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Abstract

Reliable measurements are key to social science research. Multiple measures of relia-
bility of the total score have been developed, including coefficient alpha, coefficient
omega, the greatest lower bound reliability, and others. Among these, the coefficient
alpha has been most widely used, and it is reported in nearly every study involving
the measure of a construct through multiple items in social and behavioral research.
However, it is known that coefficient alpha underestimates the true reliability unless
the items are tau-equivalent, and coefficient omega is deemed as a practical alterna-
tive to coefficient alpha in estimating measurement reliability of the total score.
However, many researchers noticed that the difference between alpha and omega is
minor in applications. Since the observed differences in alpha and omega can be due
to sampling errors, the purpose of the present study, therefore, is to propose a
method to evaluate the difference of coefficient alpha (ba) and omega (bv) statistically.
In particular, the current article develops a procedure to estimate the SE of (bv � ba)
and consequently the confidence interval (CI) for (v� a). This procedure allows us
to test whether the observed difference (bv � ba) is due to sample error or bv is sig-
nificantly greater than ba . The developed procedure is then applied to multiple real
data sets from well-known scales to empirically verify the values of (bv � ba) in prac-
tice. Results showed that in most of the comparisons the differences are significantly
above zero but cases also exist where the CIs contain zero. An R program for calcu-
lating bv, ba, and the SE of (bv � ba) is also included in the present study so that the
developed procedure is easily accessible to applied researchers.
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Introduction

In social and behavioral sciences, most interesting attributes such as happiness, anxi-

ety, and cognitive and social competence cannot be observed directly and have to be

measured by multiple indicators that are subject to errors. Reliable measurements are

key to social science research. When measurements are used quantitatively, we would

like the observed differences between individuals to be due to the differences in true

scores rather than due to measurement errors. The concept reliability was invented to

quantify the quality of measurements for such a purpose (see, e.g., Allen & Yen,

1979; Raykov & Marcoulides, 2011). In particular, reliability of the observed score is

defined as the ratio of the variance of the true score over the variance of the observed

score. It is known that reliability depends on the formulation of items (how questions

are phrased in questionnaires) as well as the targeted population (the composition of

the participants; see, e.g., Thompson, 2003).

In practice, the total score across items is most widely used for analysis, and the

reliability of the total score is of great interest. However, because the part of the true

score within the total score is not observable, it is not straightforward to estimate its

variance even if we have data with the observed scores. Consequently, multiple mea-

sures of reliability of the total score have been developed, including coefficient alpha

(also referred to as Cronbach’s alpha; Cronbach, 1951; see also Cortina, 1993;

Raykov, 1997; Raykov& Marcoulides, 2011, 2015), coefficient omega (McDonald,

1999), the greatest lower bound reliability (Bentler, 1972; Bentler & Woodword,

1980; Li, Rosenthal, & Rubin, 1996), and others (Allen & Yen, 1979; Hunt &

Bentler, 2015; Zinbarg, Revelle, Yovel, & Li, 2005). Among these, the coefficient

alpha has been the most widely used measure of reliability, and it is reported in

nearly every study involving the measure of a construct through multiple items in

social and behavioral research. However, there exists criticism against coefficient

alpha (see, e.g., Green, Lissitz, & Mulaik, 1977; Raykov, 1997; Sijtsma, 2009; Yang

& Green, 2011). This is because, when the items are unidimensional (measuring the

same latent trait), the sample coefficient alpha yields consistent estimate of reliability

only when all the items have equal covariance with the true score, called tau-equiva-

lence. But this assumption is seldom met in practice with educational and psycholo-

gical scales (see, e.g., Green & Yang, 2009; Jó́reskog, 1971; Lord & Novick, 1968).

A measure that overcomes the deficiencies of alpha is coefficient omega, which is

based on a one-factor model. In particular, when the covariance among the items can

be approximately accounted for by a one-factor model, the formulation of coefficient

omega closely matches the definition of reliability (McDonald, 1999). Also, almost

all free and commercial statistical software outputs the parameter estimates of a one-

factor model that allow the calculation of coefficient omega (e.g., Dunn, Baguley, &

Brunsden, 2014; Zhang & Yuan, 2016). In particular, the coefficient omega is
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deemed as a practical alternative to coefficient alpha in estimating measurement

reliability of the total score (Dunn et al., 2014). However, most applied researchers

still choose to report only the coefficient alpha.

The reason behind the wide usage of coefficient alpha can be due to multiple rea-

sons. First, Cronbach’s coefficient alpha is well known but poorly understood by

many applied researchers. Majority of researchers and users of psychometrical scales

might not understand the differences between a and v very well. A great number of

researchers’ understanding of reliability analysis is generally low, and it remains

likely that fewer than half of all postgraduate courses in psychology offer in-depth

coverage of methods of reliability analysis (Dunn et al., 2014), and thus alpha is

widely misapplied in social science research (Cho & Kim, 2015; Green & Yang,

2009). In addition, articles that condemn alpha tend to be very technical, if imple-

mentation of an alternative is offered, it is usually presented in a manner too complex

for applied researchers to easily implement. Raykov and colleagues made a great

deal of effort for a balanced treatment about the criticism and misapplication of alpha

(Raykov, 1997, 2012; Raykov & Marcoulides, 2011, 2015). And above all, although

the advantages of omega have been illustrated by various authors, the difference

between alpha and omega has been reported to be small in applications (e.g.,

Maydeu-Olivares, Coffman, & Hartmann, 2007; Raykov, 1997). Such an observation

made the use of coefficient omega less appealing and indirectly promoted the use of

coefficient alpha. However, the observation was primarily based on the direct com-

parison of the nominal values of the two estimates without making appropriate statis-

tical inference.

Raykov and Marcoulides (2015) provided a direct approach to point and interval

estimation of Cronbach’s coefficient alpha using Mplus. They concluded that ‘‘alpha

and the reliability of a considered scale can be treated as practically identical at

large’’ (p. 152) when the following four conditions hold: (a) items are unidimen-

sional or there is no correlated errors when fitted by the one-factor model; (b) the

average loading is above .7; (c) all the differences between the individual factor load-

ings and the average loading are less than .2; and (d) each item has zero specificity

or each uniqueness is solely from measurement errors. When the four conditions in

(a) to (d) hold, alpha can also be treated as practically identical to omega, and there

is no need for additional development, as presented in the current article. However,

in practice, it is very likely that the four conditions may not hold simultaneously.

This will be further noted in our analysis of real data sets from well-known psycholo-

gical scales. In such practical situations, coefficient omega may enjoy some advan-

tage over coefficient alpha (Dunn et al., 2014; Zhang & Yuan, 2016), and then the

difference between alpha and omega may become nontrivial. The technique devel-

oped in this article allows us to statistically evaluate whether the observed difference

(bv � ba) is due to sampling error. Of course, a significant (bv � ba) does not imply

that bv is a consistent estimate of the true reliability in the population, nor is ba. It still

needs conditions (a) and (d) to hold for omega to equal the true population reliability,
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whereas it needs all the four conditions (a to d) to hold for alpha to be practically

identical to the population reliability.

Evaluating the difference of coefficient alpha and omega statistically will help

enhance applied researchers’ awareness of the advantage of omega and facilitate the

shift from alpha to omega. Many studies discussed problems with coefficient alpha

and pointed out the assumptions underlying coefficient alpha are unlikely to hold in

practice, and violation of these assumptions can result in nontrivial negative or posi-

tive bias, coefficient omega has been shown to be a more sensible index of internal

consistency (Dunn et al., 2014; Green & Yang, 2009; Zhang & Yuan, 2016).

However, alpha continues to be widely applied by social science research to assess

internal consistency reliability. Actually, Zinbarg et al. (2005) reported that even

when the assumptions of essentially tau-equivalent model are met, omega performs

at least as well as alpha. But under violations of tau-equivalence conditions likely to

be the norm in psychology, omega outperforms alpha and is clearly the preferred

choice. To change the practice, it is necessary to develop a rational, scientific, and

convincing method to compare the difference of coefficient alpha and omega statisti-

cally in applications, and shift applied researchers’ attention from alpha to omega

(Dunn et al., 2014).

The purpose of the present study, therefore, is to propose a method to evaluate the

difference of the sample coefficient alpha (ba) and omega (bv ) statistically. Since the

estimates of the two coefficients are obtained from the same sample and consequently

are correlated, we cannot judge the significance of their difference by the standard

error (SE) of either coefficient, or their combination. The covariance of bv and ba has

to be included as well. Consider the wide application of bv and ba in social research as

well as the ongoing debate between the two coefficients, obtaining the SE of (bv � ba)

and consequently the confidence interval (CI) for (v� a) will have a great impact. In

this study, we aim to (a) develop a formula to estimate the SE of (bv � ba ) and conse-

quently the CI for (v� a), which can be easily implemented in any software with

exploratory factor analysis or confirmatory factor analysis already built in. (b) Apply

the proposed procedure to multiple real data sets from well-known scales and empiri-

cally see how often the difference between the two reliability coefficients is signifi-

cant. In particular, in developing a method to estimate the SE of (bv � ba ), we will

consider that data are not necessarily normally distributed in practice. (c) An R pro-

gram for calculating bv, ba, and the SE of (bv � ba ) is also included in the present

study so that the developed procedure is easily accessible to applied researchers. R

code is free and everybody has access to it.

The method to be developed allows us to test whether the observed difference

(bv � ba ) is due to sampling error or v is truly greater than a, it is a rational and sci-

entific approach for applied researcher to examine the difference between coefficient

alpha and omega. The present study also applies the developed procedure to major

or well-known psychological scales to empirically verify their differences. In particu-

lar, if in most applications the 95% confidence intervals contain 0, then the criticism

against coefficient alpha is not warranted. By contrast, if most of the confidence
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intervals do not contain 0, then they will convey a clear message to applied research-

ers, and will also more effectively promote the applications of coefficient omega. In

any case, the knowledge about the SE of (bv � ba ) will allow us to more effectively

quantify and evaluate the difference between the two reliability coefficients. We will

describe how the SE of (bv � ba ) is obtained in the next section. Then we will intro-

duce four real data sets. Results of applying the developed procedures to these data

sets are presented and discussed in the following section. Technical details leading to

the formulations of the SE is given in the appendix. An R program for calculating bv,ba, and the SE of (bv � ba ) can be downloaded at https://www.psy.cuhk.edu.hk/psy_

media/WChan_Page/alpha-omega.txt, so that applied researchers can easily imple-

ment the developed procedure.

Methodology

In this section, we will first describe how the SE of (bv � ba ) is obtained, then intro-

duce four data sets. Each data set is either classical or from well-known scales.

The Formulations of bv, ba, and the SE of (bv � ba )

Let S = (sjk) be the sample covariance matrix based on p items, and S = (sij) be the

population counterpart of S. The formula of sample coefficient alpha is

ba =
p

p� 1
1�

Xp

j = 1
sjj

.Xp

j = 1

Xp

k = 1
sjk

� �
: ð1Þ

It is a consistent estimate of its population counterpart a when sjk is replaced by sjk.

In Equation (1), ba is a function of the elements of S, and consequently the sampling

properties of ba is determined by those of S.

The computation of bv involves a one-factor model, where exploratory factor

model and confirmatory factor model are the same. Let the factor variance be fixed

at 1.0 for identification purpose, and the factor loadings and error variances for the p

items be l1, l2, lp, and c11, c22, . . . , cpp, respectively. Then the formula1 of sample

coefficient omega is

bv =

Pp
j = 1
blj

� �2

Pp
j = 1
blj

� �2

+
Pp

j = 1
bcjj

; ð2Þ

where blj and bcjj are, respectively, the estimates of lj and cjj obtained by fitting the

(one-factor) model to data via minimizing a discrepancy function between the model

implied covariance matrix bS and the sample covariance matrix S. In this article, we

will use the normal-distribution-based maximum likelihood method to estimate the

factor model, because it is the default method in most commercial and free software,

and also the most widely used in practice. In the estimation process, the estimates blj
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and bcjj will take values so that the model implied covariance matrix best matches the

sample covariance matrix. When elements of S changes, the elements of the model

implied covariance matrix also change accordingly. Thus, the estimates blj and bcjj

are functions of S (see, e.g., Yuan, Marshall, & Bentler, 2003). Consequently, bv is

also a function of S, and the sampling properties of bv is determined by those of S.

Since both ba and bv are functions of S, their difference (bv � ba) is also a function

of S, and the sampling properties of (bv � ba) is determined by those of S as well. In

the appendix, the SE of (bv � ba) is obtained by utilizing such a relationship. In partic-

ular, the variance of (bv � ba) is obtained by deducting two times the covariance from

the sum of the variances of bv and ba. Each term is computed by approximating bv andba using linear functions of S, and such a technique has been widely used in studying

properties of parameter estimates in structural equation models and elsewhere (e.g.,

Bentler & Dijkstra, 1985; Yuan, Guarnaccia, & Hayslip, 2003). Actually, the formu-

las of variances or SEs of ba and bv have been described in the literature (e.g., Yuan &

Bentler, 2002), and the contribution of the development in the appendix is mostly on

computing the covariance between ba and bv.

The complete details leading to the asymptotic distribution of bv � ba and conse-

quently the formula of confidence interval for (v� a) are given in the appendix,

and an R program calculating bv, ba, and the SE of (bv � ba) is provided online at

https://www.psy.cuhk.edu.hk/psy_media/WChan_Page/alpha-omega.txt.

The Description of the Four Real Data Sets

We now describe the real data sets, and each also contains multiple subscales. Results

on (bv � ba) and its SE applying to each of the subscales will be reported in the fol-

lowing section.

Data Set 1. This data set was adopted from Holzinger and Swineford (1939), who

developed a battery of 26 items, aiming to evaluate 5 cognitive traits of middle

school students. The 5 traits are spatial (Items 1 to 4, Items 25 and 26), verbal (Items

5 to 9), speed (Items 10 to 13), memory (Items 14 to 19), and math (Items 20 to 24).

Holzinger and Swineford reported two data sets. We will use the one with N = 145

students from the Grant-White school to examine the differences between the relia-

bility coefficient for each of the 5 subscales.

Data Set 2. The data set consists of 44 items of the Big Five Inventory (BFI; John &

Srivastava, 1999) with 5 subscales: neuroticism (neuro, 8 items), extraversion (extra,

8 items), conscientiousness (cons, 9 items), openness (open, 10 items), and agree-

ableness (agree, 9 items). Data are from administering the BFI questionnaires to col-

lege students from a midwestern private university in the United States, with N = 190

complete cases (Deng, Wang, & Zhao, 2016). Participants were recruited by campus

flyers. A consent form was signed by each participant before data collection.
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Data Set 3. The Humor Styles Questionnaire (Martin, Puhlik-Doris, Larsen, Gray, &

Weir, 2003) has 4 subscales: affiliative (affili, 8 items), self-enhancing (self-enha, 8

items), aggressive (aggress, 8 items), and self-defeating (self-defe, 8 items). Each item

is rated on a 5-point scale where 1 = Never or very rarely true, 2 = Rarely true, 3 =

Sometimes true, 4 = Often true, 5 = Very often or always true (21 = Did not select an

answer). This data set is publicly available online (http://personality-testing.info/_raw

data) and was downloaded in the spring of 2015, with N = 993 complete cases.

Data Set 4. The data set comes from the Family Adaptability and Cohesion

Evaluation Scales (FACES II; Olson, Portner, & Bell, 1982) that has 2 subscales:

cohesion (16 items) and adaptability (adapt, 13 items), and each item is rated on a 5-

-point scale where 1 = Never or very rarely true, 2 = Rarely true, 3 = Sometimes

true, 4 = Often true, 5 = Very often or always true. The data set is from administrat-

ing the FACES scale to students from six colleges in Beijing, with N = 852 complete

cases (Deng & Zheng, 2012).

Results of the Analysis of Real Data

In this section, we present the results of applying the methodology described in the pre-

vious section to the four data sets. The results include bv, ba, (bv � ba), and their SEs. In

particular, two SEs are reported for each estimate. One is based on the assumption of

normally distributed data and the other is based on a sandwich-type variance and is

asymptotically distribution free (see, e.g., Maydeu-Olivares et al., 2007; Yuan et al.,

2003). A CI for (v� a) corresponding to each SE is reported as well. Before comput-

ing bv, a one-factor model was fitted to each subscale to evaluate its unidimensionality.

In particular, both the likelihood ratio statistic (Tml) and the Satorra and Bentler (1994)

rescaled statistic (Trml) are included and so are their corresponding fit indices, compara-

tive fit index (CFI; Bentler, 1990) and root mean square error of approximation

(RMSEA; Steiger & Lind, 1980). These measures allow us to see whether the differ-

ence between omega and alpha is related to unidimensionality of the items.

The results are presented in Tables 1 to 4 corresponding to the Data Sets 1 to 4,

respectively. Each table contains two parts. The upper panel contains fit statistics Tml

and Trml, and their corresponding p value, CFI, and RMSEA.2 The lower panel con-

tain the estimate of bv, ba, (bv � ba), and their SEs. In particular, all the CIs are

obtained with a nominal coverage rate of 95%.

For the five cognitive subscales (spatial, verbal, speed, memory, math) of

Holzinger and Swineford’s (1939) data, with results in Table 1, the p values corre-

sponding to Trml, are respectively .206, .023, .007, .118, and .562, and RMSEA =

.049, .105, .165, .063, and .000, respectively, suggesting that the items measuring

subscales spatial, memory, and math can be regarded as approximately unidimen-

sional whereas those measuring verbal and speed are not. However, according to the

respective values of CFI (.977, .956, .927, .956, 1.000), the items on subscales verbal

and speed can also be regarded as approximately unidimensional.
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Clearly, except for the subscale memory, the CI of (v� a) for the other four sub-

scales do not contain 0, suggesting that there are significant difference between the

two reliability coefficients. That is, bv is significantly greater than ba in subscales spa-

tial, verbal, speed, and math.

The results for the Big Five Inventory are in Table 2, and the items on each of the

five subscales (neuroticism, extraversion, conscientiousness, openness, agreeable-

ness) are not well fitted by a one-factor model (CFI = .855, .943, .915, .736, and .825,

respectively; and RMSEA = .136, .108, .087, .138, and .087, respectively). Except for

the subscale openness, the CIs for (v� a) for the four other subscales do not contain

0 (95% CI: [.001, .007], [.001, .008], [2.011, 2.001], [.004, .022]), suggesting that bv
is significantly greater than ba in subscales neuroticism, extraversion, and agreeable-

ness, but the opposite holds for conscientiousness.

The results for the Humor style questionnaires are in Table 3, where the numbers

indicate that there are significant difference between the two reliability coefficients in

three out of the four subscales (affiliative, self-enhancing, aggressive, self-defeating).

Only the CI for (v� a) corresponding to affiliative literally covers zero. Moreover,

the fit indices RMSEA and CFI suggested that the one-factor model fits the items of

each of the four subscales reasonably well although not excellent (CFI = .918, .912,

.940, and .953, respectively; RMSEA = .082, .096, .067, and .069, respectively).

Results with the last data set (family functioning with 2 subscales: cohesion and

adaptability) are in Table 4, where the values of RMSEA (.058 and .049) suggest

that the items on each of the subscales might be regarded as approximately unidi-

mensional. However, the values of CFI (.887 and .925, respectively) suggests that

items on cohesion is poorly fitted by the one-factor model. The CIs for (v� a) for

neither of the two subscales contain 0, suggesting that bv is significantly greater thanba in both the subscales.

Discussion and Conclusion

Measurement reliability plays an important role in understanding the quality of edu-

cational and psychological variables. Alpha, conceived as an ‘‘internal consistency’’

coefficient, is the most widely used reliability coefficient in social science reach.

However, the properties of coefficient alpha are not well understood by applied

researchers, as previous studies such as Green and Yang (2009, p. 121) pointed out

that ‘‘the general use of coefficient alpha to assess reliability should be discouraged

on a number of grounds’’. Similarly, Cho and Kim (2015, p. 207) clarified ‘‘six com-

mon misconceptions about coefficient alpha:

(1) Alpha was first developed by Cronbach. (2) Alpha equals reliability. (3) A high value

of alpha is an indication of internal consistency. (4) Reliability will always be improved by

deleting items using ‘‘alpha if item deleted’’ [an option in SPSS]. (5) Alpha should be

greater than or equal to .7 (or, alternatively, .8). (6) Alpha is the best choice among all pub-

lished reliability coefficients.
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More and more researchers suggest that alpha is not the best choice within current

research practice and advocate the switch from alpha to omega, especially when the

tau-equivalent assumption is violated. However, the majority of applied researches

still tend to choose alpha because they are more familiar with alpha than omega, and

also because the difference between alpha and omega was believed to be small. So

there is an increasing need to develop a convincing method to compare the difference

of coefficient alpha and omega statistically, which will offer an updated perspective

for the ongoing debate on the issue.

In this article, we developed a methodology for estimating the SE of (bv � ba) and

consequently the CI for ( v� a). We further applied the method to four real data sets

from well-known scales, and the results indicated that in most of the cases bv and ba
are significantly different (13 of 16 scales, about 81.25%). These suggest that signifi-

cant differences do exit between coefficient alpha and omega and, to some extent,

support that ‘‘substituting alpha with a superior alternative is not merely a matter of

personal choice but a matter of academia consciously responding to the issue’’ (Cho

& Kim, 2015, p. 225). However, cases also exist in which the difference between

coefficients alpha and omega is not significant (3 of 16 subscales, about 18.75%).

This study also evaluated unidimensionality properties of items on 16 subscales.

Most scales are fitted reasonably well by the one-factor model. However, the fit

indices CFI and RMSEA do not always agree with the goodness of fit. This has been

pointed out by Kim and Markland (Kim, 2005; Markland, 2005), and our analysis

reconfirmed it. The main purpose of this study is to see how often the differences

between the two reliability coefficients is significant. Our results indicate that there

is no apparent association between the difference of the two reliability coefficients

and the unidimensionality properties of the items although omega is calculated on

the estimation of the one-factor model. There are still significant difference betweenbv and ba regardless whether the items were not fitted well by the one-factor model.

This article provides a scientific method and an R program for computing the SE

of (bv � ba) and consequently the CI for ( v� a). The development offers a sound

procedure for applied researchers to compare the difference between alpha and

omega. The results from the analysis of the well-known scales may also offer certain

solid evidence for researchers who might consider a shift from alpha to omega in

future. In addition, the development in this article is a necessary supplement to that

developed in Raykov and Marcoulides (2015) when the average loading is below .7

or when differences between certain individual factor loadings and the average load-

ing are greater than .2. Four conditions (a) to (d) were noted earlier in this article

when discussing the relationship between alpha, omega, and the true reliability (see

also Raykov & Marcoulides, 2015). These conditions might be hard to verify in prac-

tice. As were seen earlier in this article, in 13 of 16 scales bv and ba are significantly

different, which may also imply that some of the conditions in (a) to (d) are violated.

In particular, we are literally unable to conclude that items are unidimensional even

if a test statistic is not significant. What we can conclude is that there is not enough

evidence to reject the one-factor model.
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Following McDonald (1999), the coefficient omega in this article is defined on

the estimation of a one-factor model, although the items may not be unidimensional.

Alternatively, we can fit the items on each subscale by a multifactor model or by

including correlated errors (e.g., Bentler, 2007; Yang & Green, 2010). However, it

might be difficult to label the factors of each subscale within well-known or well-

developed instruments. Such a difficulty may also pass onto the interpretation of the

resulting reliability estimates. More studies in such a direction might be needed in

order to understand the difference between reliability estimates based on one and

multiple factor models.

In this article, the formula for the SE of (bv � ba) is obtained by asymptotics, via

the sandwich-type covariance matrix of the parameter estimates of factor loadings

and error variances. Alternatively, we may also obtain an estimate of the SE by the

bootstrap methodology, parallel to the development in Chan (2009) and Raykov and

Marcoulides (2015). Under the condition of identically distributed or exchangeable

observations, results in Yuan and Hayashi (2006) indicate that the two methods yield

essentially the same results even at small sample sizes. But the bootstrap method may

fail when the observations are not exchangeable or not identically distributed (Wu,

1986). In contrast, SEs based on sandwich-type covariance matrices are still consis-

tent as long as the observations are independent (White, 1980). Results in Jones and

Waller (2013) indicate that confidence intervals based on asymptotics can be more

accurate than those based on the bootstrap. Also, with bootstrap different people will

get different results due to different bootstrap replications, or starting seed, such a dif-

ference can be confounded with the difference between sample alpha and omega. So

the development of the analytical formula for the SE of (bv � ba) in this article not

only allows a more reliable assessment of the difference between alpha and omega

but also represents an advancement in assessment methodology.

Appendix A

This appendix contains the details leading to the asymptotic distribution of bv � ba
and consequently the formula of confidence interval for v� a. For such a

purpose, we will need to obtain the asymptotic expansions of ba and bv as functions

of s = vech (S), respectively. Deng, Marcoulides, and Yuan (2015) gave a procedure

for obtaining the standard error of the difference between two alphas or two omegas

of correlated samples, but not for the difference between the estimates of omega and

alpha computed using the same sample. Thus, the development here is parallel to that

in Deng et al. (2015) but in a different direction.

Notice that S is a symmetric matrix with duplicated elements, and let s = vech (S)

be a p� = p p + 1ð Þ=2-dimensional vector that contains the low-triangular part of S. Let

a be a p�-dimensional vector whose elements are 1.0 corresponding to the position of

sjj (j = 1, 2, . . . , p) in s and 0 elsewhere; and b be also a p�-dimensional vector whose

elements are 1.0 corresponding to the position of sjj (j = 1, 2, . . . , p) in s and 2.0 else-

where. Then corresponding to Equation (1) we can rewrite a as
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a = a sð Þ= p

p� 1
1� a0s

b0s

� �
:

Using standard calculus, the differential of a is given by

da = � p

p� 1

a0ds

b0s
� a0s

b0sð Þ2
b0dsð Þ

" #
:

Consequently, the derivative of a sð Þ is

_a sð Þ= da sð Þ
ds

=
p

p� 1

a0s

b0sð Þ2
b� 1

b0s
a

" #
:

It follows from the mean value theorem thatffiffiffi
n
p ba � að Þ=

ffiffiffi
n
p

a sð Þ � a sð Þ½ �= _a0 sð Þ
ffiffiffi
n
p

s�sð Þ= _a0 sð Þ
ffiffiffi
n
p

s� sð Þ+ op 1ð Þ; ðA1Þ

where s is a p�-dimensional vector whose elements are between s and s; and op 1ð Þ
denotes a term that approaches 0 in probability as n increases.

Similar to (A1), we need to obtain a formula for bv to be approximated by a linear

combination of the elements of s. As noted in the main body of the article, bv in

Equation (2) is a function of bu, and bu is a function of s. It follows from the defini-

tion of v, parallel to that of Equation (2), that its differential is given by

dv =
2 10lð Þ 10dlð Þ
10lð Þ2 + tr Cð Þ

� 10lð Þ2 2 10lð Þ 10dlð Þ + tr dCð Þ½ �

10lð Þ2 + tr Cð Þ
h i2

=
2 10lð Þ2 + tr Cð Þ
h i

10lð Þ 10dlð Þ � 10lð Þ2 2 10lð Þ 10dlð Þ+ tr dCð Þ½ �

10lð Þ2 + tr Cð Þ
h i2

=
2tr Cð Þ 10lð Þ 10dlð Þ � 10lð Þ2tr dCð Þ

10lð Þ2 + tr Cð Þ
h i2

,

where 1 is a vector of p 1s. Thus,

∂v

∂l
=

2tr Cð Þ 10lð Þ

10lð Þ2 + tr Cð Þ
h i2

1 and
∂v

∂c
= � v2

10lð Þ2
1:

Notice that
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v 1� vð Þ= 10lð Þ2tr Cð Þ

10lð Þ2 + tr Cð Þ
h i2

:

We have

_v uð Þ= 2
v 1� vð Þ

10lð Þ 10, � v2

10lð Þ2
10

 !
:

It follows from the mean value theorem thatffiffiffi
n
p bv � vð Þ=

ffiffiffi
n
p

v bu� �
� v uð Þ

h i
= _v0 u

� � ffiffiffi
n
p bu � u
� �

= _v0 uð Þ
ffiffiffi
n
p bu � u
� �

+ op 1ð Þ;

ðA2Þ

where bu is a p*-dimensional vector whose elements are between bu and u.

We still need to relate bu and u to s and s, respectively. Let _s be the matrix of

derivatives of s with respect to u0, and W = D0pðS�1 � S�1ÞDp=2, where Dp is the

duplication matrix and � is the notation for Kronecker product (Schott, 2005). Then

it follows from Equation (6) of Yuan et al. (2003) thatffiffiffi
n
p bu � u
� �

= P
ffiffiffi
n
p

s� sð Þ+ op 1ð Þ; ðA3Þ

where P = _s0W _sð Þ�1 _s0W. Substituting the
ffiffiffi
n
p bu � u
� �

in (A2) by (A3) results inffiffiffi
n
p bv � vð Þ= _v0P

ffiffiffi
n
p

s� sð Þ+ op 1ð Þ: ðA4Þ

Combining (A1) and (A4) yields

ffiffiffi
n
p
½(v̂� â)� (v� a)�= ( _v0P� _a0)

ffiffiffi
n
p

(s� s) + op(1); ðA5Þ

where _v, _s, and W are functions of u; and _a is a function of s. Let G = Cov(
ffiffiffi
n
p

s): It

follows from (A5) that ffiffiffi
n
p
½(v̂� â)� (v� a)� �!L N (0, t2); ðA6Þ

Where

t2 = ( _v0P� _a0)G(P0 _v� _a):

A consistent estimate t̂2 of t2 will be obtained when _v, P, _a, and G are replaced

by _v(û), P̂ = ½ _s0(û)W(û) _s(û)��1 _s0(û)W(û), _a(s), and Ĝ = Sy, where Sy is the sample

covariance matrix S available without raw data, we may estimate G by

Ĝ1 = 2DþP (S� S)Dþ
0

P or Ĝ2 = 2DþP (S(û)� S(û))Dþ
0

P , where DþP = (D0P DP)�1D0P. Then

we still get a consistent t̂2 when data are normally distributed or when in addition

the one-factor model can be regarded as correctly specified.
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It follows from (A6) that a confidence interval for v� a with Level 1� 2b can

be obtained as

bv � ba � zbbt	 ffiffiffi
n
p

, bv � ba + zbbt	 ffiffiffi
n
p
 �

;

where zb is the 1� bð Þ critical value under the standard normal distribution.

For example, zb = 1:96 with b = 0:25, corresponding to an interval with confidence

level .95.
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Notes

1. There is a formula for calculating coefficient omega with more than one latent dimension

(see, e.g., Yang & Green, 2010). However, there might be operational difficulty in practice

because cross-loadings and correlated errors are typically confounded.

2. Note that RMSEA and CFI under the rescaled statistic are computed by simply replacing

Tml by Trml under the substantive model and the base model, respectively.
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