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For an axisymmetric tokamak plasma, Hamiltonian theory predicts that the orbits of charged
particles must stay on invariant tori of conserved energy in the moving frame of reference of a
wave that propagates along the torus with a fixed angular phase velocity. In principle, this is true
for arbitrary mode structures in the poloidal plane, but only if the fluctuations are expressed in
terms of potentials Φ and A, which satisfy Faraday’s law by definition. Here, we use the physical
fields E and B, where Faraday’s law may be violated by errors introduced during the process of
computing or designing the wave field through numerical inaccuracies, approximations, or gross
negligence. Numerical heating caused by noise-like artifacts on the grid scale can to some extent
be reduced via shorter time steps. In contrast, coherent inconsistencies between E and B cause
spurious acceleration that is independent of time steps or numerical methods, but can be sensitive to
geometry. In particular, we show that secular acceleration is enhanced when one imposes nonnormal
modes that possess strong up-down asymmetry instead of the usual in-out asymmetry of normal
toroidal (eigen)modes. Our tests are performed for full gyroorbit and guiding center (GC) models,
which give similar results. In addition, we show that N-point gyroaveraging is not a recommendable
method to enhance the realism of GC simulations. Besides breaking conservation laws, N-point
gyroaveraging in our example makes the GC results deviate further from the full orbit results,
showing that this method can even give the wrong trend.
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I. INTRODUCTION

The motion of charged particles can be simulated us-
ing the physical electromagnetic fields E and B or their
scalar and vector potentials Φ and A. Both approaches
have advantages and disadvantages with respect to the
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complexity of the equations, ease of model integration,
numerical efficiency, accuracy and physical integrity. In
this work, we are concerned with the conservative char-
acter of wave-particle interactions in the absence of colli-
sional and radiative processes, simulated using E and B

in realistic tokamak geometry, and subject to practical
constraints with respect to numerical accuracy.
We begin with classical gyroorbits whose equations of

motion, namely the Newton-Lorentz equations, are em-
bedded in the Lagrangian L and Hamiltonian H given
by

L(x,v, ẋ, t) =(Mv + ZeA) · ẋ−H, (1a)

H(x,v, t) =Mv2/2 + ZeΦ, (1b)

where Ze and M are the electric charge and mass of the
particle, v and x its velocity and position vectors, with
magnitude v = |v| and total time derivative ẋ ≡ dx/dt.
Equation (1) acquires canonical form when substituting
v with the canonical momentum

Pc =Mv + ZeA. (2)

Note that H and Pc are expressed in terms of the poten-
tials Φ and A. This implies that not only the Newton-
Lorentz equations, but also Faraday’s law

∂tB = −∇×E (3)

is built into Eq. (1) via the definitions E = −∇Φ− ∂tA
and B = ∇×A. However, this implicit constraint is lost
when the resulting equations of motion are expressed in
terms of E and B. In such cases, it is important to
ensure explicitly that E and B are consistent with each
other in order to preserve the Hamiltonian character of
the system.
In practice, the task of ensuring the physical consis-

tency between E and B may pose numerical challenges
and requires attention when the fluctuating fields have
been subject to some form of design. For instance, the
fields may be designed using simple parametric models,
which can be useful for systematic analyses of wave-
particle interactions. Even self-consistently computed
wave fields from a Maxwell-Vlasov or magnetohydrody-
namic (MHD) simulation are often subject to some form
of post-processing, such as Fourier analysis that usually
involves truncation, or discretized coordinate transfor-
mations. Such designed or processed modes may enter
an integrated modeling workflow and serve as input to
orbit-following codes that compute particle distribution
functions in the presence of radio-frequency (RF) waves
or MHD modes. Modifications on the fluctuating fields
may even be performed on-the-fly during a particle sim-
ulation. Two prominent examples are the interpolations
that are performed as part of the widely-used particle-in-
cell (PIC)[1] method, and N -point gyroaveraging during
a guiding center (GC) simulation.
In the present work, we wish to demonstrate how flaws

in the design of the fluctuations expressed in terms of

E and B can influence the accuracy and physical in-
tegrity of the results of an orbit-following simulation code
that solves equations of motion derived on the basis of
Hamiltonian theory. For this purpose, we examine the
conservative character of the motion of deuterons in a
JT-60U tokamak plasma using full orbit and GC models
(see the Appendices for details). The simulation parti-
cles are subject to a prescribed wave field with a fixed
amplitude function Φ̃n,ω(R, z) and fixed angular phase
velocity ω/n, where ω is the angular frequency and n the
toroidal mode number. That is, we design the fluctuat-
ing fields E(t) and δB(t) from a model of the electric
potential with the form

Φmdl(R,ϕ, z, t) = ℜ{Φ̃n,ω(R, z) exp(−iωt− inϕ)}. (4)

The tilde indicates a complex quantity and we use right-
handed cylinder coordinates (R,ϕ, z) with major radius
R, geometric toroidal angle ϕ and height z. When Eq. (4)
is satisfied, Hamiltonian theory predicts that the parti-
cle’s energy E ′ ≡ E+ ω

nPϕ in the wave’s rotating frame of
reference is conserved (see Appendix B 2 for details and
generalization):

nĖ ′ = nĖ + ωṖϕ = 0. (5)

Here, E = H = Mv2/2 + ZeΦ is the total energy of
a particle and Pϕ = Pc · ∂ϕx is the covariant toroidal
component of the canonical momentum Pc.
Evidently, the condition E ′ = const. — which de-

fines invariant tori of the Kolmogorov-Arnold-Moser
(KAM) theorem — holds for arbitrary potential struc-

tures Φ̃n,ω(R, z) and Ãn,ω(R, z) in the poloidal plane.
Thus, when the fluctuations are prescribed using Φ and
A — as is done in Hamiltonian GC codes like ORBIT

[2] — the conservation of rotating frame energy (5) and
the conservation of phase space density (Liouville’s the-
orem) are guaranteed down to the level of the numerical
scheme’s accuracy.

This is not true for arbitrary Ẽn,ω(R, z) and

B̃n,ω(R, z). For instance, when one designs a model
potential Φmdl and then prescribes the electric field as

E = E⊥ = −∇⊥Φmdl with E⊥ ≡ b̂ × (E × b̂) and

b̂ ≡ B/B, the simulation must explicitly include a consis-
tent fluctuating magnetic field δB(t) satisfying Faraday’s
law in the form ∂tδB = −∇ ×∇⊥Φmdl. This model is
not foolproof, since it is possible to run such simulations
without the magnetic fluctuation (as is, for instance, done
in some RF heating codes). We will present some illus-
trative examples showing how this produces unphysical
secular particle acceleration that violates conservation of
energy and phase space density in both full orbit and GC
models.
The spurious heating caused by such violations of the

laws of electromagnetism is numerically robust; i.e., in-
dependent of resolution in space and time. Interestingly,
however, the unphysical secular dynamics caused by this
sort of errors can remain relatively small if the poloidal
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structure of the applied perturbation resembles a nor-
mal (eigen)mode of the toroidal plasma with predomi-
nant in-out asymmetry along R. In contrast, the secular
dynamics are strongly enhanced, and thus more easily
seen, when one perturbs the system using ‘nonnormal’
modes that posses a strong up-down asymmetry along
z, so that their intensity distribution is ‘unnatural’ for
a toroidal plasma. This observation means that geomet-
ric effects can influence how strongly the breaking of the
laws of electromagnetism affects the simulation results.
This mechanism can be utilized when testing new codes
as suggested in the companion paper,[3] where the same
effect was seen in tests involving variations of the Hamil-
tonian GC code ORBIT.

Significant spurious heating may not only occur when
Faraday’s law (3) is grossly violated by the neglect of
δB(t) as in the above example. The conservative charac-
ter of the system can be broken also as the result of more
subtle errors in the numerical accuracy of the poloidal
mode structure, or by smoothing operations, such as gy-
roaveraging.

In the examples that we will discuss in this paper, in-
terpolation artifacts are introduced through a coordinate

transformation operation. We design Φ̃n,ω(R, z) appear-
ing in Eq. (4) from a set of poloidal Fourier harmonics
exp(−imϑ) that are defined in toroidal magnetic coordi-
nate system (ΨP, ϑ, ζ), where ΨP is the poloidal magnetic
flux serving as a minor radial coordinate, ϑ is a poloidal
angle, and ζ another toroidal angle (here, ζ = −ϕ). Nu-
merical artifacts are introduced when mapping the per-
turbation to cylinder coordinates (R,ϕ, z) because the
magnetic flux coordinate mesh tends to be highly nonuni-
form, so that there is usually a region where the flux coor-
dinate mesh density is lower than the cylinder coordinate
grid. The noise-like artifacts are then enhanced with each
differential operation ∇ needed to compute first E and
then δB. GC equations contain additional derivatives
of δB that enter the mirror force and drift terms. The
‘noisy’ δB field satisfies Faraday’s law and the solenoidal
condition ∇·δB = 0 on the discrete mesh, so it is not un-
physical; it only has an unrealistic fine structure. Via the
Courant-Friedrichs-Lewy (CFL) condition, the noise im-
poses a (soft) upper bound ẋ∆tCFL = ∆xgrid on the time
step for pushing simulation particles with speed ẋ across
the mesh whose spacing ∆xgrid is much shorter than that
of the physical waves of interest. In our working example,
where we follow 400 keV deuterons in a tokamak plasma
perturbed with long-wavelength modes, the consequence
is that the GC simulation has to be run with shorter
time steps that lie within a factor 10 of an efficient full
orbit solver. This reduces the GC model’s advantage in
terms of computational speed, unless grid-scale noise is
efficiently suppressed (or an implicit solver is used).

We also test the influence of N -point gyroaveraging
that is used in some codes as an attempt to improve the
quantitative accuracy of the drift-kinetic GC model. We
use the procedure described previously in Ref. 4, where
N -point gyroaveraging is applied to the fluctuating fields

E and δB in the poloidal (R, z) plane. This procedure is
not based on Hamiltonian theory, so a violation of con-
servation laws was to be expected and is indeed observed
here. This is one reason for why we think it is preferable
to follow full orbits instead of the GCs in cases where
gyroaveraging effects are quantitatively important. Fur-
ther strengths and weaknesses of the full orbit model are
discussed in Appendix E.

Overall, our impression is that the quality of the per-
turbed field’s structure can be more important than the
choice of coordinates or the numerical scheme used to
push the particles. In the main part of the paper, we em-
ploy the explicit 4th-order Runge-Kutta (RK4) scheme.
For the same time step size ∆t, the modified leap-frog
(MLF)[5] solver is faster than RK4, but measurements
of Pϕ and E ′ are less accurate with MLF since positions
and velocities are computed at staggered times that lie
∆t/2 apart. The ϕ-dependence of the fields is evaluated
using the particle-in-Fourier (PIF)[6–8] method due to
its higher accuracy and efficiency compared to PIC (see
Appendix D).

The perturbation model is described in Section II. Re-
sults of our simulations are presented in Section III, fol-
lowed by a discussion in Section IV. The Appendices A–
C contain a detailed description of the physical models
and their numerical implementation in the current ver-
sion of the new orbit-following simulation code ORBTOP

that we employ here. Appendices D and E contain ad-
ditional discussions pertaining to accuracy and perfor-
mance.

II. PERTURBATION MODEL

A. Polarization: electrostatic and electromagnetic

scenarios

The electric and magnetic field vectors E and B can
be written in terms of a fluctuating electric potential Φ(t)
and vector potential A(t) = Aref + δA(t) as

E = −∇Φ− ∂tδA, (6a)

B = Bref +∇× δA︸ ︷︷ ︸
δB(t)

, ∂tδB = −∇×E. (6b)

In our case, the stationary reference field

Bref = ∇×Aref = ∇ΨP ×∇ϕ+Bref,ϕ∇ϕ (7)

is obtained from an ideal MHD equilibrium solver in
terms of the poloidal flux function ΨP = Aref,ϕ and the
covariant toroidal field component Bref,ϕ = Bref ·∂ϕx. In
the present work, we use prescribed perturbations E(t)
and δB(t) that are constructed from a parametric model
for the electric potential Φ, which will be introduced in
Section II B below. The following two scenarios were con-
structed:
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(i) Purely electrostatic mode:

E = −∇Φ ⇒ ∂tδB = ∇×∇Φ = 0, (8a)

B = Bref (unperturbed reference field). (8b)

(ii) Electromagnetic mode with transverse polarization
relative to the reference field Bref :

E = −∇
ref
⊥ Φ ⇒ ∂tδA = −∇

ref
‖ Φ, (9a)

B = Bref + (−∂−1
t ∇×E)︸ ︷︷ ︸

δB(t)=∇×δA

, (9b)

where the following definitions were used:

∇
ref
⊥ Φ ≡ b̂ref × (∇Φ× b̂ref), ∇

ref
‖ ≡ b̂ref b̂ref ·∇,

∂−1
t X → ℜ{X/(−iω)}, b̂ref ≡ Bref/Bref . (10)

In addition, we will demonstrate what happens if one ig-
nores the time-dependent magnetic perturbation in sce-
nario (ii) or, equivalently, if one ignores the parallel com-
ponent of the electric field in scenario (i), giving

(iii) Unphysical mode:

E = −∇
ref
⊥ Φ (Eref

‖ ≡ E · b̂ref → 0), (11a)

B = Bref (δB(t) → 0). (11b)

While scenario (i) may be unrealistic for a tokamak
plasma and for the frequency ω that we will use, it is not
unphysical as it satisfies the laws of electromagnetism.
In contrast, scenario (iii) with Eref

‖ , δB(t) → 0 violates

Faraday’s law (3), which dictates that Eref
‖ and δB(t)

must not be zero at the same time.

B. Mode structure and amplitude

As in Ref. 3, we construct a simple parametric model
for Φ from Fourier harmonics in toroidal flux coordinates,

Φ̃(ρ, ϕ, ϑ, t) = e−iωt−inϕ
∑

m

eiΘ0,m−imϑΦm(ρ), (12)

with a given toroidal mode number n and oscillation fre-
quency ω = 2πν. The triplet (ρ, ϕ, ϑ) forms a right-
handed set of toroidal flux coordinates with geometric
toroidal angle ϕ, and the poloidal angle ϑ defined such
that magnetic field lines Bref are straight in the (ϑ, ϕ)

plane. The flux label ρ = ψ
1/2
P ∈ [0, 1] serves as a minor

radial coordinate, where ψP = (ΨP − ΨP,0)/(ΨP,edge −
ΨP,0) is the normalized poloidal flux function. ΨP,0 and
ΨP,edge are the values of ΨP at the magnetic axis and
plasma edge. In Eq. (12) and hereafter, the tilde indi-
cates a complex quantity and the physical electric and
magnetic field perturbations are taken to be

E =ℜ{Ẽ} = ℜ{−∇Φ̃− ∂tδÃ}, (13a)

δB =ℜ{∇× Ẽ/(iω)} = ℑ{∇× Ẽ/ω}. (13b)

FIG. 1. n = 2 harmonic of the fluctuating field during
an Abrupt Large-amplitude Event (ALE) in JT-60U, simu-
lated by the kinetic-MHD hybrid code MEGA as reported in
Ref. 9. This mode served as a reference for the perturba-
tion model used in this work. Panel (a) shows the temporal
evolution of the n = 2 harmonic of the radial component
Ur(t) = U · êr of the MHD velocity U ≈ vE in the MEGA sim-
ulation. Plotted here are the cosine and sine components and
the absolute value of the (m,n) = (4, 2) harmonic of Ur(t) at
ρ = 0.678 (r/a = 0.587). Panel (b) shows the poloidal mode
structure of the approximate electric potential Φn=2(R, z) ≈
B0

∑
m

r
m

(Uc
r (r,m) cos(mϑ)− U s

r(r,m) sin(mϑ)), where r/a
is another radial coordinate approximately proportional to
the square root of the toroidal flux and a ≈ 1m is the mean
minor radius of the plasma. The dashed black line is the wall,
the dashed green line is the midplane (where Bref ·∇Bref = 0),
and the bold green line is the plasma boundary (edge). Panel
(c) shows the radial profiles of the mode’s poloidal Fourier
harmonics |[Φn=2]m|(ρ). Panel (d) shows the model used in
this work, which consists of two poloidal harmonics, ma = 4
(red) and mb = 5 (blue dashed), with identical radial profiles.

The radial profile function Φm(ρ) for each poloidal
Fourier harmonic m in Eq. (12) is

Φm(ρ) =Φ0,m exp

(
−
(ρ2 − 0.5)8

0.38

)∫ ρ

0

dρ′Êm(ρ′),

(14a)

Êm(ρ) = exp

(
−
(ρ− ρm)2

2d2m

)
tanh

(
ρ− ρm
dm

)
. (14b)

The exponential factor in Eq. (14a) is a super-Gaussian
cut-off function, which ensures that the profile rapidly
drops to zero in the regions ρ < 0.2 and ρ > 0.8. The
parameter values are summarized in Tables I and II.
Our setup is motivated by kinetic-MHD hybrid simu-

lations of Abrupt Large-amplitude Events (ALE) as re-
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TABLE I. Model parameters for Eqs. (12) and (14). All
poloidal harmonics m listed in Table II have the same radial
profile Φm(ρ), whose peak value is max{Φm(ρ)} ≈ 0.8 kV.

ν = ω/(2π) n Φ0,m ρm dm

47.4 kHz 2 3× 7.3915 kV
√
0.46 0.1

TABLE II. Poloidal Fourier harmonics m and their phases
Θ0,m characterizing the ϑ-dependence of the perturbation.
Parameters are given for all five cases that are shown in Fig. 2.
Among these, only cases (A)–(D) are used in the main part
of the paper. The absolute values of the phases are chosen
such that the dominant resonance in scenario (ii) defined by
Eq. (9) has an elliptic point at ϑ = 0.

Case ma mb Θ0,a Θ0,b ∆Θ0 = Θ0,b −Θ0,a

(O) 4 4 0 0 0

(A) 4 5 0 0 0

(B) 4 5 −π π − π π

(C) 4 5 −π/4 π/2− π/4 π/2

(D) 4 5 π/3 3π/2 + π/3 3π/2

ported in Ref. 9. We also use the same MHD equilibrium
field Bref . The magnetic axis is located at major ra-
dius R0 = 3.4m and height z0 = 0.2m. The central
field strength is B0 = |Bref(R0, z0)| = 1.16T and the
plasma current is Ip = 0.57MA. Field and current both
flow in the −ϕ direction, so that ΨP increases mono-
tonically from the center to the edge of the plasma. As
a reference for our perturbation model, we have chosen
the n = 2 harmonic of the fluctuating field, whose tem-
poral evolution during the ALE simulation is shown in
Fig. 1(a). The peak around time t ≈ 0.8ms is the ALE.1

The poloidal structure of the n = 2 component of the
electric potential at that time is shown in Fig. 1(b), and
panel (c) shows the radial profiles of its main poloidal
Fourier components with m = 1...7.
Our simplified model is shown in Fig. 1(d). We include

only two poloidal harmonics, ma = 4 and mb = 5, and
let them have identical radial profiles Φm(ρ). Their am-
plitude parameter in Eq. (14) is fixed at Φ0,m ≈ 22.2 kV,
which yields profiles with a peak value of max{Φm(ρ)} ≈
0.8 kV that is approximately 5 times smaller than what
is seen in Fig. 1(c). Our model for Φ gives rise to an
electric drift velocity field whose values reach max|vE| ≈
1.5 × 104m/s. This corresponds to 0.35% of the on-
axis Alfvén velocity vA0 ≈ 4.3 × 106m/s and amounts
to about 60% of the peak velocity seen during the ALE
in Fig. 1(a).
The poloidal mode structures of the five model cases

(O), (A), (B), (C) and (D) listed in Table II differ primar-
ily in the poloidal structure of the electric field intensity

1 The ALE also has large n = 1 and n = 3 components[9] that are
ignored here.

FIG. 2. Examples of modeled electric field intensity distri-
butions |E|2 = B2|vE|2 in the poloidal (R, z) plane. The
fields are designed to resemble normal and nonnormal modes.
Normal (eigen)modes of a toroidal plasma possess primar-
ily in-out asymmetry as in cases (O), (A) and (B). Cases (C)
and (D) show extreme examples of nonnormal modes that are
entirely out-of-phase with the magnetic field nonuniformity
B ∝ 1/R and peak at the top and bottom of the plasma.

|E|2(R, z), as shown in Fig. 2. Cases (A)–(D) are similar
but not identical to those used in the companion paper,[3]
one difference being the choice of magnetic coordinates.
As was explained in Ref. 3, the beat between the wave
components Φm(ρ)eiΘ0,m−imϑ in Eq. (12) determines the
poloidal location of the intensity peak, which is indepen-
dent of the toroidal angle. The two parameters control-
ling the beat wave are the difference ∆m = mb − ma

between the poloidal mode numbers, and their relative
phase ∆Θ0 = Θ0,b −Θ0,a (Table II).

C. Normal and nonnormal modes

Cases (O), (A) and (B) in Fig. 2 are meant to rep-
resent the electric field intensity distribution |E|2(R, z)
of normal (eigen)modes of a toroidal plasma. Normal
modes are fluctuation patterns whose overall structure in
the ideal MHD domain (outside resonant layers) remains
unchanged for infinitely long times, even if the ampli-
tude is damped. In a toroidal plasma, normal modes
have electric field intensity distributions |E|2 = B2|vE|

2

that possess an in-out asymmetry in the poloidal (R, z)
plane, in accordance with the variation of the magnetic
field strength B ∝ 1/R. Case (O) resembles the struc-
ture of a beta-induced Alfvén eigenmode (BAE)[10] that
is dominated by a single poloidal harmonic (here m = 4).
One can see in Fig. 2(O) that the toroidal geometry of
the magnetic field produces a certain in-out asymmetry
in |E|2 along the R-axis even for a single-m mode. That
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FIG. 3. Poloidal structure of the magntic perturbation ωδB = ℑ{∇× Ẽ} in scenario (ii) for the nonnormal mode in case (C).
The three rows show the R, z and ϕ̂ component, respectively, where δBϕ̂ = δB · ∂ϕx/|∂ϕx| = δBϕ/R. Column (a) shows 2-D

and 3-D contour plots of the default case. The number of grid points in the original flux coordinate mesh, where Φ̃mdl was

modeled, is NψP
×Nϑ = 1025× 2048. Using scattered data interpolation as described in the text, Φ̃mdl was then mapped to a

cylindrical mesh with NR×Nz = 480×480 grid points. Then we computed Ẽ = −∇ref
⊥ Φ̃ and finally ∇×Ẽ using 4th-order finite

differences. Columns (b) and (c) show the situation with reduced resolution in (ψP, ϑ). Dashed ellipses indicate coordinate
transformation artifacts that attained readily visible amplitudes on the low-field side of the plasma, where the (ψP, ϑ) grid is
sparsest (cf. Fig. 1(b)). In column (c), we have increased the resolution in (R, z) without changing the (ψP, ϑ) grid, which
enhanced the artifacts. The contour plots in (c) were clipped to have the same vertical axis limits as (a) and (b).

in-out asymmetry is enhanced in multi-m modes, such as
cases (A) and (B) in Fig. 2 that consist of two adjacent
poloidal harmonics, ma = 4 and mb = 5, and resemble
the structure of a toroidicity-induced Alfvén eigenmode
(TAE).[11] While the poloidal harmonics of true TAEs
peak at different radii (near rational surfaces of the field
helicty q), the two harmonics in our model were chosen to
have identical profiles in order to emphasize the poloidal
symmetry breaking of the resulting beat wave. Modes
peaking on the low-field side (larger R ∝ B−1) are said
to have a ‘ballooning’ structure (A) and those peaking
on the high-field side (smaller R) are said to be ‘anti-
ballooning’ (B). Note that the poloidal phase of the beat
is independent of the toroidal angle ϕ. Only the loca-
tions of local minima and maxima vary, as one can see
by comparing the two panels for case (O) in the upper
box of Fig. 2, which show the structure of |E|2(R, z) at
nϕ = 0, π, ... and nϕ = π/2, 3π/2, ..., respectively.

Cases (C) and (D) in Fig. 2 are two arbitrary examples
of nonnormal modes, whose intensity peaks are located at
the top and bottom of the plasma, respectively, so they
are ±90 degrees out-of-phase with the variation of the
field strength B. Note that the nonnormal modes are not
unphysical. They are merely unlikely to survive for long
periods of time without suitable external drive, so they
tend to be transient or change their shape rapidly when
forming spontaneously during the nonlinear evolution of
a plasma.

D. Coordinate transformation, differentiation and

numerical artifacts

After preparing the poloidal mode structure of Φ̃,
we mapped it from uniformly meshed polar coordi-
nates (ψP, ϑ) to uniformly meshed rectangular coordi-
nates (R, z) using MATLAB’s scatteredInterpolant and
interp1 functions with method ‘linear’.2 Finally, we

took derivatives of Φ̃ to compute Ẽ and δB̃. This was
done using 4th-order finite differencing routines adopted
from the hybrid code MEGA.[12–14]
The mapping (ψP, ϑ) → (R, z) is a critical step. It is

desirable to have at least one grid point of (ψP, ϑ) in each
cell of the (R, z) mesh, but this is obviously difficult to
realize throughout the plasma, because the grid points of
the magnetic coordinate mesh are distributed in a highly
nonuniform fashion in the (R, z) plane, as one can in-
fer from the thin black lines in Fig. 1(b). This produces
interpolation artifacts that tend to be largest in regions
where the flux coordinate grid is relatively sparse, espe-
cially around the outer midplane on the low-field side of
the plasma (R ∼ 3.5...4.1m).
As an example, Fig. 3 shows the structure of the mag-

netic perturbation ℑ{∇ × Ẽ} = ℑ{iωδB̃} = ℜ{ωδB̃}

2
MATLAB release 2020a was used in this work.
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FIG. 4. Results for the nonnormal mode case (C) in scenario
(i) with δB = 0, simulated with the full orbit model. Each
color represents a different initial position of a tracer parti-
cle along the ψP-axis at ϑ = 0. Panels (a), (e) and (f) show
Poincaré plots in configuration space, flux space and angu-
lar momentum space. Panels (b–d) show time traces of the

normalized magnetic moment µ̂(t), kinetic energy K̂(t) and

rotating frame energy Ê ′(t). The latter is conserved with high
accuracy and used also for the vertical axis in panel (f).

in case (C) for scenario (ii) defined in Eq. (9), where

Ẽ = −∇
ref
⊥ Φ̃. There are no readily visible artifacts in

the default case in column (a) of Fig. 3. The artifacts
become visible in column (b), where the resolution in po-
lar coordinates (ψP, ϑ) was reduced by a factor 2 in both
dimensions. These noise-like artifacts grow further to
exceed the magnitude of the signal in column (c), where
the resolution in (R, z) was increased by a factor 2 while
keeping the reduced resolution in (ψP, ϑ).

Note that, in spite of these interpolation artifacts,
the magnetic field vector satisfies the solenoidal condi-

tion ∇ · δB̃ = 0 when the divergence is computed us-
ing a 4th-order finite-difference scheme that is consistent
with the scheme used to evaluate the rotation operator,

∇ × Ẽ. For all data in Fig. 3, we find max|∇ · δB̃| ∼
O(10−14 T/m), which is not far from the theoretical limit
of 64-bit floating-point precision.

Most results reported in the following Section III were

obtained using the δB̃ field in column (a) of Fig. 3, where
the interpolation artifacts are sufficiently small to be not
readily visible at a glance. The only exception will be
Fig. 11, where we examine the effect of the noise seen in
Fig. 3(b).

III. RESULTS

For the purpose of introducing the analysis and visu-
alization methods used in this study, Fig. 4 shows an
overview of the results for the nonnormal mode case (C)
simulated with the full orbit model that is described in
Appendix B. We have chosen scenario (i) defined in
Eq. (8), where the effect of the interpolation artifacts
is weakest, since δB = 0, so that conservation laws are
satisfied with high accuracy.
Figure 4(a) shows a Poincaré plot of the phase space

topology in the poloidal plane that moves with the
toroidally propagating wave field as ϕ + ωt/n = 0. For
full orbit simulations like the one whose results are shown
in Fig. 4, our Poincaré maps do not show the actual po-
sitions x of simulation particles. Instead, we recorded
the points in the (R, z)-plane where their GC positions
xgc = x + v × B/Ωg satisfy ϕgc(t) = −ωt/n, where
Ωg = ZeB/M is the instantaneous value of the gyrofre-
quency. Also recorded at these times were the samples
of the magnetic moment µ = Mv2⊥/(2B), kinetic energy
K =Mv2/2 and rotating frame energy E ′ of the simula-
tion particles. Their time traces are shown in panels (b)–
(d) of Fig. 4, using the normalizations µ̂ = µB0/(Mv20),

K̂ = K/(Mv20) and Ê ′ = E ′/(Mv20), where velocities are

normalized by their initial value v0 =
√
2K0/M . The

normalized rotating frame energy

Ê ′ = K̂ +
Φ̂ + ωP̂ϕ/n

ρ0
, (15)

with characteristic gyroradius ρ0 = v0/Ωg0 and on-axis
gyrofrequency Ωg0 = ZeB0/M ≈ 2π × 9MHz, is evalu-
ated with

Φ̂ =
Φ

v0B0
, δÂϕ = R

δAϕ̂

B0
= ℜ

{
inΦ̃−RẼϕ̂

−iωv0B0

}
,

(16a)

P̂ϕ =
Pϕ

ZeB0
=

ΨP + δAϕ

B0
+ ρ0v̂ϕ. (16b)

In most cases we use deuterons with K0 ≡ K(t =
0) = 400 keV (ρ0 ≈ 0.11m) and initial pitch angle
α(t = 0) = sin−1(v‖(t = 0)/v0) = 0.25π in the domain of
co-passing particles. The only exception is Fig. 8, where
K0 = 1keV (ρ0 = 6mm). Deuterons gyrate clockwise
in the (R, z) plane and the initial direction of their per-

pendicular velocity v⊥ is chosen to be êz × b̂ (pointing
approximately in the positive-R direction). The colors in
Fig. 4 identify the initial position of a simulation particle
along the ψP-axis at ϑ = 0.
The same data as in Fig. 4(a) are plotted again in

Fig. 4(e), now mapped into polar coordinates (ψP, ϑ).
Here one can clearly see the radial extent of the mag-
netic drifts. Finally, Fig. 4(f) shows a 3-D plot of the

Poincaré data with the rotating frame energy Ê ′ along
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the vertical axis and the normalized canonical toroidal
angular momentum

pϕ =
Pϕ/(Ze)

ΨP,edge −ΨP,0
=

ΨP +B0vϕ/Ωg0

ΨP,edge −ΨP,0
(17)

serving as a radial coordinate. Note that vϕ < 0 in our
setup. In the limit vϕ/Ωg0 = v̂ϕρ0 → 0, we have pϕ →
ψP. Similarly to ψP, which measures radial distance in
flux space, pϕ is a radial coordinate in drift orbit space.
Figure 4(f) shows that all Poincaré contours are dis-

tinct in energy even when they appear to overlap in the
2-D projection of panels (a) and (e). Such overlaps can
be avoided by initializing simulation particles with the
same rotating frame energy E ′(t = 0) rather than K0,
but this was not done here for various reasons, including
mere simplicity.
Our main point of interest here is the long-time evo-

lution of the system on the multi-millisecond time scale.
Each Poincaré contour in Fig. 4 consists of 450 points,
and it took about 3ms of physical time for our deuterons
to complete their 450 toroidal transits in the wave’s mov-
ing frame of reference.
The most efficient wave-particle interactions occur

near resonances. Here, the dominant resonance is located
around pϕ ≈ −0.37 (ψP = 0.3...0.7) and has three ellip-
tic (O-)points in the poloidal direction. Note that it is
the same island that appears three times in 0 ≤ ϑ < 2π.
Particles inside the resonant island exhibit the largest
oscillations in the kinetic energy K̂(t) in Fig. 4(c), with

|∆K̂|/K̂ . 2% (≈ 8 keV) starting from K̂0 = 0.5. The

oscillations of K̂(t) in Fig. 4(c) occur between constant
bounds, and E ′(t) in Fig. 4(d) is effectively constant,
showing the conservative character of the system at hand.
The magnetic moment µ̂(t) in Fig. 4(b) is also con-

served on average. Its oscillation has a magnitude of
about |∆µ̂|/µ̂ ∼ 10% that is similar for all particles, in-
side and outside the resonant island. This is because the
oscillations in µ̂(t) are mainly due to the nonuniformity
of the magnetic field across the gyroorbit, whose diame-
ter is about 2ρg ≈ 2ρ0v⊥/v0 ≈ 0.16m for our energetic
deuterons with K0 = 400 keV.

A. Poloidal mode structure matters

In this section, we demonstrate how the poloidal mode
structure of the fluctuating fields affects the results of an
orbit-following simulation, in particular, with respect to
its conservative character. We begin with the full orbit
simulations that solve the equations given in Appendix B.
Figure 5 contains an overview of Poincaré plots show-

ing the phase space topology. Results for cases (A)–(D)
are arranged column-wise, with the normal mode cases
(A) and (B) on the left and the nonnormal mode cases
(C) and (D) on the right. That is, we vary the effect of
‘mode geometry’ between each column. For convenience,
the upper row shows the poloidal structures Φ(R, z) of

the four modes and the locations of the Poincaré contours
of our co-passing 400 keV deuterons in the (R, z) plane
of our JT-60U plasma.

Results for scenarios (i)–(iii) defined by Eqs. (8)–(11)
are arranged row-wise in Fig. 5. The electrostatic sce-
nario (i) is at the top, followed by the transversely po-
larized electromagnetic scenario (ii), and the unphysical
scenario (iii) in the bottom row, which differs from the
self-consistent scenarios (i) and (ii) by the simultaneous
neglect of both the parallel electric field component Eref

‖

and the time-dependent magnetic fluctuation δB(t). In
other words, we vary the ‘mode electromagnetism’ be-
tween rows (i)–(iii).

In the physical scenarios (i) and (ii), the main differ-
ence between the four cases (A), (B), (C) and (D) is the
width of the primary resonant island. Cases (A) and (B)
have the largest and smallest width, respectively, because
our co-passing deuterium orbits are shifted outward in R,
where the modes in cases (A) and (B) have high and low
intensity, respectively.

Concerning the conservative character of the dynam-
ics, scenario (i) exhibits good invariant surfaces in all
cases shown in Fig. 5. The same is true for scenario (ii),
although a small amount of broadening can be seen on
Poincaré contours around pϕ > −0.35, which are associ-
ated with orbits that pass near the plasma boundary on
the outboard side (R ≈ 4.1m), where numerical errors in
δB are expected to be largest (according to Fig. 3). In
both physical scenarios (i) and (ii), the magnetic moment

µ̂(t) and kinetic energy K̂(t) are well-conserved on aver-
age. Their time traces are similar to those in Fig. 4(b,c)
for case (C), so we have not plotted them again for the
other cases. The same counts for the rotating frame en-
ergy E ′(t) that was shown in Fig. 4(d) and is effectively
constant.

A dramatically different picture is seen in the scenario
(iii) with an unphysical mode structure due to the ne-
glect of both Eref

‖ and δB(t). Panels (C-iii) and (D-iii)

of Fig. 5 show that the Poincaré contours for the non-
normal mode cases (C) and (D) are smeared in the pϕ
direction, especially near the resonance. The correspond-
ing time traces of Ê ′(t) in Fig. 6(C,D) show a significant
amount of secular acceleration that violates the conser-
vation laws of our setup. Very similar behavior was re-
ported in the companion paper,[3] where we had system-
atically violated the conservation of energy and phase
space density by omitting certain terms in the equations
of motion. Here, the same effect was achieved by cor-
rupting the self-consistency of the wave’s poloidal mode
structure in scenario (iii) by letting both Eref

‖ and δB(t)

be zero simultaneously.

A 3-D view of the situation is shown in Fig. 7(a,b),
which combines the data from Figs. 5(C-iii,D-iii) and
Fig. 6(C,D). In addition, Fig. 7(c,d) shows time traces
of the magnetic moment for particles near the dominant
resonance. The secular acceleration occurs primarily in

v‖ = b̂ · v (≈ u in the GC model), so that µ̂ ∝ v2⊥ (and
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FIG. 5. Overview of results from full orbit simulations. The top row shows the mode structures of the electric potential Φ for
cases (A)–(D), arranged column-wise. Next to each mode structure is the respective Poincaré plot for scenario (i) in the (R, z)
plane. The three rows below show the respective Poincaré plots in polar coordinates (pϕ, ϑ) for scenarios (i)–(iii) defined by
Eqs. (8)–(11), arranged row-wise. Note that only the range 0 ≤ ϑ ≤ π is shown, since the structures in the other half of the

domain (π ≤ ϑ ≤ 2π) look similar (cf. Fig. 4(d) above). The particles were followed for about 3ms and the time traces of Ê ′

and µ̂ for the unphysical scenario (iii) are shown in Figs. 6 and 7(c,d) below.
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FIG. 6. Time traces of the rotating frame energy Ê ′(t) for the unphysical scenario (iii) shown in the bottom row of Fig. 5 above.

thus the gryoradius) remains roughly conserved on aver-
age. Only the magnitude of its variation ∆µ̂ around the
mean changes somewhat. Moreover, panels (e) and (f) of
Fig. 7 show that there is relatively little secular displace-
ment along ψP (and, thus, in configuration space), so the
large secular drift in pϕ(t) is primarily due to acceleration
in vϕ, which is similar to v‖ in a tokamak.

Interestingly, the unphysical secular acceleration is rel-
atively small in cases (A) and (B) with normal mode
structures. One has to look closely at the Poincaré plots
in panels (A-iii) and (B-iii) of Fig. 5 to see the devia-
tions from conservative motion. Only the orbits closest

to the island center can be seen to exhibit a suspicious
drift in pϕ, and the time traces of their rotating frame

energy Ê ′(t) in Fig. 6(A) have to be traced for at least a
millisecond to see some appreciable acceleration. Never-
theless, the violation of rotating frame energy conserva-
tion is already evident on shorter time scales as Ê ′(t) in
Fig. 6(A,B) oscillates at what appears to be the nonlinear
bounce frequency.

The secular acceleration in the unphysical scenario
(iii) is not limited to particles inside or near a pri-
mary resonance. Figure 8 shows similar behavior in the
case of far-off-resonant deuterons with an energy of only
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FIG. 7. Panels (a) and (b) show 3-D plots of the data for
the unphysical scenario (iii) of cases (C) and (D) from Fig. 5

above, with kinetic energy K̂(t) along the vertical axis. Panels
(c) and (d) show the time traces of the magnetic moment µ̂(t)
for five simulation particles around the dominant resonance
at pϕ ≈ −0.37. Panels (e) and (f) show plots of the Poincaré
data in magnetic coordinates (ψP, ϑ).

K0 = 1keV. Again, the nonconservative character of
scenario (iii) remains largely hidden in the normal mode
case (A), while it causes strong secular acceleration in
the nonnormal mode cases (C) and (D).

Compared to the K0 = 400 keV orbits analyzed in
Fig. 7, the relative increase in the kinetic energy ∆K/K0

is larger in Fig. 8 for K0 = 1keV because we kept the
large value of the wave’s potential energy ZeΦ while
reducing K0. The large potential energy ZeΦ of the
wave field in our setup also exceeds the magnitude of
the fluctuations ∆µB0 of the magnetic moment for 1 keV
deuterons. This can be clearly seen in the time traces
of µ̂(t) in Fig. 8(d–f), which fluctuate by a large amount
only near the mode’s peak, namely in the domain of green
and yellow contours. In contrast µ̂ is essentially constant
for particles that are located outside the mode (dark blue
and dark red contours), because the magnetic field varies
very little across their small gyroorbit with a diameter of
only 2ρg ≈ 2ρ0v⊥/v0 ≈ 8mm, unlike in Fig. 4(b).

The main features of the full orbit simulations that we
discussed so far are reproduced by simulations using the
GC model described in Appendix C. The GC model
adopted here is based on Hamiltonian theory and in-
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FIG. 8. Motion of far-off-resonant co-passing 1 keV deuterons
in the unphysical scenario (iii) simulated with the full or-
bit model. Results for cases (A), (C) and (D) are arranged
column-wise. Panels (a–c) show Poincaré plots in the (ψP, ϑ)
plane. Panels (d–f), (g–h) and (j–l) show, respectively, the

time traces of the magnetic moment µ̂(t), kinetic energy K̂(t),

and rotating frame energy Ê ′(t).

cludes small terms such as ∂tb̂ and ∇|v2
E| = ∇(|E2

⊥|/B
2)

that are sometimes omitted in other codes. Although for-

mally of higher order, the term ∂tb̂ is essential for this
GC model to be conservative. Meanwhile, all terms con-
taining |vE|

2 may be safely ignored.

The results are summarized in Figs. 9 and 10. Over-
all, the GC simulations reproduce the results of the full
orbit simulations, except for a small radial shift of the
resonance, which we will discuss in more detail in Sec-
tions III E and III F below. By definition, the magnetic
moment is conserved exactly in the GC model, so we do
not show plots of µ̂(t). Instead, Fig. 10 shows the time

traces of the rotating frame energy Ê ′(t) for the four cases
(A)–(D) in all scenarios (i)–(iii).

For the physical scenarios (i) and (ii), Fig. 10 shows

excellent conservation of Ê ′. The only readily visible ex-
ception is the outermost orbit (dark red) that passes near
the plasma boundary and experiences the largest amount
of numerical noise that is present in our model of δB (see
Fig. 3), and whose effect we will inspect in the following
Section III B.

In the unphysical scenario (iii), we observe some dif-
ferences in the rates of secular acceleration in the full
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FIG. 9. Overview of results from GC orbit simulations of co-passing 400 keV deuterons. The top row shows the mode structures
of the electric potential Φ for cases (A)–(D), arranged column-wise. Next to each mode structure is the respective Poincaré
plot for scenario (i) in the (R, z) plane. The three rows below show the respective Poincaré plots in polar coordinates (pϕ, ϑ)
for scenarios (i)–(iii) defined by Eqs. (8)–(11), arranged row-wise. Note that only the range 0 ≤ ϑ ≤ π is shown, since the
structures in the other half of the domain (π ≤ ϑ ≤ 2π) look similar (cf. Fig. 4(d) above). The particles were followed for about

3ms and the time traces of the rotating frame energy Ê ′ are shown in Fig. 10 below.

FIG. 10. Time traces of the rotating frame energy Ê ′(t) for the three scenario (i)–(iii) shown in Fig. 9 above.
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orbit and GC models. Especially the normal mode cases
(A) and (B) exhibit more rapid acceleration in the GC
simulation in Fig. 10(A-iii,B-iii) than in the full orbit
simulation in Fig. 6(A,B). The cause for this difference is
not clear,3 and the particular trend observed here may be
accidental. One possible reason is that the resonance lo-
cation and effective field amplitude differ in the full orbit
and GC simulations, as will be discussed in Sections III E
and III F below (Fig. 14).

B. Effect of noise-like interpolation artifacts

The GC simulations whose results were shown in
Figs. 9 and 10 above were run with 100 times larger time
steps than the default time step

∆t0 ≈ 0.65 ns ≈ 3× 10−5 2π
ω ≈ 0.006 2π

Ωg0
, (18)

that was used in our full orbit simulations with Ωg0 ≈
2π×9MHz. The corresponding steps the GCs take in the
poloidal plane reach max|Ṙ∆t| ≈ 13mm and max|ż∆t| ≈
19mm. These steps are sufficiently small to satisfy the
Courant-Friedrichs-Lewy (CFL) condition with respect
to the characteristic scale length of the modes shown in
the top row of Fig. 9 (except near the axis, where the
poloidal wavelength becomes vanishingly small, but so
does the amplitude in that domain).
The situation changes when the fields contain noise

or noise-like artifacts like those in Fig. 3, whose scale
length is the same as the grid spacing, in our case
∆R = 4.8mm and ∆z = 6.6mm. With the default
GC time step ∆t = 100 × ∆t0, the CFL condition is
violated for the noisy component of the mode structure,
since max|Ṙ∆t| > ∆R and max|ż∆t| > ∆z. The con-
sequences can be seen in panels (d) and (m) of Fig. 11:
KAM surfaces are destroyed and the simulation particles
are subject to numerical heating.
The results in Fig. 11 were obtained with fluctuating

fields of poorer quality than in Figs. 9(C-ii) and 10(C-ii).
Instead of δB in Fig. 3(a), we used the noisier version
in Fig. 3(b) that we obtained through the use of a flux
coordinate mesh with lower resolution when modeling the
wave field for case (C) in the electromagnetic scenario
(ii). As was already mentioned in Section II D above, the
noise in Fig. 3(b) satisfies ∂tδB = −∇×E and∇·δB = 0
with high accuracy, so the signal is physical, but it has
an unrealistic (and undesirable) fine structure.
Panels (e) and (n) in Fig. 11 show that the KAM

surfaces and conservation of Ê ′ for GCs are recovered

3 Note that scenario (iii) does not contain δB, so the noise-like
artifacts in Fig. 3 do not enter the gradients of B. The accel-
eration seen in Fig. 10(A-iii,B-iii) does not depend on the time
step, and the full orbit results in Fig. 6(A,B) are independent of
the numerical method and coordinates used (MLF or RK4, in
Cartesian or cylinder coordinates).

when the time step is reduced to 10 × ∆t0, so that
max|Ṙ∆t| < ∆R and max|ż∆t| < ∆z. Further reduc-
tion of the time step to ∆t = ∆t0 in panels (f) and (o)
does not show any further improvement (one may even
perceive a slight deterioration).
The left half of Fig. 11 shows the full orbit results for

∆t = ∆t0, ∆t0/10 and ∆t0/100. The default time step
already satisfies the CFL condition since the gyroorbit
advances in steps of size max|ẋ∆t| ≈ 3mm < ∆R < ∆z.

Nevertheless, the rotating frame energy Ê ′ in Fig. 11(j)
shows a small amount of drift, and the Poincaré plot in
Fig. 11(a) looks significantly more diffuse than that in
Fig. 5(C-ii). Moreover, Fig. 11(g) shows some variation
in the bounds between which the magnetic moment µ̂ os-
cillates. Clearly, the noise-like artifacts affect the accu-
racy of the gyroorbit calculation. The results for ∆t0/10
in panels (b,h,k) of Fig. 11 look somewhat better, but
seem to deteriorate again in panels (c,i,l) when the time
step is further reduced to ∆t0/100.
Further tests (not shown) using the normal mode case

(A) produced results similar to those shown in Fig. 11 for
the nonnormal mode case (C). Apparently, the numerical
artifacts in Fig. 3(b) affect simulations with normal and
nonnormal modes in a similar way.
Evidently, results of higher quality can be obtained

only by reducing the numerical artifacts. Only if the
noise-like artifacts are sufficiently small, one can take full
advantage of the higher computational speed of the GC
model, since the time step is no longer bound by the mesh
used to discretize the fields, only by their characteristic
scale length.
In contrast, the secular acceleration seen in Figs. 5–

10 for the unphysical scenario (iii) is numerically robust,
as it cannot be cured by increasing resolution in time or
space. Moreover, it is sensitive to the poloidal structure
of the wave field.

C. Role of the t-dependent magnetic perturbation

The GC equations are more complicated than the full
orbit equations, but that complexity has the advantage
that different physical mechanism can be attributed to
certain terms, which can be isolated or manipulated. The
GC model can hence be used for systematic numerical
experiments with the goal to identify which effect causes
which observation. In the following, we manipulate the
GC equations to gain a better understanding of the re-
sults shown in the Figs. 5–10 above. We begin by exam-
ining the role of δB(t).
While the two physical scenarios (i) and (ii) in Figs. 5

and 9 are similar in many respects, two notable differ-
ences are the amount of distortion of Poincaré contours
outside the main resonance and the poloidal phase of
the main resonance; i.e., the position of resonant islands
along the poloidal angle ϑ. The parameters in Table II
were chosen such that the elliptic (O-)point of the main
resonance is approximately aligned with ϑ = 0 in the elec-
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FIG. 11. Comparison between the results for case (C) obtained with the full orbit model (left) and the GC model (right)
using different time steps sizes ∆t. In contrast to all other simulations discussed in this paper, the perturbations E and δB
for the electromagnetic scenario (ii) were constructed here with a low-resolution mesh in the flux-coordinates (ψP, ϑ), causing
visible interpolation artifacts in δB as shown in Fig. 3(b) above. We followed co-passing 400 keV deuterons. Panels (a–f) show
Poincaré plots of the orbit topology in the upper half-plane (0 ≤ ϑ ≤ π). Panels (g–i) show time traces of the magnetic moment
µ̂(t) for the full orbit simulations run with ∆t = ∆t0 × (1, 0.1, 0.01), where ∆t0 = 0.65 ns is our default step size for full orbits.

Panels (j–o) show time traces of the rotating frame energy Ê ′(t) for all cases.

FIG. 12. Demonstration of the influence of the magnetic per-
turbation on the poloidal phase of the resonant island in case
(B). Beginning from scenario (iii), where we had artificially
set δB → 0, we scanned the strength of the parallel stream-
ing term uδB in Eq. (C13a) by an artificial scaling factor s.
Panels (a)–(f) show Poincaré plots of the main resonance for
s = 0.3, 0.4, 0.6, 0.7, 0.8 and 0.9.

tromagnetic scenario (ii), where δB(t) is present. When
applying a purely electrostatic perturbation as in scenar-
ios (i) and (iii), the phase of the resonance is changed
only slightly in cases (A), (C) and (D). In contrast, case
(B) in Figs. 5 and 9 shows a complete phase flip by 180
degrees, so that the positions of O- and X-points are in-
terchanged.
The main mechanism via which the magnetic pertur-

bation can influence the phase of the resonant islands is

the bending of the magnetic field lines and the resulting
redirection of the particle orbits. This effect is captured
by the parallel streaming term uδB in Eq. (C13a) of the
GC model. This term competes with the electric drift

vE = E × b̂/B. In case (A), vE dominates on the out-
board side of the plasma, where our co-passing deuteron
orbits are located. In contrast, the vE field in case (B)
is very small on the outboard side due to destructive
interference, so there the small term uδB is able to out-
compete the electric drift.

This is proven in Fig. 12 as follows. We started from
scenario (iii), where we had artificially set δB → 0. The
strength of the uδB term was then varied by an artificial
scaling factor 0 ≤ s ≤ 1. Obviously, our numerical ex-
periment breaks the Hamiltonian character of the system,
but we believe that the effect of the main forces at work
can still be seen in a meaningful way. There is no signif-
icant effect for s ≤ 0.3 as one can infer from Fig. 12(a),
which is still similar to Fig. 9(B-iii). The effect of uδB
becomes noticeable for s ≈ 0.5 in Fig. 12(b,c), where
the island is obscured. The island reappears in distorted
form for s = 0.7 in panel (d) and becomes increasingly
symmetric around the new O-point location ϑ = 0 as the
scaling factor s is increased towards unity in panels (e)
and (f). This scan shows that, as far as the form of the
resonance is concerned, the electric drift vE in the elec-
tromagnetic scenario (ii) of case (B) is outcompeted by
uδB by about a factor 2 in the region populated by our
co-passing 400 keV deuterons.
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FIG. 13. Time traces of the kinetic energy K̂(t) showing how
the omission of certain terms in the GC equations of motion
(C13) cause varied amounts of secular acceleration as seen in
Figs. 6 and 10. Panel (a) shows the effect of ignoring the par-
allel electric field Eref

‖ in the electrostatic scenario (i), which is
equivalent to scenario (iii) defined in Eq. (11). Panels (b)–(d)
show three examples of terms whose role we have tested in
the electromagnetic scenario (ii), where multiple terms con-
tribute, most notably uδB in panel (c).

Note that E‖ plays no role in the present context: turn-
ing the corresponding terms on and off does not affect
the phase of the resonant islands, as one can ascertain
by comparing panels (B-i) and (B-iii) in Fig. 9.

D. Identification of secularly accelerating terms

Let us now use the GC model to investigate how incon-
sistencies in the poloidal mode structure of the fluctuat-
ing fields causes secular acceleration such as that seen in
Figs. 6 and 10. Equation (C13b) for the parallel acceler-
ation u̇ of a GC can be written

B∗
‖Mu̇ ≈ −µB∗ ·∇B + ZeB∗ ·E + small terms. (19)

The first term on the right-hand side is the mirror force
and the second term can be decomposed using B =

Bref + δB and E = Eref
⊥ + b̂refE

ref
‖ as follows:

B∗ ·E = B∗
ref ·E

ref
⊥ +B∗

‖E
ref
‖ + δB∗ ·E

≈ ρ‖Jref ·E
ref
⊥ /µ0︸ ︷︷ ︸

(o)

+BrefE
ref
‖︸ ︷︷ ︸

(i)

+ δB ·E︸ ︷︷ ︸
(ii)

+small terms,

(20)

where δB∗ ≡ B∗−B∗
ref and µ0Jref = ∇×Bref . We have

confirmed numerically that the conservative character of
our electrostatic scenario (i) is established by the cancel-
lation of secular accelerations caused by the terms labeled
“(o)” and “(i)” in Eq. (20). This means that the paral-
lel electric field in Eref

‖ in term “(i)” plays an important

role and must not be neglected in the absence of mag-
netic fluctuations. Failure to include term “(i)” causes

significant secular acceleration as shown in Fig. 13(a).
This setup is, in fact, equivalent to our unphysical sce-
nario (iii) in Figs. 6 and 10(iii), where all δB(t) terms
were ignored.
Secular acceleration occurs not only when all δB(t)

terms (or, equivalently, Eref
‖ ) are missing. Let us now

manipulate the electromagnetic scenario (ii) in order to
identify the dominant terms. Figure 13(b) shows that the
secular acceleration one obtains by neglecting the mag-
netic fluctuation term δB · E labeled “(ii)” in Eq.(20)
is significant, but much smaller than in Fig. 13(a) that
corresponds to letting δB(t) → 0 everywhere. Various
other terms, including µδB ·∇B of the mirror force, have
a similar degree of importance. The term proportional

to ρ‖B
∗ · (∇×E⊥) = −ρ‖BB∗ · ∂tb̂ in Eq. (C15) plays

no significant role. Its neglect causes only very benign
acceleration as can see in Fig. 13(d). It turns out that a
significant portion of the secular acceleration seen in sce-
nario (iii) can be attributed to the omission of the per-
turbed parallel streaming term uδB/B∗

‖ in Eq. (C13a)

for the GC velocity Ẋgc as Fig. 13(c) clearly shows.
In summary, we find that term ρ‖Jref ·E

ref
⊥ /µ0 labeled

“(o)” of Eq. (20) causes unphysical secular acceleration
unless it is balanced by

• the parallel electric field Eref
‖ labeled “(i)” of

Eq. (20) in the electrostatic scenario (i), and/or

• the magnetic fluctuations δB(t) in the electromag-
netic scenario (ii), most notably the perturbed par-
allel streaming term uδB and, to a lesser degree,
terms like δB · E labeled “(ii)” in Eq. (20) and
several others.

Secular acceleration is seen not only for fast ions, like our
400 keV deuterons whose time traces are shown in Fig. 13,
but also at low energies, such as the 1 keV deuterons that
we inspected earlier in Fig. 8. This means that the extent
of magnetic drifts and the size of the gyroradius does
not play a role, and even the existence of efficient low-
order resonances is not essential, although they do seem
to enhance acceleration.
Instead, the secular acceleration is sensitive with re-

spect to the geometry of the mode structure: nonnor-
mal modes as in case (C) shown in Fig. 13 yield much
stronger acceleration than normal ones. We have also
confirmed that the up-down asymmetry of our JT-60U
plasma model plays no significant role here. The same
sensitivity with respect to mode geometry was seen in a
plasma model with shifted circular flux surfaces.
The key factor appears to be the toroidal geometry of

the plasma, although this is, in a sense, a trivial fact (or
circular argument), since a mode’s relation to the nonuni-
formity of B in toroidal geometry is precisely what distin-
guishes our nonnormal modes (C,D) from normal modes
(A,B). A complete explanation of their different influence
on the conservative character of imperfect simulations re-
mains to be found.
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FIG. 14. Comparison of results of simulations using the full orbit model (a–d), the GC model (e–h), and the GC model with
N-point gyroaveraging (i–x). We followed co-passing 400 keV deuterons, and the nonnormal mode of case (C) was used as a
perturbation. Results are presented in terms of Poincaré plots (columns 2 & 4) and time traces of the rotating frame energy

Ê ′(t) (columns 3 & 5) for scenarios (i) and (ii) with electrostatic and electromagnetic perturbation, respectively. The first
column shows schematically the differences between the three methods for representing particle orbits. In the full orbit case,
particles travel along a helix, whose poloidal projection is drawn here as a red circle of radius ρg ∼ 0.1m around the guiding
center (black dot). In the GC model, fields are evaluated at the GC only. Gyroaveraging is done by placing Navg satellite
particles (small red circles) on the gyrocircle and taking the average fluctuating electromagnetic field at those locations to push
the GC. Here we compare results obtained with Navg = 2, 4, 8 and different satellite positions. As a visual aid, Poincaré plots
are overlaid with a pair of vertical dashed lines that indicate the limits of the resonance’s separatrix in the full orbit simulations.

E. Gyroaveraging gives wrong trends and breaks

the Hamiltonian character of GC motion

A side-by-side comparison between full orbit and GC
simulation results for the nonnormal mode in case (C) is
shown in the first two rows of Fig. 14. The most remark-
able difference between the full orbit results in panels
(a–d) and the GC results in panels (e–h) is that the res-
onance in the GC case is shifted outward in radius by
∆pϕ ≈ +0.005, which corresponds to about 10...20mm
in the (R, z) plane. The GC resonances are shifted by the
same amount in all cases (A)–(D) and in both scenarios
(i) and (ii). This means that E‖ does not play a role as it
is zero in scenario (ii). In fact, the fluctuation amplitude
does not seem to have any significant influence on this
resonance shift, so it must be related to the properties of
the gyroorbit and how it is represented in the GC model.
In this section, we examine how the results are changed
if one averages the forces of the fluctuating fields over
the gyroradius. This is followed in Section III F by an in-
spection of higher-order corrections in the GC equations.

The gyroaveraging procedure is an ad hoc attempt to
advance GCs using the mean force that a physical parti-
cle experiences when rapidly gyrating across the electro-
magnetic field, effectively attenuating the field’s nonuni-
formities. The method employed here was described and
tested in Ref. 4, and is discussed in some more detail in
Appendix C 6. Although not strictly based on Hamil-
tonian theory, the procedure has been devised with cer-
tain constraints in mind. In particular, the averaging is
performed only in the poloidal (R, z) plane to preserve
the toroidal waveform exp(−inϕ). Moreover, only the
fluctuating components of the electromagnetic fields are
averaged. The purpose of this section is to subject this
procedure to further scrutiny under more controlled con-
ditions than those we had used in Ref. 4.

The diameter of the gyroradius of our co-passing
400 keV deuterons is about 2ρ0v⊥/v0 = v⊥/Ωg0 ≈
0.16m ≈ R0/20 (on axis). This is comparable to the
radial and poloidal size of the E × B vortices associ-
ated with our n = 2 modes shown in the upper rows of
Fig. 10. We have chosen the nonnormal mode in case
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(C) and looked at both the electrostatic scenario (i) and
the electromagnetic scenario (ii). The results are sum-
marized in panels (i–x) in the lower four rows of Fig. 14.

We begin our discussion with the electrostatic scenario
in the left half of Fig. 14. Although the use of a mere
Navg = 2 satellite particles hardly counts as a gyroaver-
age, the results in panels (i) and (m) highlight the influ-
ence of the satellite positions. The location and struc-
ture of the resonance varies significantly depending on
whether the pair of satellites is aligned vertically (i) or
horizontally (m). The case with Navg = 4 in panel (q)
looks similar to panel (i) with Navg = 2 aligned verti-
cally. Finally, Navg = 8 in panel (u) gives a resonance
shift ∆pϕ & +0.01 that is even larger than in panel (e)
without gyroaveraging, where we had ∆pϕ ≈ +0.005.
Further increase of Navg has only little effect. Test runs
with Navg = 16, 19, 32 (not shown) gave essentially the
same result as Navg = 8, which seems to be ‘converged’,
albeit not in a favorable way.

These results show that our gyroaveraging procedure
yields the wrong trend. Instead of reducing the difference
∆pϕ between the resonance locations in the full orbit and
GC simulations, namely panels (a) and (e), the discrep-
ancy is increased. The reason for this is currently unclear,
but possible candidates are the following two features of
a true gyroorbit that gyroaveraging does not capture: its
helical structure due to the superposition of gyration and
parallel streaming, and the variation of the instantaneous
value of µ that was shown in Fig. 4(b).

Further tests (not shown here) confirmed that the reso-
nance shift is not affected when the background field Bref

and its gradients are also subject to gyroaveraging. The
resonance shift can be reduced or increased if one reduces
or increases the averaging radius artificially. Applying a
higher-order correction in the angular distribution of the
satellite particles as described in Appendix C 6 had no
effect on the results.

Besides yielding a somewhat inaccurate resonance, an-
other disappointment is that our gyroaveraging proce-
dure can cause unphysical secular acceleration as one can
infer from the time traces of the rotating frame energy
Ê ′(t) in Fig. 14, especially in panel (x) for the electromag-
netic scenario (ii). Incidentally, Navg = 4 shows better
conservation than 2- and 8-point gyroaveraging; in fact,
the results in panels (q)–(t) look similar to those in (e)–
(h) that were obtained without gyroaveraging.

In conclusion, our results suggest that N -point gyroav-
eraging is not a recommendable extension of the Hamil-
tonian GC model. On a slightly more positive note, the
secular acceleration in Fig. 4 seems to be limited to reso-
nantly trapped particles, the separatrix region and near-
resonant particles. Orbits located sufficiently far away
from a strong resonance seem to be well-behaved. Simi-
lar tests (not shown) with 8-point gyroaveraging around
far-off-resonant 1 keV deuterons (as in Fig. 8) did not
reveal any problems in that domain either. Thus, the
gyroaveraging procedure may be useful to approximate
the mean forces acting on nonresonant particles.

FIG. 15. Comparison of results from simulations using the full
orbit model in panels (a,b,g,h), and the GC model with O(ǫ2B)
corrections given by Eq. (21) in panels (c–f,i,j). As in Fig. 14,
we followed co-passing 400 keV deuterons, and the nonnormal
mode of case (C) was used as a perturbation. The left col-
umn shows Poincaré plots of the main resonance with vertical
dashed lines indicating the limits of the resonance’s separa-
trix in the full orbit simulation. The right column shows time
traces of the rotating frame energy Ê ′(t). The three rows
at the top are for the electrostatic scenario (i) and the two
rows at the bottom are for the electromagnetic scenario (ii).
The GC results in panels (e,f) were obtained with perturbed
fields gyroaveraged over Navg = 8 satellite particles as in the
bottom row of Fig. 14.

F. Correction of GC resonance location

The magnitude |∆µ̂|/µ̂ ∼ 10% of the oscillations of
the magnetic moment µ̂ in Fig. 4(b) suggests that the
first-order GC model with respect to the condition ǫB ≡
ρg/LB ≪ 1 could be near the limit of its validity, so that
O(ǫ2B) corrections may have noticeable effects. Indeed,
we find that the discrepancy between the GC resonance
and its full orbit counterpart is significantly reduced if
one adds the Baños drift correction to the parallel ve-
locity u and applies the closely related correction to the
magnetic moment using the expressions given on p. 718
of Ref. 15:

u→ ucorr = u+
µ

MΩg
B ·∇× b̂, (21a)

µ→ µcorr = µ
(
1− (B∗

‖ −B)/B
)
. (21b)
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The results of making these substitutions in the GC
equations of motion (C13) are shown in Fig. 15. The
normalized canonical toroidal angular momentum that
is used for the horizontal axes of the Poincaré plots in
the left column of Fig. 15 has also been modified as
pϕ(Xgc, u) → pϕ(Xgc, ucorr). Similarly, the kinetic en-
ergy inside E ′ is replaced by

K → Kcorr =Mu2corr/2 + µcorrB, (22)

which causes a reduction of its value by up to 2%. The
values of Ê ′ in the right column of Fig. 15 are reduced by
up to 2.6%. In fact, instead of applying the above correc-
tions in the GC model, the resonance can also be aligned
with that of the full orbit simulation by slightly increas-
ing the initial pitch angle from α(t = 0) = sin−1(v‖(t =
0)/v0) = 0.25π to 0.254π, which reduces the magnetic
moment by about 2.5%.
Note that the corrections in Eq. (21) are valid only for

a stationary magnetic field, as in our electrostatic sce-
nario (i), results for which are shown in the upper three
rows of Fig. 15. The separatrix of the GC resonance in
panel (c) now agrees well with that of the full orbit reso-
nance in panel (a). The 8-point gyroaverage still causes
an outward shift of the resonance as on can see in panel
(e), and the weak secular acceleration in Fig. 15(f) is
similar to that seen earlier in Fig. 14(v).
In the electromagnetic scenario (ii), where Eq. (21)

is not valid, these O(ǫ2B) corrections cause a significant
violation of conservation laws in the form of broken KAM
surfaces in Fig. 15(i) and secular acceleration in panel (j).
The resonance shift is corrected nevertheless, as panel (i)
shows.
Qin & Davidson[16] treated the case of a time-

dependent uniform magnetic field, where an exactly in-
variant magnetic moment exists. We have not attempted
to derive equations of motion for the general nonuniform
electromagnetic case from a GC Lagrangian that is ac-
curate to order O(ǫ2B). One reason is that gyroaveraging
effects are likely to become important when these cor-
rections matter, and we have seen in Figs. 14 and 15
that N -point gyroaveraging has undesirable side effects.
Therefore, instead of constructing corrections, it seems
to be more meaningful to use the full orbit model in pa-
rameter regimes where the accuracy of the GC theory of
order O(ǫB) no longer suffices. Further pros and cons of
full orbit simulations are discussed in Appendix E.

IV. DISCUSSION

The purpose of this work was to draw attention to
the role of the mode structure as a possible source of
inaccuracies and unphysical behavior in numerical sim-
ulations of charged particle motion in a toroidally con-
fined plasma. For this purpose, we simulated the mo-
tion of deuterons in a tokamak plasma. The simula-
tions were performed with two models: the classical
Newton-Lorentz equations governing the dynamics of full

gyroorbits, and a guiding center (GC) model. Mathe-
matically, both models represent Hamiltonian systems
and it can be shown (see Appendices B 2 and C5) that
the orbits lie on invariant tori when they are subject to
electrostatic or electromagnetic perturbations that con-
sist of a single toroidal mode that has a constant and
unique angular phase velocity ω/n. This implies that
the mode has a time-independent poloidal mode struc-

ture Φ̃n,ω(R, z) in the wave’s moving frame of reference,
where ϕ′ = ϕ + ωt/n = const. The invariant tori are
identified as phase space surfaces on which the rotating
frame energy E ′ = K + ZeΦ + ωPϕ/n is constant. Such
a setup was used here as a well-controlled test scenario.
This study was motivated by the realization that the

conservation law Ė ′ = const. holds for an arbitrary
poloidal mode structure only when the fluctuating fields
are expressed in terms of potentials Φ and δA, which
satisfy Faraday’s law ∂tB = −∇ × E by definition. In
contrast, when the physical fields E and δB are used,
Faraday’s law must be explicitly enforced in order to pre-
serve the conservative character of Hamiltonian dynam-
ics. This constrains the poloidal mode structure. (Of
course, we also require ∇ ·B = 0.)
We have demonstrated that inconsistencies between E

and δB that break Faraday’s law can cause a significant
amount of secular acceleration (and, to a lesser degree,
spatial drifts) that violate conservation of phase space
density and energy. Such inconsistencies may arise from
subtle numerical inaccuracies, approximations, or gross
negligence (in our example, we had simultaneously omit-
ted Eref

‖ and δB(t), which is prohibited by Faraday’s

law). The resulting unphysical behavior is numerically
robust; i.e., it cannot be cured by increasing the numer-
ical resolution in space and time.
We also looked at the effect of noise-like interpolation

artifacts that do not violate the laws of electromagnetism
on the grid. The spurious heating caused by such arti-
facts could be alleviated at least partially through the
use of smaller time steps. Errors can be enhanced by
differentiation operations, in our case E = −∇⊥Φ fol-
lowed by δB(t) = −∂−1

t ∇ × E when modeling the per-
turbations. Additional differentiation of δB is needed
in the GC model, which can make matters somewhat
worse there. The interpolation procedure used here is
admittedly not the most sophisticated, but it serves the
purpose of demonstrating the existence of possible traps.
Hence, is crucial to provide high-quality fluctuation

data for orbit following codes. The effort put into the
development and implementation of sophisticated solvers
with high accuracy can be for naught when the mode
structure of the fluctuations contains errors like noise and
physical inconsistencies. In practical situations, where
such errors may be inevitable, their influence on the sim-
ulation results must be taken into account. The analyses
in this work were performed using conventional solvers;
namely, explicit 4th-order Runge-Kutta and modified
(semi-implicit) leap-frog. We obtained results of accept-
able accuracy even when the mode structure contained
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small imperfections in the form of interpolation artifacts
that were not readily visible by eye as in Fig. 3(a).
In the main part of this work, we focused on the qual-

ity of the poloidal mode structure and avoided prob-
lems along the toroidal direction by using the particle-
in-Fourier (PIF) method[6–8] along the toroidal angle ϕ.
In principle, the condition E ′ = const. is still satisfied by
a mode whose toroidal waveform has been discretized us-
ing a uniform mesh along ϕ, because the mode is allowed
to contain higher harmonics of the fundamental angular
frequency ω0 and toroidal mode number n0, as shown in
Appendix B 2. However, it is known that the particle-
in-cell (PIC) method can cause numerical heating. A
benchmark performed in Appendix D for our working
example with long wavelength modes (n = 2) showed
that the PIC method yields results of similar accuracy
as PIF when it is performed with Nϕ & 16 grid points
(8 points per wavelength) in our electrostatic scenario (i)
and Nϕ > 32 in our electromagnetic scenario (ii) with
slightly ‘noisy’ δB.
The results of full orbit and GC simulations were sim-

ilar, except for the fact that the GC resonance was
slightly shifted radially relative to the full orbit reso-
nance. Higher-order corrections in the parallel GC ve-
locity u and magnetic moment µ can largely correct this
discrepancy, whereas N -point gyroaveraging enhances
it. Moreover, the N -point gyroaveraging procedure was
found to break the conservative character of the system
to a significant degree, at least for resonant particles.
Therefore, we conclude that this method is not recom-
mendable for cases where resonances play a significant
role. When gyroaveraging effects are quantitatively im-
portant, one should consider using the full orbit method.
Further arguments for and against the use of the full or-
bit model and discussions pertaining to computational
speed are presented in Appendix E.
An interesting observation that we reported in the

companion paper[3] was made again here: the geome-
try of the wave field influences how strongly conserva-
tion laws are broken by errors that violate the laws of
electromagnetism (here, via the simultaneous neglect of
Eref

‖ and δB(t)). The secular acceleration and breaking

of KAM surfaces remained relatively small for normal
(eigen)modes of the toroidal plasma, but was found to be
strongly enhanced when we applied perturbations resem-
bling nonnormal modes. This observation still awaits a
full explanation, and some factors were discussed in Sec-
tion IIID. In any case, nonnormal modes appear to be
useful for testing the conservative character of particle
simulations.
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Appendix A: Orbit following code ORBTOP

The simulations and Poincaré analyses reported in
this work were performed using the orbit-following code
ORBTOP (“Orbit Topology”), which was developed in 2022
using Julia.4 The current incarnation of ORBTOP of-
fers a few different models, coordinates and discretization
schemes, which are outlined in this section.
The perturbation described in Section II above is

currently constructed using a MATLAB script called
orbtop_prep.m. This script generates the input data
for ORBTOP. The reference field is always given as a vec-
tor object comprising three real matrices, Bref(R,ϕ, z),
in right-handed cylinder coordinates. Perturbations are
composed of either real-valued 3-D matrices in (R,ϕ, z)
or complex-valued 2-D matrices in (R, z). Correspond-
ingly, ORBTOP performs the mapping from grids to parti-
cles using one of the two following methods:

• a 3-D particle-in-cell (PIC) scheme adopted from
the hybrid code MEGA,[12–14] or

• a mixed PIC-PIF scheme, where the PIC method is
used for the poloidal plane (R, z) and the particle-
in-Fourier (PIF) method is used for the toroidal
direction ϕ. Here, we will simply call this option
“PIF”.

In mathematical form, the fields are represented as fol-

4
Julia version 1.8.0 was used in this work.
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lows:

EPIC(R,ϕ, z) : 3-D PIC method (A1a)

⇒ E(R,ϕ, z, t) = EPIC(R,
χ(ϕ,t)

n , z)

⇒ δB(R,ϕ, z, t) = 1
ω [∇×EPIC](R,

χ(ϕ,t)+π/2
n , z),

ẼPIF(R, z) : 2-D PIC + 1-D PIF in ϕ (A1b)

⇒ E(R,ϕ, z, t) = ℜ
{
ẼPIF(R, z)e

−iχ(ϕ,t)
}

⇒ δB(R,ϕ, z, t) = ℜ
{

1
iω∇× [ẼPIF(R, z)e

−iχ(ϕ,t)]
}
,

where the dependence on the toroidal angle and time is
captured by the phase

χ(ϕ, t|n, ω) = nϕ+ ωt = n× (ϕ+ ωt/n). (A2)

Thus, the instantaneous field E at angle ϕ and time t
corresponds to the input field evaluated at the rotating
toroidal angle ϕ′ = χ/n = ϕ + ωnt/n. The time deriva-
tive in Faraday’s law shifts the phase of the magnetic
fluctuation δB(t) by −π/2, which translates into a shift
by +π/(2n) in the toroidal angle ϕ. For multiple modes,
each wave would have to be rotated separately relative
to the particles.
The current implementation supports only a single

toroidally propagating mode with a given toroidal mode
number n and angular frequency ω. In that case, the ref-
erence field Bref must be stationary and axisymmetric.
Alternatively, ORBTOP can follow orbits in an arbitrary
3-D field using the 3-D PIC method, if the field is sta-
tionary (ω = 0).
While the input fields are defined in right-handed cylin-

der coordinates (R,ϕ, z), ORBTOP can follow simulation
particles in cylinder or Cartesian coordinates. One can
choose between a classical full orbit model and a guid-
ing center (GC) orbit model, and two different numerical
schemes are available for particle pushing. The following
four combinations are currently offered:

• Full orbit equations in Cartesian coordinates solved
with the modified leap-frog (MLF) scheme.[5]

• Full orbit equations in Cartesian coordinates solved
with the explicit 4th-order Runge-Kutta (RK4)
scheme.

• Full orbit equations in cylinder coordinates solved
with RK4.

• GC equations in cylinder coordinates solved with
RK4. Fields can be evaluated at the GC position
or via N -point gyroaveraging.[4]

Except for the N -point gyroaveraged GC model, all
models represent Hamiltonian systems. Cartesian coor-
dinates (vx, vy, vz, x, y, z) are canonical (constant Jaco-
bian), while cylinder coordinates (vR, vϕ, vz , R, ϕ, z) are
not. Programming errors were eliminated by compar-
ing the results of different methods against one another.
Practically identical results were obtained with MLF and

TABLE III. Comparison of the computational performance
of the full orbit model solved with MLF or RK4 schemes,
and the GC model solved with RK4 for the working exam-
ple studied in this paper. The first set of data are the wall
times for 10M steps of identical size ∆t0 = 0.65 ns. The sec-
ond set of data are the wall times for accumulating 15 × 450
Poincaré points, which corresponds to about 40ms of physical
time. For the Poincaré analysis, the GC model was run with
∆t = ∆t0 × 100. In all cases, the PIF method was used in
the toroidal direction and diagnostics were reduced to a min-
imum. (∗)The computational overhead of the GC model was
minimized by deleting the code for |vE|2 terms and the in-

frastructure for optional N-point gyroaverating. (†)Poincaré
analyses using the full orbit model are slowed down by the
need to estimate the toroidal angle of the GC, but there re-
mains some unexploited leeway for optimization.

Reduced code with 107 steps @ ∆t0 Poincaré analysis,(†)

minima diagnostics (t ≈ 6.5ms) 6750 pts. (t ≈ 40ms)

Full orbit MLF twall ≈ 15 s twall ≈ 1050 s

Full orbit RK4 ≈ 20 s (MLF ×1.3) ≈ 1300 s (MLF ×1.2)

GC model(∗) RK4 ≈ 30 s (MLF ×2) ≈ 12 s (MLF ×1/90)

RK4, and in both sets of coordinates once convergence
in time step was achieved.
On the millisecond (ms) time scale in our working

example, the full orbit solver using the RK4 scheme
yielded numerically converged results for time steps ∆t .
0.65 ns ≈ 0.006× 2π/Ωg0, giving about 167 samples per
gyration.
Table III compares the computational performance of

different models and solvers For the full orbit model, RK4
is about 20...30% slower than MLF when run with the
same default time step ∆t0 = 0.65 ns. The RK4 solver
for the GC model is slower than MLF for full orbits by
a factor of ≈ 2. However, the GC solver can be run
with 100 times larger time steps with only insignificant
reduction of accuracy, in which case it runs about 50
times faster than full orbit MLF at ∆t0.
The performance penalty of the full orbit model com-

pared to GCs depends on the desired level of accuracy
and on physical parameters such as the ratio of gyrora-
dius to magnetic field scale length, ρg/LB. In our work-
ing example based on JT-60U with 400 keV deuterons,
MLF could be run with somewhat larger time steps
(2...3) × ∆t0 while maintaining a practically acceptable
accuracy of |∆E ′/E ′| . 0.1% on the millisecond time scale
(note that ∆E ′ measures errors in both energy and mo-
mentum). In that case, the performance penalty of the
full orbit model compared to the GC model may be re-
duced from a factor 50 to about 20. Further enhancement
is possible for lower kinetic energies, K . 100 keV.

The model equations and numerical schemes are de-
scribed in detail in the following Appendices B–D, in-
cluding a benchmark exercise comparing the results of
the PIC and PIF methods. Arguments that we con-
sider when choosing between full orbit and GC models
are summarized in Appendix E.
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Appendix B: Full orbit model

1. Equations of motion in Cartesian and cylinder

coordinates

We consider the nonrelativistic motion of a particle
with charge Ze and mass M in a magnetic field B and
electric field E. The equations of motion are

ẋ =v (B1a)

M v̇ =Ze(E + v ×B). (B1b)

These empirical equations can be reverse-engineered from
the Lagrangian L and Hamiltonian H of the form

L = (Mv + ZeA) · ẋ−H, H = ZeΦ+Mv2/2, (B2)

together with the definitions of the potentials Φ and
A based on Maxwell’s equations. Variation of the La-
grangian gives

dt(∂v̇L) = ∂vL ⇒ 0 =M ẋ−Mv. (B3)

dt(∂ẋL) = ∂xL ⇒ M v̇ + Ze(∂tA+ ẋ ·∇A)

= Ze (∇ ·Aẋ−∇Φ) , (B4)

where the momentum equation (B1b) is recovered by sub-
stituting ẋ× (∇×A) = ∇ ·Aẋ− ẋ ·∇A, B = ∇×A

and E = −∇Φ− ∂tA.
Several auxiliary variables are also used, for instance,

as input parameters and for diagnostics. These include
the kinetic energy K, the magnetic moment µ, and the
velocity components v‖ and v⊥:

K =
Mv2

2
, µ =

Mv2⊥
2B

, v‖ = v · b̂, v⊥ = v − v‖b̂.

(B5)
For normalization, we use characteristic values of the
particle velocity v0 =

√
2K0/M and the magnetic field

strength B0. In the present work, K0 = K0(t = 0) is the
initial energy and B0 = |Bref |(R0, z0) is the central value
of the axisymmetric reference field, where (R0, z0) is the
location of the magnetic axis. Replacing time increments
dt with an equivalent parameter ds = v0dt with units of
length, the normalized equations of motion become

ẋ = v̂ (B6a)

˙̂v =
1

ρ0
(Ê + v̂ × B̂), (B6b)

with the characteristic Larmor radius ρ0 = v0/Ωg0 and
gyrofrequency Ωg0 = Mv0/(ZeB0). Energy is normal-
ized by Mv20 , giving

K̂ =
v̂2

2
, µ̂ =

v̂2⊥
2B̂

. (B7)

In Cartesian coordinates, we have the following six
equations of motion:



ẋ

ẏ

ż


 =



v̂x
v̂y
v̂z


 , (B8a)




˙̂vx
˙̂vy
˙̂vz


 =

1

ρ0



Êx + v̂yB̂z − v̂zB̂y

Êy + v̂zB̂x − v̂xB̂z

Êz + v̂xB̂y − v̂yB̂x


 . (B8b)

In order to express these equations in cylinder coordi-
nates (R,ϕ, z), we use the following relations:

x = R cosϕ, êx = êR cosϕ− êϕ sinϕ, (B9a)

y = R sinϕ, êy = êR sinϕ+ êϕ cosϕ, (B9b)

R2 = x2 + y2, êR = êx cosϕ+ êy sinϕ, (B9c)

ϕ = atan(y/x), êϕ = −êx sinϕ+ êy cosϕ, (B9d)

which imply that

vx = vR cosϕ− vϕ sinϕ, (B10a)

vy = vR sinϕ+ vϕ cosϕ, (B10b)

vR = vx cosϕ+ vy sinϕ, (B10c)

vϕ̂ = −vx sinϕ+ vy cosϕ. (B10d)

Here and in the following we denote the toroidal compo-
nent in physical units is by vϕ̂ to distinguish it from the
covariant component vϕ:

vϕ = v · ∂ϕx, vϕ̂ = v · ∂ϕx/|∂ϕx| = vϕ/R. (B11)

The time derivatives of a particle’s position in cylinder
coordinates are

Ṙ =R−1(xẋ + yẏ) = vR, (B12a)

ϕ̇ =
1

1 + (y/x)2

(
−
yẋ

x2
+
ẏ

x

)
=
vϕ
R
. (B12b)

The time derivatives of the particle’s velocity components
are

v̇R = v̇x cosϕ+ v̇y sinϕ + ϕ̇(−vx sinϕ+ vy cosϕ)

=
1

ρ0
(ER + vϕ̂Bz − vzBϕ̂) +

v2ϕ̂
R
, (B13a)

v̇ϕ̂ = −v̇x sinϕ+ v̇y cosϕ − ϕ̇(vx cosϕ+ vy sinϕ)

=
1

ρ0
(Eϕ̂ + vzBR − vRBz)︸ ︷︷ ︸

ρ0v̇ϕ/R

−
vϕ̂vR
R

. (B13b)

In summary,



Ṙ

ϕ̇

ż


 =




v̂R
v̂ϕ̂/R

v̂z


 , (B14a)




˙̂vR
˙̂vϕ̂
˙̂vz


 =

1

ρ0



ÊR + v̂ϕ̂B̂z − v̂zB̂ϕ̂

Êϕ̂ + v̂zB̂R − v̂RB̂z

Êz + v̂RB̂ϕ̂ − v̂ϕ̂B̂R


+

1

ρ0




v̂2ϕ̂
ρ0

R

−v̂ϕ̂v̂R
ρ0

R

0


.

(B14b)
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The green terms in Eq. (B14) can be interpreted as
the centrifugal force (v̂2ϕ̂ρ0/R) and the Coriolis force

(−v̂ϕ̂v̂Rρ0/R). If one omits these terms, energy is still
conserved but the magnetic mirror effect is lost.

2. Rotating frame energy conservation

The total time derivative of the Hamiltonian

H(x,v, t) = ZeΦ(x, t) +M |v|2/2 (B15)

is

Ḣ = Ze∂tΦ + Zeẋ ·∇Φ+Mv · v̇

= Ze(∂tΦ− v · ∂tA) = ∂tH− Zev · ∂tA, (B16)

where we substituted the equations of motion (B6) and
E = −∇Φ− ∂tA. Let us now compare this to the total
time derivative of the covariant toroidal component of
the canonical momentum Pc =Mv + ZeA,

Pc · ∂ϕx = Pϕ = RPϕ̂ =MRvϕ̂ + ZeRAϕ̂(x, t), (B17)

which becomes

Ṗϕ =M(Rv̇ϕ̂+vRvϕ̂)+Ze(R∂tAϕ̂+Rẋ ·∇Aϕ̂+vRAϕ̂).
(B18)

Substitution of the equations of motions (B13b) and
ẋ = v along with BR = R−1∂ϕ̂Az − ∂zAϕ̂ and Bz =
R−1∂R(RAϕ̂) − R−1∂ϕ̂AR gives, after several cancella-
tions,

Ṗϕ = −Ze(∂ϕ̂Φ−v ·∂ϕ̂A) = −∂ϕ̂H+Zev ·∂ϕ̂A. (B19)

Consider the case where the fluctuating potentials, Φ(t)
and δA(t) = A − Aref , represent a wave that propa-
gates with a unique and constant angular phase velocity
ω0/n0 along ϕ. In this case, the field’s dependence on
the toroidal angle ϕ and time t has the form[3]

Φ =
∑

k=0,1,2...

1

2
Φ̃k(R, z) exp(−inkϕ− iωkt︸ ︷︷ ︸

(−in0ϕ−iω0t)κk

)+c.c., (B20)

with a time-independent amplitude and poloidal profile

Φ̃(R, z), a constant fundamental frequency ω0, a single
fundamental toroidal mode number n0, and with an arbi-
trary number of harmonics (ωk, nk) = (ω0κk, n0κk) with
integer κk. Equations (B16) and (B18) can then be com-
bined to give

n0Ḣ+ ω0Ṗϕ = 0 ⇒ n0E
′ = n0H+ ω0Pϕ = const.,

(B21)
so that the rotating frame energy E ′ is conserved.
An often-cited reference for this rule is Hsu et al.[17]

Here and in the companion paper,[3] we generalized it to
the case of multi-harmonic waves: Eq. (B21) holds for
arbitrarily distorted waveforms as long as their Fourier
harmonics are phase-locked and satisfy ωk/nk = ω0/n0.

This is important for numerical simulation codes employ-
ing finite-difference grids: although the discretization on
a mesh along the toroidal angle ϕ gives rise to devia-
tions from a purely sinusoidal form, this distortion by
itself does not cause a violation of rotating frame en-
ergy conservation (B21) when the ϕ-grid is uniform. The
key requirement is that the angular phase velocity ω0/n0

is unique and constant, so that there exists a preferred
frame of reference in which the field appears stationary.

3. Discretization in time

The above sets of equations of motion, (B8) or (B14),
can be readily solved numerically using a standard ex-
plicit 4th-order Runge-Kutta (RK4) algorithm. Each
variable ξi = {v(ti),x(ti)} is then advanced by a sum
of four increments as

ξi+1 = ξi +

4∑

k=1

ck∆ξ
k, (B22)

with c1 = 1
6 , c2 = 1

3 , c3 = 1
3 , c4 = 1

6 ,

where the index i = 0, 1, ... represents the time step.
Writing the respective equation of motion compactly as
ξ̇ = Fξ(ξ(t), t), the increments ∆ξk are computed in four
steps k = 1, ..., 4 as follows:

∆ξki = Fξ(ξ
k−1
i , ti)∆t for ξk−1

i = ξi + dk∆ξ
k−1
i ,
(B23)

with d1 = 0, d2 = 1
2 , d3 = 1

2 , d4 = 1.

We have also implemented the modified leap-frog
(MFL) scheme based on Ref. 5, which can be expressed
as

xi+ 1
2
= xi− 1

2
+∆sv̂i, with x0+ 1

2
=

∆s

2
v̂0, (B24a)

v̂i+1 = v̂i +
∆s

ρ0

(
Êi+ 1

2
+

v̂i+1 + v̂i

2
× B̂i+ 1

2

)
, (B24b)

where the index i = 0, 1, ... represents the time step
and ∆s = v0∆t is the normalized time step in units of
length (meters). In Cartesian coordinates, Eq. (B24b)
can be solved straightforwardly as a linear matrix inver-

sion problem for vi+1 = [v̂x, v̂y, v̂z ]
T
i+1 (where “T” de-

notes the transpose):

↔
F−1 · v̂i+1 = v̂i + S

(
2Ei+ 1

2
+ v̂i × B̂i+ 1

2

)
(B25)

with

S =
∆s

2ρ0
,

↔
F−1 =




1 −SB̂z SB̂y

SB̂z 1 −SB̂x

−SB̂y SB̂x 1




i+ 1
2

(B26)
becomes
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v̂i+1 =
↔
F ·

(
v̂i + 2SEi+ 1

2
+ Sv̂i × B̂i+ 1

2

)
(B27)

with

↔
F =

1

D




1 SB̂z S2B̂xB̂z

S2B̂xB̂y 1 SB̂x

SB̂y S2B̂yB̂z 1




i+ 1
2

(B28a)

D = 1− S3B̂xB̂yB̂z. (B28b)

We have not implemented the MLF scheme for cylin-
der coordinates, because the nonlinear character of the
pseudo-forces on the last line of Eq. (B14) complicates
the problem. Of course, the fields can be discretized in
any coordinates, even when particles are pushed in Carte-
sian ones. In both cases, RK4 and MLF, the fields B and
E are given on a mesh in cylinder coordinates (R,ϕ, z).
In the case of PIC, linear interpolation is used to deter-
mine their values Bl = B(xl) and El = E(xl) at the
location xl of a simulation particle labeled l. In the case
of PIF, the toroidal dependence is evaluated analytically.
Compared to RK4 scheme, MLF gives better energy

conservation (which becomes exact when E = 0). How-
ever, measurements of mixed variable such as Pϕ(x,v)
and E ′(x,v) are less accurate with MLF since positions
and velocities are computed at staggered times that lie
∆t/2 apart. Thus, conservation laws involving mixed
variables are more easily verified using RK4.

Appendix C: Guiding center model

In Ref. 3, we have studied the properties of the Hamil-
tonian guiding center (GC) model in Boozer coordinates
in a canonical and a non-canonical formulation. Here,
we revisit the non-canonical Hamiltonian formulation of
the GC model in terms of a parallel velocity coordinate
u and a coordinate-independent GC position vector Xgc,
which can readily be expressed in right-handed cylinder
coordinates (R,ϕ, z) as used for the GC module in our
code ORBTOP.

1. Guiding center phase space Lagrangian

Our starting point is the GC Lagrangian as reviewed
by Cary & Brizard [15], with slight changes in notation.
See also the Appendix of Ref. 3. The ordering parameter
ǫ≪ 1 is defined in Eq. (A2) of Ref. 3.
The GC phase space consists of the position vector

Xgc, an ignorable gyrophase θ, the parallel velocity vari-

able u ≡ Ẋgc · b̂, and the magnetic moment µ. At lowest
order in the ordering parameter ǫ ∼ ǫB ≡ ρg/LB, the
latter has the form

µ ≡
M |w|2

2B(Xgc, t)
, (C1)

where w ≡ v⊥ − vE is the perpendicular velocity of the
particle in the local frame moving with the electric drift

velocity vE ≡ E× b̂/B. The GC phase space Lagrangian
L(η, η̇; t) to order O(ǫ) with η = {Xgc, u, µ, θ) is

Lgc =
(
ZeA(Xgc, t) +Mub̂(Xgc, t)

)
· Ẋgc + Jθ̇ −Hgc,

(C2)

with J = µB/Ωg and Ωg = ZeB/M . The GC Hamilto-
nian H(Xgc, u, µ; t) to order O(1) is

Hgc =Mu2/2 + µB(Xgc, t) + ZeΦ(Xgc, t) (C3)

−M |vE(Xgc, t)|
2/2.

The ponderomotive potential −M |vE|
2/2 arises from the

sum of the electric drift energy M |vE|
2/2 and a term

−M |vE|
2 arising from the finite-Larmor-radius expansion

of ZeΦ (see Ref. 15 or Appendix A.1 of the companion
paper[3]).
In contrast to the full-orbit Lagrangian in Eq. (B2),

which has canonical form with three total time deriva-
tives (ẋ) for a 6-D phase space, the GC Lagrangian in

Eq. (C2) contains four total time derivatives (Ẋgc, θ̇) for
the 6-D phase space (Xgc, u, µ, θ), or three total time

derivatives Ẋgc for the reduced 4-D phase space (Xgc, u).
This means that the factor

P gc = ZeA+Mub̂ (C4)

multiplying Ẋgc is not a canonical momentum. Never-
theless, it can be shown (see Appendix C5 below) that
its covariant toroidal component

Pgc
ϕ = Pgc · ∂ϕx = ZeAϕ +Mubϕ (C5)

has all relevant properties of a canonical toroidal angular
momentum: namely, it is conserved for GC motion in
axisymmetric fields and combines with the Hamiltonian
Hgc = Egc to give the rotating frame energy E ′

gc = Egc +
nPgc

ϕ /ω that is conserved for perturbations of the form
given by Eq. (B20).

2. Drifts and parallel acceleration

Variation of the GC Lagrangian with respect to u
gives5

u ≡ Ẋgc · b̂(Xgc, t) ≈ v‖ +O(ǫ). (C6)

5 Cary & Brizard[15] write: “The O(ǫ) terms in the parallel ve-
locity and parallel acceleration, while necessary for keeping the
Hamiltonian structure, are not complete. Other O(ǫ) terms, such
as parallel drifts, would arise if the Hamiltonian [...] were calcu-
lated to O(ǫ) [...]”. See the discussions in Sec. III A (p. 702) and
at the end of Sec. III C (p. 707) of Ref. 15. These corrections
are used in Section III F of the present paper.
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Variation of the GC Lagrangian with respect toXgc gives
the Euler-Lagrange equation

Zeu̇b̂+ Ze∂tA+Mu∂tb̂

= ∇[Ẋgc · (ZeA+Mub̂)]− Ẋgc ·∇(ZeA+Mub̂)︸ ︷︷ ︸
Ẋgc×(Ze∇×A+Mu∇×b̂)=ZeẊgc×(∇×A∗)

=− Ze∇Φ− µ∇B+M∇|vE|
2/2. (C7)

The terms in green are sometimes ignored. While

M∇|vE|
2/2 is dispensable, Mu∂tb̂ must be retained to

preserve the Hamiltonian character of the model. Note
the following identities:

B∂tb̂ = ∂tB − b̂∂tB = ∂tB − b̂b̂ · ∂tB

= (∂tB)⊥ = −(∇×E)⊥. (C8)

Equation (C7) can be written compactly as

u̇B/Ωg = E∗ + Ẋgc ×B∗, (C9)

using the effective scalar and vector potentials

ZeΦ∗ ≡ ZeΦ+ µB −M |vE|
2/2, (C10a)

A∗ ≡ A+ ρ‖B = P gc/(Ze), (C10b)

with

Ωg = ZeB/M, ρ‖ ≡ u/Ωg, vE = E × b̂/B, (C11)

and the effective fields

B∗ ≡ ∇×A∗ = B + ρ‖B∇× b̂

∇×A∗ = B + ρ‖(∇×B + b̂×∇B), (C12a)

E∗ ≡ −∇Φ∗ − ∂tA
∗ = E +D, (C12b)

D ≡ −
µ

Ze
∇B+

M

Ze

∇|vE|
2

2
−ρ‖B∂tb̂︸ ︷︷ ︸

+ρ‖(∇×E)⊥

. (C12c)

Equation (C9) readily yields the equation for the GC
velocity and its parallel acceleration:

Ẋgc = u
B∗

B∗
‖

+
E∗ × b̂

B∗
‖

= v∗
‖ + v∗

d + v∗
E, (C13a)

u̇ =
Ωg

B

B∗ ·E∗

B∗
‖

, (C13b)

where B∗
‖ ≡ B∗ · b̂ is the GC Jacobian (see p. 720 of

Ref. [15]). The velocity components are

v∗
‖ = u

B

B∗
‖

, (C14a)

v∗
E =

E × b̂

B∗
‖

, (C14b)

v∗
d =

µ

Ze

b̂×∇B

B∗
‖

−
M

Ze

b̂×∇|vE|
2

2B∗
‖

(C14c)

+ uρ‖
B∇× b̂

B∗
‖

+
ρ‖
B∗

‖

B × ∂tb̂︸ ︷︷ ︸
b̂×∂tB

=
b̂×

(
µ∇B −M∇|vE|

2/2
)

ZeB∗
‖

+
ρ‖

B∗
‖

(
u∇×B + b̂× (∂tB + u∇B)

)
,

where v∗
d captures drifts associated with gradients in the

electric and magnetic fields. Writing out the equation for
the parallel acceleration, we obtain

u̇ =
B∗

B∗
‖

·

(
Ωg

E + ρ‖(∇×E)⊥

B
−
µ∇B −M∇|vE|

2/2

M

)

(C15)
Here, the ponderomotive potential |vE|

2 can be viewed
as a correction to the mirror force and ∇B drift.
As in Appendix B1 above, we normalize velocities by a

characteristic velocity v0 and discretize the time deriva-
tives with increment ∆s = v0∆t, so that Ê = E/v0
and ρ‖ = u/Ωg = ρ0ûB0/B with ρ0 = v0/Ωg0 and
Ωg0 = ZeB0/M . The normalized GC equations of mo-
tion are then

∆Xgc

∆s
= û

B∗

B∗
‖

+
(Ê + D̂)× b̂

B∗
‖

, (C16a)

∆û

∆s
=

B∗ · (Ê + D̂)

ρ0B0B∗
‖

, (C16b)

with

B∗ = B + ρ0ûB0∇× b̂

= B + ρ0ûB0(∇ ×B + b̂×∇B)/B, (C17a)

D̂

ρ0
= − µ̂∇B+B0

∇|v̂E|
2

2
+ û

B0

B
(∇× Ê)⊥. (C17b)

The term proportional to (∇×E)⊥ = −(∂tδB)⊥ in D̂ is
smaller by a factor O(LB

ρ0

ω
Ωg0

δB
B ) . 102 × 10−2 × 10−2 ∼

0.01 than the magnetic drift terms ûρ‖B∇ × b̂/ρ0 −

µ̂∇B ∼ O( B
LB

) × max{û2, v̂2⊥}. Its ratio to the elec-

tric drift term in Eq. (C16a) is of order O( û
v̂E

ω
Ωg0

δB
B ) .

103× 10−2× 10−2 ∼ 0.1, so the effect may be noticeable.
In Eq. (C16b) for the parallel acceleration, the contri-
bution of (∇ × E)⊥ becomes ρ0û

B0

B (∇ × E)⊥ · B∗ ≈

−ρ20û
2(∂tδB)⊥ · Jref

µ0
and is smaller than the electric force
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B∗ ·E = ρ‖E
ref
⊥ · Jref

µ0
+ ... in Eq. (20) by the same factor

O( û
v̂E

ω
Ωg0

δB
B ) . 0.1 as above. Its omission has a relatively

small effect as the test in Fig. 13(d) showed.
The contribution of the ponderomotive potential

M |vE|
2/2 tends to become noticeable only for |vE|/v &

0.1, which translates to K = Mv2/2 . 10 eV for
deuterons in our setup, where max|vE| ≈ 1.5× 104m/s.
Note that all terms containing |vE|

2 can be omit-
ted without breaking the Hamiltonian character of the
present GC model, because their neglect is equivalent to
omitting the term |vE|

2/2 in the original Hamiltonian
(C3). This is not the case for the term proportional
to ρ‖(∂tB)⊥ = −ρ‖(∇ × E)⊥. Although this term is
formally of higher order, its omission would break the
Hamiltonian character of the system as demonstrated in
Fig. 13(d) of the main text. Approximations can be made
only at the stage of constructing Lgc andHgc. Once these
are fixed, all terms — no matter how small — must be
retained in the resulting equations of motion if the Hamil-
tonian character of the model is to be preserved.

3. Evaluation of the perturbed field gradient ∇B

The gradient of the magnetic field strength

B = |Bref + δB| =
√
B2

ref + 2Bref · δB+ δB2 (C18)

can be written

B∇B =1
2∇B2 = (∇B) ·B

=
∑

j

(
(∇Bref,ĵ)Bĵ + (∇δBĵ)Bĵ

)
, (C19)

where the index j represents the coordinates (R,ϕ, z)

and the hatted ĵ symbolizes a physical component, such
as Bϕ̂ = B · êϕ̂ = Bϕ/|∂ϕx| = Bϕ/R.
When using the PIC or PIF scheme, we have, respec-

tively,

δBĵ(R,ϕ, z, t) =
1

ω

[
∇×EPIC(R,

χ(ϕ,t)
n , z)

]
ĵ
, (C20a)

δBĵ(R,ϕ, z, t) =ℜ

{
1

iω

[
∇×

(
ẼPIF(R, z)e

−iχ(ϕ,t)
)]

ĵ

}
.

(C20b)

with

χ(ϕ, t|n, ω) = nϕ+ ωt = n× (ϕ+ ωt/n). (C21)

The formulas for ∇δBĵ(R,ϕ, z, t) are the same, except

for an additional gradient operator ∇ in front of [...]ĵ .

4. Evaluation of the ponderomotive potential |vE|2

The ponderomotive potential does not interfere with
any other terms in the present GC model, so it is permis-
sible to omit it or make approximations without affecting

the conservative properties of the model. Here, we choose
to linearize it by ignoring the magnetic fluctuations:

|vE|
2 → |vE,lin|

2 with vE,lin = E ×Bref/B
2
ref . (C22)

Given inputs EPIC(R,ϕ, z) or ẼPIF(R, z) as described in
Appendix A, the term ∇|vE|

2/2 is computed as follows.
When using the 3-D PIC method, we define

V (R,ϕ, z) =

∣∣∣∣∣
EPIC(R,ϕ, z)× b̂ref(R,ϕ, z)

Bref(R, z)

∣∣∣∣∣ (C23)

and simply compute

1
2∇|vE,lin|

2(R,ϕ, z, t) = V (R, χ(ϕ,t)
n , z)∇V (R, χ(ϕ,t)

n , z).
(C24)

When using the PIF method along ϕ, we let

Vr = ℜ

{
ẼPIF(R, z)× b̂ref(R,ϕ, z)

Bref(R, z)

}
, (C25a)

Vi = ℑ

{
ẼPIF(R, z)× b̂ref(R,ϕ, z)

Bref(R, z)

}
, (C25b)

where the subscripts “r’ and “i” indicate the real and
imaginary components. The physical electric drift is then

vE(R,ϕ, z, t) = ℜ{(Vr + iVi)(cosχ− i sinχ)}

= Vr cosχ+ Vi sinχ, (C26)

and its intensity field is

|vE|
2 = |Vr|

2 cos2 χ+ |Vi|
2 sin2 χ+ 2Vr · Vi sinχ cosχ.

(C27)
The ponderomotive force expressed in terms of the scalar
fields Vr(R, z) = |Vr|, Vi(R, z) = |Vi|, W (R, z) = Vr · Vi

and their gradients becomes

1
2∇|vE|

2 = (C28)

Vr∇Vr cos
2 χ+ Vi∇Vi sin

2 χ+∇W sinχ cosχ

+
n

R

[
(V 2

i − V 2
r ) sinχ cosχ+W (cos2 χ− sin2 χ)

]
êϕ̂,

where we used ∇χ = êϕ̂n/R. Note that the first line of
Eq. (C28) contains only êR and êz components since Vr,
Vi and W are functions of (R, z) only.

5. Rotating frame energy conservation

Using the effective fields and potentials E∗ = −∇Φ∗−
∂tA

∗ and B∗ = ∇×A∗, the total time derivatives of the
total energy

Egc = Hgc =Mu2/2 + ZeΦ∗(Xgc, t), (C29)

and canonical toroidal angular momentum

Pgc
ϕ = P gc · ∂ϕx = ZeA∗ · ∂ϕx = ZeRA∗

ϕ̂(u,Xgc, t),
(C30)
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with A∗
ϕ = RA∗

ϕ̂, can be written as

Ėgc =Muu̇+ Ze∂tΦ
∗ + ZeẊgc ·∇Φ∗ (C31a)

Ṗgc
ϕ = Ze∂tA

∗
ϕ + ZeRẊgc ·∇A∗

ϕ̂ + ZeṘA∗
ϕ̂ + Zeu̇∂uA

∗
ϕ

= Ze∂tA
∗
ϕ − ZeRêϕ · (Ẋgc ×B∗) + ZeẊgc · (∂ϕA

∗)

+Mu̇bϕ, (C31b)

where we have used RẊgc ·∇A∗
ϕ̂+vRA

∗
ϕ̂ = vR∂R(RA

∗
ϕ̂)+

Rvz∂zA
∗
ϕ̂ + vϕ̂∂ϕA

∗
ϕ̂, ∂R(RA

∗
ϕ̂) = RB∗

z + ∂ϕA
∗
R and

R∂zA
∗
ϕ̂ = −RBR + ∂ϕ̂Az. Substituting the equations

of motion (C13) and (C9), we obtain (after a few more
cancellations)

B∗
‖ Ėgc

Ze
= uE∗ ·B∗ +B∗

‖∂tΦ
∗

+ uB∗ ·∇Φ∗ +∇Φ∗ · (E∗ × b̂)

= B∗
‖∂tΦ

∗ − uB∗ · ∂tA
∗ − ∂tA

∗ · (b̂×∇Φ∗),

(C32a)

B∗
‖Ṗ

gc
ϕ

Ze
= B∗

‖∂tA
∗
ϕ −B∗

‖Rêϕ ·E∗

+ (uB∗ +E∗ × b̂) · ∂ϕA
∗

=−B∗
‖∂ϕΦ

∗ + uB∗ · ∂ϕA
∗ + ∂ϕA

∗ · (b̂×∇Φ∗).

(C32b)

Equation (C32a) implies that the total energy Egc of
the particle is conserved for time-independent fields, and
Eq. (C32b) implies conservation of Pgc

ϕ for axisymmetric
fields. Together, these two equations imply that

nĖgc = −ωṖgc
ϕ , (C33)

and, thus, conservation of the rotating frame energy

E ′
gc = Egc +

ω
nP

gc
ϕ = const., (C34)

for fields whose t- and ϕ-dependence has the form given
by Eq. (B20).
Note that Eq. (C33) holds in spite of the fact that some

terms depend nonlinearly on the fluctuating fields. This
is because the associated higher harmonics of ω and n all
have the same angular phase velocity ω/n, so they pre-
serve the form of Eq. (B20). How this translates into the
conservation law (C33) was explicitly shown for |vE|

2 in
Eqs. (A47)–(A50) of the companion paper.[3] The same

holds for factors like B =
√
B2

ref + 2Bref · δB+ δB2,
whose derivatives satisfy

n∂tB = ω∂ϕB = −inω(Bref + δB) · δB/B. (C35)

6. N-point gyroaveraging

The GC model in ORBTOP offers the possibility to per-
form N -point gyroaveraging of the fluctuating fields E(t)
and δB(t). This means that the time-dependent forces

acting on the GC are not evaluated at the GC position
Xgc, but are averaged over the positions of Navg satellite
particles that have been placed on a surrounding circle
of radius

ρgc ≡ ρg(Xgc) =

√
2µB(Xgc)/M

Ωg(Xgc)
≈
v⊥
Ωg
. (C36)

Examples with Navg = 2, 4, 8 were shown schematically
in the left column of Fig. 14 in Section III E.
Gyroaveraging is performed instantaneously at each

time step. The averaging circle is taken to lie in the
(R, z) plane, irrespective of the exact direction of the
local magnetic field vector B(Xgc). Besides simplify-
ing the implementation, this choice is also motivated by
the desire to preserve the Hamiltonian character of the
system by leaving the toroidal gradients unaltered and
averaging only over the nonuniformities of the poloidal
structure of the fluctuating fields. However, the results
reported in Section III E indicate that, in spite of aver-
aging only in the poloidal plane, this procedure is not
entirely successful. Conservation laws are found to be
broken on the millisecond time scale, especially when the
fluctuations have a magnetic component. Motivated by
the arguments presented in the introduction (Section I),
it may be worthwhile checking whether the procedure
works better in codes that use potentials Φ and δA in-
stead of the physical fields E and δB that we have chosen
in this study.
Out of curiosity, we have also performed simulations

where gyroaveraging was applied not only to the pertur-
bations E and δB but also to the background field Bref .
In the absence of perturbations, the orbits remained on
invariant surfaces. In the presence of perturbations, the
unphysical secular acceleration was enhanced compared
to the results in Fig. 14, where gyroaveraging was applied
only to the fluctuations.
Another test we performed was to distribute the

satellite particles with uniform time increments ∆t =
2π/(NavgΩg) instead of uniform increments ∆θ =
2π/Navg in the gyrophase θ. This was done as follows.
The increments of the geometric gyroangle θ for uniform
time increments dt are given by

dθ(t) = Ωg(θ)dt =
Ωg(θ)

Ωgc
dθg ≈

Rgc

Rg(θ)
dθg, (C37)

where dθg ≡ dtΩgc is a time-like angle and Ωgc ≡
Ωg(Xgc). Letting Rg(θ) ≈ Rgc + ρgc cos θ, integration
gives

θg(θ) = θ +
ρgc
Rgc

sin θ. (C38)

Using piecewise cubic hermite interpolating polynomial
(PCHIP) interpolation, we inverted this equation numer-
ically to give nonuniformly distributed gyrosatellite sam-
ples at θ(θg) on a uniform θg grid. The results were effec-
tively identical to those obtained by simply placing the
satellites uniformly along θ. During the simulated 3ms
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FIG. 16. Benchmark of the 3-D PIC method (top) versus results of the mixed PIC-PIF method (bottom) for our electrostatic
scenario (i) defined in Eq. (8). The left half show results of the full orbit model and the right half for the GC model. Our PIC
scheme uses uniformly spaced toroidal meshes with cell size ∆ϕ = 2π/Nϕ, and results are shown for Nϕ = 8, 16, 32. Panels
(a–f), (n) and (p) show Poincaré plots in the upper half-plane (0 ≤ ϑ ≤ π). Panels (g–l), (m) and (o) show the tine traces of

the rotating frame energy Ê ′(t). Theses results are for the nonnormal mode case (C).

FIG. 17. Benchmark of the 3-D PIC method (top) versus results of the mixed PIC-PIF method (bottom) for our electromagnetic
scenario (ii) defined in Eq. (9). Arranged like Fig. 16, except for the larger values of Nϕ = 16, 32, 64.

interval, nearly the same amount of secular acceleration
occurred, and the resonance also remained shifted by the
same amount as in Fig. 14. Although this is not unex-
pected, because ρgc/Rgc ∼ 0.07m/3.5m ∼ 0.02 is very
small, we wanted to be sure that there is no noticeable

effect in the long run. Our test shows that this small
correction has no significant effect on the conservative
character (or lack thereof) on the multi-millisecond scale
in our working example.
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TABLE IV. Pros and cons of full orbit model compared to GC models. An important aspect is particle noise that arises in
some applications (e.g., PIC-MHD hybrid codes) and acquires a higher dimensionality. As discussed in the text, it is less
the noise level that counts but more the overall effect that noise has on the results. That effect depends on processes like
spatio-temporal averaging, and it remains to be shown whether and how much the full orbit model enhances the effect (it could
be case-dependent). The outcome has direct impact on the performance of the full orbit model compared to a GC model since
it determines the number of particles needed to achieve a certain level of accuracy.

Full orbit
model has:

Simpler equations More physics & is closer to ‘first principles’

Pros: ⊕ Simpler code → Less susceptible to errors & bugs
⊕ Can use more efficient solvers (e.g., modified leap-frog)
⊕ → Speed-up and higher accuracy
⊕ Fewer operations → Speed-up

⊕ Higher degree of quantitative validity
⊕ (e.g., helical orbit shape, correct gyroaveraging)
⊕ Broader applicability (e.g., RF heating)
⊕ More intuitive & realistic collision operators

Cons: ⊖ Processes like free streaming and drifts are not explicit
⊖ → Less transparent and less freedom to manipulate terms
⊖ → in exploratory numerical experiments

⊖ Needs shorter time steps ∆t
⊖ → Slow-down of pure orbit-following codes
⊖ → (but not necessarily PIC-MHD hybrid codes)
⊖ 6-D noise instead of 4-D → Need more particles?

Appendix D: Toroidal waveform representation: PIF

vs. PIC

In our working example, where we follow deuterons
in the presence of a prescribed wave field with toroidal
mode number n = 2 and frequency ν ≈ 50 kHz, the 3-
D PIC method requires at least Nϕ ≈ 16 grid points (8
per wavelength) in the toroidal direction in order to yield
an accuracy comparable to the mixed PIC-PIF method
on the millisecond time scale. This is demonstrated in
Fig. 16 for our electostatic scenario (i) defined in Eq. (8).
In the electromagnetic scenario (ii), results for which are
shown in Fig. 17, the PIC method needs at least Nϕ ≈ 32
grid points to obtain acceptable conservation properties,
with good KAM surfaces and nearly constant E ′.
For lower values of Nϕ, panels (g) and (j) in both

figures show that E ′ exhibits significant oscillations and
drifts. The shape of the resonant island in panels (a–f)
is also somewhat affected by insufficient resolution. For
the same value of Nϕ, the full orbit model appears to
perform slightly better (in terms of conservation) than
the GC model, but the difference is small.
Results for normal modes tend to be more accurate

than for nonnormal modes. The results in Figs. 16 and 17
were obtained with the nonnormal modes of our case (C),
which may be considered a worst-case scenario. For the
normal mode case (A), we obtained results of reasonable
accuracy in the electromagntic scenario (ii) when using
only Nϕ = 16 grid points.

Appendix E: Pros and cons of full orbit and GC

models

In this work, we have made several comparisons be-
tween results of the full orbit and GC models. One pur-
pose was to gather data that can help us and other re-
searchers to make informed decisions when choosing a
model for an application. Table IV shows a (most likely
incomplete) summary of advantages and disadvantages
that the full orbit model has compared to GC models.

In the following paragraphs, we discuss some of those
items in more detail, including also information gathered
in this study. The important aspect of computational
speed (Table III in Appendix A) permeates the entire
discussion and will be addressed in dependence of the
application.

a. Realism & physics content. From the examples
listed in Table IV, the advantages of being closer to what
is thought to be ‘first principles’ are probably evident,
but a few words shall be said with regard to gyroav-
eraging. Although GC models can be equipped with
a gyroaveraging procedure, we found that this method
breaks the Hamiltonian character of the system (Sec-
tion III E) and enhances small discrepancies in location of
resonances that may otherwise be cured by higher-order
corrections in u and µ (Section III F). This may affect
the simulation results at least quantitatively. Moreover,
a gyroaveraging procedure adds computational overhead
to the GC model, thus diminishing one of its main ad-
vantages: computational speed. This problem becomes
particularly severe when gyroradii are large, as in the
case of energetic alpha particles born at 3.5MeV dur-
ing deuterium-tritium fusion reactions. When a hybrid
simulation is highly parallelized on distributed memory
platforms using the Message Passing Interface (MPI),
it may require complicated MPI communication algo-
rithms to transfer satellite particle data across multiple
MPI domain boundaries. On some supercomputers, such
kinds of communications diminish performance drasti-
cally. (Multi-domain crossings may also happen in a hy-
brid code whose full orbit solver uses an implicit scheme
and is run with too large a time step. This should, of
course, be avoided.)
Therefore, when gyroaveraging effects are important,

one should carefully consider whether to use a poor im-
itation thereof in the GC model (violating conservation
laws, adding complexity, and reducing performance) or
to simply simulate the full gyromotion. We will continue
this line of thought below in a paragraph titled “Gyro-
and noise-averaging”.
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b. Simplicity & physics transparency. The complex-
ity of the GC model has one advantage that the full or-
bit model cannot match: In the GC equations, one can
identify terms responsible for different physical processes,
such as free streaming along magnetic field lines, parallel
acceleration, the mirror force and magnetic drifts. These
terms can be manipulated in numerical experiments as
we have done in Sections III C–III F of the main text,
and the results can be interpreted in an intuitive way.
On the other hand, the simpler equations of the full

orbit model do not only give simpler code but are also
linked to accuracy and performance in several ways. For
instance, unlike the GC model, a full orbit simulation
does not require the computation of derivatives of the
magnetic field B. This can be expected to reduce the
effect of interpolation artifacts or PIC noise on the re-
sults. In addition, the simpler full orbit equations require
fewer operations to be performed per time step and per-
mit to choose more efficient algorithms. In particular, the
structure of the Newton-Lorentz equations is such that
it can be easily implemented in the modified leapfrog
(MLF) scheme as described in Appendix B 3. This re-
quires the inversion of a dense 3-by-3 matrix and possi-
bly a few transformations to and from Cartesian coordi-
nates, which adds a little to the computational cost. As
was shown in Table III of Appendix A, each 4th-order
Runge-Kutta (RK4) step of advancing the complicated
GC equations (even with precomputed field gradients)
took 50% longer than a step in the full orbit solver. That
factor of 1.5 rises to 2 when using MLF for full gyroorbits.

c. Application in pure orbit-following codes. In a
pure orbit-following code such as ORBTOP that was used
in the present work, fluctuations are usually prescribed
and field gradients for the GC model can then be pre-
computed. Our GC simulations using the RK4 scheme
were performed with 100 times larger time steps (∆tGC =
65 ns) than the full orbit simulations (∆t0 = 0.65 ns). Ac-
cording to Table III of Appendix A, the GC simulation
using RK4 was nearly 70 times faster than the full orbit
simulation using RK4. The speed-up factor was reduced
to 50 when compared to the full orbit solver employing
the MLF scheme with the same time step as RK4. How-
ever, the time step of the MLF scheme may be safely in-
creased by a factor 2 or more without loosing too much
accuracy in E ′ (combined energy and momentum), so the
performance penalty of the full orbit model could be re-
duced to a factor of 20. This is still a large value, so
we expect that the GC model has a robust advantage
in performance for pure orbit-following codes, whenever
gyroaveraging and other finite-Larmor-radius effects can
be ignored.

d. Application in PIC-MHD hybrid codes. The GC
model of our orbit-following code ORBTOP was mostly
adopted from the hybrid code MEGA.[12–14] Using the ex-
plicit RK4 scheme, MEGA solves full MHD equations that
include fast waves and require short time steps to satisfy
the CFL condition. In recent simulations of beam-driven
large-amplitude Alfvén modes in JT-60U[9] and alpha

particle transport during so-called ‘sawtooth crashes’ in
JET,[18] MEGA was run with time steps on the order of
∆tMHD ≈ 1 ns. Even smaller time steps were needed for
convergence tests performed with finer spatial meshes.
Thus, the full MHD solver already runs with the same
size of time steps as required for the simulation of gyrat-
ing deuterons or alpha particles. If the simulation parti-
cles are pushed with the same time step, one may then
näıvely expect that the replacement of the GC model
with the full orbit model would not have any detrimental
effect on the computational speed. In fact, the data in
Table III of Appendix A suggest that the full orbit model
would run faster than the GC model by a factor 1.5 with
RK4, and the speed-up is raised to a factor 2 with MLF.
The net speed-up may increase even further if one takes
into account that the field gradients needed for the GC
model cannot be precomputed but must be updated at
each step. However, in practice, the situation is not so
simple. Firstly, GC simulation may perform so-called
sub-cycling. Secondly, there exists the complex problem
of noise. Let us discuss these points in some detail.

e. Sub-cycling of GC motion in hybrid codes. Our
hybrid simulations such as those reported in Refs. 9 and
18 usually make use of subcycling, where the particles
are not advanced for a certain number Nsub of MHD
time steps. Typically we use Nsub = 4 or 8 for fast ions
such as fusion-born 3.5MeV alpha particles in JET[18]
or 400 keV deuteron beams in JT-60U.[9] These values of
Nsub are much smaller than the factor of 100 by which the
GC time step was increased in pure orbit-following simu-
lations. The choice of a relatively small Nsub . O(10) in
hybrid simulations with fast ions ensures that simulation
particles do not usually cross more than one spatial cell
in one step. One reason is that PIC and hybrid simula-
tions rely on temporal averaging of noise, so one should
avoid freezing the PIC noise for too long. Another reason
is that PIC noise creates a fine structure in the field, so
that the CFL condition for particle pushing is not given
by the wavelength of the physical waves in the system
but by the grid-scale noise as we have experienced in
Section III B of the main text.
Based on the considerations made so far, the full orbit

solver using the MLF scheme can be expected to run at
a speed comparable to and no more than a factor 2...4
slower than that of the GC solver that makes use of sub-
cycling (Nsub ≈ 4...8) when run alongside a full MHD
solver in a hybrid code.

f. Gyro- and noise-averaging. Gyroaveraging ef-
fects are often important in hybrid simulations, so
their GC modules are sometimes run with N -point
gyroaveraging.[4, 9] One may thus expect that the use
of the full orbit model can give us a further gain in speed
and higher accuracy since theN -point gyroaveraging pro-
cedure is eliminated. The realism and the conservative
character of the simulation are certainly enhanced. How-
ever, the impact on overall accuracy and speed is not so
straightforward to foresee because it requires an evalua-
tion of PIC noise and its effect on the simulation results.
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For instance, experience shows that the noise level of
a GC simulation with 4-point gyroaveraging is compa-
rable to that of a pure GC simulation with a 4 times
larger number of simulation particles per spatial cell in
the poloidal (R, z) plane.6 Our full orbit simulations were
run with time steps that take about 167 samples per gy-
ration and even if the time step is increased by a factor
3, there are still dozens of samples being taken during
each gyration; much more than the number of satellites
we typically use for gyroaveraging in a GC simulation.
From this, one may näıvely expect a significant reduc-
tion of noise effects on time scales much longer than one
gyroperiod. However, the actual situation may not be so
simple.
Unlike white noise, the phenomenon we call “PIC

noise” is not entirely random. It arises from the interac-
tion of regular particle motion with regular grids, so it
can be expected to constitute a structured albeit complex
signal, which undergoes a certain amount of chaotization
trough interactions with (noisy) waves in a hybrid simula-
tion. While N -point averaging truly smoothes the field’s
landscape at each step, a gyrating simulation particle in-
fluences the field during its gyration and may interact
with its own noise — especially when strong resonances
are at play, where relatively large portions of phase space
form coherent structures that step in sync with waves in
the electric or electromagnetic field. Signal-noise corre-
lations may arise, with consequences that are difficult to
foresee.

g. Dimensionality of noise. The problem we have
just discussed is connected with the noise arising from
the variable gyrophase θ. That branch of noise does not
exist in the GC model, so a hybrid simulation with full
gyroorbits can be thought of as being noisy in an ex-
tra dimension. Of course, the moments of particle dis-
tributions that enter MHD equations are always 3-D.
However, the underlying particle-based representation of
phase space density is, in principle, scaleless and of high
dimensionality. The PIC method maps this complex sig-
nal to a space with a few dimensions. From the view-
point of wave-particle interactions manifested by phase
space structures, the GC model has dynamic noise in
four dimensions: three in space, plus kinetic energy K.
In addition, there is static noise in the fifth dimension:
the fixed magnetic moment µ. On the one hand, the fact
that µ becomes dynamic in the full orbit model could be
an advantage in terms of noise averaging — at least if
one is interested in low-frequency waves, which is where
a comparison between GC and full orbit models is mean-
ingful. On the other hand, there is an extra dimension
of noise in a full orbit simulation that manifests itself via
the rapid oscillation of the five coordinates {x, y, z, E, µ}
on the gyration time scale. These oscillations can couple

6 This rule-of-thumb holds when we apply Fourier filtering along
the toroidal direction, so that the effect of noise is essentially
limited to two dimensions, R and z.

to and exchange energy with fast waves, thus, raising the
level of fast wave fluctuations above that of mere MHD
activity.

From the point of view of low-frequency phenomena,
such as shear Alfvén or sound waves, sufficiently complex
high-frequency fluctuations may have the appearance of
noise. Thus, when measuring the PIC noise level in a
hybrid simulation that uses a full orbit model for its ki-
netic component, one should distinguish the (potentially
noisy-looking) physical fast wave signal from numerical
PIC noise. Of course, this is easier said than done, since
the fast waves will be partially noise-driven. Anyhow,
care is required for a fair comparison between the com-
putational performance and resource requirements of GC
and full gyroorbit models in a hybrid simulation.

h. Summary. A fair and conclusive comparison be-
tween the computational performance and accuracy of
the full orbit and GC models inside a hybrid code should
be done under conditions where the effect of PIC noise is
comparable. This is left for future work, noting that the
instantaneous PIC noise level does not necessarily reflect
the actual impact that the noise has on the results. It
also depends on how well the noise’s influence is dimin-
ished by spatio-temporal averaging on the scales of the
waves of interest. When examining low-frequency MHD
phenomena, it may be meaningful to isolate PIC noise
from complex signals associated with fast waves.

If one leaves aside the elusive effects of PIC noise,
which should be monitored on a case-by-case basis, one
may conclude that the full orbit model appears to be
a practically viable alternative to the GC model when
used as part of a hybrid code that solves full MHD equa-
tions, which require nanosecond-scale time steps due to
the presence of fast waves.

For pure orbit-following codes, the GC model main-
tains an advantage in speed by a factor 20 or higher.
Moreover, the GC model offers a higher degree of trans-
parency in physics-oriented analyses. It facilitates con-
trolled numerical experiments that can help to iden-
tify the mechanisms responsible for a certain observation
made in a simulation.
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ASCOT: Solving the kinetic equation of minority parti-
cle species in tokamak plasmas. Conmp. Phys. Comm.,
185:1310, 2014.

[6] E.G.Evstatiev and B.A.Shadwick. Variational formula-
tion of particle algorithms for kinetic plasma simulations.
J. Comp. Phys., 245:376, 2013.

[7] J. Ameres. Stochastic and Spectral Particle Meth-

ods for Plasma Physics. PhD thesis, Tech-
nische Universität München, 2018. Online:
https://mediatum.ub.tum.de/doc/1395335/1395335.pdf

(accessed 15 June 2022).
[8] M.S. Mitchell, M.T. Miecnikowski, G. Beylkin, and S.E.

Parker. Efficient Fourier basis particle simulation. J.

Comp. Phys., 396:837, 2019.
[9] A. Bierwage, K. Shinohara, Y. Todo, N. Aiba,

M. Ishikawa, G. Matsunaga, M. Takechi, and M. Yagi.
Simulations tackle abrupt massive migrations of ener-
getic beam ions in a tokamak plasma. Nature Commun.,
9:3282, 2018.

[10] W.W. Heidbrink, E.J. Strait, M.S. Chu, and A.D. Turn-
bull. Observation of beta-induced Alfvén eigenmodes in
the DIII-D tokamak. Phys. Rev. Lett., 71(6):855, 1993.

[11] C. Z. Cheng, L. Chen, and M. S. Chance. High-n ideal

and resistive shear Alfvén waves in tokamaks. Ann.

Physics, 161:21, 1985.
[12] Y. Todo and T. Sato. Linear and nonlinear particle-

magnetohydrodynamic simulations of the toroidal Alfvén
eigenmode. Phys. Plasmas, 5(5):1321, 1998.

[13] Y. Todo, K. Shinohara, M. Takechi, and M. Ishikawa.
Nonlocal energetic particle mode in a JT-60U plasma.
Phys. Plasmas, 12(1):012503, 2005.

[14] Y. Todo. Properties of energetic-particle continuum
modes destabilized by energetic ions with beam-like ve-
locity distributions. Phys. Plasmas, 13(8):082503, 2006.

[15] J. R. Cary and A. J. Brizard. Hamiltonian theory of
guiding-center motion. Rev. Mod. Phys., 81:693, 2009.

[16] H. Qin and R.C. Davidson. An exact magnetic-moment
invariant of charged-particle gyromotion. Phys. Rev.

Lett., 96(8):085003, 2006.
[17] C.T. Hsu and D.J. Sigmar. Alpha-particle losses from

toroidicity-induced Alfvén eigenmodes. Part I: Phase-
space topology of energetic particle orbits in tokamak
plasma. Phys. Fluids B: Plasma Physics, 4:1492, 1992.

[18] A. Bierwage, K. Shinohara, Ye.O. Kazakov, V.G. Kiptily,
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