f  T r i p l e t s  f o r  A b o r t i o n  Data  

(N  = 3,921) 

T r i p l e t  LR Ch i -Square  T r i p l e t  LR Chi -Square  

DEFECT,NOMORE,HEALTH 0.085 

DEFECT,NOMORE,POOR 3 .237 

DEFECT,NOMORE,RAPE 0 .016 

DEFECT,NOMORE,SINGLE 0.503 

DEFECT,HEALTH,POOR 1.544 

DEFECT,HEALTH,RAPE 5.444 s 

DEFECT,HEALTH,SINGLE 0.086 

DEFECT,POOR,RAPE 2 .539 

DEFECT,POOR,SINGLE 0.041 

DEFECT,RAPE,SINGLE 1.147 

NOMORE,HEALTH,POOR 0.003 

NOMORE,HEALTH,RAPE 7.326** 

NOMORE,HEALTH,SINGLE 0.292 

NOMORE,POOR,RAPE 11.964"* 

NOMORE,POOR,SINGLE 2.639 

NOMORE,RAPE,SINGLE 5 . 7 4 8 *  

HEALTH,POOR,RAPE 0 . 0 9 8  

HEALTH,POOR,SINGLE 0 .035  

HEALTH,RAPE,SINGLE 2.778 

POOR,RAPE,SINGLE 1.953 

$ 

S i g n i f i c a n t  a t  5~ l e v e l  ( c r i t i c a l  v a l u e  = 3 . 8 4 1 ) .  

** 
S i g n i f i c a n t  a t  1~ l e v e l  ( c r i t i c a l  v a l u e  = 6 . 6 3 5 ) .  

fully) at tempting to find a well-fitting tetrachoric model  to the 10, 11, 12 triplet, the three 

y* correlations of 0.49 between items 10, 11, 12 will clearly be overestimated. As we will 

see, this leads to a distort ion of the single factor  correlat ional  structure for the 12 items. 

Ten data  sets were generated according to the above model,  using a sample size of  

2,000 in each. Let us first consider exploratory factor  analysis (Muth6n, 1978) of  the usual 

tetrachoric correlat ion matrix for all twelve variables. In  Table 8, the average chi-square 

values are given for the tests of  one and two factors. We see that  the single factor model  is 

clearly rejected in favor of  a two-factor  model,  using either the absolute values or  a 

chi-square difference test of  adding a second factor. Hence, we would incorrectly use 

tetrachorics to conclude that  two content  factors underlie these variables, whereas in 

reality one of  the factors is a methodological  artifact. The average P R O M A X  rotated 

factor loadings are also given. The last three items form a factor of  their own, whereas 

factor one seems to represent the real content  factor. The loadings of  the first nine items 

on the first factor are reasonably close to the correct  value of  0.7, while the last three 

items' loadings on the first factor do not  come close to this value. We note that  a l though 

Item 10 itself does not violate the normal i ty  assumption,  its loading on the first factor  is 

only about  half of the correct value. I tem 12 exhibits a minor  H e y w o o d  problem. 
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Table 6 

Abortion D a t a :  Observed and Estimated 

Frequencies for N0~0RE, RAPE, POOR 

573 

RAPE 

No Yes 

NONORE - No  

POOR - No 562 1036 

5 6 9 . 2  1027 

.10 .06 

POOR - Yes 26 357 

17 .2  365 .7  

4 . 3 8  . 2 1  

NOMORE - Y e s  

POOR - No 

POOR - Yes 

20 116 
13 .7  121 .4  

2 . 9 0  . 2 4  

10 1794 
18 .7  1766.7  

4 . 0 5  . 0 3  

Entries a r e  Obse rved  f r e q u e n c y  

E s t i m a t e d  f r e q u e n c y  

C e l l  c o n t r i b u t i o n  t o  l i k e l i h o o d  

r a t i o  c h l - s q u a r e .  

Instead we may  apply our  triplet testing approach  as a preliminary step, preceding 

the factor  analysis. The correct  decision would be to discard items 11 and 12 due to 

violations of  the normal i ty  specification. With  twelve variables there are 220 triplets to be 

tested. In the ten replications there was an  average of  29.4 triplets involving rejection of  

trivariate normali ty  at the 5% level. An average of  6.6 of  these were incorrect in the sense 

of  not  involving either I tem 11 or  12. The number  of  rejected triplets at the 5% level that  

each variable was involved in are as follows in order  1-12: 5.3, 4.0, 5.2, 4.6, 4.8, 5.4, 4.0, 

4.5, 4.6, 12.5, 14.9, 17.3. Hence, the last two items are clearly singled out, with item 10 

coming a close third since its presence together with either item 11 or  12 enhances the 

nonnormali ty .  At the 5% level, the two variables most  frequently involved in rejected 

triplets were 11 and 12 in eight of  the ten cases, and 10 and 12 in two of  the ten cases. The  

number  of  rejected triplets at the 1% level that  Variables 10, 11, and 12 were involved in 
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T a b l e  7 

G e n e r a t e d  Data :  P r e d i c t e d  F r e q u e n c i e s  Under t h e  True Model 

and t h e  B e s t  F i t t i n g  T e t r a c h o r i c  Model (N = 2 ,000)  f o r  t h e  

T r i p l e t  10, 11, 12 

R e s p o n s e  

P a t t e r n  000 001 010 011 100 101 110 111 

True  

Model 248.872 4 .035  60.368 4 .035  343.362 30.184 257.522 1051.621 

B e s t  F i t t i n g  

T e t r a c h o r t c  

Model 259.871 1.571 46 .653  10 .595  329 .792  35 .808  278.493 1037.217 

L i k e l i h o o d  r a t i o / P e a r s o n  X 2 w i t h  1 d e g r e e  o f  f r e ed o m f o r  t h e  t e t r a c h o r i e  

model :  1 5 . 4 7 7 / 1 5 . 6 4 7 .  

E s t i m a t e d  c o r r e l a t i o n s  under  t h e  t e t r a c h o r i e  mode l :  0 .760  (10,  11) ,  

0.832 (10,  12) ,  0 .910  (11,  12) .  

are: 7.0, 10.3, 12.0. At the t% level, the two variables most frequently involved in rejected 

triplets were 11 and 12 in nine out of the ten cases, and 10 and 12 in one of the ten cases. 

We conclude that the triplet testing approach is quite successful in singling out the two 

"nonnormal items" 11 and 12. We can then proceed with a factor analysis of tetrachorics 

for the first ten items, whereupon correct results will be obtained. 

4. Conclusion 

The issue of using tetrachoric correlations has long been surrounded by a certain 

amount  of mystique and a separation of researchers into two camps, believers and non- 

believers in underlying continuous normal  variables. Typical discussions center around 

the "existence" versus "nonexistence" of such variables in general, their nonexistence for 

dichotomous variables called "true" dichotomies (sex is often mentioned as such a vari- 

able), the purportedly strong assumption of normality, and the possibility of a nonpositive 

definite correlation matrix. 

Our view is that the use of tetrachorics implies the hypothesizing of a model, a model 

which optimally should pass testing before its parameters '  estimates (the sample tetra- 

chorics) are interpreted and further used. In this sense, tetrachoric correlations are a bit 

different from ordinary Pearson-product-moment  correlations. The latter can be a priori 

rejected for use on noninterval or nonratio-scaled variables (such as in the case of phi 

coefficients for dichotomous variables), but cannot be rejected in data due to nonnorma-  
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T a b l e  8 

G e n e r a t e d  D a t a :  F a c t o r  A n a l y s i s  S o l u t i o n  

a s  a n  A v e r a g e  o f  T e n  R e p l i c a t i o n s *  

X 2 - v a l u e  f o r  1 f a c t o r :  3 7 8 . 6 2 2  ( d . f .  = 5 4 )  

X 2 - v a l u e  f o r  2 f a c t o r :  4 3 . 1 5 1  ( d . f .  = 4 3 )  

V a r i a b l e  F a c t o r  1 F a c t o r  2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10  

11 

12  

. 8 1 6  

. 7 1 3  

7 1 6  

7 1 8  

7 1 7  

7 0 3  

7 1 2  

6 9 9  

7 3 0  

3 6 4  

• 2 0 4  

- . 0 8 1  

. 0 0 1  

- .  0 0 4  

- .  0 0 6  

- . 0 0 7  

- . 0 1 3  

. 0 1 0  

• 0 0 7  

. 0 1 7  

- . 0 1 3  

• 5 9 6  

• 7 3 6  

1 . 1 3 1  

F a c t o r  c o r r e l a t i o n  

0 . 5 7 0  

*PRONAX r o t a t i o n s  
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lity of interval scaled variables, since the use of these correlations do not imply any 

statements about higher order moments  (such as zero third-order moments  of y*'s in 

triplets). This observation points to the fact that one could try to generalize tetrachoric 

correlations to "latent correlations" for underlying latent response variables that are 

interval scaled but not necessarily multivariate normal. 

The underlying latent response variables y* should be viewed as convenient statis- 

tical constructs, whose existence need not be addressed. An equivalent representation is 

given without such variables in the conditional probability, probit, Equation (6). As in 

bioassay, where the "factors" r/ are observed, the latent response variable concept is 

reasonable as long as the model of (6) is reasonable. For  instance, the covariation of the 

variable sex can very well be described by tetrachoric correlations as long as it is relevant 

to view the probability of observation of a certain gender to be an s-shaped function of 

some "factors" r / that  are normal. If the s-shaped functions are normal distribution func- 

tions and conditional independence holds, the data can then be described by multivariate 

normal y*'s. With a large enough sample, the usual tetrachoric correlation matrix will be 

positive definite. But given 'such an hypothesis, confronting it with data as was done in 

this paper, is important  in order to establish its plausibility. We expect testing of underly- 

ing normality to yield different results in different applications. If the tetrachoric model 

cannot be rejected, we certainly have a very parsimonious and convenient description of 

our data. If normality is rejected for some variables, investigating the reason why may 

teach us something new about  the data. 

The alternative hypothesis of non-normal latent response variables may be correct in 

several different instances and we think that our testing procedure has a power to reject 

the null hypothesis that may vary greatly over these instances. We think that nonnorma-  

lity commonly comes about  as in the generated data example, due to direct dependencies 

among items over and above factor influence (note that a second "methods" factor would 

not be able to perfectly account for the data since it would also affect the Yto = 0 cells). 

The abortion example is perhaps of a related kind. Here one may expect reasonably good 

power of rejecting normality. Other violations may come about  due to nonnormal  re- 

siduals, that is, items having conditional probabili ty curves (given the factors) that do not 

follow a normal distribution function, for example, having a nonzero lower asymptote (as 

may be the case with guessing in achievement testing), or a nonmonotonic  function. Also, 

the factors may themselves be nonnormal.  These instances lead to cell frequencies which 

can not be perfectly represented by multivariate normal latent response variables. How- 

ever, it may be very hard to choose among these alternative hypotheses and between them 

and the null hypothesis, since they may give rise to relatively small differences in cell 

frequencies, particulary when considering trivariate tables. Although difficult, it would be 

of interest to further study the power of testing the normality assumptions and also the 

misestimation of underlying correlations when the hypothesis of normality is incorrectly 

retained. 
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