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Introduction

NEURAL MASS ACTIVITY produces irregular time series such as the EEG and MEG. It is
already apparent, through visual inspection, that these time series cannot simply result

...J from an uncoordinated arbitrary firing of neurons. Indeed, we expect that neurons must
cooperate and partially synchronize their firing patterns in order to produce meaningful
output. Although we may believe that we have visually identified patterns within these
irregular time series, attempts to systematically track the code with linear and stochastic
statistical techniques have left us in frustration.

More recently it has been suggested that the ability to trace the dynamics of a system
(e.g., to freeze them in a state space, a space that is spanned by the system's variables)
might decode more of the brain's cryptic and enigmatic language (Etbert, et aI., 1994). If
the dynamics of the underlying system can be reduced to a set of deterministic laws, then
the phase space trajectory will converge toward a subset of the phase-space. This invariant
subset is referred to as an attractor. Given a particular time series, the initial question one
may ask is if one can identify an attractor. If the answer is yes, then it is possible to view
the series as a manifestation of a deterministic dynamic system (albeit possibly a very
complex one).

How can we gain information about the deterministic processes governing a particular
nonlinear system? As a first step, it is possible to estimate the determinism inherent in a
given time series. Kaplan & Glass (1992) developed a direct test for determinism in a
given time series. This article introduces this method for analyzing EEG and MEG and
presents comparisons with other nonlinear measures such as the fractal dimension. The

~ estimations of the fractal dimension of the EEG has received considerable attention start
ing with the studies of Agnes Babloyantz (Babloyantz, 1985; Babloyantz & Destexhe,
1986; Babloyantz, et aI., 1985. See Elbert, et aI., 1994, for a recent review). In principle,
such an estimation of the fractal dimension of the system generating a time series requires
a "sufficient number" of data points. Estimations of d-dimensional systems reach up to
more than 10d points. When dimensions are estimated from physiological time series con
taining less than 10,000-20,000 points, the resulting values cannot be accepted as absolute
terms. Results can only be interpreted when comparisons between different time series are
made, such as those between conditions or groups. Furthermore, data are nonstationary,
and the measures presume that the data generator does not change. Therefore, relative dif-
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ferences in dimension between conditions, or within the same condition, may be of more
practical interest than any inaccurate estimate of the absolute value.

More recently, surrogate data and statistical null hypotheses testing has been used to
examine whether a given time series can be considered different from that of white or
colored noise. This is important as Osborne & Provenzale (1989) demonstrated that col
ored random noise, if analyzed by the Grassberger-Procaccia procedure, may give finite
and predictable values of the correlation dimension. Such a result would suggest the
presence of a chaotic system, when, in actuality, only noise existed.

At this time there remain a number of technical issues as to what the best type of control
signal might be for comparisons with EEG analysis. Lutzenberger, et al. (1993) used, as a
control signal, computer-generated random series that were filtered to give power spectra
identical to the individual EEG traces. Pjin, et al. (1991) used a procedure based on an
earlier paper of Theiler to compare the EEG from the rat limbic cortex with that of a
control signal constructed from the same EEG: Theiler, et al. (1992) suggest two separate
algorithms for generating surrogate data. The procedure determines the Fourier transform
of the original data set, randomizes the phases of this transform, and then produces a
second data set by taking the inverse transform. By applying Grassberger-Procaccia to
both data sets, it is possible to determine statistically if a difference between the two data
sets exists. In tllis way, one can evaluate if the actual data set is more than linearly
correlated noise. This type of procedure implemented by Pritchard & Duke (in press) for
human EEG data has the additional advantage of establishing an inferential probability in
the testing of the null hypothesis (i.e., the signal is not different from that of noise) as well
as being less difficult. It has numerous advantages over making the claim that one is
measuring dimensionality directly in a particular real world signal. Additionally, if the null
hypothesis cannot be rejected, there will be no advantage in determining a particular
measure of dimensionality.

The Deterministic Test of a Time Series·

The goal of the presently introduced method for EEG/MEG analyses is to obtain infor
mation about the determinism of a time series, even for a short-time interval of measure
ment. Kaplan & Glass (1992) developed a direct test for determinism in a time series. This
method is based on the fact that the tangent of the trajectory of a deterministic system is a
function of the region in the phase space. All tangents in a given region of the phase space
have nearly the same orientation.

The estimation of the determinism is briefly described in the following steps:

• If the attractor is embedded in a d-dimensional phase space, then the phase space
is divided into nd boxes (where n is an integer).

• If a trajectory passes through a box j, then a vector Vkj (k pass) is constructed. This
vector is defined by the coordinates of the starting-point and the end-point of that
part of the trajectqry inside box j.

• The sum of all Vkj yields a vector Vj = ~~ Vkj • The Vj characterizes the attractor.
nj ~

• The average I~ =< 11 ~'II > nj_novereach box containing ~ passes shows a statis

tic over all Vj with n passes.
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I~ =1is valid only for deterministic systems with infinite time series and a box edge

-d _.!.
length -> O. White noise falls off with L n =n 2 (Kaplan & Glass, 1992).

This method was applied to EEG and to MEG signals as outlined below.

Comparisons Between EEG- and MEG-time Series With Filtered Noise
and Time Series Constructed by Means of Well-known

Nonlinear System Equations

EEG and MEG signals were recorded from an epileptic patient and a control subject
during a relaxed waking state with eyes open. MEG was measured from 37 positions over
the right temporal areas and was sampled with a frequency of 298 Hz. Furthermore, the
output of the MEG-system was measured using the same settings when no subject was
present, Le., only noise of the system. Random numbers generated by a standard algorithm
were added with both inputs having equal signal power.

The times slices analyzed contained 3,000 points. The reconstructed trajectories con-

sisted of a limited number of points, thus the statistic L(d,n) = I~ was replaced by a dy

namic version L(d,n) = LD~. The static version estimates L(d,n) = LD~ after the com
plete reconstruction of the attractor. If, for example, the number of passes is n=5, then in
L(d,5) there would be boxes with n=5 passes. Another possibility would be to consider
boxes that could contain more than n=5 passes, meaning that the sum vector \.-j was calcu
lated subsequently for each pass. If one given box was passed n=20 times, then this box
was considered for each pass n up to n=20. The result for LD(d,n) shows a gain of deter
ministic patterns in a system.

Table 1 compares the statistics I~ and LD~ for an embedding dimension of d=7 and a
delay time of 1:=5. The presented values were averages of the interval u=[1l,20] passes.
Each time series contains 3,000 data points and their autocorrelation functions are identi
cal.

Table 1 includes results from time series of corresponding length generated by (a) the
Lorenz attractor (b) the van-der-Pol-like oscillator,2 (c) the Glass-Mackey equations with
the results for (d) the noise and (e) the EEG and MEG-recordings measured over central
locations (C4). Two important outcomes are obvious: (1) a higher deterministic value for
the MEG and for the EEG than for the white noise and (2) an increase in the dynamic

patterns in a system in the dynamic version (LD~). Furthermore, the results for the epilep

tic patient were even higher than those for a control subject, an observation that is in
agreement with the literature (Elbert, et aI., 1994).

MEG-analyses tend to produce higher values for determinism than EEG-based compu
tations, a result that confirms the higher specificity of MEG.3

Example of a Clinical Study: EEG-determinicity in Healthy Controls and In
Patients With Coma and Apallic Syndrome

The main goal of the present study was to evaluate the ability of the determinism
measure to gain relevant clinical information; particularly, information other than the EEG

..
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TABLE 1. Comparisons for the static and the dynamic version of the test for determinism.

Static -d -dLn Dynamic W n

Lorenz .943 + .001 .977 + .001

van der Pol-type .601 ± .010 .779±'007

Glass-Mackey .542± .002 .54S±'OOl

MEG (epileptic p.) 338±.021 .389 ±'001

EEG (epileptic p.) .402±.030. .378 ±'001

MEG (control) .365 ± .002 .381±.001

filtered noise .300±'OOS .303±'OO2

power spectra. For this purpose, we related characteristics of the EEG of patients with
apallic syndrome with their clinical condition and compared the EEG measures to that of
healthy control subjects.

The apallic syndrome (also termed persistent vegetative state, Jennet and Plum, 1972)
results from closed-head-injury or severe CNS trauma with functional disturbance of the
brain stem that lead to a separation of cortical functions from brain stem functions (see
Rendtorff et al., in prep for further description of state and sample). For prognostic evalua
tion as well as for the selection of appropriate treatment, it is important to assess the
severity of CNS dysfunction and to detect changes in condition. So far, diagnosis and
prognosis are based on clinical evaluation, supported by rating scales such as the Disability -...J
Rating Scale (DRS, Rappaport et al., 1982). Few studies have utilized EEG as an addi-
tional objective measure for diagnostic and prognostic purposes. Zeitlhofer et al. (1991)
could not detect any prognostic value of auditory or somatosensory-evoked potentials for
the prognosis of apallic patients.

In the present study, spontaneous EEG activity recorded without any specific external
stimulation were evaluated on the basis of nonlinear measures and the conventional power
spectrum analysis. The characteristics of the EEG data (recorded from patients with apallic
syndrome) were compared to the respective characteristics of the EEG of both coma
patients and healthy subjects.

Sample: The EEG was monitored in 13 patients (8 male, 5 female) with apallic syn
drome resulting from hypoxia (N=6), polytrauma (N=5) or subdural hemorhage (N=2).
Patients were excluded who (1) required artificial ventilation (2) were medically unstable
(3) exhibited massive abnormalities in spontaneous EEG or (4) did not exhibit normal
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brain stem auditory-evoked potentials (BAEPs). The depth of coma was documented by
the DRS. The mean score on the DRS score upon admission was 22.4 (range 20-24),
which corresponds to severe disability.4 EEG-recordings were obtained six times (always
at the same time of day) with one week intervals.

The EEG from seven student volunteers (4 male, 3 female, mean age 26.8 years, range
24-31) served for purposes of comparison. EEG was recorded during two segments of 3
minutes each, taken 45 minutes apart. There was no additional task or stimulation. Control
subjects participated in three sessions (once a week for 3 weeks).

In all subjects the EEG was recorded along the midsagittal line (Fz, Cz, pz) with as-sec
time constant. The reference electrode was affixed to the right earlobe. The lowpass-filter
was set at 30 Hz. Nonpolarizable silver/silverchloride electrodes (ZAK) were used;
GRASS EC2 electrolyte served as a conducting agent (electrode impedance below 5
kOhm). Eye movements were monitored via AgAgCl electrodes affixed about 1 cm above
and below the subject's right eye. EEG and EOG were sampled at a rate of 200 Hz for the
3-min recording intervals.

."-../ Data Reduction and Analysis

For every 3-min recording six segments free of artefacts and 10 s in length were
selected. A power spectrum estimate and the deterministic measure were computed for
every segment.

The deterministic measure was determined for every 2,000 pt. segment using an embed
ding dimension of 12, an average for the interval n=[1O,15]. Values in the deterministic
measure, which fell below the one of correspondingly filtered and processed white noise,
were excluded from further analysis. The procedure yields an average value of 0.28487 for
white noise. The median was computed across the remaining values of the six original
series. For a comparison between groups, values were averaged across the first three
sessions. For one control subject, 80% of the values at Cz were missing and, therefore, the
respective Cz-value was treated as a missing value. For the purpose of correlations with
the clinical scores, values of patients were averaged across all six sessions. Analyses of
variance served to evaluate differences statistically.

Results

V EEG Power Spectrum

Patients produced more power in the slower frequency range (delta band) compared to
controls, while there were no obvious differences between groups for other frequency
bands (interaction GROUP x FREQUENCY BAND, F(4,17)=5.2, p<.05, GROUPS,
F(1, 17)=7.4, p<.OI).

Determinism

As indicated for the central electrode by Figure I, patients with apallic syndrome exhib
ited higher deterministicity than control subjects (F( 1,16)= 11.5, p<.O I). This effect is
strongest at the frontal electrodes (for the difference at Fz, t(l8)=J .8, p<.O I) but hardl y
present over posterior regions. More than half of the patients produc,ed values of determin
ism above the range of control subjects.
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The severity of the comatose state (as evaluated by the ORS) correlated with the deter
minism determined as the average value at the Cz-electrode across the six sessions (Figure
1): patients with higher ORS-scores (indicating more impairment) upon admission had
higher scores of determinism (r=.57, p<.05). No such relationship was found for Fz or Pz.
Hypoxia did not produce a clear relationship with any of the variables.

Comparison With White Noise

A comparable analysis for the white noise produces a value of 0.28487. This value is
significantly lower (p<.OOl) than the values of each of the EEG-measurements.

Other Measures of the EEG-dynamics

Other dynamic measures, computed for exactly the same time segments, are reported in
detail in Rockstroh, et al. (in press). Patients exhibited a significantly lower degree of EEG
complexity than control subjects according to the P02 (Skinner, et aI., 1990), the 02
(Grassberger & Procaccia, 1983), the mutual information function (Fraser, 1986) and the
entropy (Kumpf, et aI., in press) (see Table 2). None of these measures produced a signifi
cant difference between recording sites (Fz, Cz, pz).
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TABLE 2. Comparisons between patients and controls in the electroencephalographically recorded dynamic
measures of brain activity. Statistically significant differences are indicated by the asterisks Co 0 p=O.Ol,
o p=O.05).
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Patients Controls F(l,l7)

Deltaband

Thetaband

Alphaband

Betaband

Gammaband

nonlinear measures:

Determinism

PD2

D2 (Grassberger)

Mutual Wo.

K~ntropy5

.114±.027 .089±.018 7.4·

.025±.010 .023±.OO7 n.s.

.011±.OO7 .014±.OO3 n.s.

.003±.003 .007±.OO2 n.s.

.001±.00Ol .001±.OOOl n.s.

.334±.O12 •32±.OO8 11.5....

5.6±0.7 6.4±0.2 11.0-

7.6±2.8 9.0±2.5 7.3·

-55.3±28.3 -24.0±8.3 10.3-

-527 ±152 -420±59 4.2"

Discussion

I

tJ

In all cases MEG and EEG time series produce higher values for the determinism than
the analyses of white noise of equal length, filtered and sampled in a comparable manner.
This is true for all locations and for all subjects irrespective of whether measurements were
taken during task performance, resting wakefulness or in a comatose state. Obviously,
EEG and MEG are not simply colored noise arising from arbitrary summation of
uncoordinated activity. This result is in agreement with Pritchard & Duke (in press) who
have reached the conclusion that the normal resting EEG is nonlinear and therefore not a
linear-stochastic system. Furthermore, their result indicates that the resting human EEG is

V high dimensional and does not represent low-dimensional chaos. Therefore, computations
of the fractal dimension of waking EEG cannot be theoretically justified. While it may be
difficult to apply the powerful background of nonlinear system analysis for the interpreta
tion of D2 results, such computations can produce interesting differences that may not be
uncovered by other types of analyses (Elbert et aI., 1994).

One example of this is provided by the present clinical study: patients with appallic
syndrome exhibit higher values of determinism, the more so the more severe their disabil
ity ratings. The relationship seems very consistent, although it must be limited by the
reliability of the DRS score, and probably also by its validity. It seems worthwhile to
investigate further whether or not nonlinear measures may prove useful not only in diagno
sis but also in the prognosis of comatose states.
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1. A computer program (C/Unix) is available from the authors upon request via e-mail: zjk@bifurc.uni
muenster.de.

2. The Van der Po! like driven osciJlator was implemented following Kowalik, et al. (in press).
3. Higher specificity of MEG is to be expected, as the influence of volume conduction is much greater for

the EEG, and, furthermore, in addition to tangentiaJly oriented current dipoles, radial sources affect the
EEG but hardly MEG-recordings.

4. UsuaJly, scores between 20 and 25 are found for apaJlic patients, higher scores are only obtained during
acute coma.

5. Entropy is a measure of complexity that reflects loss of information or inversely the amount of informa
tion needed to describe the future state of a system. The more complex the system (with noise being the
most complex) the greater the entropy.
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