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AbstractAbstractAbstractAbstract    

The negative consequences of financial instability for the world economy during the recent 

financial crisis have highlighted the need for a better understanding of financial conditions. We 

use a financial conditions index (FCI) for South Africa previously constructed from 16 financial 

variables to test whether the South African economy responds in a nonlinear and asymmetric way 

to unexpected changes in financial conditions. To this end, we make use of a nonlinear logistic 

smooth transition vector autoregressive model (LSTVAR), which allows for a smooth evolution of 

the economy, governed by a chosen switching variable between periods of high and low financial 

volatility. We find that the South African economy responds nonlinearly to financial shocks, and 

that manufacturing output growth and Treasury Bill rates are more affected by financial shocks 

during upswings. Inflation responds significantly more to financial changes during recessions.  
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1.1.1.1. IntroductionIntroductionIntroductionIntroduction    

The global financial crisis of 2007-08, and its severe impact on many of the world’s economies, 

has demonstrated the necessity for a better understanding of financial conditions and their impact 

on the macroeconomy. Thompson, Van Eyden and Gupta (2013a) construct a financial conditions 

index (FCI) for South Africa to capture in a single indicator the full spectrum of financial variables 

that affect the South African economy2; and they find using a forecast encompassing approach 

(2013b) that this FCI has good out-of-sample forecasting ability for the key macroeconomic 

variable of growth in manufacturing production. The aim of this paper is to investigate whether 

Thompson, et al.’s (2013a) FCI has an asymmetric effect on output, interest rates and inflation, in 

other words to test whether there exists nonlinearity between South Africa’s financial market 

conditions and its macroeconomy. 

Hubrich, D'Agostino, Červená, Ciccarelli, Guarda, Haavio, Jeanfils, Mendicino, Ortega, 

Valderrama and Valentinyiné Endrész (2013:47) suggest that more pronounced impacts of 

financial sector shocks on the real macroeconomy should be expected during financial crises or 

periods of high financial stress. The rationale is that effects of the credit channel will come into 

force, and the resultant deterioration in consumer demand will lead to macroeconomic 

contraction. Hubrich, et al. (2013) point out that financial stress “affects real-financial linkages 

because asymmetric information and uncertainty impede borrower-lender relationships and can 

induce credit rationing. This might imply asymmetric effects and transmission of financial shocks 

across regimes”. They test this hypothesis for the euro area by incorporating a financial stress 

index into a Markov-switching Bayesian VAR, so as to investigate potential nonlinearities in the 

interaction between financial conditions and the macroeconomy. Two broad types of 

asymmetries are considered: (1) asymmetry between regimes (i.e. between different parts of the 

business cycle, generally between upswings and downswings); and (2) asymmetric responses to 

positive versus negative shocks. 

Weise (1999) uses a nonlinear vector autoregression (VAR) approach to investigate whether 

monetary policy has asymmetric effects on output and prices. Similarly, we use the impulse 

response functions (IRFs) generated from a nonlinear VAR to investigate the two types of 

asymmetries mentioned above. Specifically, we analyse: (1) if the effects of a shock to financial 

conditions in South Africa are larger in downturns than in upturns (i.e. if the effects vary over the 

business cycle); (2) whether positive and negative financial conditions shocks have asymmetric 

effects; and, (3) whether this asymmetry in (1) and (2) is affected by the size of the shock. 

Weise’s (1999) model uses real output growth as a switching variable. Instead of fixing the 

coefficients on all variables within the VAR (except for the monetary variable) in response to the 

switching variable, Weise (1999) sets up an aggregate demand-aggregate supply (AD-AS) model in 

structural form. All of the coefficients of the reduced form model vary in response to the 

                                                      

2 See Thompson, et al. (2013a) for a full discussion of FCI’s in practice, literature pertaining thereto, as well as the econometric 
methodology used in estimating this FCI. 
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switching variable. In choosing a threshold, we test the use of the FCI versus inflation, output 

growth or interest rates as individual switching variables, as well as allowing for each equation 

within the VAR to have an individual switching variable (i.e. four switches in total).  As in Weise 

(1999), our model allows for smooth regime transitions (as opposed to discrete shifts), which is a 

more realistic representation of the macroeconomic variables over business cycle switches. This 

general way of modelling is a logistic smooth transition vector autoregression (LSTVAR) which is 

a multivariare extension of the logistic transition autoregression proposed byTeräsvirta and 

Anderson (1992)3.  

We assess the results of two LSTVAR models – one has inflation as a switching variable, and one 

has a different switching variable for each equation within the VAR. We find, using both models, 

that the South African economy is indeed asymmetric in its responses to financial shocks – 

manufacturing output growth is more affected by financial shocks during recessions, while 

inflation and interest rates respond more during upswings. The size of the financial shock, 

however, matters little for the response of the economy. 

The remainder of this paper is organised as follows: Section 2 discusses the data used in the 

compilation of the FCI and in the nonlinear VARs; while Section 3 provides details on the 

econometric methodology used. Section 4 presents the empirical results, namely the linearity test 

results, the LSTVAR estimation results and the impulse response functions. Section 5 concludes 

the paper. 

 

2.2.2.2. Data Data Data Data     

The FCI estimated in Thompson, et al. (2013a) is compiled using principal components analysis 

(PCA) applied to a set of sixteen monthly financial variables (see Table 5 in the Appendix) over 

the period 1966M02–2012M01. Thompson, et al. (2013a) purge the FCI of any potential 

endogenous feedback effects, so as to ensure that it captures only information about pure financial 

shocks and not past economic activity, inflation or interest rate effects. They also address the issue 

of parameter non-constancy and structural breaks through the implementation of rolling-window 

estimation techniques, using windows of 120 months in length. The estimated rolling-window 

FCI can be viewed in Figure 3 in the Appendix, and shows graphically how well the index picks 

up recessions in the South African economy. Positive values of the FCI indicate “positive” 

financial conditions, and vice versa for “negative” financial conditions4.  

A nonlinear VAR is estimated using this FCI along with a measure of output growth (MPG) – the 

month-on-month rate of change in South Africa’s Manufacturing Production Index; a measure of 

                                                      

3 For a discussion on the use of nonlinear forecasting models versus linear models, as well as of regime-switching models, see Camacho 
(2004). 
4 For a discussion and mapping of South African business cycle trends and the FCI, refer to Thompson et al. (2013a). 
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inflation (INF) – the month-on-month rate of change in the consumer price index (CPI); and the 

3-month Treasury Bill yield (TB). 

 

3.3.3.3. Econometric MEconometric MEconometric MEconometric Methodologyethodologyethodologyethodology    

We follow the process of Tsay (1989), also used in Weise (1999) and Camacho (2004): first, we 

specify a linear VAR and use lag length criteria tests to obtain the VAR’s specification; second, we 

apply linearity tests and model selection criteria to all equations in the VAR to determine if 

nonlinearity is present and to obtain candidates for the switching variable; and third, we test the 

various models in terms of their response characteristics. 

We use a structural STVAR model developed by Weise (1999), where asymmetry is incorporated 

into a simple AD-AS framework. The methodology that is taken from Weise (1999) is for the case 

of a model incorporating money, prices and output. A simplified version applicable to the present 

context follows. 

For the purposes of comparison, we consider a linear VAR model: 

!" = $ + &'()!"*+ + ,"     (1) 

where !" = '-$." , 01&" , .2-", 34")′ and &'() is a polynomial in the lag operator. In the 

nonlinear equivalent, all of the parameters in ! and &'() are functions of a switching variable, 6". 

Thus, the smooth transition vector autoregression (STVAR) is given by: 

!" = $ + &'()!"*+ + '78 + 7'()!"*+)-'6") + ,"    (2) 

where &'() and 7'() are pth-order polynomials in the lag operator, and -'6") is a transition 

function bounded between 0 and 1. In this case of the LSTVAR, -'6") is a logistic function: 

-'6") =
+

+9:;<'=>;?) −
+

A
, B > 0    (3) 

where E is the threshold parameter around which the dynamics of the model change, with 

lim'I>*J)→*L -'6") → 0 and lim'I>*J)→L -'6") → 1. B is the speed of adjustment parameter, and as 

B approaches zero, -'6") converges to a constant and the model becomes a linear VAR. As B 

approaches infinity, the model becomes a threshold autoregression where the model’s dynamics 

change sharply at E, such as the threshold autoregression (TAR) models discussed by Tsay (1989) 

and others (see Tsay (1989) for a summary of other research on TARs).  

Before estimating our model,  we first need to conduct linearity tests to determine whether 

asymmetry is in fact relevant in our case. Following Weise (1999), we base the linearity tests on 

Taylor series expansions of -'6") around B = 0. In the case of the switching variable, 6", being 

one of the explanatory variables, !", Camacho (2004) avoids an identification problem by using a 

third-order Taylor expansion (as opposed to a first-order expansion, as used by Weise (1999)). We 

then follow Weise’s (1999) three-step procedure described in Granger and Teräsvirta (1993) and 
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Teräsvirta and Anderson (1992) to test the null hypothesis, N8: B = 0, against the alternative of 

N+: B > 0 for each equation in the system. We consider a k-variable VAR with p lags, where 

P" = '!+"*+, !+"*A, … , !+"*R, !A"*+, … , !S"*R), and where 6" is known. The first step is to collect 

the residuals, ,TU", from the following restricted regression: 

!U" = VU8 + ∑ VUXPX"
RS
XY+ + ,U"      (4) 

and use these to determine ZZ[8 = ∑ ,TU"
A . 

The second step is to collect the residuals, \TU", from the following unrestricted regression: 

,U" = ]U8 + ∑ ]UXPX"
RS
XY+ + ∑ Û6"PX"

RS
XY+ + \U"     (5) 

and use these to determine ZZ[+ = ∑ \TU"
A . The third and final step is to calculate the LM-statistic, 

namely, (0 =
_'``ab``ac)

``ab
 ~ fA'gh), where T is the sample size5.  

The above procedure tests for linearity equation by equation. To test for linearity in the system as 

a whole, a likelihood ratio test of the null hypothesis, N8: B = 0  in all equations, is performed. 

The estimated variance-covariance matrices of the residuals from equations (4) and (5) are 

Ω8 =
∑ jk>jk>

l

_
 and Ω+ =

∑ mTn>mTn>
l

_
 respectively, and these are used to derive the test statistic, ([ =

3olog|Ω8| − log |Ω+|s~fA'ghA). Instead of relying on the asymptotic distributions, the p-values 

of the tests are obtained using 1 000 parametric model-based bootstrap iterations, so as to guard 

against distributional assumptions and finite sample problems. 

In the following section we perform linearity tests to ascertain whether a nonlinear VAR is 

indeed preferable over a standard linear VAR in this context. We go on to estimate a selection of 

LSTVAR models and assess their response characteristics. 

 

4.4.4.4. Empirical ResultsEmpirical ResultsEmpirical ResultsEmpirical Results    

a.a.a.a. Linearity TLinearity TLinearity TLinearity Testsestsestsests    

The null hypothesis of a linear standard four-variable VAR is tested against the alternative of a 

LSTVAR. The four variables are FCI, MPG, INF and TB. Both the linear and nonlinear VARs have 

the same ordering and specification, for the purposes of comparison, with the ordering presented 

as FCI, MPG, INF, and TB. The Schwarz information criterion suggests a two-lag model6. 

We include an a priori selection of switching variables, namely the first and second lags of FCI, 

MPG, INF and TB.  

                                                      

5 Inference is made using bootstrapped p-values. 
6 The Akaike Information Criterion suggests 6 lags. This model was tested, however was found not to perform as well as the 2-lag 
models, likely due to over-parameterisation. 
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Table 1 presents the results of the linearity tests. It is evident that there is nonlinearity in each of 

the equations, and in the VAR system as a whole. Furthermore, each of the variables – FCI, MPG, 

INF and TB – exhibit potential as switching variables. Weise (1999) theoretically proposes 

inflation as a switching variable, as do Ball, Mankiw and Romer (1988), Ball and Mankiw (1994), 

and Tsiddon (1993). Weise’s (1999) empirical results point towards inflation and output growth as 

potential switching variables. In a single-equation case, Teräsvirta and Anderson (1992) suggest 

choosing the switching variable based on the LM statistic in Table 1 with the smallest 

bootstrapped p-value. Given that all of the significant p-values within each equation are nearly 

identical at ≈0, and their associated LM statistics are very close to each other in value, we test the 

following possibilities as switching variables: -$."*A, 01&"*A, .2-"*A and 34"*A. Furthermore, 

we extend the case to include a separate switching variable for each equation, and test two such 

models. This approach does not restrict the nonlinear dynamics of the each equation to be 

governed by the same switching variable, and hence is more flexible.  Version 1 has the following 

switching variables7: -$."*A in the FCI equation; 34"*+ in the MPG equation; 34"*A in the INF 

equation; and .2-"*+ in the TB equation. Version 2 of the 4-switch model has the following 

switching variables: -$."*A in the FCI equation; 01&"*A in the MPG equation; .2-"*A in the INF 

equation; and 34"*A in the TB equation. Indeed, the p-values of these tests are smaller than the p-

values of the single switch variable cases, implying that the extended models better capture the 

nonlinear dynamics. 

 

Table 1.Table 1.Table 1.Table 1. First round First round First round First round LM LM LM LM ttttests for ests for ests for ests for llllinearityinearityinearityinearity    

Switching  
Variable 

FCI Equation MPG Equation INF Equation TB Equation VAR System 
LM LM LM LM LM 

FCI(t-1) 171.7965*** 298.3281*** 32.7984 137.5205*** 770.6697*** 
FCI(t-2) 168.4439*** 16.4148 132.4527*** 31.3825 375.3350*** 
MPG(t-1) 163.9970*** 18.4456 177.0351*** 34.3354 429.5872*** 
MPG(t-2) 160.0466*** 66.7112*** 20.5804 151.4532*** 440.0684*** 
INF(t-1) 167.9873*** 68.6489*** 12.8395 229.9851*** 557.2017*** 
INF(t-2) 166.2219*** 262.5497*** 83.9057*** 19.8860 627.2075*** 
TB(t-1) 165.6655*** 267.5810*** 79.4406*** 18.0611 628.0866*** 
TB(t-2) 155.3648*** 47.2514*** 204.8648*** 75.6107*** 531.5056*** 
Notes: *** implies rejection of the null hypothesis, N8: B = 0, at the 1% level of significance, i.e. it implies nonlinearity (and specifically, 
a LSTVAR specification) in the selected equation(s). p-values are obtained from bootstrapping using 1 000 iterations. 

 

b.b.b.b. LSTVAR estimation resultsLSTVAR estimation resultsLSTVAR estimation resultsLSTVAR estimation results    

Following Rahman and Serletis (2010), the unrestricted LSTVAR models with the switching 

variables identified above are estimated using nonlinear least squares, extending the univariate 

approach in Teräsvirta and Anderson (1992) to the multivariate case8. This is in contrast to Weise 

                                                      

7 The choices of switching variables are based on the outcomes of the LM linearity tests. 
8 CUSUM tests (see results in the appendices) on the individual equations within the VAR indicate an absence of structural breaks. 
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(1999) who fixes the threshold, c, and slope, B,  parameters at certain values and estimates the 

STVAR model equation by equation using OLS. We use nonlinear least squares so that we do not 

have to impose any subjective restrictions. 

In terms of the speed of adjustment parameter, B, the results in Table 2 show that there is a sharp 

transition between states when -$."*A and 01&"*A are the switching variables, however there is 

a smoother, slower transition between states when .2-"*A and 34"*A are the switching variables. 

Version 1 of the 4-switch model has smooth transition in the FCI, MPG and INF equations, and 

sudden transition in the TB equation. Version 2 of the 4-switch model has smooth transition in 

the FCI and TB equations, and sudden transition in the MPG and INF equations9. In all instances, 

except perhaps the TB equation of the 4-switch model version 2, B appears to be significantly 

more than 0, thereby indicating nonlinear models in each case. 

 

Table 2.Table 2.Table 2.Table 2. Selected estimation outputSelected estimation outputSelected estimation outputSelected estimation output    

Switching Variable MSE Threshold, 
E 

Speed of 
adjustment, 

B 

Percentage of 
observations in 
upper regime 

Percentage of 
observations in 
lower regime 

FCIt-2 2.360 1.797*** 227.192 18 82 
MPGt-2 2.360 -0.769*** 411.434 80 20 
INFt-2 2.349 -0.270*** 16.464 56 44 
TBt-2 2.359 -0.449*** 6.262** 67 33 
4-switch version 1: 2.345     
FCI equation (switch: FCIt-2)  -2.432*** 3.612 90 10 
MPG equation (switch: TBt-1)  -0.548*** 22.910 71 29 
INF equation (switch: TBt-2)  -0.400*** 9.823 64 36 
TB equation (switch: INFt-1)  -0.506*** 199.000*** 68 32 
4-switch version 2: 2.350     
FCI equation (switch: FCIt-2)  -2.432*** 3.418 90 10 
MPG equation (switch: MPGt-2)  0.035 199.000*** 49 51 
INF equation (switch: INFt-2)   -0.114*** 199.000*** 50 50 
TB equation (switch: TBt-2)  -0.985*** 0.715 90 10 
Notes: ***/**/* indicates parameter significance at the 1/5/10% level. The B parameter in the model which has INFt-2 as the switching 
variable is significant at the 12.5% level. 

 

The threshold parameter, c, provides insight into the different “regimes” which the LSTVAR 

distinguishes between. Camacho (2004) found that, when applied to models including GDP 

growth rates, a logistic transition function, as in equation (3), has the useful property of locating 

“the model either near to, or far from, recessions, depending on the switching expression’s 

values”. Specifically, if -'6") → 0, this represents recessionary periods, while -'6") → 1 is 

representative of expansionary periods. Camacho (2004) reached this conclusion using a model 

                                                      

9 Graphs of the transition functions of the two chosen models are found in the Appendix. Graphs of the transition functions of all of 
the tested switching variables are available upon request.  
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incorporating GDP growth and growth in the Conference Board Composite Index of Leading 

Indicators.  

The MSE statistics10 in Table 2, along with the values of c and B, assist us in making a decision as 

to the “best” model that we will use as the benchmark model. Of the single-switch models, we 

choose the model which has .2-"*A as a switching variable, and we compare this against the 4-

switch model version 1.  

An important characteristic of the LSTVAR models estimated here is that all of the variables 

interact dynamically and co-move in response to shocks in any of the equations of the LSTVARs. 

The choice of switching variable in each model is dependent upon statistical goodness-of-fit, 

which implies that the upper and lower regimes of the models are not necessarily determined by 

the nature of the switching variable itself, but rather by the asymmetric and dynamic interactions 

of the variables within the LSTVAR11. The lower regime periods of these two chosen models tend 

to correspond to periods of financial tightening and financial volatility. The upper regimes, 

conversely, are related to periods of stable and loose financial conditions12. 

 

Table 3.Table 3.Table 3.Table 3. Second round linearity testsSecond round linearity testsSecond round linearity testsSecond round linearity tests    

Model 
  F-statistic   
FCI equation MPG equation INF equation TB equation LSTVAR 

.2-"*A as  switching variable 186.4407*** 2.8711*** 0.6845 1.012 87.2739*** 
4-switch model (version 1) 1.3942 1.5319 1.6744** 1.6195 1.6785* 
Notes: ***/**/* implies rejection of the null hypothesis, N8: tuvwxyuz{, at the 1/5/10% level of significance, i.e. it implies nonlinearity 
within that equation of the LSTVAR specification. p-values are obtained from bootstrapping using 1 000 iterations. 

 

We test these two models again for linearity, by testing the null hypothesis that the coefficients 

on -'6") are equal to zero (i.e. N8: tuvwxyuz{) in each equation individually and in the joint 

LSTVAR system. As in Weise (1999), the F-tests are constructed from Wald statistics with 

White’s (1980) heteroskedasticity-consistent coefficient matrix, with bootstrapped inference. 

Table 3 shows that linearity is again rejected in favour of the full LSTVAR model with .2-"*A as a 

switching variable, and in the FCI and MPG equations of that model. In the model with four 

switching variables, linearity is again rejected in the INF equation and in the full LSTVAR. 

Rahman and Serletis (2010) point out that it is difficult to fully understand and interpret 

nonlinear models based on parameter estimates only, and that it is important to also consider the 

                                                      

10 Other model selection criteria, such as AIC and BIC, were assessed, however, due to the fact that the function values for all models 
were identical, so were the AIC and BIC statistics. 
11 Therefore, for example, even though the single-switch model has inflation as the switching variable, it appears that a large financial 
shock moves the system into a crisis regime, because the other variables, MPG and TB, along with INF, dynamically respond to this 
shock. 
12 We also note that in the individual equations of the 4-switch model, the upper (lower) regimes correspond to economic booms 
(recessions), periods of high (low) inflation, and periods of above- (below-) average interest rates. 
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dynamic response characteristics inherent in generalised impulse response functions (GIRFs). We 

perform this analysis in the following section. 

 

c.c.c.c. Impulse ResponsesImpulse ResponsesImpulse ResponsesImpulse Responses    

We now use GIRFs from the two chosen estimated LSTVAR models to test the asymmetry of 

shocks to financial conditions in these systems. We test three hypotheses: (1) whether the effects 

of a shock to financial conditions in South Africa are larger in upturns or in downturns; (2) 

whether positive and negative financial conditions shocks have asymmetric effects; and (3) 

whether this asymmetry in (1) and (2) is affected by the size of the shock13. 

Weise (1999) has identified certain key differences between the impulse response functions (IRFs) 

from nonlinear and linear models. Unlike in a linear model, where the IRF is invariant to history, 

the nonlinear GIRF incorporate “random history” (i.e. it must treat |"*+ in equation 6 as a 

random variable). Furthermore, future shocks in a nonlinear model are to be drawn from a 

distribution and their effects averaged out over a large number of draws; whereas future shocks 

can be set equal to zero in a linear model. Lastly, shocks of different sizes have the potential to 

generate different responses in a nonlinear model, unlike a linear model’s IRF, which is invariant 

to the size of the shock. These characteristics pertaining to a linear model mean that an IRF can 

be generated from the estimated coefficients of the VAR; however nonlinear GIRFs must be 

computed by simulating the model.  

The impulse responses are calculated using a methodology described by Rahman and Serletis 

(2010), which in turn is derived from Koop, Pesaran and Potter (1996). A GIRF is computed as the 

difference between the responses of the forecast of selected variables to a one-time shock, 

compared to a baseline (no-shock) scenario: 

&.}'v, \" , |"*+) = ~�!"9�|\" , |"*+� − ~�!"9�||"*+�, v = 0, 1, …  (6) 

where &.} is the GIRF of X,  n is the forecast horizon, \" is the shock14 used to generate the GIRF, 

|"*+ represents the initial values of the model’s variables (their “history”), and ~�∙� is the 

expectations operator. We run our GIRFs over 25 months, and use 1 000 bootstrapped iterations 

to combine all possible responses and take all possible VAR orderings into account. Typically, the 

GIRF of the STVAR is history-dependent and the initial period at which the GIRFs are calculated 

will have an impact. In order to control for initial period dependence, we take each time point in 

the sample as an initial period and generate 1 000 bootstrap GIRFs from each initial period, taking 

                                                      

13 Note that all GIRFs shown in this paper are standardised by dividing the impulses by the size and direction (sign) of the shock, so as 
to ensure comparability. Therefore, negative shock results are normalised to be positive, so any differences in the IRFs of positive 
versus negative shocks will purely be due to asymmetry. 
14 The shock in this case is either a positive or a negative shock to FCI, and is either one or three standard deviations from the linear 
model in size. 
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the mean response as the response at this point. There are 547 initial periods in our sample, 

leading to 547 000 bootstrapped impulse responses for each step. 

 

Table 4.Table 4.Table 4.Table 4. Responses of Responses of Responses of Responses of MPGMPGMPGMPG, , , , INFINFINFINF    and and and and TBTBTBTB    to to to to various shockvarious shockvarious shockvarious shocks of s of s of s of FCIFCIFCIFCI        after 25 monthsafter 25 monthsafter 25 monthsafter 25 months    

 .2-"*A as switch 4-switch model (version 1) Linear 
VAR Lower regime Upper regime Lower regime Upper regime 

1 SE shock to FCI 

MPG 
Negative shock 0.075 0.086 0.045 0.087 

0.046 
Positive shock 0.073 0.087 0.047 0.088 

INF 
Negative shock 0.072 0.082 0.082 0.019 

0.027 
Positive shock 0.068 0.081 0.082 0.017 

TB 
Negative shock 0.056 0.071 0.051 0.049 

0.081 
Positive shock 0.054 0.072 0.059 0.058 

3 SE shock to FCI 

MPG 
Negative shock 0.074 0.087 0.043 0.089 

0.046 
Positive shock 0.074 0.087 0.044 0.090 

INF 
Negative shock 0.072 0.081 0.080 0.019 

0.027 
Positive shock 0.068 0.080 0.084 0.017 

TB 
Negative shock 0.056 0.070 0.050 0.045 

0.081 
Positive shock 0.056 0.071 0.061 0.058 

Notes: These figures are derived from the maximum value of the responses, over 25 months, of the variables in the left-hand column to 
a shock in FCI (i.e. from the maximum point in the GIRF graphs in Figure 1 and Figure 2). The impulses and their responses are 
standardised. The size of the negative (positive) shocks to FCI are -1.988 (1.988) for a 1 SE shock, and -5.964 (5.964) for a 3 SE shock. 

 

The GIRFs in response to positive and negative FCI shocks of varying sizes with their 

bootstrapped 68% (1 SE) confidence intervals are shown in the appendices. We find that the 

directions of the GIRFs make economic sense: MPG responds to a shock in FCI with initial 

volatility, finally reaching a moderately negative position; INF increases in response to financial 

tightening; and TB also increases, probably in response to monetary tightening due to the 

aforementioned inflationary effects.  In the model with .2-"*A as a switching variable all of the 

GIRFs are significant; however MPG and TB responses take one month to become significant in 

all regimes. In the model with 4 switching variables, MPG responses are significant between 

months 3 and 4, and again from month 16 onwards, in all regimes. INF responses are significant 

from month 6 onwards in all regimes. All other responses are wholly significant.  

In quantifying how much asymmetry matters in the response of the economy to unexpected 

changes in financial conditions, we begin by ascertaining whether positive and negative financial 

conditions have asymmetric effects. When we consider the results in Table 4, this appears to be 

the case. In the model with .2-"*A as a switching variable, MPG, INF and TB respond more to a 

negative shock of FCI during a downswing than to a positive shock. There is less differentiation 

between responses to negative and positive shocks during upswings. Conversely, in the model 

with four switching variables, we find that MPG and TB respond more to a positive shock of FCI 

during both upswings and downswings than to a negative shock. There is little differentiation 
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between the responses of INF to positive and negative financial shocks in both upper and lower 

regimes.  

To determine whether the asymmetry between positive and negative shocks is affected by the size 

of the shock, we again refer to the results in Table 4. The evidence here shows very little 

difference between the responses to a small and a large shock (moving from 1 standard error (SE) 

to 3 SE shocks). 

In testing whether financial shocks are more severe in economic upturns or downturns, we assess 

the impact of a shock in the system to FCI and compare the responses of key variables in the 

upper (lower) regimes – which is where the switching variable takes on values higher (lower) 

than the threshold, c. The GIRFs in Figure 1 and Figure 2 show that upper and lower regimes in 

both of our chosen models exhibit different magnitudes of responses15. Table 4’s results confirm 

Figure 1 and Figure 2, indicating asymmetry in the responses of the South African macroeconomy 

to financial shocks. It is clear that in both the model with .2-"*A as the switching variable and in 

the 4-switch model, MPG responds to an FCI shock with a significantly larger magnitude in an 

upper regime than in a lower regime. INF and TB also have larger responses in upper regimes in 

the single-switch model, where we recall that upper regime periods correspond to periods of 

financial loosening and financial stability, while lower regimes are related to periods of volatile 

and tight financial conditions. In the model with four switching variables, we see that INF and TB 

respond more during periods of lower regimes, INF significantly so. 

Figures 1 and 2 also show that there is differing behaviour in the responses of the key 

macroeconomic variables to financial changes. We see that the response of TB in both models is 

significantly more stable and persistent than the INF and MPG responses, which are more 

volatile. This makes sense due to the delayed nature of adjustments to interest rates, especially in 

an official inflation-targeting monetary policy regime, such as in South Africa. The slight 

persistence of inflationary responses may in turn be due to the fact that inflation can be regarded 

as a global phenomenon (Neely and Rapach (2011), Ciccarelli and Mojon (2008)). 

    

     

                                                      

15 All GIRFs for all variables and all shocks are available upon request. 
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Figure 1.Figure 1.Figure 1.Figure 1. Asymmetry Asymmetry Asymmetry Asymmetry inininin    upturns and downturnsupturns and downturnsupturns and downturnsupturns and downturns: Model with : Model with : Model with : Model with ����*�    as switching variableas switching variableas switching variableas switching variable    

  

 
 

 

Figure 2.Figure 2.Figure 2.Figure 2. Asymmetry in upturns and downAsymmetry in upturns and downAsymmetry in upturns and downAsymmetry in upturns and downturns: turns: turns: turns: 4444----switch model switch model switch model switch model     
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We have thus proven in this section that the South African economy is nonlinear in its responses 

to financial shocks. Specifically, manufacturing output growth, inflation and Treasury Bill rates 

are more affected by financial shocks during upswings in the single-switch model. In the model 

with four switching variables, inflation responds significantly more to financial changes during 

recessions. The size of the financial shock, however, only has a moderate impact on the response 

of the economy.  

    

5.5.5.5. ConclusionConclusionConclusionConclusionssss    

The aim of this paper was to investigate whether shocks to an FCI for South Africa estimated by 

Thompson, et al. (2013a) has an asymmetric effect on output, interest rates and inflation. To this 

end, we made use of a nonlinear LSTVAR, which allows for the transition of a chosen switching 

variable between two regimes. We estimated two such models: one with inflation as a switching 

variable; and one which allocated a different switching variable to each equation within the 

LSTVAR – this latter model resulted in two different regimes for each of the four equations.  

We found that the South African economy is strongly nonlinear in its responses to financial 

shocks, and that manufacturing output growth is more affected by financial shocks during 

upswings, while inflation and interest rates respond more during downswings in the four-switch 

model. The size of the financial shock, however, matters little for the response of the economy. A 

key implication for monetary policy in South Africa is that policy responses themselves should be 

nonlinear in response to financial crises (as evidenced by the differing GIRFs for a linear VAR 

compared to the various nonlinear models). Specifically, if we look at the reactions of TB and INF 

in the four-switch model, monetary policy should be significantly more reactive to a financial 

crisis when the economy is already in a recession, compared to when the economy is in an 

upswing. 

Future research into this topic will take the form of smoothly-evolving time-varying parameter 

(TVP) VARs along the lines of Baumeister, Durinck and Peersman (2008) and Koop and Korobolis 

(2013), in order to ascertain whether financial shocks at different times in South Africa’s 

economic history have differing macroeconomic impacts. This will be of further interest 

considering that even though CUSUM tests indicate an absence of structural breaks, Bai and 

Perron’s (2003a, 2003b) breakpoint tests do provide evidence of structural breaks. Hence, a TVP-

VAR which treats each point in time as a regime would allow for possible breaks.  
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7.7.7.7. Appendix Appendix Appendix Appendix     

Table 5.Table 5.Table 5.Table 5. Variables used to construct and test the FCIVariables used to construct and test the FCIVariables used to construct and test the FCIVariables used to construct and test the FCI    

NameNameNameName    DescriptionDescriptionDescriptionDescription    Transformation(s)Transformation(s)Transformation(s)Transformation(s)    
ALSI_VOL Stock exchange volatility (South Africa) Square of the first log difference 

of the All-Share Index 
CONFUSN University of Michigan US Consumer Sentiment Index N/A 
D_LALSI FTSE/JSE All-Share Index (South Africa) Seasonally adjusted, deflated by 

South African CPI, first log 
difference 

D_LHOUSEP Absa House Price Index (medium house size 141m2–
220m2) (South Africa) 

Deflated by South African CPI, 
first log difference 

D_LPSCE Credit extended to domestic private sector (South Africa) Deflated by South African CPI, 
first log difference 

D_LRD Rand-US Dollar exchange rate Seasonally adjusted, deflated by 
relative US-SA CPI, first log 
difference 

D_LSP500 S&P500 Composite Price Index Seasonally adjusted, deflated by 
US CPI, first log difference 

DIVN Johannesburg Stock Exchange dividend yield (South 
Africa) 

Seasonally adjusted 

FED US Federal Funds market rate Deflated  by US CPI 
GBINDEX_VOL Government bond volatility (South Africa) Square of the first log difference 

of Government Bond Return 
Index 

HOUSEP_VOL House price volatility (South Africa) Square of the first log difference 
of House Price Index 

INF Month-on-month growth in CPI (South Africa) Seasonally adjusted, month-on-
month rate of change 

M3_GR Month-on-month growth in M3 money supply16 (South 
Africa) 

Seasonally adjusted, deflated, 
month-on-month rate of change 

MPG Month-on-month growth in Manufacturing Production 
Index (South Africa) 

Month-on-month rate of change 

SPREADN_BOND Long-term bond spread between Eskom Corporate Bond 
yield and 10-year Government Bond yield (South Africa) 

N/A 

SPREADN_MORT Mortgage spread between mortgage loan borrowing rate 
and 3-month Treasury Bill yield (South Africa) 

N/A 

SPREADN_TBILL Short-term spread between prime overdraft rate and 3-
month Treasury Bill yield (South Africa) 

N/A 

SPREADN_TERM Term spread between 10-year Government Bond yield 
and 3-month Treasury Bill yield (South Africa) 

N/A 

TB 3-month Treasury Bill Yield (South Africa) N/A 
Notes: All data is extracted from the Global Financial Database (https://www.globalfinancialdata.com). The US Census X-12 procedure is used 

to seasonally adjust the data for series not already seasonally adjusted. Unit roots are tested for using the Ng-Perron (2001) procedure, and 

non-stationary series are differenced to be made stationary. All data is standardised. 

 

                                                      

16 Thompson, et al. (2013a) tested the inclusion of M1 growth vs. M3 growth through graphical comparison and correlation coefficients 

between the two FCIs and found that they were very similar, nearly identical in fact, so they chose the FCI including M3 since it is 

theoretically a more inclusive measure. 
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Figure 4.Figure 4.Figure 4.Figure 4. CUSUM test results for structural breaksCUSUM test results for structural breaksCUSUM test results for structural breaksCUSUM test results for structural breaks    
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Figure 5.Figure 5.Figure 5.Figure 5. Transition function: Transition function: Transition function: Transition function: 4444----Switch model version 1Switch model version 1Switch model version 1Switch model version 1    

  

  
 

Figure 6.Figure 6.Figure 6.Figure 6. Transition function: model with Transition function: model with Transition function: model with Transition function: model with INFINFINFINFtttt----2222    as switching variableas switching variableas switching variableas switching variable    
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Figure 7.Figure 7.Figure 7.Figure 7. Impulse response functionsImpulse response functionsImpulse response functionsImpulse response functions    and and and and 68686868% confidence bands% confidence bands% confidence bands% confidence bands: Model with : Model with : Model with : Model with INFtINFtINFtINFt----2222    as switching as switching as switching as switching 

variablevariablevariablevariable    
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Figure 8.Figure 8.Figure 8.Figure 8. Impulse response functionsImpulse response functionsImpulse response functionsImpulse response functions    and and and and 68686868% confidence bands% confidence bands% confidence bands% confidence bands: 4: 4: 4: 4----Switch model version 1Switch model version 1Switch model version 1Switch model version 1    
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